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Abstract— Practical implementations of deep reinforcement
learning (deep RL) have been challenging due to an amplitude
of factors, such as designing reward functions that cover every
possible interaction. To address the heavy burden of robot
reward engineering, we aim to leverage subjective human
preferences gathered in the context of human-robot interaction,
while taking advantage of a baseline reward function when
available. By considering baseline objectives to be designed
beforehand, we are able to narrow down the policy space, solely
requesting human attention when their input matters the most.
To allow for control over the optimization of different objectives,
our approach contemplates a multi-objective setting. We achieve
human-compliant policies by sequentially training an optimal
policy from a baseline specification and collecting queries on
pairs of trajectories. These policies are obtained by training
a reward estimator to generate Pareto optimal policies that
include human preferred behaviours. Our approach ensures
sample efficiency and we conducted a user study to collect real
human preferences, which we utilized to obtain a policy on a
social navigation environment.

I. INTRODUCTION

Deep RL has shown great success in a variety of tasks,
namely in control tasks, ranging from locomotion [1], to
robot grasping [2], robot navigation [3], and human-robot
interaction [4]. However, only a subset of these may be
compliant with human preferences. If humans are not taken
into account, deploying intelligent robots in the real world
may lead to unforeseen consequences in safety [5], which
holds true when considering deep RL [6]. In many robotic
environments, including social robot navigation, it is often
impossible to determine the ideal socially compliant reward
function in advance. This may be due to the requirement of a
large dataset of expert demonstrations, or the complexity of
the task, which may make it nearly impossible to model with-
out input from a human agent. Possible solutions consider
human-in-the-loop approaches [7], [8], [9], where humans
offer feedback within a learning loop to help optimize an
agent. Although many approaches incorporate significant
human input, our goal is to find a balance between reward
engineering [10] and taking into account the necessary
amount of human feedback. In many tasks, the general goals
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Fig. 1: Examples of different policies in a social navigation task. Information
on how to optimize these policies may be both obtained in a hard constraint
fashion for safety requirements, and through human feedback for perceived
safety.

and penalties are known a priori. These can be modelled as
a baseline reward to obtain policies which can be further
guided by a human teacher. We consider our work to be
a step towards including human preferences with baseline
objectives to obtain human-aligned agents [11]. Robotic
tasks typically have unique specifications that should not
be significantly deviated from. However, there should be
room to consider additional sub-objectives alongisde human
preferences. Thus, at the core, human-aligned agents are
fundamentally multi-objective [12]. The best reward function
will achieve compromise between globally optimizing for
both human preferences and specifications. This work poses
itself as a step in the direction of including humans as part
of the design of robotic tasks.

We use a robot navigation task scenario as motivation for
the importance of correctly incorporating subjective human
preferences to achieve socially compliant [13], [14] trajec-
tories. Robot trajectories can be easily inspected visually,
enabling humans to provide preferences between pairs of
trajectories. Let us begin with an initial policy that results
in collisions with walls (see 1.a). In such situations, it is
unnecessary to rely on human feedback to correct simple
behaviors, and a baseline reward can be designed with
straightforward goals and penalties to address this. However,
to incorporate the subtle differences between trajectories (see
1.b and 1.c) that stem from subjective human preferences, we
need a solution to integrate this information with a baseline.

II. RELATED WORK

Learning objectives for RL. Reward engineering [10]
relates to handcrafting reward functions to serve a specific
task or purpose. However, these can be exploited by RL



algorithms leading to undesirable behaviours [5]. Alterna-
tively, inverse RL [15] extracts reward functions from opti-
mal policy rollouts. The functions are extracted, e.g., using
heuristics alongside linear combination of known features
[16] or by maximum entropy of utility functions [17]. Similar
approaches focus on actively encoding human’s preferences
[18] or simplifying reward function design [19]. To avoid
deriving reward functions solely on pre-designed sets of
expert demonstrations, the authors in [20] suggest learning
priors from different tasks. Alternative methods infer human
objectives by evaluating hypothetical behavior [21] or by
designing generative models of the policy [22]. Closer work
to ours leverages reward function inference through Bayesian
approaches [23], [24], alongside user input such as risk toler-
ance to optimize a robust policy that balances both. However,
our work differs from the above by allowing the combination
of baseline objectives and human-in-the-loop preferences to
be decided as a trade-off in a Pareto frontier. Our work fills
an important gap of allowing a flexible combination of a
priori reward functions with completely data-driven models
of preferences, which avoid over-querying humans.

Learning From Human Feedback. In [25] human feed-
back is used to remove bias of extracted skills from of-
fline datasets sets and produce more human-aligned skills.
Human feedback can also take more subtle forms, such as
implicitly from facial features to learn reward rankings [26].
Human-robot collaborative manipulation policies can also be
learned from datasets of human-human collaboration, such as
learning handover tasks from conversations to obtain diverse
strategies of human-robot collaboration [27], or to improve
backchanneling behaviours [28] for social robots from be-
haviours such as nodding. Human feedback can also take
the form of observing preferences of how scenes of objects
are spatially arranged [29]. However, these methods require
detailed datasets of human feedback and/or demonstrations,
which can be costly or impossible to obtain if not readily
available. We found inspiration in ideas such as repeatedly
inferring reward functions from demonstrations in repeated
IRL [30] [31] [32], and learning from high-level preferences,
which benefits from a large body of literature [33]. Moreover,
hybrid approaches such as combining both demonstrations
and preferences [34], [35], were considered as a starting
point for our work. Deep RL from human preferences [8]
presented itself as a framework to teach agents from tabula
rasa solely on human preferences from pairs of trajectories.
A similar approach to ours, also learns from preferences with
a human-in-the-loop framework [36], allowing humans to
interactively teach agents through tailored feedback between
clips of demonstrations to infer a reward function. A closer
work to ours [37] acknowledges that the problem of inverse
reinforcement learning can often be succinctly represented
by a simple reward plus additional constraints, instead of
fully estimating a complex reward from tabula rasa.

III. BACKGROUND

Multi-Objective RL. We consider continuous deep RL
setups with state spaces S ⊆ Rn, n ∈ N+, and compact and

convex action spaces A ⊂ Rm,m ∈ N+. The underlying
problem of the chosen task is modelled as an infinite dimen-
sional multi-objective Markov decision process (MOMDP)
M := (S,A,P,S0,R,γ), where P : S × A × S → [0, 1]
returns the transition probability of ending in state st+1 ∈ S
when applying an action a ∈ A in state st ∈ S , S0 is
the initial state distribution from which s0 is drawn, and
R : S × A → [r1, . . . , rk], k ∈ N+ is a vectorized
scalar reward, where k represents the number of different
objectives for a given state transition with chosen action.
The vector of discount factors γ = [γ1, . . . , γk], γk ∈
[0, 1] represents the discount factor for each objective k.
A policy π : S → A in an MOMDP has a specific
vector of expected returns J π = [J π

r1 , . . . ,J
π
rk
] associated

with the vectorized reward function R, such that J π
rk

=

E
[∑T

t=0 γ
t
krk(st, at)|s0 ∼ S0, at ∼ π(st)

]
. Thus, J π

rk
rep-

resents the return of rk, where T represents the trajectory’s
horizon.

Proximal Policy Optimization (PPO) [38]. PPO repre-
sents a family of policy optimization algorithms based on
TRPO [39]. PPO showed better sample complexity empir-
ically, when compared to other RL algorithms [38], and is
well suited for continuous state and action spaces. It was also
the algorithm used in learning from human preferences [8].
We consider both the actor (policy π) and critic (V ) to be
approximated by deep neural networks, with their weights
parameterized by ϕ. Moreover, we use the clipped surrogate
objective LCL for the actor, since it yields better results on
simulated robotic continuous control environments:

LCL(ϕ) = Ê(min(rt(ϕ)Ât, clip(rt(ϕ)), 1−ϵ, 1+ϵ)Ât), (1)

where rt(ϕ) is the probability ratio between the new and old
policy and Â is an estimator of the advantage function. To
train the critic, we use the common squared-error loss:

LV(ϕ) = Ê(Vϕ(st)− V target
t )2 (2)

where Vϕ(st) is an estimation of the value for st and
V target
t the value computed with an s reward.
Learning from Human preferences [8]. A robot agent

follows a policy π which in turn generates a dataset of trajec-
tories such that Dτ = {τ1, ..., τ j}, j ∈ {1, . . . , Ntrajectories}.
Trajectories may be further divided into groups of tra-
jectory segments. Trajectory segments are simply pairs of
state-action transitions such that τ = (σ1, . . . , σi), i ∈
{1, . . . , Nsegments}, and in turn each segment is represented
by σi = (st, at), . . . , (st+k, at+k), k ∈ N+, where k is the
length of the trajectory segment. The objective is to query
humans on segments as opposed to single state-action pairs,
generalizing their feedback while requesting less prompts.
Pairwise comparisons of segments (σ1, σ2) are forwarded
to humans for preference gathering. To achieve the latter,
preferences need to map concrete effects in the reward
function R(st, at). If we prefer segment σ1 over segment
σ2, σ1 ≻ σ2 (where ≻ is a preference operator between any
two tensors), then we can verify that the sum of rewards from
time t to t+k for the actions taken in state s1t through s1t+k



is greater than the sum of rewards for the actions taken in
state s2t through s2t+k for segment σ2. Humans observe both
segments and provide a feedback of preference on a segment
over the other. Preferences are denoted as ζ = (ζ1, ζ2) and
are tuples of the form (1, 0) if (σ1 ≻ σ2), or (0, 1) otherwise.
If no preference is observed, a feedback of (0.5, 0.5) is given,
and if segments are not related (0, 0). A human prefers a
segment over another (σ1 ≻ σ2) if the sum of rewards for
σ1 is greater than σ2, i.e.

∑
t R(s1t , a

1
t ) >

∑
t R(s2t , a

2
t ). We

denote the estimation of R as R̂. Considering two segments
σ1 and σ2 of equal length k, the probability of a human
choosing one over the other, such that σ1 ≻ σ2 can be given
by a combination of softmax functions p̂(σ1≻σ2), such that:

p̂(σ1≻σ2)=
exp(

∑
t R̂(s1t , a

1
t ))

exp(
∑

t R̂(s1t , a
1
t )) + exp(

∑
t R̂(s2t , a

2
t ))

(3)

Each pair of segments (σ1,σ2) can be queried by either
humans or a synthetic oracle, and the resulting preference is
concatenated alongside the pair as (σ1, σ2, ζ). The queries
are stored on a query dataset Dζ which is used for gradient
descent. The loss function of the reward prediction estima-
tor can be represented by the cross entropy between both
predictions p̂(σ1≻σ2) and p̂(σ2≻σ1) thus:

L(R̂) = −
∑

(σ1,σ2,ζ)

ζ1logp̂(σ1≻σ2) + ζ2logp̂(σ2≻σ1) (4)

IV. TOWARDS COMBINING HUMAN-ALIGNED
PREFERENCES WITH BASELINE OBJECTIVES

Combining diverse objectives [40] [41] has experienced
recent research interest. However, many challenges arise:
combining reward functions with different scales overwhelm
some objectives over others (or even completely overruling
them); optimizing for specific objectives over others might be
desirable when trying to accomplish different robotic tasks.
We present our approach to obtain posterior policies which
reflect human subjective preferences as a multi-objective
problem. To differentiate preferences, we use ζ for the
human preferences used in preference RL, and Ω as the
objective preferences in multi-objective RL. Baseline and
human reward estimations are identified with the subscript β
and H respectively. Our approach is as follows (see Fig 2):

• Step 1 (starting from an initial specification): Initially,
an agent is trained on a baseline reward function Rβ

provided by an expert. This function captures the most
essential aspects of a task, such as goals and penalties,
until a baseline performance level is achieved. The
resulting policy is identified as π∗

β . In situations where
only a high-level heuristic is accessible to evaluate
trajectory quality, we can use the heuristic as a deter-
ministic oracle (0% error rate) to label preferences and
calculate R̂β through eq. 4 to obtain π∗

β .
• Step 2 (estimating subjective human preferences R̂H):

Segments of rollouts from π∗
β are sampled (uniformly

at random) to form queries which are then presented to
humans. The resulting query dataset Dζ is used to train
R̂H (see Sec. IV-A), leading to step 3.

1)

2)1)

2)

3) 3)

1)
3)

Fig. 2: Step 1) A baseline objective is provided Rβ (or inferred R̂β ) from
expert human feedback to obtain π∗

β . Step 2) Rollout examples of π∗
β are

sampled and queries are prepared to be evaluated by humans. Step 3) Both
Rβ (or R̂β ) and R̂H are combined to generate Pareto optimal policies.

• Step 3 (obtaining Pareto optimal solutions): We main-
tain several policies with different objective preferences.
We combine Rβ (which remains constant) and R̂H
according to Ω. Until we obtain Pareto optimal policies,
we sample new rollouts and repeat the process on step
2 to continuously update R̂H for each objective Ωi.

A. Human-aligned reward estimation from baseline be-
haviours

In learning from human preferences [8] a reward estimator
R̂ is trained iteratively from tabula rasa until a performant
policy is reached. We see our framework as a natural
extension, adapted towards our final goal of combining both
human ζ and objective preferences Ω. We start by training an
optimal policy given a baseline reward Rβ or an estimation
R̂β , which we continuously update from a synthetic reward
or heuristic. After optimizing an actor and a critic through
eqs. 1,2 until convergence, we obtain π∗

β . An important
trade-off we underline in our approach is the fact we aim
at querying humans solely on trajectories which present
a strong baseline of performance, as opposed to querying
humans on poor performing trajectories which happens when
considering a completely data-driven approach. The reduced
number of queries we are able to achieve relates to querying
humans at a fraction of the state-space since Sπ∗

β
⊂ S. We

sample a large number of rollout trajectories τ ∼ π∗
β , to

form a dataset Dτ . The dataset Dτ is then used to compute
queries of segments, which are picked uniformly at random,
and the resulting preferences ζ are collected into Dζ which
in turn is used to optimize a human reward estimator R̂H
by minimizing L(R̂H |Dζ) eq. 4.

B. Human-aligned Pareto-optimal solutions

In many tasks, such as the social navigation scenario
we present in Sec.V, there is an interesting balance to be
explored between hard safety constraints (baseline reward
function) and perceived safety (human preferences hard to
model a priori). Balancing between both means exploring
solutions in the Pareto frontier of both. To incorporate
human preferences with baseline objectives, we adopt a
multi-objective RL setting in our approach. This approach
provides us with greater control over the extent to which
we diverge from the baseline task or converge towards a
policy that is fully aligned with human preferences, with a
focus on robotic applications. As part of this process, we
redefine the initial MDP used to acquire a baseline policy



π∗
β to a MOMDP. To this end, we are interested in policies

on the Pareto frontier F . A Pareto frontier, constitutes all
policies π′ which dominate all other policies π′ ≻ π such
that F = {π′ | ∀π : J π′

R ≥ J π
R}. A common challenge

in multi-objective RL is to combine reward functions of
arbitrary scale. To handle potential scale differences between
the baseline objective Rβ and our estimated objective R̂H,
we estimate the baseline using R̂β . To maintain equivalent
scales for R̂β and R̂H, we use a hyperbolic tangent function
for the reward models. This ensures both objectives are
estimated using a similar model and makes our approach
independent of the scale of Rβ . Another challenge arises
from the fact that both R̂β and R̂H are estimated by neural
networks. This makes the estimation of the Pareto frontier
more challenging than using linear functions. To address this,
we consider a single-policy MOMDP approach which allows
us to apply a scalarization approach between objectives.
Instead of trying to estimate the full Pareto frontier, we let
the user define objective preferences Ω = (Ωβ ,ΩH),Ωβ and
ΩH ∈ [0, 1] and Ωβ+ΩH = 1. Thus Ωβ is a scalar preference
for the baseline objective and ΩH the objective preference
for human preferences modelled by the reward estimator
R̂H. We consider a subset of Pareto-optimal solutions which
can be obtained by a linear combination of the different
vectorized rewards. We are interested in a convex converage
set (CCS) of the Pareto frontier such that:

F∗ = {π′ ∈ F |∃Ω∀π : Ωβ J π′

β
+ΩH J π′

H
≥

Ωβ J π

β
+ΩH J π

H
}

(5)

where J π
β and J π

H, are the returns associated with the base-
line objective R̂β and human preferences R̂H respectively.
Thus, the user may define several objective preferences, such
that Ω = {Ω0, . . . ,Ωi}, i ∈ N+, which are used to generate
a set of optimal policies (see Fig. 2) Π∗ = {π∗

0 , ..., π
∗
i }, i ∈

N+,Π
∗ ⊂ F∗. To reduce sample complexity, we decided to

bootstrap each policy π from the optimal baseline policy
π∗
β . The final parameterized weights are expected to be

similar, since they portray a strong baseline of performance.
In Section V we empirically motivate this decision to be
worthwhile as opposed to using preference learning from
tabula rasa. An additional challenge deals with both R̂β and
R̂H are intrinsically non-stationary, since they are updated
with novel queries to adapt to the current state-space subset
of the policy. To handle this, we rely on PPO’s ability
to robustly deal with the change in reward estimation [8].
At each training step we use the collected trajectories to
compute advantages as used in eq. 1, which are generated
by a linear combination of objectives.

V. EXPERIMENTAL RESULTS

In this section we evaluate our approach on several robotic
tasks. We define the policies trained on a specific objective
preference Ω as a preference policy π∗

Ω, initially bootstrapped
from π∗

β (see Section. IV-B) . The main questions we aim at
addressing are:

• Question 1 (Q1): Is the framework able to produce a set
of stable policies Π∗

Ω ⊂ F∗ eq.5, which combine both
objectives?

• Question 2 (Q2): Are the obtained preference policies
Π∗

Ω compliant to human objective preferences Ω?
• Question 3 (Q3): How many human queries are required

by bootstrapping from π∗
β without compromising perfor-

mance?
• Question 4 (Q4): Is our approach applicable with real

human feedback instead of using synthetic heuristics?
To address Q1, we train a baseline policy π∗

β on 1M
steps, and each preference policy πΩ on an additional 500k
steps bootstrapped from π∗

β . We use environmental metrics
(see Sec. V-B) to evaluate if the newly obtained policies
follow the desired human behaviours. Q2 is answered by
comparing metrics between a set of policies Π with different
preferences. We address Q3 by comparing how many queries
are saved with our approach versus when training policies
from scratch with human feedback. In Fig. 3 and Tab. I,
we show the results both in terms of metrics: to confirm
human preferences were included in the baseline policy; and
learning curves: to compare the effect of those preferences in
the original policy. For the last question Q4, we performed a
user study on the social navigation environment (see Fig. 5).
We collect real feedback and test the applicability of our
approach in Sec. V-C.

A. Implementation Details

We use the default reward for the social navigation en-
vironment (see Sec. V-B) and to test for a hypothetical
absence of a reward function (replaced by heuristics), we use
estimations of R̂β in Lunar Landing and Hopper to obtain
an optimal policy π∗

β . To simulate human feedback, we
use oracle reward functions RH when answering preference
queries (see Sec. III). We define them as RH = Rβ +Rp,
where Rp represents a subjective preferred behaviour on
top of a general sense of performance Rβ (e.g., for Lunar
Landing, the general objective is to land the spaceship safely
and, the subjective behaviour is to land from the right).
To account for noisy feedback, we introduce a 10% error
rate when answering queries to estimate R̂H. To train the
different policies and reward estimators R̂ (see Sec. III), we
used densely connected hidden layers of size {128,128} (for
the actor and critic) and {256,256,256}, respectively. Both
models have a hyperbolic tangent layer at the output.

B. Domains and Evaluation Metrics.

Hopper In Hopper, a human oracle is designed to prefer
high jumps. In this case, we chose as metric the average
height across time-steps the agent is able to achieve. In Fig. 3,
we can observe a large impact on learning between different
objective combinations. The impact of each objective pref-
erence is also verified in the metrics across time-steps in
Fig 3, where the increase of the average height was in the
range between 13.4% and 19.5%. Since there is no significant
degradation in performance of the environmental objective
Rβ and we see noticeable improvements in the preference



Fig. 3: Experiments for the different environments. Top row: Mean learning curve of the environmental expert policy using Rβ ; Middle row: Represents
the learning curves obtained with different objective preferences bootstrapped from π∗

β ; Bottom row: Change in the metrics across training steps for the
different obtained policies.

Fig. 4: Sequence of two rollouts on both Lunar Landing and Hopper
for the same seed. Bottom sequence represents a rollout from an expert
policy trained exclusively on an estimation of environmental reward R̂β .
Top sequence represents an optimal preference policy with an objective
preference of ΩH = 1.

metric, we find support for Q1. The behaviour is illustrated in
Fig. 4 with a joint highlighted in circles; in order for the agent
to reach higher average heights, it chooses not to bend one
of the joints, remaining as straight as possible while jumping
forward. Our new policies π∗

Ω adhere to human preferences
(see Tab. I), confirming Q2. We then collect 20 queries every
20K step following our new policy up until we reach a total
of 300 queries. When training πβ from scratch, 1400 queries
are required, which means we save around 1100 queries per
learned policy, showing support for Q3.

Lunar Landing In Lunar Landing, metrics are presented
as a percentage which is defined by the ratio rp =

∑
∆Tp

∆T ,
where

∑
∆Tp represents the sum of all time-steps when

the ship is approaching landing from the right, and ∆T the
total environment steps of the policy π∗

Ω trained under a
certain preference Ωi. In Fig 3 we see that the return of the
environmental reward Rβ shows a slight degradation when
preferences are included, with the worst case when ΩH = 1
(100% Pref). This can be explained by the need for the agent
to heavily use the left thruster in order to approach landing

from the right. For the metric rp the improvements range
between 19.2% and 54.1% where the lowest range stems
from ΩH = 0.25 and highest range from ΩH = 1.0 when
comparing to the baseline Ωβ = 1 Tab. I. In Fig. 4 we
can see an example of the difference when following π∗

β and
π∗
Ω with ΩH = 1. These results show that we can learn a

stable set Π∗
Ω and Fig 3 shows that we do obtain policies

that comply with the different objectives Ω which supports
Q1 and Q2. When collecting queries during the learning of a
policy πΩ, we first collect 100 queries following π∗

β to obtain
an initial estimation of R̂H. We collect 100 initial queries
and then train continuously until we reach a total of 300
queries. We saved the same amount of queries per policy as
in Hopper, supporting Q3.

Social Navigation To test our hypothetical example given
in Section I we designed a social navigation environment in
Unity [42], similar to the one introduced in [43]. The main
purpose of the environment is for an agent (mobile robot)
to reach two navigation goals, while avoiding collisions.
As for the dynamics of the environment, we implemented
the Social Force Model (SFM) [13], [44], where humans
are represented as directed force fields which influence the
agent’s trajectory. The action space at ∈ R3 of the agent is
represented by the intended acceleration in both directions
a1 = ax, a2 = ay , and a3 is a scalar value directly pro-
portional to the magnitude of the SFM force field. The state
space of the agent is comprised of its position and velocity,
velocity of other humans, and a stacked array. The stacked
array contains one-hot encoded ray information of whether it
detects a goal, wall or human, and normalized distance to it.



Fig. 5: Rollouts from π∗
β (bottom) and π∗

Ω, ΩH = 1 (top), same seed. The
robot takes into consideration human feedback which respects SFM.
TABLE I: Metrics, for each environment and each policy obtained with
different preference objectives Ω: baseline: Ω = (1, 0); 25% HR.: Ω =
(0.75, 0.25); 50% HR.: Ω = (0.5, 0.5); 75% HR.: Ω = (0.25, 0.75);
100% HR.: Ω = (0, 1);

Metrics Baseline 25% HR. 50% HR. 75% HR. 100% HR.
Lunar 54.6% 73.8% 80.0% 79.1% 81.6%
Hopper 0.97m 1.1m 1.13m 1.11m 1.16m
Social Nav. 0.37 0.42 0.45 0.45 0.51

In this experiment we simulate human feedback as preferring
trajectories which follow SFM, when possible. As metric
we chose the normalized intensity of the force field due to
SFM. In Fig. 3 and Tab. I we are able to observe that all
policies Π∗

Ω consider human preferences and score higher
metric-wise. A trade-off is verified between increasing the
force field magnitude and some deterioration for the baseline
reward Rβ . This is due to the agent following a less greedy
policy by considering other human force fields, taking more
time to reach navigation goals. We get an improved metric
performance, ranging from an increase of 13.5% to 37.8%
in SFM force field activation for ΩH = 0.25 and ΩH = 1
respectively. The change in behaviour is illustrated in Fig. 5,
supporting both Q1 and Q2. For the results obtained in Tab. I,
we collected a total of 1100 queries but tested with as low
as 400 queries and still obtained satisfying results.

C. Applicability with Human feedback

To attest for the applicability of our approach and answer
Q4 (see Sec. V), we have conducted a user study on the
social navigation environment, to obtain real human feedback
as opposed to using heuristics. To motivate our claim that
human feedback is hard to model, the user study also aims
at addressing an additional question: (Q5) Is real human
feedback significantly different from an heuristic we thought
appropriate? To train a policy with real human preferences,
we start from the same baseline policy π∗

β as used in the
simulation results, and set an objective preference of 100%,
ΩH = 1. Similarly to simulation, we collect trajectories
from π∗

β to create queries. We divide preference learning
in 4 loops. In each loop, we sample 200 random trajectory
segments from a very large dataset of rollouts produced by
π∗
β . We render these trajectory segments into 200 videos of

length between 2 and 3 seconds, to form 100 queries. After

TABLE II: Comparison of metrics and avg. reward with a baseline policy,
and a policy trained on a reward estimator with heuristics and real human
preferences, on an objective preference of 100% HR.: Ω = (0, 1);

Social Nav. Baseline 100% HR. Real
Rwd. 1.6 1.26 1.39
Metric 0.37 0.51 0.47

collecting query preferences, we train a new reward estimator
R̂H and train a new preference policy πΩ which concludes
one loop. We repeat this process 4 times until we reach 400
queries. The study was performed on Amazon Mechanical
Turk. There were 20 (5 per loop) unique participants (12
males, 8 females and none of other gender identities), each
providing feedback for 20 queries. The age of participants
ranged from 24 to 62 years old, with a median of 34. All
participants were from the US and most completed college
education (N=16). The majority of participants have seen
a real life robot (N=12), and (N=6) have regular contact. In
Fig. 3 and Tab. II we are able to observe that real human feed-
back did not substantially deteriorate the main baseline goal
when compared to the considered 100% synthetic heuristic.
We observe in Tab. II that the policy trained using real human
feedback is better aligned with our chosen metric compared
to the baseline policy. However, there may be many other
metrics that humans consider important. To answer Q5, we
compare real human feedback to the synthetic oracle directly
on the same videos. From the 400 queries, in 273 (68.25%)
humans agree with the synthetic oracle, while they disagree
on 127. One of the major differences observed between
real and synthetic feedback, is that while an heuristic has
complete access to a reward function at each time step
and can always decide between any 2 videos, humans were
indecisive on 34 (8.5%). We performed a one-way Z-test
for proportions on the null hypothesis of whether humans
agree with the heuristic in 90% of the time (accounting
for 10% error rate). The results were statistically significant
Z = −9.345, p < 0.001, showing humans had significant
different perceptions on the appropriate robot’s behaviour
when compared to our heuristic, showing support for Q5
and motivating our approach which promotes collecting real
human feedback to model human’s expectations. Videos of
rollouts from the resulting policy (and other policies) can be
found in the media attachment of this paper.

VI. CONCLUSIONS

In this paper, we presented a multi-objective setting to
combine subjective preferences with baseline objectives. Our
results show our approach is able to produce a set of policies
that adhere to preferences as shown by metrics, without
substantially compromising the initial objective in a trade-off
dynamic. By bootstrapping from a baseline policy, we were
also able to reduce the necessary number of queries in about
∼78%. We conducted a user study to collect human feedback
in order to train a new policy. Our findings indicate that the
policy trained using real feedback deviates from both the
baseline and the heuristic we considered. This demonstrates
that it is challenging to predict and model human feedback
in advance, and it necessitates real human input.
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[27] C. Wang, C. Pérez-D’Arpino, D. Xu, L. Fei-Fei, K. Liu, and
S. Savarese, “Co-GAIL: Learning diverse strategies for human-robot
collaboration,” in Conference on Robot Learning. PMLR, 2022, pp.
1279–1290.

[28] M. Murray, N. Walker, A. Nanavati, P. Alves-Oliveira, N. Filippov,
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