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Figure 1: Overall Model Architecture

Abstract
Multimodal models such as CLIP align images and texts in a unified
feature space, enabling cross-modal tasks like retrieval, captioning,
and classification. Despite strong representation and zero-shot gen-
eralization, CLIP faces challenges in complex or few-shot scenarios,
where occlusion, low light, or multiple objects reduce feature dis-
crimination and semantic alignment. To address this, we introduce
a learnable temperature controller in the image encoder to enhance
feature separation, jointly optimize with ID, MLM, and SDM losses,
and further propose a semantic similarity–weighted triplet loss to
improve cross-modal understanding under challenging conditions.

Keywords
CLIP; multimodal learning; cross-modal alignment; temperature
controller; few-shot learning; loss optimization

1 Introduction
Cross-modal understanding of images and text is a key research
topic in computer vision and natural language processing. CLIP
(Radford et al., ICML 2021)[1] projects images and texts into a
shared feature space, enabling semantic alignment and supporting

tasks such as retrieval, captioning, and classification. While CLIP
demonstrates strong representation and zero-shot generalization,
it remains limited in complex or few-shot scenarios due to insuffi-
cient fine-grained feature discrimination and suboptimal multi-loss
optimization. To address these limitations, this study introduces
a learnable temperature controller into the CLIP image encoder
and employs a joint optimization framework combining ID loss,
MLM loss, SDM loss, and a semantically weighted triplet loss[2].
The proposed method enhances feature separability and signifi-
cantly improves cross-modal matching under challenging condi-
tions, providing a robust enhancement to CLIP for vision–language
understanding.

2 Related Work
Multimodal learning aims to bridge the semantic gap between im-
ages and text by learning a shared feature space, enabling tasks
such as cross-modal retrieval, classification, and captioning. Early
methods relied on CNNs for visual encoding and RNNs for textual
modeling, optimizing cross-modal similarity with ranking or clas-
sification losses. With large-scale pretraining, Transformer-based
architectures and contrastive objectives, exemplified by CLIP, have
achieved strong zero-shot generalization and broad applicability.
Nevertheless, CLIP’s representations remain limited under complex
or few-shot scenarios, where occlusion, low lighting, or multiple
objects reduce feature discrimination. Recent studies introduce
learnable temperature parameters in the Vision Transformer, al-
lowing dynamic adjustment of feature smoothness and separability,
which enhances cross-modal alignment and robustness. Loss design
is also critical: ID Loss improves identity discriminability, MLM Loss
strengthens textual representation, and triplet/contrastive losses
optimize inter-sample distances but can struggle with semanti-
cally similar negatives. Multi-loss frameworks combining ID, MLM,
Semantic Distance-preserving (SDM), and semantically weighted
triplet losses have been proposed to preserve global alignment
while capturing fine-grained local structures, improving retrieval
accuracy and robustness. Our work builds upon these advances
by integrating adaptive temperature control with a semantic sim-
ilarity–weighted triplet loss to achieve more robust cross-modal
feature alignment.
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3 Method
3.1 Model Overview
To enhance the alignment and semantic representation of image
and text features, this study proposes an improved multimodal rep-
resentation learning framework based on the original CLIP model.
The overall architecture consists of an image encoder, a text en-
coder, and a multi-loss optimization module, as illustrated in Figure
1.

The model comprises an image encoder and a text encoder. In
the image branch, inputs are processed through visual embeddings,
positional encoding, and a multi-layer Transformer. A learnable
temperature controller is applied before feature projection to dy-
namically scale and normalize features, enhancing feature disentan-
glement and cross-modal alignment. In the text branch, tokenized
inputs are embedded and passed through Transformer layers. Text
features are then aligned with the temperature-adjusted image fea-
tures in the projection space and jointly optimized using SDM Loss,
ID Loss, MLM Loss, and a semantically weighted modified triplet
loss.

3.2 Image Encoder Improvements
3.2.1 Image Encoder. In the original CLIP model, the image en-
coder primarily adopts a Vision Transformer (ViT) architecture. Its
processing pipeline is as follows:

Patch Partitioning and Linear Projection Given an input
image 𝐼 ∈ R𝐻×𝑊 ×𝐶 , it is first divided into 𝑁 non-overlapping fixed-
size patches {𝑥𝑖𝑝 }𝑁𝑖=1, each of size 𝑃 × 𝑃 . These patches are then
mapped to vector representations through a linear projection:

𝑋 ′ = Softmax
(
𝑄𝑤𝐾

⊤
𝑤 + 𝐵𝑤√
𝑑ℎ

)
𝑉𝑤 (1)

Here, 𝐵𝑤 denotes the relative positional bias, and 𝑑ℎ represents
the dimension of each attention head. Subsequently, 𝑋 ′ is further
transformed through a multi-layer perceptron (MLP) with residual
connections:

𝑋 ′ = 𝑋 ′ +MLP(LN(𝑋 ′)) (2)
Layer Normalization (LN) is applied to standardize the features,

and the MLP typically consists of two fully connected layers with a
nonlinear activation (GELU) in between:

MLP(𝑋 ) = 𝑋𝑊1 + 𝑏1
GELU−−−−→ (𝑋𝑊2 + 𝑏2) (3)

After passing through layers of the Transformer encoder, where
each layer consists of Multi-Head Self-Attention (MHSA) and a
Feed-Forward Network (FFN):

𝑧𝑖0 = 𝑥
𝑖
𝑝𝑊𝑒 + 𝑏𝑒 , 𝑖 = 1, 2, . . . , 𝑁 (4)

3.2.2 Temperature Controller. In the original CLIP model, con-
trastive learning employs a fixed temperature parameter to scale
the distribution of image–text feature similarities. However, a fixed
temperature can cause features to become overly concentrated or
excessively flattened in complex or few-shot scenarios, reducing
the model’s ability to distinguish similar pedestrians. To address
this issue, this study introduces a learnable temperature controller
as a core enhancement to the image encoder, as illustrated in Figure
2. The specific design is as follows: a learnable temperature param-

Figure 2: Temperature Controller

eter 𝜏 and a bias term 𝑏𝜏 are introduced into the feature outputs of
the Vision Transformer, with a function Softplus applied to ensure
non-negativity of the temperature, i.e.,

𝜏learned = Softplus(𝜏), 𝜏learned > 0

𝑋total = 𝑋
′ × 𝜏learned + 𝑏𝜏

Here, 𝑏𝜏 denotes the bias value of the temperature controller.
After passing through 𝐿 layers of encoding, the output𝑋 (𝐿)

cls of [CLS]
token serves as the global feature representation of the image:

𝑓𝐼 = 𝑋
(𝐿)
cls ∈ R𝐷

When computing image–text similarity, the temperature parameter
dynamically scales the dot product of feature vectors, thereby adap-
tively adjusting the “sharpness” of the similarity distribution. This
dynamic mechanism offers several advantages: Enhanced feature
disentanglement: Features of similar pedestrians are more effec-
tively separated in the feature space[3], reducing false positives
and false negatives. Adaptation to few-shot learning: With lim-
ited data, the model can automatically adjust the temperature to
optimize the similarity distribution, improving fine-grained fea-
ture learning. Improved robustness in complex environments:
The mechanism enhances adaptability to variations in illumina-
tion, occlusion, and background interference, thereby increasing
pedestrian detection and recognition accuracy.

3.3 Text Encoder
To ensure effective modeling of textual inputs, this study adopts a
standardized text preprocessing and encoding pipeline. Given a text
sequence 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, it is first tokenized into subword units
to mitigate out-of-vocabulary issues (e.g., “A person is walking” →
{A, person, is, walk, ing}). Each token is then mapped to a vector
via a trainable embedding matrix 𝐸 and augmented with positional
encodings 𝑃 to retain sequential information. Special tokens [CLS]
and [SEP] are added at the beginning and end of the sequence,
where [CLS] is used for global semantic aggregation and [SEP]
serves as sequence boundary indicators.

𝐻0 = [ℎCLS, 𝐸 (𝑥1) + 𝑃1, . . . , 𝐸 (𝑥𝑛) + 𝑃𝑛, ℎSEP]
The sequence 𝐻0 is fed into a stack of 𝐿 encoding layers for

contextual modeling:

𝐻𝑙 = TransformerLayer𝑙 (𝐻𝑙−1), 𝑙 = 1, 2, . . . , 𝐿
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Figure 3: Illustration of the Modified Triplet Loss

Here, TransformerLayer(·) comprises multi-head self-attention
and feed-forward networks. Finally, the global textual representa-
tion is obtained via the special token [CLS]:

ℎglobal = 𝐻𝐿 [CLS] ∈ R𝑑

This representation captures both contextual dependencies and
semantic discriminability, enabling alignmentwith the imagemodal-
ity in a shared semantic space and providing high-quality features
for subsequent multi-loss optimization.

3.4 Loss Function Design
To enhance the discriminability and semantic consistency of cross-
modal feature learning, this study employs a multi-loss frame-
work during training, including Identity Discrimination Loss (ID
Loss), Masked Language Modeling Loss (MLM Loss), Semantic
Distance-preserving Loss (SDM Loss), and a modified Triplet Loss.
ID Loss strengthens the model’s ability to differentiate categories
in image or text modalities, MLM Loss enhances textual semantic
understanding[4], and SDM Loss preserves the semantic structure
between samples within the cross-modal feature space.

3.4.1 Modified Triplet Loss. The traditional Triplet Loss is com-
monly used in cross-modal retrieval to reduce the distance between
positive pairs while increasing the distance between negative pairs.
However, it does not fully leverage semantic similarity information.
In this study, we propose a semantically weighted modified triplet
loss:

𝐿ASTLoss =max
(
0, 𝛼 +



𝑧𝑎 − 𝑧𝑝

22 −𝑤an · ∥𝑧𝑎 − 𝑧𝑛 ∥22
)

Here, 𝑧𝑎, 𝑧𝑝 , and 𝑧𝑛 denote the feature vectors of the anchor,
positive, and negative samples, respectively; 𝛼 is the margin param-
eter; and𝑤an represents the semantic similarity weight between the
anchor and negative samples. Higher semantic similarity relaxes
the negative sample constraint, while lower similarity strengthens
it, enabling more rational cross-modal alignment, as illustrated in
Figure 3.

3.4.2 Combined Loss Function. To fully exploit the complementary
strengths of each loss term, this study adopts a weighted fusion
strategy to form the final training objective:

𝐿 = 𝜆ID𝐿ID + 𝜆MLM𝐿IMLM + 𝜆SDM𝐿SDM + 𝜆AST Loss𝐿AST Loss

Here, 𝜆ID, 𝜆MLM, 𝜆SDM, and 𝜆AST Loss are the weighting hyperpa-
rameters for each loss component.

Adjusting these values allows balancing the contribution of dif-
ferent optimization objectives to the overall model performance.

4 Experiments
4.1 Experimental Setup and Model Training
Experiments were conducted on Ubuntu with an Intel Xeon Gold
6262 CPU, 512 GB RAM, and an NVIDIA RTX 3090 GPU. The
model was implemented in Python 3.10 with PyTorch 2.0, using the
CUHK-PEDES dataset (~40,000 images, ~80,000 textual descriptions).
Images were resized to 224 × 224 and normalized; texts were tok-
enized with SimpleTokenizer (fixed length 77). Data augmentation
included random cropping and horizontal flipping. The backbone
adopts CLIP ViT-B/16 for vision and a Transformer-based encoder
for text, with a learnable temperature controller added to the final
image layer (approximately 195 M parameters). Training used batch
size 64, Adam optimizer (momentum 0.9, weight decay 4 × 10−5),
initial learning rate 1 × 10−5, cosine annealing, linear warmup for
the first 5 epochs, and a maximum of 120 epochs with learning
rate reduced by a factor of 0.1 at epochs 20 and 50. The training
objective combines SDM, MLM, ID Loss, and the modified triplet
loss in a joint optimization scheme.

4.2 Comparison Methods and Evaluation
Metrics

To validate the effectiveness of the proposed approach, multiple
comparative experiments were conducted. The baselinemodel is the
original CLIP (ViT-B/32), while the IRRA model is included as a rep-
resentative method employing a temperature control mechanism.
Finally, the proposed improved model (Ours, CLIP + Temperature
Controller) was evaluated with a learnable temperature controller
in the final layer of the image encoder. Evaluation metrics include
Recall@K (K=1, 5, 10), Top-K Accuracy, andmean Average Precision
(mAP) to assess retrieval accuracy and recall in text-to-image tasks.
Additionally, mean Inverse Negative Penalty (mINP) was adopted
as an auxiliary metric to evaluate robustness on long-tail samples.

Table 1: Comparison of state-of-the-art methods on CUHK-
PEDES.

Methods Type Ref ImageEnc. TextEnc. Rank-1 Rank-5 Rank-10 mAP mINP

ISANet [5] L arXiv22 RN50 LSTM 63.92 82.15 87.69 - -
LBUL [6] L MM22 RN50 BERT 64.04 82.66 87.22 - -
SAF [7] L ICASSP22 ViT-Base BERT 64.13 82.62 88.42 - -
TIPCB [8] L Neuro22 RN50 BERT 64.26 83.19 89.12 - -
CAIBC [9] L MM22 RN50 BERT 64.43 82.87 88.37 - -
AXM-Net [10] L MM22 RN50 BERT 64.44 80.52 86.77 58.73 -
LGUR [11] L MM22 DeiT-Small BERT 65.25 83.12 89.01 - -
IVT [12] G ECCVW22 ViT-Base BERT 65.59 83.11 89.21 - -
CFine [13] L arXiv22 CLIP-ViT BERT 69.57 85.93 91.15 - -
IRRA G CVPR23 CLIP-ViT CLIP-Xformer 72.385 87.995 93.064 65.277 49.963
OURS G — CLIP-ViT CLIP-Xformer 73.002 88.905 93.34 67.129 52.854

4.3 Experimental Results and Analysis
4.3.1 Comparison Experiments. From the table, early ResNet50
+ LSTM/BERT approaches (e.g., CMPM/C, ViTAA, NAFS, DSSL)
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Figure 4: First-Rank Visualization

generally achieve Rank-1 in the 50Methods leveraging CLIP pre-
training (e.g., Han et al., CFine, IRRA) further improve perfor-
mance. For instance, CFine using CLIP-ViT + BERT achieves Rank-
1=69.57 and Rank-10=91.15, demonstrating the inherent advantage
of CLIP in cross-modal retrieval tasks. As a strong baseline, IRRA
achieves Rank-1/5/10 of 72.385/87.995/93.064, with mAP=65.277
and mINP=49.963. Building upon this, the proposed OURS method
incorporates a multimodal triplet loss and a learnable tempera-
ture controller, resulting in Rank-1=73.002, Rank-5/10=88.905/93.34,
mAP=67.129 (+2.84The improvements indicate that optimizing the
feature space with a triplet loss and adaptively adjusting similarity
distributions via the temperature controller effectively mitigates the
interference of sparse and hard samples, enhancing generalization
and robustness in complex retrieval scenarioscitezhu2021. To pro-
vide a more intuitive view of retrieval performance, the First-Rank
Visualization is presented in Figure 4.

Table 2: Ablation study results on CUHK-PEDES.

No. Methods AST Loss TC Rank-1 Rank-5 Rank-10 mAP mINP

0 Baseline × × 72.385 87.995 93.064 65.277 49.963
1 +AST Loss ✓ × 72.823 88.791 93.275 66.687 52.213
2 +TC × ✓ 72.953 88.645 93.291 66.918 52.538
3 OURS ✓ ✓ 73.002 88.905 93.340 67.129 52.854

4.3.2 Ablation Experiments. The ablation study results on the CUHK-
PEDES dataset are presented in Table 2. The baselinemodel achieves
Rank-1, Rank-5, and Rank-10 of 72.385%, 87.995%, and 93.064%, with
mAP of 65.277% and mINP of 49.963%, serving as the reference. In-
corporating AST Loss improves Rank-1 to 72.823%, and increases
mAP and mINP to 66.687% and 52.213%, indicating that AST Loss
enhances feature discriminability. When only the Temperature
Controller (TC) is applied, Rank-1 reaches 72.953%, with mAP and
mINP of 66.918% and 52.538%, demonstrating that TC optimizes the
feature distribution. Combining AST Loss and TC (OURS) yields
the best performance across all metrics: Rank-1 = 73.002%, Rank-
5/Rank-10 = 88.905%/93.340%, and mAP/mINP = 67.129%/52.854%,
showing significant improvements over the baseline. These results

indicate that AST Loss enhances discriminability, TC refines the
feature distribution, and their combination produces a synergis-
tic effect that substantially improves retrieval performance and
robustness.

5 Discussion and Conclusion
The experimental results demonstrate the effectiveness of the pro-
posedmethod[15]. The triplet loss enhances feature discriminability
and retrieval ranking quality by enlarging the distance between
semantically negative samples, while the Temperature Controller
further improves adaptability by dynamically scaling and shifting
Transformer features, optimizing similarity distribution. Although
Rank-1 and mAP do not always peak simultaneously, the combined
approach achieves superior performance across all metrics, confirm-
ing its robustness and effectiveness in complex semantic retrieval
tasks.
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