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Abstract—A key open challenge in off-road autonomy is that
the traversability of terrain often depends on the vehicle’s state.
In particular, some obstacles are only traversable from some
orientations. However, learning this interaction by encoding
the angle of approach as a model input demands a large
and diverse training dataset and is computationally inefficient
during planning due to repeated model inference. To address
these challenges, we present SPARTA, a method for estimating
approach angle conditioned traversability from point clouds.
Specifically, we impose geometric structure into our network
by outputting a smooth analytical function over the 1-Sphere
that predicts risk distribution for any angle of approach with
minimal overhead and can be reused for subsequent queries.
The function is composed of Fourier basis functions, which has
important advantages for generalization due to their periodic
nature and smoothness. We demonstrate SPARTA both in a high-
fidelity simulation platform, where our model achieves a 91%
success rate crossing a 40m boulder field (compared to 73% for
the baseline), and on hardware, illustrating the generalization
ability of the model to real-world settings.

I. INTRODUCTION

Many applications for autonomous mobile robots involve
traversing rough, off-road environments [1]–[3]. One key to
reliably navigating in these environments is the ability to
understand the interaction between the robot and the terrain,
to assess relevant risk metrics (e.g., potential vehicle damage).
Despite recent success in identifying traversable terrain [4]–
[7], motion planning in geometrically complex environments
(e.g., dense forests, boulder fields) remains a challenge. For
example, the risk associated with traversing a given terrain is
often a complicated function of the robot’s state, especially its
speed and angle of approach, and the terrain geometry1. While
high-speed traversal through risky terrain can be explicitly
penalized within the planner, it is less clear how to account for
the angle of approach (e.g., using hand-crafted risk heuristics
based on terrain elevation [8]–[10]), as this requires both
detailed terrain information and nuanced consideration of the
underlying geometry.

In contrast, learning-based approaches have promise in
being able to flexibly model the complex relationship between
terrain and traversal risk. In particular, point cloud-based
approaches are suitable for the problem setting, because point
clouds are capable of capturing fine geometric details of the
environment that would be missed in other representations like
an elevation map. As shown in Fig. 1, in the point cloud, the

1We focus on angle-dependency in this paper, and leave the extension to
other state variables to future work.

Fig. 1. Dense point cloud (background) captures geometric detail of
the environment (Top right), while discretizing dense point cloud into
elevation map results in information loss. The underlying terrain is
clearly distinguishable from noise (leaves, sensor noise, etc.) in the
point cloud, but doing so is hard in an elevation map, leading to
wrong risk estimation (Viridis Circle where Green denotes low risk).

terrain (ground) is distinguishable from noise (e.g. leaves). As
a result, a point cloud-based method would prefer the safe
approach angle (Red) over the risky one (Magenta) due to a
relatively smooth elevation change. However, noise and terrain
cannot be easily separated in the elevation map despite its high
resolution (5cm). The terrain appears smoother from the risky
angle (Magenta) thus an elevation map-based method would
(incorrectly) select it instead.

In this paper, we propose a technique to learn risk variables
of interest, based on a point cloud representation of a given
terrain patch. Specifically, to model system noise implicitly
captured in the dataset, we represent risk as a categorical dis-
tribution due to its ease of use and capability of approximating
multimodal distributions, as demonstrated in [4]. However, a
point cloud-based network that naively encodes the angle of
approach would be hard to train in practice due to the sparsity
of data in robotics applications. As a result, our model takes in
the point cloud and predicts an analytical function (represented
using Fourier basis functions) that maps angle of approach to
the target risk variable distribution. The choice of Fourier basis
ensures that the resulting function is periodic, thus avoiding the
wrap-around discontinuity [11], and has important advantages
for generalization in the training process due to its upper-
bounded Lipschitz constant by construction. The function,
once computed for a terrain patch, can be queried efficiently
with minimal computation overhead for any angle of approach
at any timestep when integrated with modern planners like
MPPI [12], [13]. To summarize, in this paper we propose



SPARTA (Smooth Point-cloud Approach-angle Reasoning for
Terrain Assessment) with the following key contributions:

• A novel learning-based approach leveraging Fourier basis
functions, which estimates angle-of-approach dependent
traversal risk for complex terrains represented as point
clouds.

• Theoretical analysis of the advantage of imposing
smoothness by using Fourier basis functions, with con-
nection to Lipschitz continuity and model generalization
capability.

• Evaluations of the proposed pipeline through learning to
predict potential vehicle damage, a risk variable prior
works handle using handcrafted rules, with extensive
results both in a high-fidelity simulator [14] and on
hardware, with integration into a MPPI planner [12].

II. RELATED WORK

a) Traversability Estimation: Traversability estimation
algorithms aim to identify terrain suitable for robot naviga-
tion. Traversability estimates typically rely on either manually
designed features [8], [10] or are derived from learned vehicle
movement patterns [4]–[7], [15]. Both [8] and [10] use local
elevation measurements to estimate stepping difficulty using
heuristics such as step-wise elevation change. On the other
hand, learned methods usually rely on multiple sensing modal-
ities, especially elevation maps and semantic maps [4]–[7],
[15]. WVN [5] uses camera input and trains a traversable
terrain classifier online leveraging pretrained features from
DINO-ViT [16]. Meanwhile, [6], [7] fuse semantic and eleva-
tion measurements, and use separate decoder heads to predict
dense semantic and elevation maps, which are used to score
planner rollouts using various heuristics. [4], [15] use semantic
and elevation maps to predict traversability distributions rep-
resented as linear/angular traction and incorporate the worst-
case traction into the vehicle dynamics model for risk-aware
planning. However, none of these approaches models the
angle-dependent nature of traversability. As a result, they can
be overly conservative in geometrically complex environments,
while underestimate traversal risk when the terrain is only
dangerous from a few orientations.

b) Learning Harmonic Functions: Geometric deep learn-
ing has found its place in numerous machine learning applica-
tions. For example, FBM [17] uses Fourier basis functions to
composite long-time series data and achieved state-of-the-art
performance on multiple benchmarks. NeuRBF [18] replaces
traditional grid-based structures with radial basis functions for
constructing implicit neural representation of scenes, allowing
the model to better adapt to the underlying signal structures.
In robotics, OrbitGrasp [19] leverages spherical harmonics
functions to represent a grasping quality function. Off-road
autonomy, especially traversability estimation, is a setting with
rich geometric structure, and as a result we propose to leverage
Fourier basis functions to exploit this intrinsic prior.

c) Placement of This Work: Unlike previous traversabil-
ity estimation algorithms, SPARTA models the angle depen-
dency of risk variables, which existing algorithms failed to

capture, by exploiting the geometric structure of angle of
approach (the 1-Sphere). Because we impose few assumptions
on the risk variable of interest (i.e., it has clear lower and upper
bounds and does not change abruptly with a small change in
angle of approach), our approach could be used to extend
(most) existing traversability estimation methods for more
accurate and granular prediction. Besides tire deformation or
potential vehicle damage demonstrated in our experiments
(Section IV), we show a few other variables in off-road
autonomy with a similar geometric structure in Section G.

III. METHOD

In this section we introduce SPARTA, a method for pre-
dicting the risk associated with traversing a terrain patch at a
given angle based on prior data traversing a wide variety of
terrains (represented as dense point cloud). One challenge in
traversability estimation is handling aleatoric uncertainty, the
inherent uncertainty in a system which cannot be reduced with
more data [20]. SPARTA captures this uncertainty by treating
risk as a random variable – a categorical distribution with B
discrete bins – whose concentration parameters are predicted
by our model (Section III-A and Section III-B). The tail of
the distribution is used to estimate risk for risk-aware planning
(Section III-D).

The primary novelty in SPARTA is in representing this
risk distribution. SPARTA predicts an analytical function for
each bin, and each function smoothly maps any angle of
approach to the corresponding risk concentration parameter
(Section III-B). We characterize the smoothness of these
risk functions (Section III-C), which we hypothesize to be
useful for generalization across approach angles (empirically
supported in Section IV-B). Once computed, the function
can be re-used for subsequent queries for the same terrain
patch, thus avoiding repeated neural network inference during
planning. We include an experiment demonstrating the query
efficiency of our model in Section C. An overview of the risk
estimation pipeline and its application to planning is shown in
Fig. 2.

A. Modeling Aleatoric Uncertainty with Categorical Distribu-
tions

In this work, we are interested in predicting a risk variable
conditioned on the angle of approach. We assume we have
a dataset recording the risk variable while traversing various
terrains. However, the aleatoric uncertainty of this data will
likely prevent us from reliably estimating risk as a single scalar
value. To develop robust real-world systems, it is important to
properly account for aleatoric uncertainty [4], [15]. SPARTA
captures aleatoric uncertainty by modeling risk as a random
variable whose distribution reflects this uncertainty. Without
assuming a specific parametric form, we approximate this
distribution with a categorical distribution [4].

More formally, given a terrain patch represented as a point
cloud Q ∈ Rm×3 where m > 0 is the number of points in
the point cloud and the angle of approach ϕ ∈ [0, 2π], we
are interested in obtaining a function Γ: (Q, ϕ) 7→ p(γQ,ϕ),



Fig. 2. Overall pipeline of the proposed algorithm. For all terrain patches we are interested in, if its Fourier coefficients are not in the
database, we compute them and store in the database. Otherwise we retrieve the Fourier coefficients from the database and construct the
analytical functions, which are queried to compute the risk variable distribution, whose tail distribution is considered for risk aware planning.

where γQ,ϕ ∈ R denotes a risk related variable2 and p(γQ,ϕ)
is the probability mass function (PMF) of a categorical dis-
tribution with B bins.3 The categorical distribution p(γϕ)
is parameterized by non-negative concentration parameters
γ̄ϕ = [γ1

ϕ, . . . , γ
B
ϕ ] ∈ RB

≥0 and computed by normalizing γ̄ϕ
to sum to 1:

p(γϕ) =
γ̄ϕ∑B
b=1 γ

b
ϕ

. (1)

To obtain this risk distribution p(γϕ), we can train a
neural network on a dataset of traversals on various terrains,
{(Qk,yk, ϕk)}Kk=1, where yk denotes the ground truth (empir-
ical) risk PMF. The network is trained to minimize the squared
Earth Mover’s Distance (EMD2):

LEMD2

(p(ϕk),yk) = ||cs(p(ϕk))− cs(yk)||22, (2)

where cs(·) is the cumulative sum operator. However, training
such a network for risk-aware planning poses two major
difficulties. The first issue is due to the structure of angles
of approach ϕ, i.e., there is a periodicity of 2π and we expect
that small changes in ϕ should lead to small changes in the
risk distribution. While a neural network can approximate this
structure, it typically requires a large and diverse dataset to do
so. The second issue is the model’s query efficiency, which
becomes a major concern for real-time planning. In subsequent
sections, we discuss how SPARTA addresses these issues by
leveraging Fourier basis functions to construct a smooth and
periodic analytical function.

B. Leveraging S1 as a Continuous Representation of Ap-
proach Angle

Here we introduce how SPARTA represents the risk concen-
tration parameters γϕ as a function of the angle of approach
ϕ via Fourier basis functions. This representation stems from
two main insights: (i) the set of angles [0, 2π] can be mapped
to the 1-sphere S1 (i.e., the unit circle that lies in the terrain
ground plane and is centered at the intersection of the terrain
normal vector and the plane) and (ii) Fourier basis function
is a fundamental way of representing arbitrary functions over
S1.

2For example, risk related variables may include vehicle damage, terrain
traction, or rollover risk.

3For conciseness, we omit the subscript Q in the rest of this paper.

(a) (b)
Fig. 3. (a): Naive model (orange) suffers from wrap-around disconti-
nuity, whereas our model (blue) predicts continuous signal. (b): The
phenomenon propagates to the CVaR of the predicted distribution.

Given a representation of angles on S1, we can consider
the risk concentration parameters γϕ as functions over S1.
It follows from harmonic analysis and representation theory
[21] that any square-integrable real-valued function over the
1-sphere S1 can be uniquely decomposed into a (possibly
infinite) linear combination of the Fourier basis functions
{1} ∪ {cos(kϕ), sin(kϕ) : k ∈ [1, n]}. This suggests these
basis functions as the natural choice for representing arbitrary
functions on the 1-sphere. Altogether this allows us to compute
risk concentration parameters at angle ϕ by taking a linear
combination of the Fourier basis functions and applying the
sigmoid function4 σ(·) to ensure non-negativity (so the result
is a valid concentration parameter):

γi
ϕ = σ(

a0i
2

+

n∑
k=1

[aki cos(kϕ) + bki sin(kϕ)]). (3)

Concretely, our neural network Γθ takes an input point cloud
Q and, for each bin i ∈ [1, B], predicts the corresponding
coefficients Fi ≜ [a0i , a

1
i , b

1
i , · · · ani , bni ] ∈ R2n+1. Eq. (3) is

then used to compute the concentration parameters γ̄ϕ during
planning. Eq. (3) is fast to compute as it requires a single
(batched) dot product and a pass through the sigmoid function,
and its runtime scales linearly with the maximum frequency n,
a small number in practice5. We note that the choice of Fourier
basis function naturally avoids wrap-around discontinuities at
ϕ = 2π. We demonstrate this in Fig. 3a, where we compare the

4While we used sigmoid function, other non-negative functions could
theoretically be used (e.g., softplus).

5we found n = 3 to suffice in our experiments. We include model runtime
comparison in Section C.



Fig. 4. Demonstration of model in overfitting (red) and smooth-
interpolation regime (blue).

predictions of a baseline multilayer perceptron model (orange)
that encodes the angle of approach ϕ directly as a model input,
and our model (blue). It can be seen that the baseline model
(orange) is discontinuous at the wrap-around point, resulting
in a large jump in the predicted concentration parameters. This
discontinuity is known to be harmful to model training when
working with angle-related variables [11]. In contrast, our
model (blue) naturally respects the periodicity and generates
a globally smooth signal over S1. Besides avoiding the wrap-
around discontinuity, the Fourier basis functions allow better
generalization when trained with limited data, as we detail
through analyzing its Lipschitz constant in the next subsection.

C. Imposed Smoothness Improves Prediction Generalization

In off-road settings we may expect that small changes in
approach angle ϕ induce relatively small changes in the risk
variable γϕ. In this subsection we show that γϕ is smooth
with respect to ϕ and provide a simple upper bound on the
first derivative (i.e., an upper bound on the Lipschitz constant).
We connect this Lipschitz constant analysis to results in
learning theory [22], [23] to motivate the hypothesis that our
representation improves generalization (see Section IV-B for
empirical evidence).

Formally, if Li denotes the Lipschitz constant of the map-
ping from approach angle to risk concentration parameter
ϕ → γi

ϕ, then adding a small perturbation δ to ϕ bounds the
change in γi

ϕ: |γi
ϕ+δ − γi

ϕ| ≤ Li|δ|. Our representation of the
concentration parameters γi

ϕ guarantees that each γi
ϕ is smooth

with respect to ϕ, as each γi
ϕ is a linear combination of sines

and cosines. Furthermore, the Fourier coefficients Fi provide
an upper bound on the Lipschitz constant Li.

Theorem 1. The concentration parameter γi
ϕ defined by the

Fourier series representation in Eq. (3) is Lipschitz continuous
with respect to ϕ with an upper bound on the Lipschitz
constant Li given by:

Li ≤ 1

4

n∑
k=1

k
√
(aki )

2 + (bki )
2. (4)

Proof: See Section A.
Having a bounded Lipschitz constant is desirable, as small

Lipschitz constants have been connected to improved gen-
eralization to unseen data in deep learning [22]–[24]. With
this in mind, we consider Theorem 1 to suggest that our
representation improves the model’s ability to generalize to
unseen angles of approach ϕ. As SPARTA attempts to estimate

risk based on both point cloud data and the angle of approach
(Q, ϕ), we argue that an improved generalization over ϕ
allows the learning process to focus on extracting meaningful
information from the point cloud Q, rather than having to
simultaneously learn the relevant structure of the angle of
approach ϕ. In other words, we believe that the smoothness
and bounded Lipschitz constants represent informative geo-
metric priors that allows the model to more efficiently learn
relevant features. We provide empirical evidence for this in
Section IV-B.

D. Incorporating the Learned Risk Model into a Motion
Planner

Let x ∈ X ⊆ Rs denote the state of the robot, u ∈ U ⊆
Ru the control input, and subscript t ≥ 0 the timestep. We
assume the robot’s motion evolves as a discrete time system,
xt+1 = F (xt,ut). The planner optimizes for a control input
sequence u0:T given an initial state x0 that minimizes the
worst-case planning objective. Specifically, we break the cost
function into two parts: A task-related term C(x0:T ) (e.g.,
goal reaching cost) and the worst-case risk computed from
the risk distribution p(γϕt). We adopt the Conditional Value
at Risk (CVaR) as the worst-case risk because it is coherent
and thus suitable for trustworthy risk assessment in robotics
[25]. Specifically, the CVaR at level α ∈ [0, 1] of the risk
variable γϕ is CVaRα(γϕ) := 1

α

∫ α

0
min{γ | p(γϕ > γ) ≤

τ}dτ , where the probabilities can be estimated from p(γϕ).
Intuitively, CVaRα(γϕ) represents the expectation of the last
(right tail) α portion of the distribution p(γϕ). Notice that
while the categorical distribution is discrete, so its CVaR is
not necessarily continuous w.r.t. ϕ, our formulation guarantees
the CVaR does not suffer from a wrap-around discontinuity,
as shown in Fig. 3b. To summarize, we adopt MPPI [12], [13]
with the following planning problem:

min
u0:T

C(x0:T ) +

T∑
t=0

CVaRα(γϕt
)

s.t. xt+1 = F (xt,ut)

Fi
t+1 = Γθ(Qt+1)[i], ∀ i ∈ [1, B]

γi
ϕt+1
← Eq. (3), ∀ i ∈ [1, B]

pt+1(γϕt+1)← Eq. (1)

(5)

IV. EXPERIMENTS

In this section, we demonstrate the application of the
proposed framework to assess potential vehicle damage (e.g.,
flat tires, broken axle). Although vehicle damage frequently
occurs during real off-road autonomous operations, previous
research has largely overlooked this risk metric or relied
on relatively simple handcrafted heuristics (such as stepwise
elevation change) to model it [8]–[10].

A. Tire Deformation As A Surrogate Metric

In the following experiments, we use tire deformation extent
as a surrogate metric for the probability of vehicle damage.
While our formulation can handle other risk-related variables



Fig. 5. Our Model (Red and Blue) achieve lower test EMD2 loss
compared to AngleInput (Green and Orange) without overfitting.

like wheel force and acceleration, which are also related to
terrain contact, we use tire deformation because the tire is
the part that directly contacts the terrain and thus is less
susceptible to noise accumulated from simulating other vehicle
parts. We collect training data using a high-fidelity simulation
platform BeamNG.tech [14]. Specifically, for a tire node w, let
rw denotes the distance from the (deformed) tire node to wheel
center, rinner and router the radius of the wheel frame and non-
deformed tire, respectively, and we compute the deformation
extent as dw = rw−rinner

router−rinner
. Section D includes further details of

the data collection process, and Section G includes examples
of other risk-related variables that our formulation can handle.

B. Model Performance

To demonstrate the generalization capability of our method,
we compare its test set performance against a model that
encodes the angle of approach as an input (AngleInput), where
our model outperforms AngleInput. Our model and the An-
gleInput share the same architecture and have approximately
the same number of trainable parameters, except that the
AngleInput has an additional encoder head for the angle of
approach, which is fused downstream with the point cloud
feature to predict the concentration parameters. Details of the
model architecture can be found in Section B. In Fig. 5,
we show the test EMD2 loss achieved by our model and
the AngleInput with varying model sizes. The AngleInput
baselines (Green and Orange) quickly overfit to the training
data, with a best test loss of 0.15. In contrast, our test loss (Red
and Blue) continues to decrease and eventually converged to
0.09. This is aligned with our hypothesis in Section III-C, that
our model would generalize better compared to AngleInput
because the Fourier basis functions promise an upper-bound
for the Lipschitz constant of the mapping ϕ → γi

ϕ, whereas
the AngleInput has to learn this mapping implicitly.

C. Planning in Simulation

To test integration with a planner, we designed a challenging
task where the vehicle needs to cross a randomly generated
boulder field, with 20m radius and 1500 randomly placed
obstacles, from 100 uniformly placed starting positions. Fig. 6
shows the overview of the environment. The obstacles are
placed so densely that finding a clear path is challenging.
Therefore, to complete the task at high speed, the planner must
accurately distinguish between obstacles that can be safely

(a) (b)
Fig. 6. (a): Overview of the Boulder Field (40m) test environment
with goals (blue) and starting points (orange), overlaid with an
elevation map (grayscale). (b): Overview of the environment from
driver’s POV.

Algorithm v̄ S.R. (%) ↑ Vel (m/s) ↑
Ours 4 91 2.6

AngleInput 4 85 2.5

AngleFree 4 73 3.2
2 79 1.9

Elev 4 73 3.2
2 75 2.1

TABLE I. Success rate (S.R.) of the models in the boulder field test.
Our method achieves best success rate, and overall angle-dependent
models perform better than those that do not consider angle. Best,
and second best.

traversed and those that pose significant risks. In Section E we
provide an open loop experiment with ablation study to further
demonstrate our approach. Besides AngleInput, we consider
2 baselines: (i) a model trained to predict the distributions
without modeling the angle dependency (AngleFree), and
(ii) a heuristic baseline that chooses the point with lowest
maximum elevation under vehicle’s wheel footprint (Elev).
Since the obstacles are placed on flat ground, Elev is equivalent
to evaluating stepping difficulty as in [8], [10]. We use
a MPPI [12] planner with Ackermann kinematics, and the
planning objective includes the distance to the goal, a velocity
cost for driving over speed limit v̄, and a risk cost:

Crisk(t) =

{
max(hFL, hFR, hRL, hRR) for Elev

CVaRα(γϕt
) otherwise (6)

Cost = wgoal

T∑
t=0

D(x,xgoal)︸ ︷︷ ︸
Goal Cost

+wv

T∑
t=1

1(vt > v̄)︸ ︷︷ ︸
Velocity Cost

(7)

+ wrisk

T∑
t=0

vtCrisk(t)︸ ︷︷ ︸
Risk Cost

.

where wgoal, wv, wrisk are weights for associated cost term.
Notice we scale the Risk Cost term by the current vehicle
velocity vt to penalize traversing risky terrain at high speed.

In Table I we report the success rate (S.R., reached goal
without damage) and average vehicle velocity (Vel) for the
methods tested. Our model achieves higher success rate
compared to AngleInput, presumably because of its stronger
generalization ability. Most importantly, the performances of
models that captures angle-dependency (ours and AngleInput)
are better than AngleFree and Elev because their Risk Cost
term cannot distinguish between safe obstacles from risky



(a)

(b)

(c)

(d)
Fig. 7. (a): Overview of the environment. The left half of the
environment is filled with risky obstacles (Red), and the right half
is filled with safe ones (Blue). Arrow indicates expected angle of
approach. (b): Background denotes CVaR predicted by our method
at the expected angle of approach. The planner is able to identify
risky obstacles and decelerate preemptively. Max Tire Force: 1426
N. (c): Background denotes CVaR predicted by the AngleFree. It
can not identify risky obstacles and the vehicle drives at a constant
speed. Max Tire Force: 2937 N. (d): Background denotes elevation.
Elevation baseline treat them as equally risky and traverse with a
constant speed. Max Tire Force: 4367 N.

ones. As a result, the vehicle attempts to traverse the boulder
field at a roughly constant velocity, i.e. the Risk Cost in these
cases degenerates to velocity cost. To test if the faster speed of
AngleFree and Elev caused their low success rates, we tuned
the weights and decreased v̄ from 4 to 2 to enforce a slower
velocity. However, their success rates do not significantly
increase even traversing at a lower velocity, which suggests
that they are ineffective risk estimators in this environment.

To further help understand how AngleFree and Elev un-
derestimate traversal risk, we crafted an environment, where
the vehicle has to go through a narrow passage way filled
with obstacles. We picked two obstacles with same elevation
yet one appears to be safe and the other is visually risky,
and use each of them fill half of the environment. Detail
of the environment is shown in Fig. 7a, where red denotes
the risky obstacles and blue denotes safe obstacles, when

Fig. 8. Environment overview with overlaid point cloud (blue, colored
by elevation), physical obstacle (cyan box), and lethal obstacles
(shaded). Our method (Green) consistently chooses the safe path,
whereas Elev (Orange) can choose the risky path as the obstacles
have same elevation change. All trajectories are shown in the white
box and background color denotes CVaR of the expected angle of
traversal (Left to Right).

approached from the expected orientation (from right to left).
The CVaR predicted by our model (Fig. 7b) correctly identifies
the risky obstacles from the safe ones, and is manifested by
the vehicle’s preemptive deceleration. During the traversal, our
model induced the lowest force on the tire 1426 N. The CVaR
predicted by the AngleFree model (Fig. 7c) however, is very
similar for all obstacles because the obstacles are all safe to
traverse from certain orientations, and as a result the vehicle
drives at a constant (high) velocity through the obstacles.
Similar to AngleFree, the obstacles have same height and thus
Elev drives the vehicle at a constant speed (until it hits an
obstacle very hard and thus slowed down). Both AngleFree
and Elev results in significantly higher tire force (2937 N
and 4367 N respectively), signifying higher probability of
vehicle damage. In other words, in order for AngleFree and
Elev to safely drive the vehicle through complex obstacles,
their maximum speed must be set conservatively such that the
vehicle can safely traverse the most risky obstacle possible.
However, empirically it is difficult to find such a threshold
that guarantees safety.

D. Planning on Hardware

In this experiment, we demonstrate our model on a custom-
built wheeled robot (specification can be found in Section F),
and compare its performance qualitatively to Elev. We create
an environment where a robot has to pick one out of 2 possible
paths to reach its goal, where the left path is safe and the
right path is risky. For the obstacle, we cut rigid foam into a
shape that is smooth on one side yet sharp the opposite way.
We place the obstacle on the left path as shown in the cyan
box in Fig. 8. To avoid vehicle damage and allow the robot
to smoothly traverse, we virtually place the same obstacle
rotated 180 degrees on the right path as the risky obstacle. The
point clouds (pre-collected with [26]) are overlaid in Fig. 8 for
demonstration purposes. The planner uses unicycle dynamics
and the planning objective is the same as Eq. (8) except we



do not include the velocity terms. The planner samples 500
rollouts with a horizon of 5.0s, and runs at 50 Hz with our
model (70 Hz with Elev). In the white box in Fig. 8 we show
the trajectories of our method (Green) and Elev (Orange). Our
model correctly identifies the safe path for all 5 trials, yet
Elev chooses the risky path for 3 out of 5 trials. While our
model drives the vehicle safely and smoothly through the safe
obstacles, Elev would have likely caused vehicle damage by
ramming into sharp edges of an obstacle (red circle).

V. CONCLUSION

In this paper, we propose SPARTA, a general framework
for estimating terrain traversal risk conditioned on vehicle
angle of approach. Specifically, we identify and exploit the
geometric structure in the problem setting, and propose to
predict a smooth analytical function over the 1-Sphere to
achieve better data efficiency and generalization performance.
During planning, the function is queried to construct a cat-
egorical distribution for a risk variable of interest at any
angle of approach, and the distribution’s tail risk (CVaR) is
considered to account for aleatoric uncertainty. Experiments
in simulation and on hardware demonstrate the effectiveness
of the proposed approach. Most importantly, off-road problems
are naturally rich in geometric structure, and our formulation
is general enough such that it finds application in numerous
different problem settings. Future work may further explore
the geometric structure in other off-road autonomy problems.

VI. LIMITATION

Our work has several limitations. For example, in this
work we assume the environment is fully observable, i.e. a
prebuilt point cloud map is accessible during planning. While
the point cloud map we can build on the fly is sufficiently
dense, the model’s performance without a prebuilt map is
still to be tested. A potential solution to this problem is to
penalize terrain with limited observation during planning or
incorporate depth inpainting as in [6], [7]. In addition, this
work focused on estimating traversability given geometric
information, whereas semantic information is also important to
consider in many off-road settings. We anticipate that future
work could incorporate semantic information by performing
sensor fusion with point pillar feature in birds-eye-view [7].
Last but not least, tire deformation is a metric that’s only
available in simulation. However, we are not interested in
predicting tire deformation in the real world, but rather using
it as a surrogate metric for terrain property (i.e. how risky
is the terrain). Future work could explore other variables to
quantify vehicle damage.
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APPENDIX A
DERIVATION OF LIPSCHITZ CONSTANT

With a slight abuse of notation F , Eq. (3) can be written in
the following way:

G(ϕ) =
a0i
2

+

n∑
k=1

[aki cos(kϕ) + bki sin(kϕ)] (8)

F (ϕ) = σ(G(ϕ)) (9)

where σ(·) is the sigmoid function and a0i , aki , and bki are the
Fourier coefficients predicted by our network.

We will derive an upper bound on the Lipschitz constant of
F (ϕ), via the chain rule:

|F ′(ϕ)| = |σ′(G(ϕ))| · |G′(ϕ)|. (10)

First we differentiate G(ϕ) w.r.t. ϕ:

G′(ϕ) =

n∑
k=1

kaki cos(kϕ)− kbki sin(kϕ) (11)

=

n∑
k=1

k[aki cos(kϕ)− bki sin(kϕ)]. (12)

For every k ∈ [1, n], let:

Rk =
√
(aki )

2 + (bki )
2 (13)

∆k = arctan(
−bki
aki

), (14)

Then Eq. (12) can be rewritten as a phase shift leveraging
the cosine addition formula:

G′(ϕ) =

n∑
k=1

k[Rk cos(kϕ)
aki
Rk
−Rk sin(kϕ)

bki
Rk

] (15)

=

n∑
k=1

k[Rk cos(kϕ) cos(∆k) +Rk sin(kϕ) sin(∆k)]

(16)

=

n∑
k=1

kRk cos(kϕ−∆k). (17)

Notice that the maximum value of a cos(·) is 1, as a result,
Eq. (17) is upper bounded by:

G′(ϕ) ≤
n∑

k=1

kRk (18)

=

n∑
k=1

k
√
(aki )

2 + (bki )
2. (19)

Because the sigmoid function is Lipschitz with a Lipschitz
constant of 1

4 , by the chain rule:

|F ′(ϕ)| = |σ′(G(ϕ))| · |G′(ϕ)| (20)

≤ 1

4

n∑
k=1

k
√
(aki )

2 + (bki )
2. (21)

As a result the Lipschitz Constant of F (ϕ) is bounded by:

Li ≤ 1

4

n∑
k=1

k
√
(aki )

2 + (bki )
2.

Note that the peak of the derivative of G(ϕ) and the sigmoid
function σ(·) may not coincide, and as a result we expect the
Lipschitz constant achieved in practice to be smaller.

APPENDIX B
MODEL ARCHITECTURE

All the learned models described in this paper (Ours,
AngleInput, and AngleFree) predict categorical distributions
composed of B = 8 bins, parameterized by the concentration
parameters [γ1

ϕ, . . . , γ
8
ϕ].

All models share the same Point Pillars encoder architecture
[27], which extracts a feature representation from the input
point cloud Q. Specifically, the point cloud Q is first uniformly
scaled to fit within a cube defined by x ∈ [−0.5, 0.5], y ∈
[−0.5, 0.5], and z ∈ [0, 0.5]. This normalized point cloud is
then discretized into uniformly spaced pillars in the x-y plane,
each with a grid size of 0.1m. Points within each pillar are
augmented with xc, yc, zc, xp, and yp where the c subscript
denotes distance to the arithmetic mean of all points in the
pillar and the p subscript denotes the offset from the pillar’s
x, y center [27]. Notice we exclude the reflectance feature,
yielding an 8-dimensional augmented input representation for
each lidar point. For each pillar, the encoder samples up to 32
points and generates a corresponding 32-dimensional feature
vector. The resulting output from the Point Pillars encoder is
a pseudo-image tensor with dimensions 10× 10× 32.

Next, we detail the remaining components of the model
architecture.

A. Neural Network Used in SPARTA

The pseudo-image from the Point Pillars encoder [27] is
subsequently processed by a two-layer convolutional back-
bone, specified as follows:

• Input Channels: [32, 64]
• Output Channels: [64, 256]
• Kernel Size: [3, 3]
• Stride: [2, 2]
• Padding: [1, 1]

Each convolutional layer in the backbone employs batch
normalization and ReLU activation. The resulting output ten-
sor, of dimensions 3 × 3 × 256, is passed through a max
pooling operation to yield a compact 256-dimensional point
cloud feature representation.



Fig. 9. Runtime of AngleInput (Green) increases with model complex-
ity, while the runtime of ours (Red) remains roughly constant. This is
because during planning, we only need to perform a low dimensional
dot product and a sigmoid pass during inference, whereas AngleIn-
put requires repeated neural network inference. The x-axis denotes
additional hidden layers in the decoder and additional frequencies in
our model, i.e., n ∈ [3, 13].

To represent the smooth analytical mapping ϕ →
γi
ϕ, we employ Fourier basis functions up to a max-

imum frequency of n = 3, specifically the ba-
sis set {1, cos(ϕ), sin(ϕ), cos(2ϕ), sin(2ϕ), cos(3ϕ), sin(3ϕ)}.
The choice of n is justified in Section E with an ablation study.
Consequently, for each bin i ∈ [1, 8], the network predicts
7 Fourier coefficients. Thus, the SPARTA decoder consists
of a multilayer perceptron (MLP) that transforms the 256-
dimensional point cloud features into a 56-dimensional output
vector [F1, . . . ,F8]. This MLP decoder contains one hidden
layer with 512 neurons and utilizes layer normalization and
ReLU activation functions.

B. AngleInput

The pseudo-image from the Point Pillars encoder [27] is
subsequently processed by a three-layer convolutional back-
bone, specified as follows:

• Input Channels: [32, 64, 128]
• Output Channels: [64, 128, 256]
• Kernel Size: [3, 3, 3]
• Stride: [2, 2, 2]
• Padding: [1, 1, 0]

The encoder for angle of approach ϕ is a MLP that maps
1-dimensional input ϕ to a 32-dimensional embedding with
one hidden layer with 16 neurons. The decoder merges the
point cloud feature (256-dimensional) and the angle feature
(32-dimensional), and outputs the 8 concentration parameters
[γ1

ϕ, . . . , γ
8
ϕ], with a hidden layer with 64 neurons. Both MLPs

utilizes layer normalization and ReLU activation functions.

C. AngleFree

The AngleFree baseline network uses the same convolu-
tional backbone as AngleInput. A decoder head transforms
the 256-dimensional point cloud feature to the 8 concentration
parameters [γ1

ϕ, . . . , γ
8
ϕ], with two hidden layers with [128, 64]

neurons.

APPENDIX C
INFERENCE EFFICIENCY

To demonstrate the query efficiency of our model com-
pared to AngleInput, we measure their respective inference
runtimes. Specifically, for AngleInput, we measure the runtime
of encoding the approach angle, decoding the concentra-
tion parameters, and computing the categorical distribution
(Eq. (1)). For our model, we measure the runtime associated
only with computing the concentration parameters (Eq. (3))
and the categorical distribution (Eq. (1)). Note other com-
ponents (e.g. extracting feature vector from point cloud) of
both models can be precomputed or reused. Considering that
more complex point clouds require higher-dimensional point
cloud features and deeper network architectures, we perform
a stress test by progressively increasing the number of layers
in both models, as well as the maximum frequency n in
our model. Both models process 25,000 queries with average
runtimes reported in Fig. 9. Our model demonstrates an order-
of-magnitude faster runtime compared to AngleInput. Most
importantly, the runtime of our model remains constant despite
increased complexity, as it only involves a single batched,
low-dimensional dot product and sigmoid computation 6. In
contrast, the runtime of AngleInput increases with complexity.

APPENDIX D
DATA COLLECTION DETAIL

In this section we provide more details of our data collection
process using the automotive simulator BeamNG.tech [14]. We
intend to generate random obstacles for the vehicle to drive
over, and collect the tire deformation during the traversal. We
choose a patch size of 1× 1m that covers the footprint of the
vehicle wheel, and randomly place (non-overlapping) obstacles
in the patch. Maximum elevation of the obstacle is set to 0.5m
(the vehicle’s minimum ground clearance). For every patch, we
collect its point cloud and downsample to a maximum of 1024
points. To minimize the influence of vehicle dynamics (for the
purpose of generalization to unseen hardware), we place the
vehicle such that only one wheel contacts the obstacle. The
deformation extent dw = rw−rinner

router−rinner
of all contacting tire node

w are recorded during the traversal. We discard all samples
below 0.2 (the tire deformation when the vehicle is static
on flat ground) and divide the rest into a histogram with 8
bins, which forms the empirical distribution y. In total, 24,000
samples {Qk,yk, ϕk} are collected. We augment the samples
by applying 8 random rotations (to both the point cloud and the
angle of approach), resulting in a total of 216,000 samples. We
further add random perturbation to the point clouds for more
robust performance. We use 90% of the data for training and
10% for testing.

APPENDIX E
ABLATION STUDY

In this experiment, we test our model’s ability to identify
safe traversal points and angles of approach in a row of packed,

6The dimension of the dot product depends only on the choice of maximum
frequency n. In fact the dimension is exactly 2n+ 1.



(a) (b) (c) (d)

Fig. 10. (a): Overview of the test environment and the vehicle. (b)-(d): Example point cloud (colored by elevation) and the CVaR (Viridis
arces around the point clouds) predicted by our model at the candidate angles of approach.

Algorithm α n Suc. ↑ Dmg. ↓

Ours

0.9 3 95 5
0.9 1 91 9
0.9 5 94 6
0 3 89 11

AngleInput 0.9 – 92 8
0 – 89 11

Elev – – 73 27

TABLE II. Number of success (Suc.) and vehicle damage (dmg.)
in simulation. Our model outperforms AngleInput and Elev. The
performance of the models decrease when we ablate CVaR with
mean. Best , Second best.

randomly placed obstacles. An overview of the environment,
a few example point clouds (colored by elevation), and the
CVaRs predicted by our model are shown in Fig. 10. This
environment is simpler than the boulder field in Section IV-C
and thus helpful in isolating the influence of the variables we
are interested in. We consider two baselines, the AngleInput
and a heuristic baseline that chooses the point with lowest
maximum elevation under vehicle’s wheel footprint (Elev).
Since the obstacles are placed on flat ground, the Elev baseline
is equivalent to finding the plan with lowest stepping difficulty
as in [8], [10]. As shown in Table II, our model achieves higher
success rate (S.R., the vehicle drives over the obstacle without
damage) than the AngleInput, but both learning-based method
significantly outperforms Elev. This is expected because the
obstacles are spawned with similar sizes, and as a result
Elev degenerates to random selection, leading to much lower
success rate and thus high risk of vehicle damage.

a) Ablating CVaR: To demonstrate the effectiveness of
using CVaR during planning to capture worst-case risk, we
ablate it by setting α = 0, which is equivalent to using the
mean of the predicted distribution. As reported in Table II,
the performance of both our model and AngleInput dropped.
This is because accounting for worst-case (tail) risk is crucial
in safety-critical tasks, and CVaR is a principled way for
representing tail risk in robotics [25].

b) Ablating Maximum Frequency: As demonstrated in
Section III-B and Section III-C, the choice of maximum
frequency n is closely related to the smoothness and general-
ization of the mapping from angle of approach ϕ to each of the
concentration parameters γi

ϕ. Therefore, we adjust the number

Fig. 11. Test EMD2 loss of our model with varying maximum
frequency. They achieve similar test loss.

of Fourier bases n in Eq. (3) and analyze the results in this
section. We consider the cases n = 1 and n = 5, and visualize
the test EMD2 loss in Fig. 11. Overall, we observe similar test
EMD2 loss for all three models. In Table II we include their
performances on the aforementioned experiment, on which
they achieve success rate 91% and 94%, respectively. Notice
the model with n = 1 achieves lower success rate compared
to the other two models. We hypothesize this is because the
basis functions can be too simple to capture the change of γi

ϕ

with ϕ, i.e. it might not be expressive enough to parameterize
the mapping we are interested in. Although the model with
maximum frequency n = 5 achieves similar success rate as
ours (n = 3), an overly high maximum frequency n introduces
higher upper bound on the Lipschitz constant of the mapping
and can introduce more abrupt changes in γi

ϕ with small
changes in ϕ, as explained in Section III-C. Therefore, to
balance expressivity and generalization, we choose n = 3
in our model and our experiments. However, n is an easily
changed hyperparameter that can be adjusted depending on
the frequency composition of the mapping function we are
trying to approximate.

APPENDIX F
HARDWARE SPECIFICATION

Our robot is built on top of the AgileX Scout Mini chassis,
a skid-steering wheeled platform. It has a footprint of approx-
imately 0.6 × 0.6m and can achieve a maximum speed of 3
m/s. The robot is equipped with an Ouster OS1 LiDAR with
128 channels. The LiDAR runs with a horizontal resolution of
1024 at 10 Hz, and we use its internal 6-axis IMU (100 Hz).



(a)

(b)

Fig. 12. (a): Obstacle and directions of the traversals. (b): The
linear traction distribution of the forward (Blue) and backward
(Orange) traversal. The backward distribution has significantly more
probability mass in the lower bins. An algorithm not modeling the
angle-dependency of linear traction (Green) would not be able to
identify the obstacle as traversable from the forward orientation.

The point cloud and IMU measurements are processed using
DLIO [26] for prebuilding the point cloud map and online
localization. The onboard PC is an ASUS ROG NUC 970,
with an Intel Core Ultra 9 CPU (16-Core), 32 GB RAM, and
a Nvidia GeForce RTX 4070 GPU (8 GB).

APPENDIX G
GEOMETRIC STRUCTURE IN OFF-ROAD AUTONOMY

In this section, we demonstrate other problem settings that
could benefit from modeling angle-dependency. We use the
angle-dependency of linear traction (the robot’s ability to
execute commanded velocity on the given terrain [4]) as
an example, and show how our approach can be applied to
this problem setting. To construct an empirical dataset, we
command the vehicle to drive at a constant linear velocity of
0.5 m/s over the obstacle, along the forward (Blue) and the
backward (Orange) direction shown in Fig. 12a. We record
the achieved linear velocity (estimated via DLIO [26]), and
compute the linear traction as the ratio between the achieved
linear velocity and the commanded linear velocity (0.5 m/s).
The data points are discretized into histograms and then nor-
malized into categorical distributions. As shown in Fig. 12b,
the backward traversal (Orange) achieved significantly lower
linear tractions compared to the forward traversal (Blue). This
matches our intuition because the obstacle is smooth from the
forward direction and sharp from the other. A system that
models the angle-dependency of linear traction would thus be
able to capture this difference. Notice SPARTA can be applied
to this problem setting with minimal changes (e.g. adjusting
input point cloud size) using an empirical dataset of linear
traction distributions. However, systems that do not model
angle-dependency (Green) [4] could be overly conservative
and never command the robot to traverse the obstacle from
the forward direction, which is traversable in practice.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 13. Example predictions of SPARTA. Rainbow denotes point
elevation, and Viridis circles around the point clouds denote the
CVaR at the corresponding angle of approach. The CVaR matches
our intuition because it indicates the obstacles are more risky from
orientations with sharp edges and less risky from orientations with
smooth elevation change.

APPENDIX H
EXAMPLE CVAR PREDICTIONS OF SPARTA

In Fig. 13, we visualize some example obstacles in our
test set and the CVaR predicted by our model with angle
of approach ϕ ∈ {0, 1, . . . , 359}. The Rainbow color map
denotes the elevation of the point (Red denotes high elevation),
and Viridis denotes the predicted CVaR (Yellow corresponds to
high CVaR). A trend we notice from the examples is that our
model predicts lower CVaR for angles where the obstacle has a
smoother elevation change. This is aligned with our intuition,
further supporting the validity of our approach for identifying
risky obstacles and angles of approach.
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