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Abstract

We consider the sequential optimization of an unknown, continuous, and expensive
to evaluate reward function, from noisy and adversarially corrupted observed
rewards. When the corruption attacks are subject to a suitable budget C and the
function lives in a Reproducing Kernel Hilbert Space (RKHS), the problem can
be posed as corrupted Gaussian process (GP) bandit optimization. We propose a
novel robust elimination-type algorithm that runs in epochs, combines exploration
with infrequent switching to select a small subset of actions, and plays each
action for multiple time instants. Our algorithm, Robust GP Phased Elimination
(RGP-PE), successfully balances robustness to corruptions with exploration and
exploitation such that its performance degrades minimally in the presence (or
absence) of adversarial corruptions. When T is the number of samples and �T
is the maximal information gain, the corruption-dependent term in our regret
bound is O(C�3/2

T
), which is significantly tighter than the existing O(C

p
T�T )

for several commonly-considered kernels. We perform the first empirical study
of robustness in the corrupted GP bandit setting, and show that our algorithm is
robust against a variety of adversarial attacks.

1 Introduction
Black-box optimization is a fundamental problem with broad applications including hyperparameter
tuning [42], robotics [34], and chemical design [20], among others. To make the problem tractable, a
variety of smoothness properties have been adopted, and Reproducing Kernel Hilbert Space (RKHS)
functions have proved to provide a versatile framework that can be tackled via Gaussian process (GP)
methods [43, 15]. This problem is referred to as GP bandits or kernelized bandits.

While an extensive line of works have established GP bandit algorithms and regret bounds, settings
with adversarial corruptions have only arisen relatively recently. Such corruptions may come in the
form of outliers [38, 41], perturbations of sampled inputs [5, 40, 16], adversarial noise in the rewards
[8], or perturbations of the final recommendation [7]. In this work, we are interested in the setting
of adversarial noise in the rewards, in which the performance of standard non-robust GP bandit
algorithms can deteriorate significantly (see Fig. 1).

The first work considering this setting [8] established regret bounds for various algorithms depending
on the degree of knowledge on the corruption level C (defined formally in Section 2). A key limitation
in their regret bound is that the main corruption-dependent term, C, and the usual uncorrupted regret
term, which is

p
T or higher (with time horizon T ), are multiplied together. That is, the dependence
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Figure 1: Performance of GP-UCB [43] and Robust GP Phased Elimination (RGP-PE, this work)
with no attacks and the two most effective corruption attacks on the Robot3D pushing task. As the
number of samples t increases, the performance of non-robust GP-UCB deteriorates significantly
under both attacking strategies, while the performance of the proposed algorithm remains robust.

on C is multiplicative with respect to the uncorrupted bound. Analogous studies of bandits with
independent arms [35, 21] or linear rewards [9] suggest that additive dependence may be possible,
but this has remained very much open in the GP bandit setting.

In this paper, we address this fundamental gap in the literature by introducing a novel algorithm in
which the uncorrupted term and the C-dependent term are clearly decoupled, and the latter is only
multiplied by a kernel-dependent function of T that can be much smaller than

p
T .

Related work. The closest work to ours is [8], which also considers the corruption-tolerant GP
bandit setting. In that work, the authors propose a confidence-bound-based algorithm with enlarged
confidence. As outlined above, the regret bound therein scales as O(C

p
T�T ), and the possibility of

additive C dependence was left as an open problem.

The question of additive vs. multiplicative dependence first arose in multi-armed bandits with
independent arms, with an initial work [35] being multiplicative, and a subsequent work [21]
improving to additive. Closer to our setup (and in fact a special case of it via the linear kernel) is
the case of corrupted stochastic linear bandits, in which additive dependence was obtained in [9],
with the corruption term more precisely being O(Cd3/2 log T ) under mild assumptions.1 Our main
result will achieve a similar bound as a special case, while being much more general due to handling
general kernels, and adopting GP-based algorithmic and mathematical techniques that have minimal
overlap with the linear setting. Other less related results for corrupted linear bandits (e.g., contextual
or instance-dependent) are given in [31] and [50].

Adversarial corruptions of the rewards were also considered for GP bandits in [28], but with the key
difference of considering a weaker adversary that does not know the chosen action when choosing
the corruption term. This distinction has a considerable effect on the problem, leading to significantly
different algorithms, and with the setting of [28] leading to a GP-UCB-style regret bound in which
the corruptions only impact the constant factors. In our setting, the effect of corruptions is much
more significant, and we know from [9] that this is unavoidable in general.

Other less related notions of robustness in GP bandits have included outliers [38], misspecification
[13, 6], input noise [5, 40, 16], risk-aversion [39, 11, 37], and corruptions in the final recommendation
[7, 29]. Moreover, other settings with adversarial corruptions have included multi-armed bandit and
online [21, 25, 24, 3], active [14], reinforcement learning [36, 49, 4], and multi-agent RL [33].

Corruption-robustness have been considered in other sequential decision making problems including
multi-armed bandits and predictioin with expert advice / online learning.

Contributions. We provide a novel algorithm for GP bandit optimization with adversarial corruptions,
that attains the first regret bound to avoid multiplying the uncorrupted part by the corruption level
C. Our algorithm crucially incorporates a rare switching idea, along with a non-standard robust
estimator, enlarged confidence bounds, and a minimal number of plays of each selected action; see
Sections 2.1 and 3 for details. To our knowledge, we are the first to use rare switching to achieve
adversarial robustness; previous works instead used it for reducing computational complexity.

We show that our regret bound is provably near-optimal for the SE kernel, and recovers recently-
established bounds for stochastic linear bandits [9] that are also known to be near-optimal. For the
Matérn kernel, the degree of tightness depends on the dimension and smoothness parameter, but

1In a paper concurrent with ours, the Cd
3/2 dependence has been improved to Cd for linear bandits [23].

We leave it for future work to determine whether a similar improvement is possible for GP bandits.
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our bound strictly improves on that of [8] in all scaling regimes where the latter is non-trivial (i.e.,
sub-linear in T ); see Table 1 on Page 7 for a summary. We demonstrate that our algorithm is able to
successfully defend against various attacks, including those proposed in [22].

On the technical side, we note that the GP setting dictates the use of a significantly different algorithm
compared to linear bandits, and a technical analysis with only minor overlap. To highlight this, in
Appendix E, we explore an approach based on a direct reduction to linear bandits (followed by using
the algorithm in [9]), and show that it yields strictly worse regret scaling than our main result.

2 Problem Setting and Preliminaries
We consider the Gaussian process bandit (i.e., kernelized bandit) problem, in which the goal of the
learner is to maximize the collected rewards by sequentially querying the unknown reward function
f : X ! R over T rounds. In particular, at every time t, the learner selects xt 2 X and receives

yt = f(xt) + ✏t, (1)

where ✏t is assumed to be �-sub-Gaussian with independence over time steps, and � is also known.

We consider the corrupted setting in which, besides the stochastic noise, the observations at every
time step are adversarially corrupted, so that the learner observes

eyt = yt + ct. (2)

Following [8], we make the following assumptions on the adversary:

• The adversary knows the true reward function f(·), and, at every round t, it observes xt before
deciding upon the corruption ct.

• The total adversarial corruption budget over T rounds is bounded as follows:
TX

t=1

|ct|  C. (3)

In this paper, we focus primarily on the case where C is known to the learner, but we also
discuss in Section 3.4 how our results have implications for the case of unknown C.

The domain X is assumed to either be finite, or a compact subset of Rd for some dimension d (e.g.,
X = [0, 1]d). In either case, X is endowed with a continuous, positive semidefinite kernel function
k(·, ·) : X ⇥ X ! R that is normalized to satisfy k(x, x0)  1 for all x, x0

2 X . We further assume
that f has a bounded norm in the corresponding Reproducing Kernel Hilbert Space (RKHS) Hk,
i.e., kfkk  B (see Appendix A for more details). This assumption permits the construction of
confidence bounds via Gaussian process (GP) models (Section 3.2).

The learner’s performance is measured using the widely-considered notion of cumulative regret:

RT =
TX

t=1

⇣
max
x2X

f(x)� f(xt)
⌘
, (4)

and we are interested in the joint dependence of RT on C and T . As noted in [35] and [8], one could
alternatively define the cumulative regret with respect to the corrupted values (i.e., f(x) + ct), and
these notions coincide to within an additive term of 2C.

2.1 Gaussian Process Model under Corruptions
In the standard (non-corrupted) setting, previous algorithms use (i) zero-mean GP priors for modeling
the uncertainty in f (i.e., they assume f ⇠ GP (0, k)), and (ii) Gaussian likelihood models for the
observations. As more data points become available, Bayesian posterior updates are then performed
according to a misspecified model in which the noise variables ✏t = yt � f(xt) are assumed to
be drawn independently across t from N (0,�), where � is a hyperparameter that may differ from
the true noise variance �2. In particular, in the absence of corruptions, given a sequence of points
{x1, . . . , xt} and their noisy observations {y1, . . . , yt}, the posterior mean and variance are given by

µt(x) = kt(x)
T
�
Kt + �It

��1
Yt, (5)

�2
t
(x) = k(x, x)� kt(x)

T
�
Kt + �It

��1
kt(x), (6)
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where kt(x) =
⇥
k(xi, x)

⇤t
i=1

, Kt =
⇥
k(xt, xt0)

⇤
t,t0

is the kernel matrix, and Yt 2 Rt contains the
non-corrupted observations up to time t, i.e., Yt[i] = yi for i 2 [t].

In the corrupted setting, given the inputs {x1, . . . , xt} and their corrupted observations {ey1, . . . , eyt}
(with eyi = yi + ci), we propose the following non-standard robust posterior mean estimator:

eµt(x) = kt(x)
T (Kt + �It)

�1 eYt, (7)

where eYt 2 Rt and eYt[i] =
Pt

j=1 1{xi=xj}eyjPt
j=1 1{xi=xj}

for i 2 [t]. Intuitively, the averaging of terms
corresponding to identical actions is done in order to diminish the impact of corruption, and this will
be a crucial component of our analysis. In our algorithm, besides eµt(·), we will also make use of the
standard posterior variance �2

t
(·) as given in Eq. (6); the use of this quantity is intuitively reasonable

because GP posterior variances do not depend on the observations.

The main quantity that characterizes the regret bounds in the non-corrupted setting (and is also useful
in our setting) is the maximum information gain [43], defined at time t as

�t = max
x1,...,xt

1

2
ln det(It + ��1Kt). (8)

3 Robust GP Phased Elimination
3.1 Algorithm and Confidence Bounds
Our algorithm works in epochs indexed by h = 0, 1, . . . , H�1, each of which consists of sampling a
batch of points. The epoch lengths may be chosen adaptively, and hence H may not be deterministic,
but we will ensure with probability one that H  H̄ with H̄ = log2 T . The length of epoch h is
denoted by uh, so that

P
H�1
h=0 uh = T .

The algorithm and analysis are based on the widespread notion of confidence bounds. While our
confidence bounds will be expanded to account for corruptions, it is useful to consider the following
generic assumption regarding non-corrupted observations (although the algorithm cannot access
these, they will appear in our mathematical analysis).

Assumption 1 (Regular confidence bounds). Let µ(h)(x) and �(h)(x) denote the posterior mean
and standard deviation computed (hypothetically) using only the non-corrupted observations
{(xi, yi)}

uh
i=1 in epoch h using Eqs. (5) and (6). We assume that given � 2 (0, 1), there exists

a sequence of parameters �h = �h(�) which is non-decreasing in h and yields with probability at
least 1� � that

|µ(h)(x)� f(x)|  �h�
(h)(x) (9)

simultaneously for all h � 0 and x 2 X .

Specific choices of �h satisfying this assumption will be considered in Section 3.2.

Similarly to previous kernelized algorithms (e.g., [8, 6]), our proposed algorithm makes use of
enlarged confidence bounds. Hence, our first result concerns concentration of an RKHS member
under corrupted observations, where we make use of the proposed estimator from Eq. (7).

Lemma 2 (Corrupted confidence bounds). Under Assumption 1, let eµ(h)(x) denote the posterior
mean based on only the corrupted observations {(xi, eyi)}uh

i=1 in epoch h using Eq. (7), and let
umin � 1 denote the minimum number of times any single action from {xi}

uh
i=1 is played, i.e.,

umin = minx2{x1,...,xuh
}
P

uh

i=1 1{xi = x}. Then, with probability at least 1 � �, it holds for all
x 2 X and h � 0 that

|eµ(h)(x)� f(x)| 
⇣
�h + C

p
uh

umin�

⌘
�(h)(x). (10)

The confidence-bound enlargement is proportional to the total amount of corruption C. This bears
some similarity to the confidence intervals used in [8, Lemma 2], but we note the following important
differences:

• We make use of a novel kernelized mean estimator (Eq. (7)) that takes average over rewards
corresponding to the same played action;
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Algorithm 1 Robust GP Phased Elimination (RGP-PE)
Input: Domain X ⇢ Rd, truncation parameter  > 0, corruption budget C, switching parameter

⌘ > 1, regularization parameter � > 0
1: Initialize l0 = 2, and h = 0 and Xh = X

2: Set Sh = ;, t0 = 0, �0(x) = 1 for all x 2 Xh

3: for t = 1, 2, . . . , lh do
4: Select xt = argmax

x2Xh
�t0(x)

5: Update Sh  Sh [ {xt}

6: if det(It + ��1Kt) > ⌘ det(It0 + ��1Kt0) then
7: Set t0  t
8: Compute �t0(·) via Eq. (6) by using {xi}

t
0

i=1
9: end if

10: end for
11: Set ⇠h(x) =

Plh
i=1 1{x=xi}

lh
for every x 2 Sh

12: Set uh(x) = dlh max{⇠h(x), }e for every x 2 Sh

13: Take each action x 2 Sh exactly uh(x) times with corresponding rewards (eyj)uh
j=1 where

uh =
P

x2Sh
uh(x)

14: Estimate eµ(h)(·) and �(h)(·) according to Eq. (7) and Eq. (6) using only the uh points from the
current epoch.

15: Update the active set of actions to:

Xh+1  

n
x 2 Xh : eµ(h)(x) +

�
�h + C

p
uh

lh �

�
�(h)(x) �

max
x2Xh

eµ(h)(x)�
�
�h + C

p
uh

lh �

�
�(h)(x)

o

16: Set lh+1  2lh, h h+ 1 and return to Step 2 (terminating after T total actions are played).

• Our enlargement term is O(C
p
uh

umin
), as opposed to O(C) used in [8, Lemma 2]. We will

typically apply this lemma with
p
uh

umin
⌧ 1, so that our confidence width is much smaller.

For the second of these, the intuition is that if the same action is played multiple times, it becomes
harder for the adversary to hide the true value (i.e., since the rewards of the same played actions are
averaged, the adversary needs to spend more of its budget corrupting the reward).

The Robust GP-Phased Elimination algorithm (Algorithm 1) proceeds in epochs (indexed by h) of
exponentially increasing length uh. At every round t (where t 2 {1, . . . , lh} and lh = 2h+1) within
an epoch h, the algorithm selects an action maximizing a posterior uncertainty computed at some
(possibly strictly earlier) time t0:

xt = argmax
x2Xh

�t0(x), (11)

where Xh denotes the set of active actions in epoch h. The selected action is then added to Sh which
is a set that contains distinct actions selected in epoch h.

The key idea behind using t0 instead of t in Eq. (11) is to ensure that our algorithm rarely switches,
based on a condition relating to the information gain (Line 6), meaning that the same action xt is
typically selected multiple times. Whenever there are ties, they are resolved arbitrarily but consistently
over rounds (i.e., if �t0(·) does not change, the same points are selected). Based on Lines 6 to 9, we
update t0 and recompute �t0(x) only when det(It + ��1Kt) increases by a constant factor ⌘.

Related ideas of rare switching have appeared in the literature (e.g., [1, 47, 19]), but to our knowledge
we are the first to use this idea in the kernelized bandit problem to provide an algorithm that includes
an explicit switching condition for improving robustness. Intuitively, by rarely switching, we obtain
more samples of the same point, allowing us to average more of them together and making the
“averaged” observation harder to corrupt. Concurrent work also used rare switching to reduce GP
posterior computation, noting that the computation time can be made to scale (cubically) with the
number of unique points [12]. This benefit also applies directly to our algorithm, and we exploit
it to run large-T experiments in Section 4.
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After the set Sh is constructed, we define ⇠h(x) =
Plh

i=1 1{x=xi}
lh

for every x 2 Sh, representing
the empirical frequency of selecting xt 2 Xh in lh rounds. The algorithm then plays actions
from Sh only, where the number of times each action x from Sh is played is denoted by uh(x) =
dlh max{⇠h(x), }e. Here, the truncation parameter  ensures that each action from Sh is played
sufficiently many times; this idea was used for corrupted linear bandits in [9]. Our theory suggests a
particular choice of  ; see Theorem 3. Each action x 2 Sh is played for uh(x) times in an arbitrary
order, leading to the total epoch length uh =

P
x2Sh

uh(x).

Based on the received noisy and potentially corrupted rewards {xj , eyj}uh
j=1, the algorithm updates

its estimates eµ(h)(·) and �(h)(·) according to Eq. (7) and Eq. (6). Finally, each epoch h ends by
updating the set of active actions Xh+1. To do so, we use the confidence bounds from Lemma 2
with umin = lh , where lh is a lower bound on the number of times each distinct action from Sh

is played. These confidence bounds are valid in the sense that the true function is contained within
the confidence bounds with high probability. The definition of Xh+1 (Line 15) ensures that with
high probability, the optimal action is never eliminated.

Besides the standard exploration/exploitation trade-off (controlled via �h), our algorithm additionally
balances robustness to corruptions. This is done via two parameters: the switching parameter ⌘ and
truncation parameter  . We set these parameter to ensure that the number of distinct actions played
per epoch is sufficiently small, while the number of plays per each such action is sufficiently large.
This trade-off is non-trivial; for example, in the case that C = 0 (i.e., the non-corrupted setting),
resampling the same actions (controlled via  ) increases the regret.

Main result. We now present our main theoretical result, where we use O⇤(·) notation to hide
constants and dimension-independent log factors. We treat the RKHS norm bound B as being fixed,
so its dependence is also hidden in O(·) or O⇤(·) notation.
Theorem 3 (Main result). Under the preceding setup and Assumption 1, for any corruption budget
C � 0, Algorithm 1 with a constant switching parameter ⌘ > 1 and truncation parameter  = ln ⌘

2�T
satisfies the following with probability at least 1� �:

RT = O⇤��H̄
p
T�T + C�3/2

T

�
. (12)

3.2 Applications to Specific Confidence Bounds
Now we discuss specific choices of �h satisfying Assumption 1, and the resulting final regret bounds.

We observe that the actions in each fixed epoch are sampled non-adaptively, and the resulting GP
posterior formed only depends on the points in that epoch. As noted in [32], these conditions are
sufficient to make use of the following confidence bounds for non-adaptive sampling.
Lemma 4. [45, Theorem 1] When {xi}

t

i=1 are selected independently of all the observations {yi}ti=1,
it holds for any fixed x 2 X and any t � 1 with probability at least 1 � � that |µt(x) � f(x)| 
�
B + �p

�

q
2 log 1

�

�
�t(x).

For finite domains, applying the union bound leads to a choice of �h for the proposed algorithm such
that �H̄ only contributes to logarithmic terms in the cumulative regret.

Corollary 5. Defining �̄h(�) = B + �p
�

q
2 log |X |

�
, we have that Assumption 1 holds with �h =

�̄h(�h) and �h = 6�
(h+1)2⇡2 . Hence, with probability at least 1 � �, Algorithm 1 with switching

parameter ⌘ > 1, truncation parameter  = ln ⌘
2�T

, and �h as above achieves

RT = O⇤�pT�T + C�3/2
T

�
. (13)

This corollary is obtained by noting that the error probability is at most � as desired, since a
union bound over X gives a per-epoch term of at most �h, and

P
H�1
h=0 �h 

P1
h=0

6�
(h+1)2⇡2 =

(
P1

h=0
1

(h+1)2 )
6�
⇡2 

⇡
2

6 ·
6�
⇡2 = �.

For general (possibly continuous) domains, one option is to set �h according to a widely-used
confidence bound as follows, though we will shortly discuss improved choices.
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Kernel Lower Bound Existing Ours
Linear

p
Td+ Cd

p
Td+ Cd

3/2
p
Td+ Cd

3/2

SE
p

T (log T )d/2 + C(log T )d/2
p
T (log T )d + C

p
T (log T )d/2

p
T (log T )d + C(log T )3d/2

Matérn T
⌫+d
2⌫+d + C

⌫
d+⌫ T

d
d+⌫ T

2⌫+3d
4⌫+2d + CT

⌫+d
2⌫+d T

⌫+d
2⌫+d + CT

3d
4⌫+2d

Table 1: Summary of regret bounds with constants and dimension-independent log factors omitted.
For the SE and Matérn kernels, the upper bounds are from [8] and the lower bounds are from [10].
For the linear kernel, the existing bounds are from [9], except the

p
Td lower bound which is from

[17].

Lemma 6. [15, Theorem 2] For any (possibly adaptive) sampling strategy, it holds with probability
at least 1� � that |µt(x)� f(x)| 

�
B + �

p
2(�t + 1 + ln(1/�))

�
�t(x) for all x 2 X and t � 1.

By a similar argument to Corollary 5 and the fact that �t is increasing in t, we obtain the following.
Corollary 7. If uh  ūh almost surely, then defining �̌h(�) = B + �

p
2(�ūh + 1 + ln(1/�)), we

have that Assumption 1 holds with �h = �̌h(�h) and �h = 6�
(h+1)2⇡2 . Hence, with probability at least

1� �, Algorithm 1 with a constant switching parameter ⌘ > 1, truncation parameter  = ln ⌘
2�T

, and
�h as above achieves

RT = O⇤�pT�T + C�3/2
T

�
, (14)

where we crudely selected ūh = T .

While this regret bound can be significantly weaker than Corollary 5 due to the O⇤(
p
T�T ) term, we

can also obtain an analog of Corollary 5 (i.e., attaining the improved dependence in Eq. (13)) for
continuous domains, under the mild assumption that functions in the RKHS are Lipschitz continuous
(which is true for the kernels we consider below). A crude approach is to have the algorithm use a
very fine discretization [26, 32], and a more sophisticated approach is to only discretize as part of the
analysis [45]. The details can be found in the preceding references, and we avoid repeating them.

3.3 Comparisons to Existing Bounds
We specialize our regret bound in Eq. (13) to specific kernels by substituting �T = O⇤(d) for the
linear kernel, �T = O⇤((log T )d) for the SE kernel, and �T = O⇤(T

d
2⌫+d ) for the Matérn kernel [43].

The resulting regret bounds are shown in Table 1 (omitting constants and dimension-independent
log factors), along with the best known existing upper and lower bounds. We observe the following:

• For the linear kernel, we recover the recent upper bound of [9], and this is tight up to the
presence of d vs. d3/2 in the corrupted part.

• For the SE kernel, we match the lower bound of [10] up to small changes in the implied constant
in each (log T )⇥(d) term. In contrast, the existing upper bound of [8] incurs a much larger

p
T

term in the corrupted part.
• For the Matérn kernel, compared to the existing result in [8], we obtain an improvement in the

non-corrupted part recently established in [32], matching the non-corrupted lower bound. In the
corrupted part, the existing result has a better exponent to T when ⌫ < d

2 , whereas ours is better
when ⌫ > d

2 , in particular approaching zero (instead of 1
2 ) as ⌫ !1 and nearly matching the

lower bound in this limit. However, when ⌫ < d

2 we find that the non-corrupted part in [8] is
super-linear in T , making the bound trivial. Hence, our bound is better whenever non-trivial
scaling is attained.

The bounds based on a reduction to linear bandits, which we derive in Appendix E, are omitted in
Table 1. We briefly note that they are able to provide a similar upper bound to our main one under
the SE kernel, but are always strictly worse under the Matérn kernel.

3.4 Implications for the Unknown C Setting

While we have focused on the case of known C, an idea from a concurrent work [23] (on linear
bandits) can be used to transfer our main result to a setting with unknown C.

The idea is that if the parameter C is used by the algorithm but Ctrue is the amount of corruption
actually used by the adversary, then the analysis goes through unchanged as long as C � Ctrue.
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Hence, we may cautiously choose a large value of C to cover more values of Ctrue. As an important
special case, we may choose C such that the corrupted and uncorrupted regret terms are of the same
order; for instance, in (13), setting C = O

�p
T

�T

�
gives RT = O⇤(

p
T�T ). Hence, we find that any

corruption level Ctrue up to O
�p

T

�T

�
only affects the constant (or possibly logarithmic) factors, and

the precise corruption level does not need to be known.

For particularly smooth kernels such as linear and SE (with constant dimension), the scaling O
�p

T

�T

�

reduces to O⇤(
p
T ). This may not seem as high as ideal, but at least in the case of linear bandits, it is

known to be the best we can hope for unless the algorithm attains significantly higher uncorrupted
regret [9, 23]. Specifically, if optimal O⇤(

p
T ) uncorrupted regret is attained, then linear regret is

unavoidable when C = !(
p
T ). See [23] for similar statements with the dependence on d included.

The overall picture remains less complete for general kernels, but the preceding discussion reveals
that our results for known C do have important implications for the unknown C setting.

4 Experiments

We experimentally evaluate the performance of our proposed algorithm, along with two baselines, one
robust and one non-robust. Our experiments serve as a proof of concept for our proposed approach,
but also highlight possible remaining gaps between theory and practice, e.g., arising from large
constant factors in the regret bounds. We emphasize that our contributions are primarily theoretical.

Algorithms. We consider the following three algorithms:

1. RGP-PE: Robust GP-Phased Elimination with constant �h; this is a slight variation of Corol-
lary 5 in which the number of epochs H turns out to be a small constant in our experiments.

2. GP-UCB: a representative non-robust fully sequential algorithm with slowly growing �t, where
t 2 [T ] [43, Algorithm 1].

3. RGP-UCB: the robust version of GP-UCB with slowly growing �t [8, Algorithm 1], where the
only difference from GP-UCB is that the theoretical coefficient of �t�1 in the UCB is �t + Cp

�
.

We found the term �h + C
p
uh

lh �
multiplying �(h) in Algorithm 1 to be overly conservative, so we

instead replace it by �h + b · Cp
uh

(since lh and uh are similar, we replace
p
uh

lh
by 1p

uh
), where

b 2 (0, 1] is an additional parameter controlling the degree of exploration and robustness. Similarly, in
RGP-UCB we use the coefficient �t+b · Cp

�
. The remaining parameters �h and �t are specified below.

Synthetic Function. We produce a synthetic 2D function f1, shown in Figure 4 of the supplementary
material, which is randomly sampled from a Gaussian Process with zero mean and the SE kernel with
lengthscale l = 0.5. The domain X of f1 contains 100 points obtained by evenly splitting [�5, 5]2

into a 10⇥ 10 grid. We use the true kernel as the prior for all three algorithms, and use �h = 4 for
RGP-PE, and �t =

p
log t/2 for GP-UCB and RGP-UCB.

Robot Pushing Objective Function. We consider the deterministic robot pushing objective function
on a 2D plane introduced in [48], which aims to find suitable parameters to push an object to the
target location rg . We use the Robot3d function, which takes the robot location (rx, ry) and pushing
duration tr as a 3D input, and outputs the reversed distance between the pushed robot location and
the target location rg , i.e.,

Robot3D(rx, ry, tr) = 5� kpush(rx, ry, tr)� rgk,

where push(·) outputs the pushed robot location.

We let the domain X contain 100 points (rx, ry, tr) randomly sampled from [�5, 5]2 ⇥ [1, 30], and
the target location rg is set to be (3, 2). Since the lengthscale of the SE kernel with maximum
likelihood given the noiseless data is 1.94 ⇡ 2, we use the SE kernel with l = 2 as prior for all three
algorithms. We found it beneficial for all algorithms to be slightly more explorative for this function,
and accordingly use �h = 6 for KE and �t = 2

p
log t for GP-UCB and RGP-UCB.

Attack Methods. We consider the following five attack methods, which continue until the corruption
budget is exhausted:
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Figure 2: Performance on f1 with C = 50. We observe that GP-UCB incurs linear regret for several
attacks, whereas the other algorithms exhibit robustness to all of the attacks.

• Clipping: This attack proposed in [22] perturbs f and produces another reward function ef
whose optima are in some region Rtarget that does not contain x⇤ by setting

ef(x) =
⇢
f(x) x 2 Rtarget,
min{f(x), f(ex⇤)��} x 62 Rtarget,

where ex⇤ = argmax
x2Rtarget

f(x). We let � = 0.5 and choose Rtarget = {(x1, x2) 2 X :
x1  x2} for f1, and Rtarget = {(rx, ry, tr) 2 X : rx � 0} for the function Robot3D.

• Aggressive Subtraction (AggSub): This attack proposed in [22] sets

ef(x) =
⇢
f(x) x 2 Rtarget,
f(x)� hmax x 62 Rtarget,

for some hmax > f(x⇤) � f(ex⇤). We use the same Rtarget as the Clipping attack, and let
hmax = 1 for f1 and hmax = 3 for Robot3D.

• Top-K: When x is one of the top K remaining actions, this attack perturbs the reward down
to �1. We consider both K = 3 and K = 5.

• Flip: This attack simply flips the reward from f(x) to �f(x). Both this attack and the previous
one are variations of attacks considered for linear bandits in [9].

For the algorithms, we consider C = 50 and C = 100. By default, the attack starts at t = 1, but
for the robust algorithms RGP-PE and RGP-UCB, we also conduct experiments with a later attack,
where (i) the attack in RGP-PE starts when at least one action is eliminated from the domain; and (ii)
the attack in RGP-UCB starts when at least one action has UCB strictly lower than maxx2X LCB(x).

We let T = 50000,2 � = 0.02, and � = 1 for all three algorithms, b = 0.1 for RGP-PE and
RGP-UCB, and  = 0.5, ⌘ = 2 for RGP-PE.The results are produced by performing 10 trials and
plotting the average cumulative regret, with error bars indicating one standard deviation.

Comparison of Algorithms. As shown in Figures 2 and 3, the non-robust algorithm GP-UCB
succeeds when no attack is applied. However, the cumulative regret for f1 associated with the
Clipping, AggSub, Top-3, and Top-5 attacks grow linearly, indicating that these four attacks succeed
in driving GP-UCB towards a suboptimal action. Similarly, the Top-3 and Top-5 attacks incur linear
regret for Robot3D. In contrast, we find that RGP-PE has only one action remaining at the end of the
13th epoch, and manages to defend against all five attack methods for both functions.

The baseline robust algorithm RGP-UCB also successfully defends against all the attacks, and
generally has lower cumulative regret than RGP-PE, despite RGP-PE having a stronger regret

2As we mentioned previously, this large value of T is feasible due to the computation time only scaling with
respect to the number of unique points [12], which is much smaller than T .
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Figure 3: Performance on Robot3D with C = 100. We observe that GP-UCB incurs linear regret for
two attacks, whereas the other algorithms exhibit robustness to all of the attacks.

guarantee. There are at least two possibly reasons for this: (i) The analysis of RGP-UCB in [8] could
be loose, with a tighter analysis potentially giving an additive dependence similar to Theorem 3,
and (ii) the strong scaling laws in our theory may still leave room for improvements in the constant
factors (or logarithmic). Further addressing these findings remains an interesting direction for future
work. We note that even in the more specialized problem of corrupted stochastic linear bandits,
analogous practical limitations of a phased elimination algorithm were observed in [9].

Later Attack. We observe that RGP-PE and RGP-UCB are also able to defend against the later
attack, and their performance is similar to when the attack starts from the beginning. There are only
two trials of RGP-PE (budget C = 100 and Top-5 attack on Robot3D in Figure 3), in which the only
action remaining at the end of the 13th epoch is slightly suboptimal. In Appendix F, we additionally
show the experiment results for f1 with C = 100, and Robot3D with C = 50.

5 Conclusion
We have provided a new algorithm for corruption-tolerant GP bandits based on phased elimination,
incorporating a key idea of rare switching based on a certain condition relating to the information
gain, along with a robust estimator, enlarged confidence bounds, and truncation to ensure a minimal
number of plays of each selected action. Our regret bound recovers the best known existing bound
under the linear kernel, is provably near-optimal under the SE kernel, and improves on the best
existing bound in all cases where the latter is non-trivial.
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