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Abstract

We study all possible variants of the high dimensional stochastic linear contextual1

bandit problem in federated and private settings. We propose a unifying algorithm2

design and analysis framework built on ADMM. Our method achieves existing3

state-of-the art guarantees in either setting for the central model. For the federated4

model, our results are entirely new and near-optimal in either setting. We also5

establish a novel lower bound on privacy-utility tradeoff for the federated model6

in the private setting and demonstrate on suitable numerical experiments for all7

problem variants.8

1 Introduction9

We study a high-dimensional stochastic contextual linear bandit problem in central and federated10

learning settings under privacy constraints (Shukla, 2024; Chakraborty et al., 2024). At every epoch,11

the decision maker is given a set of stochastically generated exogeneous contexts and chooses from12

a finite set of actions [K] to obtain the highest reward. Since the decision maker does not know13

the true underlying reward, it creates an estimator to select a decision. This induces an exploration-14

exploitation trade-off wherein the decision-maker faces the dilemma of exploring arms not played15

before and exploiting the information accumulated so far. The key underlying assumption in this16

framework is that the unknown parameter vector is s∗-sparse. This paper is motivated by the need17

for a unified algorithm and analysis framework for establishing utility and privacy guarantees for18

this problem under different learning models. From the perspective of this paper, existing work19

in high-dimensional bandits can be seen in central or federated settings with or without privacy20

constraints. We motivate the need for such a framework in the in Example 1.1 this is a very common21

learning setting.22

Example 1.1. A crucial step in assuring the drug safety of oligonucleotide drugs requires learning23

the relevant thermodynamics from large-scale data distributed across different organizations (Tavara24

et al., 2021). Preserving data privacy in this distributed setup requires limited and private communi-25

cation between local nodes. Further, learning the safety curve online requires learning in an online26

fashion. Techniques proposed in this paper can be used to solve this problem of online, private, and27

federated learning with high-dimensional but sparse data.28

In the central setting with privacy constraints, the regret analysis follows the by-now standard29

framework: (i) constructing an estimator for the unknown parameter using LASSO or thresholding-30

based techniques, (ii) analysing per-step regret using underlying problem structure (such as margin31

condition, compatibilty or other similar conditions). In this paper, we eschew this line of arguments32

and propose a generic algorithmic design and analysis framework for this class of problems. In either33

settings, we view the statistical problem of constructing the LASSO-based estimator through an34

optimizer’s lens. By exploiting the architecture of ADMM-based optimizers (Boyd et al., 2011),35

our proposed method can achieve state-of-the-art guarantees under all possible combinations of the36
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Table 1: Contributions to existing work. New results are in blue. ρ = ϵ−2 log(1/δ) for (ϵ, δ)-DP.

Central (Theorems 2, 3) Federated (Theorems 2, 4)
Non-Private Lower bound Ω(

√
s∗T log(d/s∗)) Ω(

√
sMT log(d/s∗))

Upper bound (existing) O(
√
s∗T log(d/s∗)) –

Upper bound (ours) O(s∗
√
T log(d/s∗)) O(s∗

√
MT log(d/s∗))

Private ((ϵ, δ)-DP) Lower bound Ω(log(d/s∗)
√
s∗ρ) Ω(log(d/s∗)

√
s∗ρ)

Upper bound (existing) O(√ρ(s∗)1.5 log1.5(d/s∗)) –
Upper bound (ours) O(√ρ(s∗)1.5 log2(d/s∗)) O(√ρ(s∗)1.5 log2(d/s∗))

learning models and privacy settings (see Table 1). Detailed literature is reviewed in Appendix A.37

In high-dimensional bandits in the central model, closest to our work are (Chakraborty et al., 2024;38

Shukla, 2024) that consider the high-dimensional bandit problem in the central model with privacy39

and propose different thresholding-based methods to solve it. For the federated setup the non-private40

setting was considered by (Wang et al., 2023). To the best of our knowledge, there is no known work41

on private high-dimensional federated contextual bandits. This motivates the question:42

Is it possible to propose a generic algorithm design and analysis template for high-dimensional43

bandits that can operate both in central and federated settings, and with and without differential44

privacy constraints?45

Our Contributions: We address these questions affirmatively and contribute to all the aforementioned46

strands of literature. Our contributions are summarised in Table 1 and detailed as follows:47

1. We propose a general framework for designing algorithms for peeled LASSO (Section 3) and high-48

dimensional bandit problems (Section 4) applicable to several variants of the problem that have49

been considered independently until now. These include centralized/federated and private/non-50

private versions thereof. Our framework works for all combinations of these variants by tuning a51

few hyper-parameters.52

2. In Algorithms 1, we propose an admm-based algorithm for the PeeledLASSO applicable for either53

communication model and establish its estimation error in Theorem 1. These are the first known54

recovery guarantees for the online private LASSO in private and federated setting. Algorithm 355

extends this to an algorithm for high-dimensional bandits in either setting using forgetting and the56

doubling trick. Privacy guarantees for these algorithms are established in Theorem 2 and utility57

guarantees in Theorem 3 and 4. Our utility proofs non-trivially combine iteration-based analysis58

of ADMM and peeling-based privacy arguments to accommodate bandit-feedback under both59

communication models.60

3. In Theorem 5, we derive a problem independent regret lower bound for the federated model in61

both private and non-private setting. Our lower bound demonstrates a phase transition between62

the hardness of the problem depending on the privacy level, intrinsic dimension and sparsity. In63

the low-dimensional case, a similar phenomenon was shown by Azize and Basu (2022).64

2 Model and Preliminaries65

Central Model: We consider a linear contextual bandit problem with K arms, where the (unknown)66

underlying vector θ ∈ Rd that parameterizes rewards is high-dimensional and sparse – often called67

the LASSO bandit setting (Bastani and Bayati, 2020). Central and federated models correspond to68

different modes of communication between central server and agents. We consider a time horizon T ,69

where for each time t ∈ [T ], the algorithm is given an (exogenous) context vector Xt = {Xt,k}k∈[K],70

where each Xt,k ∈ Rd. The elements of the set Xt are drawn i.i.d. from an unknown distribution71

D. After observing Xt, the algorithm selects an arm kt ∈ [K] and observes a random reward rt72

given by rt = ⟨Xt,kt , θ⟩ + ηt, where ηt is zero-mean bounded noise with variance σ2. Let Ht73

denote the tupple of random variables generated by the past contexts, arm pulls, and observed74

rewards and Ft denote the corresponding filtration. We assume that the parameter vector θ ∈ Rd is75

s-sparse, i.e., its support S = {i ∈ [d] : θi ̸= 0} has cardinality s, which is known to the decision76

maker. Given the history of observations Ht = {Xks,s, rs}ts=1, let Ft denote the natural filtration77

associated with Ht and let Π denote the set of all Ft-measurable policies. In the central setting,78
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our goal is to design a policy π ∈ Π that minimizes the cumulative expected regret, defined as:79

Rπ(T ) =
∑T
t=1 E[maxk∈[K]⟨Xt,k −Xt,kt , θ⟩].80

Federated Model: In the federated setup, [M ] is the set of clients, [K] is the set of arms, X is the81

set of contexts. Each client is a K-armed bandit problem with a common parameter being shared82

across clients. At each time slot t, each client i observes a exogeneous contexts Xi,t ∈ X , pulls83

arm ki,t ∈ [K] and receives a reward ri,t = X⊤
i,tθ + ηi,t. We assume there exists a central server84

in the system, and similar to FL, the clients can communicate with the server periodically with85

zero latency. Specifically, the clients can send “local model updates” to the central server, which86

then aggregates and broadcasts the updated “global model” to the clients. We also assume that87

clients and server are fully synchronized. The class of policies considered here are restricted to88

collinearly correlated policies Huang et al. (2021) (see Definition 6 in Appendix H). Intuitively, for89

two clients that are not collinear, their local observations on any arm cannot be utilized to improve90

each other’s knowledge of their own local models. As a result, they should not affect each other’s91

decision-making process. For a collinearly correlated policy, the regret in this setting is defined as:92

Rπ(T ) =
∑T
s=1

∑
i∈[M ]

(
X⊤
i,k∗t

θ −X⊤
i,kt

θ
)

.93

Privacy: Differential privacy Dwork et al. (2010)is the most prominent notion of privacy. The94

contextual bandit problem involves two sets of variables that any agent must private to the other95

participating agents – the available decision sets {Xk,s}k∈[K],s∈[T ] and observed rewards {rs}s∈[T ].96

In our problem, we are concerned with preserving privacy of continual observations Dwork et al.97

(2010) under different communication protocols, center and federated and bandit feedback. We98

instead use joint differential privacy (JDP), first introduced by Kearns et al. (2014) in the context of99

algorithmic mechanism design, and later extended to the online bandit setting by Shariff and Sheffet100

(2018). This slight relaxation of differential privacy allows the t-th component of the output (i.e., kt)101

to depend arbitrarily on the t-th component of the input (i.e., Xt), while ensuring differential privacy102

with respect to the joint distribution of all other components of the output.103

Definition 1 (Joint Differential Privacy (Kearns et al., 2014; Shariff and Sheffet, 2018)). A streaming104

algorithm A : HT → [K]T is said to be (ε, δ)-jointly differential private, for any t-neighboring105

streams S,S ′ and any T ⊆ [K]T−1,106

Pr[A(S )̸=t ∈ T ] ≤ exp(ε) Pr[A(S ′) ̸=t ∈ T ] + δ,

where A(S )̸=t denotes all portions of the algorithm’s output except at time t.107

The adversary model assumed here is to prevent any two colluding agents j and k to obtain non-108

private information about any specific element in agent i’s history. Therefore, the context set Xi,t and109

outcome ri,s are sensitive variables that the user trusts only with the agent i. Hence, we wish to keep110

Xi,tt ∈ [T ] private. However, the agent only stores the chosen actions Xit,t (and not all of Xi,t), and111

hence making our technique differentially private with respect to ((xi,t, ri,t)), t ∈ [T ] will suffice.112

Definition 2 ((ϵ, δ)-Fed-JDP (Dubey and Pentland, 2020)). In a federated learning setting with113

M ≥ 2 agents, a randomized multi-agent contextual bandit algorithmA = (Ai),Mi = 1 is (ϵ, δ,M)-114

federated differentially private under continual multi-agent observation if for any i, j s.t. i ̸= j, any115

set of sequences Si = (Sk)
M
k=1 and S′

i = (Sk)
M
k=1,k ̸=i ∩ S′

i such that Si and S′
i are neighboring116

and any subset of actions Sj ⊂ Dj,1 ×Dj,2 . . .×Dj,T it holds that117

P (Aj(Si) ∈ Sj) ≤ exp(ϵ)P (Aj(S
′
j) ∈ Sj) + δ

Remark 2.1 (Item-level vs. User-level DP in Federated Learning). Fed-JDP definition aims to118

protect each item from any of the users against the others. Thus, it is often called item-level DP and119

is widely studied in Federated bandits (Dubey and Pentland, 2020; Huang et al., 2021). Huang et al.120

(2023) proposes a stronger notion where privacy of the entire history is considered. This notion of121

user-level DP is out of the scope of present work.122

Remark 2.2 (Local DP vs. JDP in High-dimensions). Wang et al. (2020); Zhou and Chowdhury123

(2024) propose to use local DP for low-dimensional linear contextual bandits due to its strong privacy-124

preserving properties. But in high-dimensional settings, it causes significant degradation of utility125

because non-private high-dimensional regression depends on Ω(
√
s log d) but high-dimensional126

regression with local DP depends on Ω(
√
d). Here, s is the sparsity parameter and s ≪ d. In127

contrast, high-dimensional regression with JDP shows Ω(
√
s log d) dependence (Chakraborty et al.,128

2024). Thus, we focus on JDP.129
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High-dimensional Contextual Bandits. High-dimensional bandits with sparse linear structure are130

extensively studied (Bastani and Bayati, 2020; Oh et al., 2021; Hao et al., 2020). An algorithm for this131

problem follows a generic template. At every step t, (i) Observe context xt, (ii) Construct an estimator,132

θ̂t from collected data, i.e. rewards and contexts {{xs, rs}t−1
s=1, (iii) Play arm greedily using θ̂t and133

observed context xt, and (iv) Observe rewards rt and store data. In this setting, the estimators of θ134

are often constructed using by solving the LASSO problem, i.e., minθ,z
1
t−1

∑t−1
s=1

(
rs − θ⊤xs

)2
+135

λ∥z∥1 s.t.θ − zId×d = 0.For the private case, private thresholding-based mechanisms and Peeling136

algorithms Dwork et al. (2014b) are typically used. The analysis of these algorithms in centralized137

and federated, private and non-private settings differ significantly from each other motivating the138

following question: Can we design an ADMM-based private LASSO algorithm, which is amenable to139

central, federated models with and without privacy for the high-dimensional bandit problem?140

Assumptions. We describe the assumptions that we use to establish regret guarantees of HiBPA. All141

of these assumptions are standard in high-dimensional bandit literature Zhang and Huang (2008);142

Zhang (2010); Bastani and Bayati (2020); Li et al. (2021); Chakraborty et al. (2023, 2024).143

Assumption 2.1. (a) Bounded context: Px∼Pi
(∥x∥∞ ≤ xmax) = 1, ∀i ∈ [K] and xmax ∈ R+.144

(b) Bounded parameters: ∥θ∥0 ≤ s0 and ∥θ∥1 ≤ smax.145

Assumption 2.2 (Observational Noise). We assume that the random variables ϵt are independent146

and each one is σ sub-Gaussian, i.e., E [exp(αϵt)] ≤ exp
(
σ2α2

2

)
for all t ∈ [T ] and α ∈ R.147

Definition 3 (s-sparse eigenvalues). For a symmetric matrix A, its minimum and maximum148

s-sparse eigenvalues are defined as ϕmin(s,A) = infu:u̸=0,∥u∥0≤s
u⊤Au
∥u∥2

2
, ϕmax(s,A) =149

supu:u ̸=0,∥u∥0≤s
u⊤Au
∥u∥2

2
.150

Assumption 2.3 (Context distribution). The contexts corresponding to each arm i are generated151

stochastically from Pi that satisfies the following conditions.152

1. Bounded Orlicz norm: For any arm i ∈ [K], the Orlicz norm of context distribution Pi is bounded,153

i.e. ∥Xi∥ψ2 ≤ ν for X ∼ Pi.154

2. Sparsity: For all i ∈ [K], the design matrix Σi = Ex∼Pi

[
xx⊤

]
has bounded maximum sparse155

eigenvalue, i.e. ϕmax (Cs
∗,Σi) ≤ ϕu ≤ ∞ .156

Assumption 2.4 (Margin condition). There exists a positive constant ∆∗, A, α ∈ [0,∞), such that for157

an h ∈ [A
√

log d
T ,∆∗] and ∀t ∈ [T ], the following holds P

(
x⊤k∗t θ ≥ maxi ̸=k x

⊤
i θ + h

)
≤
(
h
∆∗

)α
.158

The zero-mean sub-Gaussian assumption on the noise (Assumption 2.2) is satisfied by various families159

of distributions, including normal distribution and bounded distributions, which are commonly chosen160

noise distributions. The margin condition (Assumption 2.4) controls the hardness of the bandit161

instance. For α → ∞, there is a deterministic gap between arms. α = 0 implies that there is162

no apriori information about arm separation. The sparsity assumption (Assumption 3) on context163

distributions is needed to identify the sparse support of parameters (Chakraborty et al., 2023).164

3 PeeledLASSO: Private ADMM with Peeling165

In this section, we propose a template of designing PeeledLASSO algorithm for central and federated166

settings using ADMM-based optimizers (Boyd et al., 2011) and Peeling algorithm (Dwork et al.,167

2014b) in Algorithm 1. To obtain private LASSO estimates, we apply Peeling operator on each168

ADMM update. Introducing the dual variable u = (u1, . . . , uN ) ∈ RN×d initialized to u0 and169

exploiting the separable structure of the consensus problem, we obtain the updates for the ith iteration170

of ADMM:171

θ̂i = Ps

 1

N

N∑
j=1

ui−1,j , σ
2

 ,zi,j = proxγ, 1
N (rj−x⊤

j ·)2
(
2θ̂i − ui−1,j

)
, (1)

ui,j = ui−1,j + 2λ(zi,j − θ̂i+1) (2)

where, proxγ,f (v0) = argminv

{
f(v) + 1

2γ ∥v − v0∥
2
2

}
. The updated variable θ is given by the172

peeling operator denoted by Ps, which can be seen as a noisy projection on an ℓ0-ball of radii s,173
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Algorithm 1 PeeledLASSO({(rv,N ,Xv,N )}v∈[M ], σ
2, B, λ, γ,M, s)

1: Input: Noise variance σ2, #iterations B, γ ∈ (0, 1], λ, s
2: Initialize Collect {u0,v}Mv=1 and set θ̂1 = 1

M

∑M
v=1 u0,v

3: for i = 1 : B do
4: for v ∈ [M ] do
5: ui,v ← LocalUpdate(Xv, rv, θi,M, λ, γ) //User level computations//
6: end for
7: θ̂i+1 ← Ps( 1

M

∑
v∈[M ] ui+1,v, σ

2) //Server level computations//

8: Communicate θ̂i+1 to each user
9: end for

10: Return: θB

Algorithm 2 LocalUpdate(Xv = {Xj}Nj=1, rv = {rj}Nj=1, θi,M, λ, γ)

1: Parameters: Clipping parameter C = 4rmaxXmax

2: Initialize: u0,v
3: Σv ←

(
2γ
MNXvX

⊤
v + Id

)
4: zi,v ← Σ−1

j

(
2γrvXv + ui,v − 2θ̂i

)
5: ui,v ← ui−1,v + 2λ

(
Clip(zi,v − θ̂i, C)

)
6: Return: ui,v

where noise variance σ2 is calibrated to ensure the desired privacy level. We refer to Algorithm 5 in174

Appendix B for details. From these updates and together with the possibility to randomly sample the175

blocks in our general scheme, we can naturally obtain different variants of ADMM for the centralized176

and federated models in their private and non-private counterparts. We observe this universality of177

ADMM scheme as lines 5-7 of Algorithm 1 extends to Algorithm 4. We further use this flexibility to178

construct the PeeledLASSO estimators for both federated and central settings.179

Proposition 1 (Privacy Guarantees). Under Assumptions 2.1 and 2.2, Algorithms 1 and 2 satisfy180

(ϵ, δ)-JDP (for M = 1) and (ϵ, δ)-FedJDP for σ2 =
24sσ2

η logMN log( 1
δ )

M2N2ϵ2 , where σ2
η is the variance of181

observational noise in the bandit model.182

Theorem 1 (Estimation Error). We are given N samples and σ2 is tuned as per Proposition 1 to183

ensure (ϵ, δ)-JDP and (ϵ, δ)-Fed-JDP in centralised and federated settings, respectively.184

(a) In central setting, Algorithm 1 yields estimation error E
[
∥θ̂B − θ∗∥2

]
of Õ

(
s∗ log d√

Nℓ
+ s∗ log d

Nℓϵ

)
.185

(b) In federated setting, Algorithm 1 yields estimation error E
[
∥θ̂B − θ∗∥2

]
of186

Õ
(
s∗ log d√
MNℓ

+ s∗ log d
ϵMNℓ

)
.187

We emphasize the estimation error in Theorem 1 is established differently from that in antecedent188

work such as Bastani and Bayati (2020); Oh et al. (2021). In particular, we analyze ADMM as a189

fixed-point iteration viewing peeling and regression as proximal operators (see Appendix D for the190

complete proof).191

Discussions. We see that in the central and non-private case, the estimation error decreases as 1√
N

192

and 1
ϵN for the private case. Due to homogeneity of contexts, the estimation error scales as 1

M193

with the number of clients in the private case and scales 1√
M

in the non-private case. It remains an194

interesting open problem to establish the tightness of these error bounds by establishing suitable195

lower bounds and is left as future work. Further, a critical observation here is that we are not adding196

any noise during the dual update (step 5 in Algorithm 4). While this works in the low-dimensional197

setting, it would not lead to good utility guarantees for the high-dimensional problem since the noise198

variance would be proportional to d leading to the utility decay as O(T ). Further, we would like to199

remark that while the bounds presented in Theorem 1 are under the ℓ2 norm, since the sparsity of θ is200
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Algorithm 3 HiBPA: High-dimensional Bandits with Peeled ADMM

1: Input: Privacy level ϵ, δ, users [M ], sparsity upper bound s, γ
2: Require: bounds bmax, Xmax, sub-gaussian parameter σ2

η
3: Initialize: t0 = 0, ℓ = 0, λ0
4: if ℓ = 0 then
5: for user v ∈ [M ] do
6: Play random arm kv,1 ∈ [K], and observe rv,ℓ
7: Set Xv,0 = {Xv,kv,1

}, rv,0 = {rv,1} , t1 = 1
8: end for
9: end if

10: for ℓ = 1, 2, . . . do
11: Set σ2

ℓ =
24sσ2

η log(M(tℓ−tℓ−1)) log(
1
δ )

M2(tℓ−tℓ−1)2ϵ2
, clipping levels Cℓ, #iterations Bℓ, reg. γℓ, dual step λℓ

12: θ̂ℓ ← PeeledLASSO({Xv,ℓ−1, rv,ℓ−1}v, σ2
ℓ , Bℓ, Cℓ, λℓ, γ,M)

13: Set tℓ+1 = 2ℓ+1

14: for user v ∈ [M ] do
15: (Xv,ℓ, rv,ℓ)← CollectBanditData(tℓ+1 − tℓ, θ̂ℓ, v)
16: end for
17: end for

bounded by s∗, these bounds can be translated in terms of s (i.e., independent of d). This fact will be201

used in the proof of Theorem 3, 4.202

Remark 3.1 (Choices of Adding Noise). The noise to ensure privacy could be added at different203

points of communication, e.g. Step 5, 8, or 9 in Algorithm 1. We chose to add it in Step 5 after204

updating θi at each iteration i. This is a conscious choice as the ADMM iteration can be stopped205

at any time by a practitioner and in federated setting, θi is communicated to each user after each206

update. If we add noise in the other two steps, we have to calibrate it across each user and each207

data point. This leads to sampling noise more number of times. Adding it to θi minimizes the process208

while ensuring both privacy and sparsity.209

Remark 3.2 (Peeling vs. Soft Thresholding). In some variants of private LASSO with ADMM,210

soft thresholding is used in Step 5 of Algorithm 1 and Step 11 of Algorithm 1. Though this works211

perfectly in offline setting (Cyffers et al., 2023), in our bandit setting, we need to control the sparsity212

of PeeledLASSO estimate at any point of time (Chakraborty et al., 2024; Shukla, 2024). This is213

essential to ensure eventual recovery of support of the true parameter, and thus, correctness of the214

final bandit algorithm. While soft-thresholding does not exhibit this property, we use Peeling to215

ensure these requirements.216

4 Algorithm Deisgm: High-dimensional Bandits with PeeledLASSO217

In this section, we present our main algorithm for privately learning high-dimensional bandits,218

(Algorithm 3). HiBPA is an episodic algorithm that computes θpriv
t privately using ADMM updates.219

We divide the decision horizon into episodes of geometrically progressive lengths. Specifically, the220

ℓth episode begins at time 2ℓ and the underlying algorithm restarts. In the private case, the doubling221

trick helps us reduce the amount of noise needed to preserve the privacy of the data. Since there are222

only logarithmic number of episodes. At each time t, the algorithm observes the set of context vectors223

Xt using θ̂priv
t . The estimator θ̂priv

t is computed depending on the communication protocol used. Using224

this estimator, it selects an arm greedily at the current time-step. For both these subroutines, we use225

the forgetfulness technique, wherein the data collected only from the previous episodes is used to226

compute the estimates of the current episode. Given the estimator, we play an arm greedily using227

CollectBanditData(N, θ̂, v) and collect resulting data.228

4.1 Central model229

In the centralized model, a trusted curator holds the dataset {(Xs, rs)}ts=1 and creates a private230

estimator from this dataset. Our private ADMM algorithm for this centralized model follows the231

updates in (1) the CentralOPLASSO subroutine. The CentralOPLASSO sub-routine takes as input a232

random vector and uses initial data to compute admm-updates. These u-variable updates are then233
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Algorithm 4 CollectBanditData(N, θ̂, v)

1: Initialize Xv,ℓ = ∅, rv,ℓ = ∅
2: for steps t = 1, . . . , N do
3: Play kv,t = argmaxk∈[K] x

⊤
v,kθ̂

4: Observe reward: rv,t = X⊤
v,kv,t

θ + ηt
5: Xv,ℓ = Xv,ℓ ∪ {Xv,kv,t

}, rv,ℓ = rv,ℓ ∪ {rv,t}
6: end for
7: Return

peeled every iteration to compute the final θ update. One could add it after completing a pre-decided234

number of iterations but in practice one can stop the optimization prematurely. In this case, if we235

publish and use the estimated parameter, it will lead to privacy leakage. Thus, we claim to add it after236

each iteration. Additionally, as we will see in the next section, this is a mandatory requirement in237

federated model. Thus, peeling the estimated parameter after each iteration allows us to formulated a238

unified algorithmic template and analysis without losing anything in utility.239

4.2 Federated model240

For the Federated Learning (FL) model Kairouz et al. (2021), we assume that there exists a central241

server that coordinates the behaviors of all the different clients. The server has access to the same242

partition of the parameter space used by all the clients, and can communicate with the clients. Every243

client is a K-armed high-dimensional contextual bandit problem, where the true parameter is shared244

across clients. Due to privacy concerns, the client-side algorithm should keep the reward of each245

evaluation confidential. The only things that can be transmitted to the server are the local statistical246

summary of the rewards. The clients are not allowed to communicate with each other. Accordingly,247

the FedOPLASSO subroutine samples a set of users and uses local data to perform admm-updtes. Then,248

the u-variables from every user are aggregated and peeled in order to obtain the global theta updates.249

These updates are executed in a federated fashion since (i) the blocks xk and uk associated to each250

arm k can be updated and perturbed locally and in parallel, and (ii) if each arm k shares ut+1 − ut251

with the server, then the latter can execute the rest of the updates to compute zt+1. On top of this252

vanilla version, we can natively accommodate user sampling (often called “client sampling” in the253

literature), which is a key property for cross-device FL as it allows to improve efficiency and to model254

partial user availability Kairouz et al. (2021). The communication cost of such updates is Md log T255

over T episodes if all users participate at every step. Finally, in the federated setup it is important to256

note that parameters λ, γ are tuned centrally not locally since the final updates happen centrally.257

Numerical Experiments: We compare HiBA with existing baselines and show that it performs258

competitively in settings considered in the paper. Due to space constraints all our experimental studies259

are deferred to Appendix ??.260

5 Privacy and Utility Guarantees of HiBPA261

Now, we establish privacy and utility guarantees for HiBPA in both central and federated models.262

Theorem 2 (Privacy Guarantees). Under Assumption 2.1 and 2.2, Algorithm 3 preserves (ϵ, δ)-JDP263

and (ϵ, δ)-Fed-JDP in the central and federated models, respectively.264

HiBPA satisfies due to two components. First, the parameters estimated in each episode ℓ using265

CentralOPLASSO and FedOPLASSO are already (ϵ, δ)-JDP and (ϵ, δ)-Fed-JDP due to Proposition 1.266

Second component is forgetting with doubling episodes as proposed by (Azize and Basu, 2022).267

Since estimated parameters are the only thing communicated to the server in each episode and are268

used for further data collection, ensuring their privacy protects the data collected in the previous269

episode. Additionally, since we do not reuse data of any past episode except the last one, their privacy270

is not leaked any further. Additionally, HiBPA also enjoys reward-DP ensuring privacy protection for271

collected downstream rewards. In the reward-DP model, the adversary is only allowed to perturb the272

reward stream (Hanna et al., 2024; Azize and Basu, 2024). In Theorem 3 and 4, we establish utility273

guarantees for HiBPA under both central and federated models, and also with and without (ϵ, δ)-JDP.274

Theorem 3 (Central model). Let us set Cℓ = xmaxbmax + 2σ
√
logNℓ, λℓ = 1

1−√
γℓ

.275
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1. Non-private: Under Assumption 2.1, 2.2, 2.3, and 2.4, Algorithm 3 with parameters γℓ =276 √
log dNℓ

Nℓ
, Bℓ = O

(
log1/(1+γℓ) (Nℓ)

)
incurs a regret277

E[R(T )] ≤ xmaxbmaxs log d+ ψ(α),

such that ψ(α) = T (1−α)/2

(1−α)∆α
∗

(
s3 log d

) 1+α
2 , α ∈ [0,∞), s3/2 log d, α =∞.278

2. Private: Under assumptions 2.1, 2.2, 2.3, and 2.4, Algorithm 3 with parameters γℓ =279 √
log dNℓ

Nℓ
, Bℓ = O

(
log1/(1+γℓ)

(
Nℓϵ

2
))
, σ2
ℓ =

24sσ2
η log(

Nℓ
δ )

(Nℓϵ)2
incurs a regret280

E[R(T )] ≤ xmaxbmaxs log d+ ψ(α) ∧ ϕ(ϵ),

such that ψ(α) is as above and ϕ(ϵ) = Ψα(T )
(
s3 log2 d log( 1

δ )

ϵ2

) (1+α)
2

, α ∈ [0,∞), and281

s3 log2 d log( 1
δ )

ϵ2 , α =∞. For α > 0, Ψα(T ) ≲
Γ(3+2α)

∆α
∗ (α log 2)3+2α , and Ψ0(T ) ≲ log3 T .282

Discussions: Implications of Theorem 3. 1. Dependence on dimension and sparsity: We observe283

that with respect to the dimension the privacy term dominates the non-privacy term by a factor284

of (log d)1+α/2. In contrast, they depend similarly on the sparsity parameter s⋆ + s, i.e. (s +285

s⋆)
3(1+α)

2 . Finally, note that the regularization parameter is independent of the privacy level since in286

PeeledLASSO privacy is achieved through the peeling step.287

2. Dependence on T : The non-private depends on T− 1+α
2 whereas the private part has approximately288

log3 T dependence. Thus, as T →∞, the effect of T fades away. Additionally, for α > 0, the private289

term of regret is T independent. The last two observations resonate with the similar impact of privacy290

in other bandit problem such as finite-armed (Azize and Basu, 2022), linear (Azize and Basu, 2024),291

and stochastic low-dimensional contextual bandits (Azize and Basu, 2024; Hanna et al., 2022).292

3. Minimax optimality: For α = 0, Chakraborty et al. (2024) provide the lower bound for (ϵ, δ)-JDP293

high-dimensional linear bandits in the central model. We observe that our regret is order-optimal in294

terms of T and dimension both with and without privacy. For sparsity, the non-private and private295

regret bounds has an additional multiplicative s+ s∗ factor. Now, we state the regret upper bounds of296

HiBPA for non-private and private federated model.297

4. Regularization for Exploration. Here, we adaptively tune the regularization parameter of LASSO298

as
√

log dNℓ

Nℓ
. This is commonly used in hihg-dimensional bandits for enforcing exploration (Oh et al.,299

2021; Ariu et al., 2020).300

Theorem 4 (Federated model).301

1. Non-private: Under assumptions 2.1, 2.2, 2.3, and 2.4, Algorithm 3 with parameters γℓ =302 √
log dNℓ

Nℓ
, Bℓ = O

(
log1/(1+γℓ) (MNℓ)

)
incurs a regret303

E[R(T )] ≤ xmaxbmaxs log d+ ψ(α),

such that ψ(α) = (MT )(1−α)/2

(1−α)∆α

(
s3 log d

) 1+α
2 , α ∈ [0,∞), and s3 log d, α =∞ .304

2. Private: Under assumptions 2.1, 2.2, 2.3, and 2.4, Algorithm 3 with parameters Bℓ =305

O
(
log1/(1+γℓ)

(
MNℓϵ

2
))
, σ2
ℓ =

24sσ2
η log(MNℓ) log(

1
δ )

(MNℓϵ)2
incurs a regret306

E[R(T )] ≤ xmaxbmaxs log d+ ψ(α) ∧ ϕ(ϵ),

such that ψ(α) is as above and ϕ(ϵ) = Ψα(MT )
(
s3 log2 d log( 1

δ )

ϵ2

) (1+α)
2

, α ∈ [0,∞), and307

s3 log2 d log( 1
δ )

ϵ2 , α =∞.308

Discussion: Dependence of HiBPA on M . We observe that without privacy regret of HiBPA in309

federated model varies with M
1−α
2 . For α = 0, it is

√
M and fades away as M →∞. In contrast,310
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due to the nature of Ψα being a bounded function, the privacy term of regret is independent of M311

for α > 0. For α = 0, it depends on log3M . In the next section, we prove a lower bound on regret312

of federated bandit algorithms for stochastic high-dimensional linear contextual bandits satisfying313

(ϵ, δ)-Fed-JDP. The lower bounds indicate that non-private regret of HiBPA achieves order-optimal314

dependence on M for α = 0, whereas it is loose by a log3M factor for regret term due to privacy.315

6 Lower Bound316

In this section, we report the cost of privacy in the high-dimensional bandit in the feederated model317

with privacy constraints. We propose a lower bound on the regret of any (ϵ, δ)-JDP algorithm for the318

high-dimensional bandit problem. This will shed further light on the cost of privacy in these settings319

when compared with other existing non-private lower bounds.320

Definition 4 (Minimax regret). We define the minimax regret in the (ϵ, δ)-JDP setting as:321

Rminimax
(ϵ,δ) := inf

π∈Π(ϵ,δ)

sup
Px,r∈B

E [R(T )] ,

where B denotes the set of all sparse high-dimensional bandit instances satisfying Assumptions 2.1322

and 2.2, and Π(ϵ,δ) denotes the set of all collinearly dependent (ϵ, δ)-Fed-JDP policies.323

Following Huang et al. (2021), we consider the collinear policies to rigorously proof the lower bound.324

Intuitively, if two clients that are not collinear under a policy, their local observations on any arm a325

cannot be utilized to improve the others’ knowledge about the arm. Thus, it is equivalent to running326

M independent bandits. The policy used by HiPBA to interact is also a collinear policy.327

Theorem 5 (Lower bound: Federated, Private). Give homogeneous context distributions across users,328

privacy parameters ϵ, δ > 0 such that ϵ2 < log( 1δ ), and d > 9 and sufficiently large s log(d/s), we329

have that330

Rminimax
(ϵ,δ) (T ) = Ω

(
max

{√
s∗ log2(d/s∗) log(1/δ)

ϵ2︸ ︷︷ ︸
private and high-d

,
√
s∗MT log(d/s∗)︸ ︷︷ ︸

non-private and high-d

})
.

Discussions: 1. Impact of M . This shows that for federated bandit with M users with homogeneous331

context distributions the non-private regret scales with Ω̃(
√
M). HiPBA achieves this scaling w.r.t.332

M . In low-dimensional federated bandits settings,
√
M dependence is exhibited by (Zhou and333

Chowdhury, 2024) but there exists no lower bound to support this phenomenon. Our lower bound334

shows that
√
M is the optimal dependence.335

2. Private vs. Non-private Bound. In contrast to the non-private lower bound, the private lower336

bound does not depend on M and T . This indicates a regime change depending on the privacy budget337

ϵ and the non-private bound dominates for ϵ ≥
√

log d
MT . For M = 1, we retrieve the lower bound338

of (Chakraborty et al., 2024) for sparse high-dimensional bandits in centralised setting.339

3.Context Homogeneity. Homogeneity of contexts is fundamentally important in this lower bound.340

Since we collect sample from M users at each step and their context distributions are homogeneous,341

conceptually we can treat them together as MT samples from the bandit environment. This intuition342

is reflected in the lower bound. Though homogeneity is prevalent in federated bandit literature (Dubey343

and Pentland, 2020; Wang et al., 2023, 2020), context heterogeneity is gaining interest due to its344

practicality (Blaser et al., 2024). It is still an open problem to develop lower bounds for federated345

bandits with heterogeneous users and we leave it as a future work.346

7 Conclusion347

In this paper, we considered the high-dimensional bandit problem under different communication348

models and privacy constraints. We proposed a unifying algorithmic design and analysis template349

that can be used for all these models. This is accompanied by a novel privacy and utility analysis350

of this framework. We also show that our performance matches the lower bounds up to a factor of351

s. As a future work, it would be interesting to extend this problem to the case went the clients are352

heterogeneous.353
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the dataset).566
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Part I789

Appendix790

A Related Work791

A.1 Existing Literature792

Multi-armed bandits have been studied since the foundational work of (Lai et al., 1985) and a793

comprehensive overview can be found in (Lattimore and Szepesvári, 2020). In this work, we consider794

the high-dimensional bandit problem (Li et al., 2021; Hao et al., 2020; Carpentier and Munos, 2012),795

under the necessary assumption that the unknown parameter θ is s∗ sparse. (Bastani and Bayati,796

2020; Oh et al., 2021; Ariu et al., 2020) propose LASSO or thresholding-based algorithms for this797

problem with competitive regret guarantees. Extending this line work to ensure privacy requires798

constructing estimators of the mean reward by injecting well-calibrated noise. This however implies799

that the variance of noise – and therefore the error in the constructed estimate – scales linearly with800

the dimension of the parameter. A straightforward adaptation of these tools to the high-dimensional801

problem setting where d≫ T would lead to a regret bound that scales O(d), which would implicitly802

be super-linear in T . Another approach to designing private algorithms is objective or gradient803

perturbation (Chaudhuri et al., 2011; Kifer et al., 2012). (Talwar et al., 2015; Asi et al., 2021; Cyffers804

et al., 2023; Raff et al., 2024) consider this problem in the offline setting.805

Federated learning (FL) (McMahan et al., 2017) has become a popular distributed machine learning806

paradigm in which numerous clients collaboratively train a prediction model under the coordination807

of a central server while maintaining the local training data at each client. FL is motivated by various808

applications where real-world data are exogenously generated at edge devices, and it is desirable to809

protect the privacy of local data by only sharing model updates instead of the raw data. In the low-810

dimensional setting, one of the first works to consider Federated linear contextual bandits was (Huang811

et al., 2021) and (Dubey and Pentland, 2020) extended this to a Fed-DP guarantee for their algorithm.812

B Peeling813

Algorithm 5 Peeling

1: Input: Vector v ∈ Rd, sparsity s, privacy level ϵ, δ, sensitivity D

2: Initialise: S = ∅ and set ξ = 2D
√

3s log(1/δ)

ϵ
3: for i = 1, 2, . . . , s do
4: Generate wi = (wi1, wi2, . . . , wid)

iid∼ Lap(ξ)
5: j∗i = argmaxj∈[d]\S |vj |+ wij
6: Update S ← S ∪ {j∗i }
7: end for
8: Set Ps = vS

9: Generate w̃ = (wi1, wi2, . . . , wid)
iid∼ Lap(ξ)

10: Return: Ps(v; ϵ, δ,D) = Ps(v) + w̃S

Lemma 1 ((ϵ, δ)-DP Dwork et al. (2018)). If for every pair of adjacent datasets D̄, D̄′, we have814

∥v(D̄)− v(D̄′)∥ ≤ D, then Algorithm 5 is (ϵ, δ)-DP.815

We further have the following bounds on that establish that peeling is indeed a contraction Cai et al.816

(2020).817

Lemma 2 (Peeling). For any index set I ⊂ [d] and θ ∈ Rd with supp(θ) ⊂ I and any θ̂ ∈ Rd such818

that ∥θ∥0 ≤ s, we have for every c > 0, we have:819

∥θ̂ − θ∥22 ≤
(
1 +

1

c

)
I − s
I − ŝ

∥θ̂ − θ∥22 + 4(1 + c)
∑
i

∥wi∥∞
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Lemma 3 (Peeling is a contraction). Given θ∗ ∈ Rd with ∥θ∗∥0 ≤ s and θ such that supp(θ∗) ⊂820

supp(θ) with ∥θ∥0 ≤ s̃+ s, for any c1, c2 > 0 and c > 0, we have:821

∥Ps(θ,W, w̃)− θ∗∥22 ≤ a∥θ − θ∗∥22 + b

where,822

a =

(
1 +

1

c1

)[(
1 +

1

c2

)(
1 +

1

c

)
+ (1 + c2)

]
b = (1 + c1)∥w̃S∥22 + 4

(
1 +

1

c1

)(
1 +

1

c2

)
(1 + c)

∑
i∈[s]

∥wi∥2∞
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C Preliminaries823

Many optimization algorithms such as proximal methods, ADMM belong to this family Bauschke824

and Combettes (2019). Formulating optimization algorithms as λ-averaged operators allows us to825

use generic convergence results by the Krasnosel’skii Mann theorem Byrne (2003). In the setting of826

differential privacy, each application of T is perturbed by noise due to stochasticity in the data. A827

generic convergence analysis of fixed-point iterations under both inexact and block updates Combettes828

and Pesquet (2021).829

C.1 ADMM830

Consider the problem of minimizing a function f : X → R where X ⊆ Rp, The problem reduces831

to finding a fixed-point, x∗ ∈ X , such that 0 ∈ ∂f(x∗) or ∇f(x∗) = 0 under differentiability832

assumptions. Alternatively, we can view these updates as reaching the fixed point of an operator833

T : X → X . Starting with initial point x0, these updates are given by:834

xt+1 = T (xt)

We now define the type of operators considered in this paper.835

Definition 5 (Fixed Point Operator). Let T : X → X and λ ∈ [0, 1], then:836

1. T is non-expansive, i.e., ∥T (x)− T (x′)∥ ≤ ∥u− u′∥, ∀ x, x′ ∈ X . It is τ contractive if it837

is τ -Lipschitz.838

2. T is λ-averaged if there exists a contractive operator R such that T = λR+ (1− λ)I .839

We now present how ADMM can be defined as a fixed-point iteration. ADMM minimizes the sum of840

two (possibly non- smooth) convex functions with linear constraints between the variables of these841

functions, which can be formulated as:842

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c

ADMM is often presented as an approximate version of the augmented Lagrangian method, where843

the minimization of the sum in the primal is approximated by the alternating minimizations on x and844

z. However, for the purpose of analysis, it is useful to view ADMM as a splitting algorithm Eckstein845

and Yao (2015). i.e., an approach to find a fixed point of the composition of two (proximal) operators846

by performing operations that involve each operator separately.847

ADMM is defined through the Lions- Mercier operator Lions and Mercier (1979). Given two848

proximable functions P1 and P2 and parameter η > 0, the Lions-Mercier operator is: TηP1,ηP2 =849

λRP1ηRP2 +(1−λ)I , where, RP1 = 2prox(P1)− I,RP2 = 2prox(P2)− I . In this work, we study850

fixed-point iterations with Differential Privacy (DP) Dwork et al. (2014a). DP relies on a notion of851

neighboring datasets. We denote a private dataset of size n by D := (d1, . . . , dn). Two datasets D,852

D′ are neighboring if they differ in at most one element. We refer to each di as a data item. Consider853

the problems of the form:854

min
x∈X

1

n

n∑
i=1

f(u; di) + r(u), i = 1, . . . , n (3)

where f(; di) is a (typically smooth) loss function computed on data item di and r is a (typically non-855

smooth) regularizer. We denote f(u;D) := 1
n

∑n
i=1 f(u; di), i = 1, . . . , n. To solve this problem,856

we consider the general noisy fixed-point iteration described in Algorithm 1. The core of each update857

applies a λk-averaged operator constructed from a non-expansive operator R, and a Gaussian noise858

term added to ensure differential privacy via the Gaussian mechanism. Algorithm 1 can use (possibly859

randomized) block-wise updates (B > 1) and accommodate additional errors in operator evaluation.860
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D Proof of Theorem 1861

Proof. For every iteration b given by (1) from Lemma 3, we have:862

E
[
∥θ̂b − θ∗∥22

]
= E

[
∥PS(θ̂b+0.5,W

(b), w̃b)− θ∗∥22
]

≤ E
[
∥PS((θ̂b+0.5)Sb

,W(b), w̃b)− θ∗∥22
]

≤ c3E
[
∥(θ̂b+0.5)Sb

− θ∗∥262
]
+ c4

≤ c3E [∥ub − u∗∥2] + c4 ,

where,863

c3 =
6

7

(
1 +

1

c1

)[(
1 +

1

c2

)(
1 +

1

c

)
s∗

s
+ (1 + c2)

]

c4 = (1 + c1)E
[
∥w̃S∥22

]
+ 4

(
1 +

1

c1

)(
1 +

1

c2

)
(1 + c)E

∑
i∈[s]

∥wi∥2∞


Now we analyse the convergence step for which we use the analysis from ADMM. For the soft-864

thresholding operator we have τ = 1
γ and D = and Bℓ is the number of iterations for which ADMM865

is run in a single episode. From Algorithm 4 and using Theorem 6, we have that:866

E
[
∥ub − u∗∥22

]
≤
(
1− (1− τ)

8

)Bℓ

D

Plugging this back, we get:867

E
[
∥θ̂Bℓ

− θ∗∥22
]
≤ c3

(
1− (1− τ)

8

)Bℓ

D + c4BℓE

∥w̃(m)
Sm
∥22 +

∑
i∈[s]

∥w(m)
i ∥2∞


The first step in Algorithm 1 is Peeling Algorithm 5. The noise added at every iteratino in order to868

preserve the privacy is given by Wb =
(∑

i∈[s] ∥w
(b)
i ∥2∞ + ∥w̃(b)

S ∥22
)

where each w
(b)
i ∈ Rd and869

w̃S has |S| = s non-zero co-ordindates. Noting that ξ = θmax

κ

√
3s log

Bℓ
δ

Nℓϵ
, using Theorem 7, for870

suitably large constant, we have:871

P

(
∥wS∥2∞ ≥

s log2 d
(
log Bℓ

δ

)
N2
ℓ ϵ

2

)
≤ 1

d8

Using a union bound, we get:872

P

(
max
b∈[Bℓ]

Wb > K
s2 log2 d

(
log Bℓ

δ

)
N2
ℓ ϵ

2

)

≤
∑
b∈[Bℓ]

P

(
Wb >

s2 log2 d
(
log Bℓ

δ

)
N2
ℓ ϵ

2

)

≤ 2sBℓ
d8

= O

(
1

d6

)
Plugging this back, we get:873

E
[
∥θ̂B − θ∗∥22

]
≤ c3

(
1− (1− γ)

8

)Bℓ

D + c4BE

∥w̃(m)
Sm
∥22 +

∑
i∈[s]

∥w(m)
i ∥2∞


≤ c3

(
1− (1− γ)

8

)Bℓ

D + c4BℓK
′ ·

(s∗ log d)2 log logBℓ

δ

N2
ℓ ϵ

2
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1. For the central setting, let B such that874 (
1− 1− γ

8

)Bℓ

D = K ′Bℓ ·
(s∗)2 log2 d log Bℓ

δ

Nℓϵ2

Bℓ = O
(
log1/(1+γ)

(
Nℓϵ

(s∗ log d)2

))
.

Ignoring log and log log terms, this leads to:875

E
[
∥θ̂B − θ∗∥22

]
≲ C2 · (s

∗ log d)2

Nℓ

(
1 +

1

ϵ2Nℓ

)
=⇒ E

[
∥θ̂B − θ∗∥2

]
≲ C

(
s∗ log d√

Nℓ
+
s∗ log d

Nℓϵ

)
.

2. In the Federated setting,876

E
[
∥θ̂B − θ∗∥22

]
≤ c3

(
1− (1− γ)

8

)Bℓ

D + c4BℓK
′ ·

(s∗ log d)2 log logBℓ

δ

M2N2
ℓ ϵ

2

B = O
(
log1/(1+γ) (MNℓ)

)
.

Leading to the following bound error per-iteration:877

E
[
∥θ̂B − θ∗∥2

]
≲
s∗ log d√
MNℓ

+K ′ · s
∗ log d

ϵMNℓ
.

878
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E Proof of Theorem 2879

Proof. Federated Model: Let rt = (r1,t, r2,t, . . . , rMK,t) and Xt = (X1,t, . . . , XMK,t). Consider880

two neighboring datasets D1 = {(rt,Xt)}t∈[T ],D2 = {r′t,X ′
t}t∈[T ]. Let the randomized mapping881

introduced by Algorithm 1 beMt. At time t,Mt takes a set of observed reward-context pairs from882

the previous episodes and recommends action kt ∈ [K]. Let α(t) denote the episode to which time t883

belongs:884

α(t) :=

⌊log2 T⌋∑
ℓ=0

ℓ1{tℓ ≤ t ≤ tℓ+1}
885

P (Mτ = k−τ ) = Πℓ≥0P (kt() = kt; tℓ ≤ t ≤ tℓ+1, t ̸= τ)

Now, we will analyze this product. First note that because of forgetfulness, changing reward and886

context at time τ only affects the private estimate θ̂ℓ+1 as it only depends on the data from the887

previous episodes. We now prove this case by case888

1. Case-I: For a fixed action sequence k−τ = {ki,1, . . . ki,τ−1, ki,τ+1 . . . ki,T }i∈[M ] ∪889

{kj,τ}j∈[M ],j ̸=m for some m ∈ [M ]. We have Hℓ−1 = H′
ℓ−1. Fixing a time t in episode890

ℓ, by the nature of Algorithm 1, the randomness inMt only comes through the estimator891

θ̂ℓ. Let the distribution function of θ̂ℓ on dataset D be F and those on D′ be F ′. For a fixed892

action sequence, sinceHℓ−1 = H′
ℓ−1, these distribution functions are identical. Define the893

set: O = {θ̂ :M(θ̂t, Ct) = kt}, then we have the following for ℓ ≤ ℓ0:894

P
(
k̂t = kt; tℓ ≤ t ≤ tℓ+1

)
=

∫
Rd

1 (; tℓ ≤ t ≤ tℓ1; t ̸= τ) dFθ̂(z)

= P
(
θ̂t(Ht−1) ∈ ∩tℓ≤t≤tℓ+1

;t ̸=τOt
)

= P
(
θ̂t(H′

t−1) ∈ ∩tℓ≤t≤tℓ+1
;t ̸=τOt

)
2. Case-II (ℓ > ℓ+ 1): This argument follows from the previous case and using the Forgetful-895

ness property, we get:896

P
(
k̂t(Ht) = kt; tℓ ≤ t ≤ tℓ+1

)
= P

(
k̂t(H′

t) = kt; tℓ ≤ t ≤ tℓ+1

)
3. Case-III (ℓ = ℓ0 + 1): Noting thatHt−1 andH′

t−1 are neighbouring datasets and that θ̂t−1897

is an (ϵ, δ)-DP estimator. Hence,898

P
(
k̂t(H) = kt; tℓ ≤ t ≤ tℓ+1

)
=

∫
Rd

1
(
tℓ0+1≤t≤tℓ0+2; t ̸= τ

)
dF (θ̂ℓ)(z)

= P
(
θ̂t(Hℓ0) ∈ ∩tℓ0≤t≤tℓ0+12;t ̸=τ

Ot
)

= exp(ϵ) · P
(
θ̂t(H′

ℓ0) ∈ ∩tℓ0≤t≤tℓ0+12;t ̸=τ
Ot
)
+ δ

= exp(ϵ) · P
(
k̂t = kt; tℓ ≤ t ≤ tℓ+1; t ̸= τ

)
+ δ

Combining these cases, we have:899

P (M−τ (D) = a−τ ) = Πℓ≥0P
(
k̂t = kt; tℓ ≤ t ≤ tℓ+1; t ̸= τ

)
= exp(ϵ) ·Πℓ≥0P

(
k̂t = kt; tℓ ≤ t ≤ tℓ + 1; t ̸= τ

)
+ δΠℓ ̸=ℓ+1P

(
k̂t(Ht) ̸= kt; tℓ ≤ t ≤ tℓ + 1; t ̸= τ

)
= exp(ϵ) · P (A−τ =M−τ ) + δ

The proof for privacy in the central setting can be obtained by setting M = 1.900
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F Proof of Theorem 3901

Proof. Here, G ∆
= ∩ℓ

{
maxbWb ≤ K

s2 log2 d
(
log

Bℓ
δ

)
N2

ℓ ϵ
2

}
, which holds with probability 1− δ.902

The regret decomposition is given by:903

E [R(T )] =

t∑
s=1

E
[
X⊤
t,k∗t

θ∗ −Xt,ktθ
∗
]

= 2Xmax∥θ∗∥1
∑

1≤ℓ≤L

tℓ +

T∑
s=tL+1

E

[(
X⊤
t,θ∗θ

∗ −X⊤
t,k∗t

θ̂ℓ(t)

)
+
(
X⊤
t,k∗t

θ̂ℓ(t) −X⊤
t,kt θ̂ℓ(t)

)

+
(
X⊤
t,kt θ̂ℓ(t) −X

⊤
t,ktθ

∗
)]

= 2Xmaxbmax(2
L − 1) +

∑
ℓ≥L

∑
tℓ≤tℓ+1

E
[(
Xt,k∗t

θ∗ −Xt,k∗t
θ̂ℓ(t)

)
1G +

(
Xt,kt θ̂ℓ(t) −Xt,ktθ

∗
)
1G

]
+XmaxbmaxP(1G)

≤ 2Xmaxbmax(2
L − 1) + 2Xmax

∑
ℓ≥L

∑
tℓ≤tℓ+1

E
[
∥θ∗ − θ̂ℓ(t)∥11G

]
+XmaxbmaxP(1G)

≤ 2Xmaxbmax2
L + 2Xmaxσ

2
√
s
∑
ℓ≥L

(tℓ+1 − tℓ)

√
K ′ (s

∗)2 log2 d

Nℓ

+ 2Xmaxσ
2
√
s
∑
ℓ≥L

(tℓ+1 − tℓ)

√
K ′ s

2 log2 d logN2
ℓ

ϵ2
log

(
s2 log2 d log logNℓ

δ

DNℓ

)

≤ 2Xmaxbmax log T + 2Xmaxσ
2s3/2(log d) log

log log T

δ

∑
ℓ≥L

√
K ′ ·Nℓ

+ 2Xmaxσ
2s3/2(log d) log

log log T

δ
log

(
s2 log2 d log log log T

δ

D

)√
K ′

ϵ2

≤ 2Xmaxbmax log T + 2Xmaxσ
2s3/2(log d) log

log log T

δ

√
K ′T

+ 2Xmaxσ
2s3/2(log d) log

log log T

δ
log

(
s2 log2 d log log log T

δ

D

)√
K ′

ϵ2

The per-step regret is given by:904

∆kt(t) = x⊤k∗t θ
∗ − x⊤ktθ

∗

≤ x⊤k∗t θ
∗ − x⊤k∗t θ̂ℓ(t) + x⊤k∗t θ̂ℓ(t) − x

⊤
kt θ̂ℓ(t) + x⊤kt θ̂ℓ(t) − x

⊤
ktθ

∗

≤ ∥xk∗t ∥∞∥θ
∗ − θ̂ℓ(t)∥1 + ∥xkt∥∞∥θ∗ − θ̂ℓ(t)∥1

≤ 4σXmaxs
√
T log d+ 4σXmax

√
s3(log d)2 log

(
1
δ ) log

6 T
)

ϵ2

where, the last-inequality follows from the previous lemma. Consider the event:905

Ht
∆
= {x⊤k∗t θ

∗ > max
k ̸=k∗t

x⊤k θ
∗ + pt}

UnderMℓ ∩ Aℓ(t), we have the following for any k ̸= kt:906

x⊤k∗t θ̂ℓ(t) − x
⊤
k θ̂ℓ(t) = ⟨xk∗t , θ̂ − θ

∗⟩+ ⟨xk∗t − xkt , θ
∗⟩+ ⟨xkt , θ∗ − θ̂ℓ(t)⟩

≥ −gt + pt−1 − gt
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Choosing pt = 3gℓ(t), with gℓ(t) =

√
K ′ · s

2 log2 d log
log Nℓ

δ

Nℓ
+907 √

K ′ · s
2 log2 d log

log Nℓ
δ

N2
ℓ ϵ

2 log

(
K ′ · s

2 log2 d log
log Nℓ

δ

DNℓ

)
, we see that:908

1. When α = 0, we get the previously proven bound.909

2. When α ∈ (0, 1) :910

E(R(T )) ≤ 2Xmaxbmax(2
L − 1)

+ 24Xmaxσ
2
∑
ℓ≥L

∆−α
∗ Nℓ−1

[(
s2 log d

Nℓ−1

) 1+α
2

+

(
s3(log d)2 log( 1δ ) log

logNℓ−1

N2
ℓ−1ϵ

2

) 1+α
2
]

This implies that:911

Iα ≤
s3(1+α)(log d)

(1+α)
2

∆α
∗

(
T

1−α
2 − 1

1− α

)
+Ψα∆

−α
∗ ϵ−(1+α) {log(1/δ)}

(1+α)
2
(
s3 log2 d

) 1+α
2

where, Ψα = 1−T−α

1−2−α (log T )
2α+2.912

3. α = 1 : The previous bounds implies:913

I1 ≤
s6(log d)

∆∗
log T +

Ψ1

∆∗ϵ2
s3 log d log(

1

δ
)

4. α > 1 : In this case, we get:914

Iα ≤
s3(1+α)(log d)

(1+α)
2

∆α
∗

(
1− T

−(α−1)
2

α− 1

)
+Ψα∆

−α
∗ ϵ−(1+α)

(
log(

1

δ
)

) (1+α)
2 (

s3 log2 d
) (1+α)

2

915

27



G Proof of Theorem 4916

Proof. Here, G ∆
= ∩ℓ

{
maxbWb ≤ K

s2 log2 d
(
log

Bℓ
δ

)
N2

ℓ ϵ
2

}
, which holds with probability 1− δ.917

The regret decomposition is given by:918

E [R(T )] =

t∑
s=1

E
[
X⊤
t,k∗t

θ∗ −Xt,ktθ
∗
]

= 2Xmax∥θ∗∥1
∑

1≤ℓ≤L

Nℓ +

T∑
s=tL

E
[(
X⊤
t,θ∗θ

∗ −X⊤
t,k∗t

θ̂ℓ(t)

)
+
(
X⊤
t,k∗t

θ̂ℓ(t) −X⊤
t,kt θ̂ℓ(t)

)
+
(
X⊤
t,kt θ̂ℓ(t) −X

⊤
t,ktθ

∗
)]

= 2Xmaxbmax(2
L − 1) +

∑
m∈[M ]

∑
ℓ≥L

∑
tℓ≤tℓ+1

E
[(
Xt,k∗t

θ∗ −Xt,k∗t
θ̂ℓ(t)

)
1G +

(
Xt,kt θ̂ℓ(t) −Xt,ktθ

∗
)
1G

]
+XmaxbmaxP(1G)

≤ 2Xmaxbmax(2
L − 1) + 2Xmax

∑
m∈[M ]

∑
ℓ≥L

∑
tℓ≤tℓ+1

E
[
∥θ∗ − θ̂ℓ(t)∥11G

]
+XmaxbmaxP(1G)

≤ 2Xmaxbmax(2
L − 1) + 2Xmaxσ

2
√
s
∑

m∈[M ]

∑
ℓ≥L

(tℓ+1 − tℓ)

√
K ′ (s

∗)2 log2 d log logNℓ

δ

MNℓ

+ 2Xmaxσ
2
√
s
∑

m∈[M ]

∑
ℓ≥L

(tℓ + 1− tℓ)

√
K ′ s

2 log2 d log logNℓ

δ

M2N2
ℓ ϵ

2
log

(
s2 log2 d log logNℓ

δ

DNℓ

)

≤ 2Xmaxbmax log T + 2Xmaxσ
2s3/2(log d) log

log log T

δ

∑
ℓ≥L

√
K ′ ·MNℓ

+ 2Xmaxσ
2s3/2(log d) log

log log T

δ
log

(
s2 log2 d log log log T

δ

D

)√
K ′

ϵ2

≤ 2Xmaxbmax log T + 2Xmaxσ
2s3/2(log d) log

log log T

δ

√
K ′MT

+ 2Xmaxσ
2s3/2(log d) log

log log T

δ
log

(
s2 log2 d log log log T

δ

D

)√
K ′

ϵ2

The per-step regret is given by:919

∆kt(t) = x⊤k∗t θ
∗ − x⊤ktθ

∗

≤ x⊤k∗t θ
∗ − x⊤k∗t θ̂ℓ(t) + x⊤k∗t θ̂ℓ(t) − x

⊤
kt θ̂ℓ(t) + x⊤kt θ̂ℓ(t) − x

⊤
ktθ

∗

≤ ∥xk∗t ∥∞∥θ
∗ − θ̂ℓ(t)∥1 + ∥xkt∥∞∥θ∗ − θ̂ℓ(t)∥1

≤ 4σXmaxs
√
MT log d+ 4σXmax

√
s3(log d)2 log

(
1
δ ) log

6 T
)

ϵ2

where, the last-inequality follows from the previous lemma. Consider the event:920

Ht
∆
= {x⊤k∗t θ

∗ > max
k ̸=k∗t

x⊤k θ
∗ + pt}

UnderMℓ ∩ Aℓ(t), we have the following for any k ̸= kt:921

x⊤k∗t θ̂ℓ(t) − x
⊤
k θ̂ℓ(t) = ⟨xk∗t , θ̂ − θ

∗⟩+ ⟨xk∗t − xkt , θ
∗⟩+ ⟨xkt , θ∗ − θ̂ℓ(t)⟩

≥ −gt + pt−1 − gt

Choosing pt = 3gℓ(t), with gℓ(t) =

√
K ′ · s

2 log2 d log
log Nℓ

δ

Nℓ
+922 √

K ′ · s
2 log2 d log

log Nℓ
δ

N2
ℓ ϵ

2 log

(
K ′ · s

2 log2 d log
log Nℓ

δ

DNℓ

)
, we see that:923
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1. When α = 0, we get the previously proven bound.924

2. When α ∈ (0, 1) :925

E(R(T )) ≤ 2Xmaxbmax(2
L−1)+24Xmaxσ

2
∑
ℓ≥L

∆−α
∗ Nℓ−1

(s2 log d
Nℓ−1

) 1+α
2

+

(
s3(log d)2 log( 1δ ) log

logNℓ−1

N2
ℓ−1ϵ

2

) 1+α
2


This implies that:926

Iα ≤
s3(1+α)(log d)

(1+α)
2

∆α
∗

(
(MT )

1−α
2 − 1

1− α

)
+Ψα∆

−α
∗ ϵ−(1+α) {log(1/δ)}

(1+α)
2
(
s3 log2 d

) 1+α
2

where, Ψα = 1−(MT )−α

1−2−α (logMT )
2α+2.927

3. α = 1 : The previous bounds implies:928

I1 ≤
s6(log d)

∆∗
log T +

Ψ1

∆∗ϵ2
s3 log d) log(

1

δ
)

4. α > 1 : In this case, we get:929

Iα ≤
s3(1+α)(log d)

(1+α)
2

∆α
∗

(
1− (MT )

−(α−1)
2

α− 1

)
+Ψα∆

−α
∗ ϵ−(1+α)

(
log(

1

δ
)

) (1+α)
2 (

s3 log2 d
) (1+α)

2

930
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H Proof of Theorem 5931

Definition 6 (Collinearly-dependent policies (Huang et al., 2021)). Two clients iand jare called932

collinear if there exist an arm k ∈ [K] and a subset S ⊂ [M ] such that the following conditions933

are satisfied: 1) Xi,k ∈ span({Xm,k|m ∈ S}) and 2) xi,k ∈ span({Xm,k|m ∈ S} ∪ Xj,k). A934

collinearly-dependent policy if for any two clients i and j that are not collinear, if the action of client935

is independent of the action of j under a policy π.936

Let FX,r(θ) denote the space of joint distributions of contexts and rewards upto time T , when the937

underlying parameter is θ. In particular,938

FX,r = ⊗t∈[T ]FXt,rt

where, Fxt,rt denotes the joint distribution of contexts {x1(t), x2(t), . . . , xK(t)} ∈ RdK and rewards939

{r1(t), r2(t), . . . , rK(t)} ∈ Rd at time t induced through {x1(t), . . . , xK(t)} ∼ PX (where, the940

marginal for xi(t) ∼ Pi and the minimum and maximum eigenvalues of the marginal covariance941

are given by λmin, λmax). ri(t) = xi(t)
⊤θ + ϵi(t), ϵi(t) ∼ Pϵ independently for all ϵ, where Pϵ942

is sub-Gaussian with variance proxy σ2. For every choice of θ ∈ Rd, we get a bandit instance,943

PX,r ∈ FX,r(θ).944

A policy π is a sequence of (randomized) maps πt : Hπt−1 × Xt 7→ ∆(K), where Ht−1 =945

{(xas , ras) : 1 ≤ s ≤ t} denotes the history upto time t and ∆([K]) denotes the probability946

simplex over the set of arms. The minmax regret in the private setting is defined as:947

Rminmax
(ϵ,δ) (T ) = inf

π∈Π(ϵ,δ)
sup

PX,r∈FX,r

E [R(T )]

where, the expectation is taken wrt randomness due to interaction of the bandit instance PX,r and948

policy π; the infimum is over all possible history-adapted (ϵ, δ)-JDP policies and the supremum is949

wrt all problem instances with sparsity s.950

1. Constructing the hard instance:951

We construct several hard instances as follows: consider the case of 2-armed problem with952

θ ∈ Θ̃ = {θ ∈ Rd : θi ∈ {−rmin, 0, rmax}, ∥θ∥0 = s}, where s is the true sparsity parameter.953

Then, |Θ̃| =
(
d
s

)
2s. Let954

δ(t) = {δ : ∥θ − θ′∥2 ≥ δ′, θ, θ′ ∈ Θ̃, dH(θ, θ′) ≥ t}

where, dH is the Hamming distance. Considering a t-packing of Θ̃ in the Hamming distance, this955

leads to δ(t) packing of Θ̃ in the ℓ2-distance Duchi and Wainwright (2013). With our construction,956

this leads to δ(t) > max{1,
√
t}r. Let Θ∗ = {θ1, θ2, . . . , θM} be the elements of this packing957

with t > and M > cs log d
s for some absolute constant c. For θ, θ′ ∈ Θ̃, ∥θ − θ′∥ ≥ α.958

2. Bounds between the reward-context distribution:959

For θ, θ′ ∈ Θ̃, we bound the KL-divergence between the context and reward distribution, which is960

bounded as:961

KL (P (·|θ)∥P (·|θ′)) = MKtKL
(
N (x⊤θ, σ2),N (x⊤θ′, σ2)

)
=

MKtσ2
x∥θ − θ′∥
2σ2

≤ MKtσ2
Xsr

2

σ2

Using, Pinsker’s inequality, the Total variation distance can be bounded as:962

TV (P (·|θ)∥P (·|θ′)) ≤ MKt

√
1

2
E [KL (N (x⊤θ, σ2),N (x⊤θ′, σ2))]

≤ MKt
σ2

σ2
x

r
√
s
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3. Reduction to Estimation Problem963

Given a policy π and its associated estimator θ̂t be the maximizer of964

P(kπt = 1, z⊤t θ ≥ 0|Hπ
t−1) + P(kπt = 2, z⊤t θ ≤ 0|Hπ

t−1)

where, the max is over all possible random maps from history induced by π which are (ϵ, δ)-DP.965

Let Θ̂ϵ,δt denote this space of random (ϵ, δ)-DP maps and π be an (ϵ, δ)-JDP policy. Therefore,966

from Theorem ??, we can conclude that:967

inf
π∈Π

sup
PX,r∈F

E [Rπ(T )] ≥ inf
π∈Π

sup
PX,r∈F−construct

E [Rπ(T )] = Ω

(
1

r
√
s

T∑
t=1

inf
θ̂t∈Θ̂ϵ,δ

t

Eν
[
∥θ − θ̂t∥22

])
4. We divide this step into two parts, where for the ϵ-DP case we use Fano’s inequality (Acharya968

et al., 2021) and the connection between ρ-zCDP and (ϵ, δ)-DP (Bun et al., 2018) and ρ-zCDP969

Fano’s inequality (Kamath et al., 2022) to get the lower bound for any (ϵ, δ)-JDP.970

(a) Analysis under ϵ-DP. For the non-private lower bound, we have:971

E
[
∥θt − θ⋆∥22

]
≥ max{1, s/4}r2

2

(
1−

2MKtσ2
xsr

2

σ2 + log 2

cs log(d/s)

)
For the private lower-bound, we have:972

E
[
∥θt − θ⋆∥22

]
≥ 0.4max{1, s/4}r2 min

{
1, exp

(
cs log(d/s)− 10ϵtMK σx

σ r
√
s
)}

For s > 4 and ϵ > 0, we have:973

E
[
∥θt − θ⋆∥22

]
≥ sr2

4
max

{
0.5

(
1−

2t
σ2
x

σ2 sr
2MK

cs log(d/s)

)
, 0.4 exp

(
cs log(d/s)− 10ϵt

√
sr
σx
σ
MK

)}
Hence, for K = 2, the minimax-regret is given by:974

inf
π∈Π

sup
PX,r∈F

E[R(T )] ≥ r
√
sMT

4
max

{
1−

4MTsr2σ2
x

σ2 + log 2

cs log(d/s)
, exp

(
cs log(d/s)− 20ϵMT

σx
σ
r
√
s
)
,

}

Setting r2 = σ2 log(d/s)
8MT , the non-private lower bound becomes:975

inf
π∈Π

sup
PX,r∈F

E[R(T )] ≥ 1

8
√
2
σ
√
MTs log(d/s)

(
1− σ2

x

2c
− log 2

cs log(d/s)

)
Noting that σ2

x = (log d)−1, d > 9 and s log(d/s) > 4c−1 log 2, our non-private lower976

bound is Ω
(√

sMT log(d/s)
)

.977

For the private part, we set r = cσ
√
s log(d/s)

20ϵσxMT , to get:978

inf
π∈Π

sup
PX,r∈F

E[R(T )] ≥ σs log(d/s) log
1/2(d)

ϵ
≥ σ log

3/2(d/s)

ϵ

Combining these results, we get:979

Rminimax
ϵ (T ) = Ω

(
max{s log3/2(d/s)ϵ−1,

√
sMT log(d/s)

)
(b) For (ϵ, δ)-JDP, we construct ρ(ϵ, δ) such that any (ϵ, δ)-DP algorithm is ρ-zCDP and thus980

Θϵ,δt ⊂ Θρt where the latter is the space of all ρ-zCDP estimators constructed using the entire981

history Ht−1. Other arguments are as before.982
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Figure 1: Regret in central setting. The synthetic instances are constructed as in Ariu et al. (2020)
and the sparsity parameter is varied. We see that the regret behaves well across different values of
sparsity.
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Figure 2: Decrement in estimation error for distributed LASSO.

I Experimental Evaluation983

The experiments are done on a MacBook Air with an Apple M1 chip, 16 GB memory and 10 core984

CPU. All codes are written in Python3 using several open source packages. The running time for all985

experiments ranges from less than a minute to a few hours. The code is available at: this link.986

I.1 Simulations with non-bandit feedback987

We illustrate the performance of Algorithm 3 on a distributed LASSO problem, i.e., solving:988

min
x

1

2n
∥Ax− b∥2 + κ∥x∥1

where, A ∈ Rn×p and b ∈ Rp is a vector of regression targets. We generate synthetic data by drawing989

A as random vectors from p-dimensional sphere and x from uniform distribution with support size990

10. Labels are then obtained by taking b = Ax+ η where η ∼ N (0, 0.01) with n = 500 and p = 32.991

The benchmark comparison is performed with scikit-learn and we obtain the best parameter using992

cross-validation. We also compare our algorithm with ADMM with soft-thresholding (see (Cyffers993

et al., 2023)) and DP-SGD where noise is added to the gradients. For both approaches, we tune994

step-size and clipping threshold using grid search. These parameters are tuned on the smallest privacy995

budget and used for all other values.996

We report the objective function value on test set at the end of training and convert them to (ϵ, δ)-DP997

for the sake of comparison with δ = 1e− 6. Each user is randomly sampled with probability 10%.998
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J Auxiliary Results999

In this appendix, we provide a collection of existing results used in our proofs.1000

Theorem 6 (Fixed-point iteration Combettes and Pesquet (2021)). Assume that R is a τ -contractive1001

operator with fixed point u∗ for τ ∈ [0, 1). Then there exists a learning rate λb ∈ (0, 1] such that the1002

iterates of Algorithm 1 satisfy:1003

E
[
∥uk+1 − u∗∥2|F0

]
≤
(
1− (1− τ)

8

)B
D

where D = max ∥u0 − u∗∥ is the diameter of the domain, p is the dimension of u, σ2 > 1− τ is the1004

variance of variance of gaussian noise and E[∥ek∥2] ≤ ξ2 for some ξ ≥ 0.1005

Theorem 7 (Laplace concentration Cai et al. (2020)). Consider w ∈ Rk with w1, w2, . . . , w
iid∼1006

Laplace(λ). For every C > 1, we have:1007

P(∥w∥22 > kC2λ2) ≤ k exp(−C)
P(∥w∥∞ > C2λ2 log2 k) ≤ exp(−(C − 1) log k)

1008
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