
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THERMODYNAMIC NATURAL GRADIENT DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Second-order training methods have better convergence properties than gradient
descent but are rarely used in practice for large-scale training due to their computa-
tional overhead. This can be viewed as a hardware limitation (imposed by digital
computers). Here we show that natural gradient descent (NGD), a second-order
method, can have a similar computational complexity per iteration to a first-order
method, when employing appropriate hardware. We present a new hybrid digital-
analog algorithm for training neural networks that is equivalent to NGD in a certain
parameter regime but avoids prohibitively costly linear system solves. Our algo-
rithm exploits the thermodynamic properties of an analog system at equilibrium,
and hence requires an analog thermodynamic computer. The training occurs in
a hybrid digital-analog loop, where the gradient and Fisher information matrix
(or any other positive semi-definite curvature matrix) are calculated at given time
intervals while the analog dynamics take place. We numerically demonstrate the
superiority of this approach over state-of-the-art digital first- and second-order
training methods on classification tasks and language model fine-tuning tasks.

1 INTRODUCTION

With the rise of more sophisticated AI models, the cost of training them is exploding, as world-leading
models now cost hundreds of millions of dollars to train. This issue is compounded by the ending of
both Moore’s Law and Dennard’s Law for digital hardware (Khan et al., 2018), which impacts both
the runtime and energy efficiency of such hardware. This highlights a need and an opportunity for
specialized, unconventional hardware targeted at improving the efficiency of training AI models.

Moreover, conventional digital hardware can be viewed as limiting the range of training algorithms
that a user may consider. Researchers are missing an opportunity to co-design novel optimizers to
exploit novel hardware developments. Instead, relatively simplistic optimizers, such as stochastic
gradient descent (SGD), Adam (Kingma & Ba, 2015), and their variants (Loshchilov & Hutter, 2017),
are among the most popular methods for training deep neural networks (DNNs) and other large AI
models. More sophisticated optimizers are rarely used due to the associated computational overhead
on digital hardware.

A clear example of this is second-order methods, which capture curvature information of the loss
landscape. These methods, while theoretically more powerful in terms of convergence properties,
remain computationally expensive and harder to use, blocking their adoption. For example, natural
gradient descent (NGD) (Amari, 1998; Martens, 2020) involves calculating estimates of second-order
quantities such as the Fisher information matrix and performing a costly linear system solve at every
epoch. Some approximations to NGD, such as the Kronecker-factored approximate curvature (K-
FAC) (Martens & Grosse, 2015), have shown promise, and K-FAC has shown superior performance
to Adam (Lin et al., 2023; Eschenhagen et al., 2023). However, applying such methods to arbitrary
neural network architectures remains difficult (Pauloski et al., 2020).

In this article, we present thermodynamic natural gradient descent (TNGD), a new method to
perform second-order optimization. This method involves a hybrid digital-analog loop, where a GPU
communicates with an analog thermodynamic computer. A nice feature of this paradigm is flexibility:
the user provides their model architecture and the analog computer serves only to accelerate the
training process. This is in contrast to many proposals to accelerate the inference workload of AI
models with analog computing, where the model is hardwired into the hardware, and users are unable
to change the model architecture as they seamlessly would by using their preferred software tools
(Kim et al., 2017; Ambrogio et al., 2018; Cristiano et al., 2018; Aguirre et al., 2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The analog computer in TNGD uses thermodynamic processes as a computational resource. Such
thermodynamic devices have previously been proposed (Conte et al., 2019; Hylton, 2020; Ganesh,
2017; Coles et al., 2023; Lipka-Bartosik et al., 2023), have been theorized to exhibit runtime
and energy efficiency gains (Aifer et al., 2023; Duffield et al., 2023), and have been successfully
prototyped (Melanson et al., 2023; Aifer et al., 2024). Our TNGD algorithm represents an instance of
algorithmic co-design, where we propose a novel optimizer to take advantage of a novel hardware
paradigm. TNGD exploits a physical Ornstein–Uhlenbeck process to implement the parameter
update rule in NGD. It has a runtime per iteration scaling linearly in the number of parameters, and
when properly parallelized it can be close to the runtime of first-order optimizers such as Adam
and SGD. Hence, it is theoretically possible to achieve the computational efficiency of a first-order
training method while still accounting for the curvature of the loss landscape with a second-order
method. Moreover, our numerics show the competitiveness of TNGD with first-order methods for
classification and extractive question-answering tasks.

2 RELATED WORK

There is a large body of theoretical research on natural gradient descent (Amari, 1998; Martens, 2020;
Bottou et al., 2018) arguing that NGD requires fewer iterations than SGD to converge to the same
value of the loss in specific settings. While less is known about the theoretical convergence rate of
Adam, there exists a large body of empirical evidence that NGD can converge in fewer iterations than
Adam (Martens et al., 2010; Martens & Grosse, 2015; Martens et al., 2018; Eschenhagen et al., 2023;
Ren & Goldfarb, 2019; Gargiani et al., 2020).

However, a single iteration of NGD is generally more computationally expensive than that of SGD
or Adam, which have a per-iteration cost scaling linearly in the number of parameters N . NGD
typically has a superlinear (assuming the condition number scales as κ = Nα, α > 0 for NGD-CG)
complexity in the number of parameters (although this may be reduced to linear scaling at the expense
of higher-order scaling with batch size and output dimension, see Section 3). K-FAC (Martens
& Grosse, 2015) aims to reduce this complexity and invokes a block-wise approximation of the
curvature matrix, which may not always hold. While first introduced for multi-layer perceptrons,
K-FAC has been applied to more complex architectures, such as recurrent neural networks (Martens
et al., 2018) and transformers (Eschenhagen et al., 2023), where additional approximations have to
be made and where the associated computational overhead can vary.

There has been significant effort and progress towards reducing the time- and space- complexity of
operations used in the inference workload of AI models, e.g., a variety of “linear attention" blocks
have been proposed (Shen et al., 2021; Katharopoulos et al., 2020; Wang et al., 2020). However,
there has been less focus on reducing the complexity of training methods. While various approaches
are taken to accelerating training using novel hardware, these efforts typically aim at reducing the
constant coefficients appearing in the time cost of computation. Especially relevant to our work,
analog computing devices have been proposed to achieve reduced time and energy costs of training
relative to available digital technology (Kim et al., 2017; Ambrogio et al., 2018; Cristiano et al.,
2018; Aguirre et al., 2024). These devices are generally limited to training a neural network that
has a specific architecture (corresponding to the structure of the analog device). To our knowledge,
there has not yet been a proposal that leverages analog hardware to reduce the complexity of training
algorithms such as NGD.

Given the existing results implying that fewer iterations are needed for NGD relative to other
commonly used optimizers, we focus on reducing the per-iteration computational cost of NGD
using a hybrid analog-digital algorithm to perform each parameter update. Our algorithm therefore
demonstrates that complexity can be improved in training (not only in inference), and moreover that
the per-iteration complexity of NGD can be made similar to that of a first-order training method.

3 NATURAL GRADIENT DESCENT

Let us consider a supervised learning setting, where the goal is to minimize an objective function
defined as:

ℓ(θ) =
1

|D|
∑

(x,y)∈D

L(y, fθ(x)), (1)
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where L(y, fθ(x)) ∈ R is a loss function, fθ(x) is the forward function that is parametrized by
θ ∈ RN . These functions depend on input data and labels (x, y) ∈ D, with D a given training
dataset. Viewed through the lens of statistics, minimizing the objective function is analogous to
minimizing the Kullback-Leibler (KL) divergence from the target joint distribution q(x, y) to the
learned distribution p(x, y|θ) (Martens, 2020). A straightforward way to optimize ℓ(θ) is to follow
the direction of steepest descent, defined by the negative gradient −∇ℓ, defined as:

−∇ℓ
||∇ℓ|| = lim

ϵ→0

1

ϵ
argmin
d:||d||≤ϵ

ℓ(θ + d), (2)

with || · || the Euclidean norm. The natural gradient, on the other hand can be defined as the direction
of steepest descent with respect to the KL divergence defined as:

KL(p(x, y|θ + d)||p(x, y|θ)) =
∫∫

p(x, y|θ + d) log

(
p(x, y|θ + d)

p(x, y|θ)

)
dxdy (3)

(Amari & Nagaoka, 2000). One may then Taylor-expand this divergence as

KL(p(x, y|θ + d)||p(x, y|θ)) = 1

2
d⊤Fd+O(d3), (4)

where F is the Fisher information matrix (Martens, 2020) (or the Fisher), defined as:

F = Ep(x,y|θ)[∇ log p(x, y|θ)∇ log p(x, y|θ)⊤]. (5)

The natural gradient is then simply defined as

g̃ = F−1∇ℓ(θ). (6)

For the NGD optimizer, the update rule is then given by:

θk+1 = θk − ηF−1∇ℓ, (7)

with η a learning rate. In practice, computing the Fisher information is not always feasible because
one must have access to the density p(x, y|θ). A quantity that is always possible (and relatively
cheap) to compute thanks to auto-differentiation is the empirical Fisher information matrix, defined
as:

F̄ = JJ⊤ =
1

b

∑
(x,y)∈S

∇ log p(y|x, θ)∇ log p(y|x, θ)⊤, (8)

where log p(y | x, θ) = −L(y, fθ(x)), |S| = b is the batch size and S ⊂ D. The Jacobian matrix J
is defined as

J =
1√
b
[∇ log p(y1|x1, θ),∇ log p(y2|x2, θ), . . . ,∇ log p(yb|xb, θ)].

Note that the squared gradient appearing in the second moment estimate of the Adam optimizer
(Kingma & Ba, 2015) is the diagonal of the empirical Fisher matrix. Another approximation to the
Fisher matrix is the generalized Gauss-Newton (GGN) matrix, defined as:

G = JfHLJ
⊤
f =

1

b

∑
(x,y)∈S

J
(x,y)
f H

(x,y)
L J

(x,y)⊤
f , (9)

where J
(x,y)
f is the Jacobian of fθ(x) with respect to θ and H

(x,y)
L is the Hessian of L(y, z) with

respect to z evaluated at z = fθ(x). Jf is a bdz ×N matrix, and HL is a bdz × bdz matrix, where
dz is the output dimension of z = fθ(x) and N is the number of parameters (N also depends on dz ,
where for deep networks it is a weak dependence).

For loss functions of the exponential family (with natural parameter z), the GGN matches the true
Fisher matrix (Martens, 2020). In addition, we have observed better convergence with the GGN
than with the empirical Fisher (as in other works such as Refs. Martens et al. (2010); Kunstner et al.
(2019), where better convergence than with the Hessian is also observed). Therefore, we will consider
the GGN in what follows. Note that the methods we introduce in this work apply to any second-order
optimization algorithm with a positive semi-definite curvature matrix (by curvature matrix, we mean
any matrix capturing information about the loss landscape). In particular, it applies most efficiently
to matrices constructed as outer products of rectangular matrices (such as the empirical Fisher and
the GGN) as explained below.
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Figure 1: Overview of Thermodynamic Natural Gradient Descent (TNGD). A GPU that stores
the model architecture and provides the gradient∇ℓk and Fisher matrix Fk (through its representation
given by the Jacobian Jf and Hessian HL matrices given by equation 9) at step k is connected to a
thermodynamic computer, called the stochastic processing unit (SPU). At times tk, the estimate of
the natural gradient g̃k is sent to the GPU, which updates the parameters of the model and calculates
gradients and curvature matrices for some new data batch (xk, yk). During digital auto-differentiation,
the SPU undergoes dynamical evolution, either continuing to approach its steady-state or remaining
in it. After some time, gradient ∇ℓk and Fisher matrix Fk are sent to the SPU through a DAC and
digital controllers. This modifies the dynamics of the SPU, and after some time interval, a new
natural gradient estimate g̃k+1 is sent back to the GPU. Note that the time between two measurements
tk+1 − tk need not be greater than the time between two auto-differentiation calls. The hybrid
digital-thermodynamic process may be used asynchronously as shown in the diagram (where the time
of measurement of g̃ and upload of the gradient and Fisher matrix are not the same).

3.1 FAST MATRIX VECTOR PRODUCTS

The linear system appearing in equation 6 can be solved using the conjugate gradient (CG)
method (Martens et al., 2010), which will be referred to as NGD-CG in what follows. In fact,
when ℓ is parametrized by a neural network, the GGN-vector product Gv involved in the conjugate
gradient algorithm may be evaluated in runtime O(bN) thanks to fast Jacobian-vector products (Brad-
bury et al., 2018) (JVPs). This approach also enables one to not explicitly construct the Fisher
matrix, thus also avoiding a O(bdzN

2) runtime cost in computing it and a O(N2) memory cost in
storing it. The efficiency of this approach depends on the number of CG iterations required to obtain
good performance. Importantly, convergence in

√
κ steps, with κ the condition number of F , is

not required to obtain competitive performance (Martens & Grosse, 2015; Gargiani et al., 2020).
Crucially, due to the sequential nature of the algorithm, the CG iterations cannot be parallelized.

In practice, since reaching convergence is computationally expensive, one generally stops the CG
algorithm after a set number of iterations. Because of the way the step size is adapted in CG, we have
observed that the solution after k steps xk is not necessarily closer to the true solution than the initial
guess x0, in particular for ill-conditioned problems, which can make NGD-CG difficult to use.

3.2 NGD WITH THE WOODBURY IDENTITY

In the machine learning setting, it is often the case that b≪ N (and dz ≪ N ). This means that the
curvature matrix is low-rank and the linear system to solve is underdetermined. To mitigate this issue,
the Fisher matrix may be dampened as F + λI. In that case, the Woodbury identity may be used to
obtain the inverse Fisher vector-product F−1v appearing in the NGD update. We have:

F = UV + λI, with U = Jf , V = HLJ
⊤
f (10)

F−1 = λ−1I− λ−2U(I+ λ−1V U)−1V (Woodbury) (11)

F−1v = λ−1I− λ−2U(I+ λ−1V U)−1V v (12)

This is included in Ren & Goldfarb (2019), and can be competitive with NGD-CG when the batch
size b and output dimension dz are much smaller than the number of trainable parameters N . Here

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Optimizer Runtime Memory Model calls

SGD/Adam O(bN) O(N) 1

NGD O(N3 + bdzN
2) O(N2) bdz

NGD-CG O(cbN) O(N) 2c

NGD-Woodbury O(bd2zN + b3d3z) O(bdzN + bd2z) bdz

Thermodynamic NGD O(bdzN + t) O(bdzN + bd2z) bdz

Table 1: Runtime and memory complexity of optimizers considered in this paper. All operations
are per iteration. The first line corresponds to first-order optimizers that evaluate the gradient only,
and apply diagonal rescalings and O(N) operations to it only. Vanilla NGD (second line) includes the
explicit storage and inversion of the GGN matrix as well as its construction, dominating the runtime
and memory cost. NGD-CG (third line) can be performed by running c iterations, each dominated by
GGN-vector products and has the same memory cost as first-order methods. NGD-Woodbury can be
performed by constructing the matrix V U , and using the formula given by equation 12. This results
in a runtime cost dominated by constructing V U and inverting it, which also requires its storage.

one must construct the V matrix, which has runtime O(d2zbN) (since HL is block-diagonal), and
invert (I+ λ−1V U) which is O(b3d3z). While the batch size typically remains small, the value of dz
can make this inversion intractable. For example, in many language-model tasks, dz ∼ O(104) is the
vocabulary size.

4 THERMODYNAMIC NGD

At a high level, TNGD combines the strength of GPUs (through auto-differentiation) with the strength
of thermodynamic devices at solving linear systems. Regarding the latter, Aifer et al. (2023) showed
that a thermodynamic device, called a stochastic processing unit (SPU), can solve a linear system
Ax = b with reduced computational complexity relative to standard digital hardware. The solution
to the linear system is found by letting the SPU evolve under an Ornstein–Uhlenbeck (OU) process
given by the following stochastic differential equation (SDE):

dx = −(Ax− b)dt+N
[
0, 2β−1 dt

]
, (13)

where A is a positive matrix and β is a positive scalar (which can be seen as the inverse temperature
of the noise). Operationally, one lets the SPU settle to its equilibrium state under the dynamics
of equation 13, at which point x is distributed according to the Boltzmann distribution given by:

x ∼ N [A−1b, β−1A−1]. (14)

One can see that the first moment of this distribution is the solution to the linear system Ax = b.
Exploiting this approach, TNGD involves a subroutine that estimates the solution to the linear system
in equation 6. For this particular linear system, the SDE in equation 13 becomes the following:

dg̃k,t = −(Fk−1g̃k,t −∇ℓk−1)dt+N [0, 2κ0dt] (15)

= −(J⊤
f,k−1HL,k−1Jf,k−1g̃k,t −∇ℓk−1)dt+N [0, 2κ0dt] (16)

with g̃k,t the value of the natural gradient estimate at time t and κ0 the variance of the noise.
Comparing equation 13 and equation 15, we see that in the equilibrium state (i.e. for large t), the
mean of g̃k,t provides an estimate of the natural gradient, in other words:

g̃k := lim
t→∞
⟨g̃k,t⟩ = F−1

k−1∇ℓk−1. (17)

The overall TNGD algorithm is illustrated in Fig. 1. Using the current parameter estimates θk, the
GPU computes the matrices Jf and HL, and the vector∇ℓ, which can be accomplished efficiently
using auto-differentiation. The matrices Jf , J⊤

f , and HL, as well as the vector ∇ℓ, are uploaded
to component values (see Appendix) on the SPU, which is then allowed to equilibrate under the
dynamics of equation 15. Next, samples are taken of g̃t,k, and are sent from the SPU to the GPU,

5
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Figure 2: Runtime per iteration of second-order optimizers considered in this paper. (a) The
runtimes per iteration are compared for NGD, NGD-CG, NGD-Woodbury, and TNGD (estimated)
for various N . Here the convolutional network we applied to MNIST is used and the dimension of
the hidden layer is varied to vary N for fixed dz = 20. (b) The same comparison is shown for various
values of dz . The same network is used and dz is varied (this also has the effect of varying the N ).
Error bars are displayed as shaded area but are smaller than the data markers.

where samples are averaged to yield an estimate of g̃k. Finally, the parameters are updated using the
equation

θk+1 = θk − ηg̃k, (18)
and this process may be repeated until sufficient convergence is achieved (other update equations
may also be employed, see Section 5).

While equation 17 involves a long time limit, numerical evidence (see Section 5) shows that samples
may be taken even before equilibrium has been reached without harming performance significantly.
Thus, the analog dynamics time t is an important hyperparameter of TNGD. Furthermore, another
hyperparameter arises from the delay time td, defined as the time between a measurement of θk and
the update of the gradient and GGN on the device. As discussed in Section 5, a non-zero delay time
is not necessarily detrimental to performance and can in fact improve it.

In addition to the advantage in time- and energy-efficiency, TNGD has another advantage over
NGD-CG in terms of stability. For some pathological linear systems, CG fails to converge and instead
diverges. However, the thermodynamic algorithm is guaranteed to converge (on average) for any
positive definite matrix. To see this, note that the mean of g̃k,t evolves according to

⟨g̃k,t⟩ = exp (−Fk−1t)(g̃k,0 − F−1
k−1∇ℓk−1) + F−1

k−1∇ℓk−1. (19)

There is still variance associated with the estimator of ⟨g̃k,t⟩ (the sample mean), but the sample
mean converges to the solution with high probability in all cases. We also note that if we choose
g̃k,0 = ∇ℓk−1, we obtain a smooth interpolation between SGD (t = 0) and NGD (t =∞).

4.1 COMPUTATIONAL COMPLEXITY AND PERFORMANCE

The runtime complexity of TNGD and other second-order optimization (that do not make assumptions
on the structure of G, hence excluding K-FAC) algorithms is reported in Table 1. As explained,
Thermodynamic NGD (TNGD) has a runtime and memory cost dominated by the construction and
storage (before sending them off to the analog hardware) of the Jacobian of fθ(x) and the Hessian
of the loss. The t factor denotes the analog runtime, and may be interpreted similarly to c for
NGD-CG as a parameter controlling the approximation. For each optimizer the number of model
calls is reported. For all optimizers except NGD-CG these calls can be easily parallelized thanks to
vectorizing maps in PyTorch.

In Fig. 2 a comparison of the runtime per iteration of the four second-order optimizers considered is
shown. Fig. 2(a) shows the runtime as a function of the number of parameters N . The scaling of NGD
as N3 can be observed, and the NGD-CG data is close to flat, meaning the model calls parallelize
well for the range of parameter count considered. The linear scaling of NGD-Woodbury and TNGD

6
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Figure 3: Performance comparison of Adam and TNGD (estimated) on MNIST classification. (a)
Training (dashed lines) and test loss (solid lines) for Adam (darker colors) and TNGD (lighter colors)
are plotted against runtime (measured for Adam, and estimated for TNGD from the timing model
described in Section 4.1). Shaded areas are standard deviations over five random seeds. Note that
Adam includes adaptive averaging of first and second moment estimates with (β1, β2) = (0.9, 0.999),
while TNGD does not. (b) 1−Accuracy for training and test sets.

is also shown, although with a different overall behaviour due to parallelization and a much shorter
runtime per iteration for TNGD. This shows that for the given range of N at dz = 20, we can expect
a 100× speedup over second-order optimizers. Fig. 2(b) shows the dependence of runtime on the
output dimension dz for the second-order optimizers. These results indicate that TNGD is most
competitive for intermediate values of dz . Finally we note that with better hardware, the scaling with
both N and dz would be better, as the operations to construct the Hessian and Jacobian can be more
efficiently parallelized for larger values.

5 EXPERIMENTS

5.1 MNIST CLASSIFICATION

We first consider the task of MNIST classification (LeCun, 1998). For our experiments, we use a
simple convolutional neural network consisting of a convolutional layer followed by two feedforward
layers, and we digitally simulate the TNGD algorithm (see App. D). The goal of these experiments is
twofold: (1) to compare the estimated performance per runtime of TNGD against popular first-order
optimizers such as Adam, and (2) to provide some insights on other features of TNGD, such as its
performance as a function of the analog runtime t as well as its asynchronous execution as a function
of the delay time td.

In Fig. 3(a), the training and test losses as a function of runtime for both Adam (measured) and
TNGD (estimated) are presented. To estimate the TNGD runtime, we took into account results for its
runtime per iteration as presented in the previous section, finding an overall 2× runtime per iteration
with respect to Adam for this problem on an A100 GPU. One can see from the figure that even while
taking into account the difference in runtime per iteration, TNGD still outperforms Adam, especially
at the initial stages of the optimization. Interestingly, it also generalizes better for the considered
experimental setup. In Fig.3(b), the training and test accuracies are shown. We again see TNGD
largely outperforming Adam, reaching the same training accuracy orders of magnitude faster, while
also displaying a better test accuracy. These results are reminiscent of prior work on NGD (Martens
et al., 2010), however here the batch size is smaller than in other works, indicating that even a noisy
GGN matrix improves the optimization.

As mentioned previously, the continuous-time nature of TNGD allows one to interpolate smoothly
between first- (t = 0) and second- (t = ∞) order optimization, with a given optimizer choice
(whether the optimizer update rule is that of SGD or that of Adam as described in Alg. 1). In
Fig. 4(a), the training loss vs. iterations is shown for various analog dynamics times. These results
clearly demonstrate the effect mentioned above, where increasing the analog runtime improves

7
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Figure 4: Training loss vs. iterations for varying analog dynamics times. (a) The training loss
is shown for NGD (dashed line) and for TNGD with various analog dynamics times t (solid lines).
(b) The training loss is shown for NGD (dashed line) and for TNGD with fixed analog dynamics
time t = 5τ and varying delay times td (solid lines). The delay appears to have a momentum effect,
which can even lead to TNGD outperforming exact NGD for certain analog dynamics and delay
times. Shaded areas are standard deviations over five random seeds.

performances continuously until it approaches that of exact NGD for t ∼ 50τ . In Fig. 4(b), the
same quantity is shown for a fixed analog dynamics time t, and varying delay times td. This
leads to a quadratic approximation of the objective function that is inaccurate (since the GGN and
gradients are calculated for parameters different than the value around which the objective function is
approximated). However, this results in an improved performance, even for a small delay time. A
likely explanation of this result is that the state of the device retains information about the curvature
of the previous quadratic approximation, while being subject to the updated quadratic approximation.
This effect propagates across iterations which is reminiscent of momentum.

5.2 LANGUAGE MODEL FINE-TUNING

In this section we show how thermodynamic NGD may be applied to language modeling tasks, in
more practically relevant settings than MNIST classification. We consider the DistilBert model (Sanh
et al., 2019) which we fine-tune on the Stanford question-answering dataset (SQuaD) (Rajpurkar
et al., 2016), a common dataset to evaluate model comprehension of technical domains through
extractive question-answering. As is commonly performed when fine-tuning, we apply a low-rank
adaptation (Hu et al., 2021) to the model, which reduces its trainable parameters (details about this
procedure are in App. E) to a manageable amount (75k here) for limited compute resources.

Figure 5(a) displays a comparison of the training loss for different optimizers. The bare TNGD (as
used in the previous section) shows a worse performance than Adam in this setting. However, a hybrid
approach, TNGD-Adam, where the natural gradient estimate is used in conjunction with the Adam
update rule gives the best performance (this is explained in App. B). One possible explanation for this
result is that there are two pre-conditionings of the gradient for TNGD-Adam: the first comes from
the natural gradient, which incorporates curvature information, and the second comes from the Adam
update rule, which acts as a signal-noise ratio as explained in Kingma & Ba (2015), which further
adjusts the natural gradient values. In Fig. 5(b), we show that the same results as in the previous
section apply to TNGD-Adam, where increasing the analog runtime boosts performance. Therefore,
the analog runtime in TNGD may be viewed as a resource in this sense, that is computationally very
cheap (as time constants can be engineered to be very small).

6 LIMITATIONS

The practical impact of our work relies on the future availability of analog thermodynamic computers,
such as a scaled up version of the system in Melanson et al. (2023). We provide a circuit diagram
of a potential thermodynamic computer in the Appendix. Such computers can employ standard
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Figure 5: Training loss vs. iterations for QA fine-tuning. (a) Comparison of the performance per
iteration of TNGD, Adam, and TNGD-Adam, where the latter uses the natural gradient estimate in
conjunction with the Adam update rule with (β1, β2) = (0, 0). (b) Performance of the TNGD-Adam
optimizer for various analog dynamics times. Similar to Fig. 4, the performance improves as t grows.

electrical components and leverage CMOS-based fabrication infrastructure, and hence are likely
straightforward to scale up, although that remains to be demonstrated.

Analog computers, in general, tend to face precision issues, whereby the solution accuracy is limited
by the precision of the electrical components. For analog thermodynamic computers, it is possible
to mitigate this issue through an averaging technique (Aifer et al., 2024), and the method proposed
in Aifer et al. (2024) can be directly applied to the TNGD algorithm to improve solution accuracy.
Nevertheless, we suspect that training-based applications will have a significant tolerance to precision-
based errors, although a detailed study is needed to confirm that hypothesis. We note that there is
a growing body of work on very low-precision inference (Ma et al., 2024) and training (Sun et al.,
2020) which indicates that high numerical precision is not crucial for good performance in machine
learning. We also remark that thermodynamic computers are predicted to be robust to stochastic
noise sources since stochasticity is a key component of such computers (Coles et al., 2023), as is
shown in Fig. 6 in the Appendix.

We have numerically tested TNGD for a small subset of potential tasks such as MNIST classification
and DistilBert fine-tuning on the SQuaD dataset, for a small number of epochs. Hence, seeing if the
advantage we observe for TNGD also holds for other applications is an important direction.

7 CONCLUSION

This work introduced Thermodynamic Natural Gradient Descent (TNGD), a hybrid digital-analog
algorithm that leverages the thermodynamic properties of an analog system to efficiently perform
second-order optimization. TNGD greatly reduces the computational overhead typically associated
with second-order methods for arbitrary model architectures. Our numerical results on MNIST
classification and language model fine-tuning tasks demonstrate that TNGD outperforms state-of-the-
art first-order methods, such as Adam, and provide large speedups over other second-order optimizers.
This suggests a promising future for second-order methods when integrated with specialized hardware.

Looking forward, our research stimulates further investigation into TNGD, particularly with enhance-
ments such as averaging techniques and moving averages. Extensions to approximate second-order
methods such as K-FAC may also be possible. Moreover, the principles of thermodynamic computing
could inspire new algorithms for Bayesian filtering. While the current impact of our work relies on
the development and availability of large-scale analog thermodynamic computers, the theoretical
and empirical advantages presented here underscore the potential of co-designing algorithms and
hardware to overcome the limitations of conventional digital approaches.
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A LEVENBERG-MARQUARDT REGULARIZATION SCHEDULE

Poor-conditioning and singularity of the curvature matrix can greatly decrease the performance of
NGD, which is dealt with by adding a term λI to the curvature matrix. Following Martens et al.
(2010), it is possible to use a simple method to adapt the value of λ at each time step, known as a
Levenberg-Marquardt schedule. This involves computing the reduction ratio ρ, defined as:

ρ =
ℓ(θk+1)− ℓ(θk)

qθk(θk+1 − θk)− qθk(0)
(20)

with qθk(p) the quadratic approximation to ℓ around θk defined as:

qθk(p) = ℓ(θk) +∇ℓ(θk)⊤p+
1

2
p⊤Gkp. (21)

If ρ > a, λ← αλ, and if ρ < 1− a, λ← λ/α. This can be interpreted as distrusting the quadratic
model when ρ is small, hence increasing λ for the next iteration. This procedure may be used for
TNGD, however this adds a supplementary digital cost of a GGN-vector product Gkp (which has a
similar cost to two JVPs). For our experiments we did not find it to significantly boost performance
although it may be considered for future work.

B TNGD ALGORITHM

In Alg. 1 we provide the steps for the TNGD algorithm. This algorithm may be used in conjunction
with various digital optimizers (such as SGD or Adam). The thermodynamic linear solver (TLS)
is performed by an analog thermodynamic computer whose physical implementation is described
in appendix C. The TLS takes as inputs the Jacobian Jf,k, the Hessian HL, the gradient gk and an
initial point x0 (that can be reset at each iteration, or not, in which case td > 0).

Algorithm 1 Thermodynamic Natural Gradient Descent
Require: n > 0

Initialize θ0
g̃0 ← ∇ℓ(θ0)
optimizer← SGD(η, β) or Adam(η, β1, β2)
while k ̸= n do

xk, yk ← next batch
gk ← ∇ℓ(θk, xk, yk)
g̃k ← TLS(Jf , HL, b = gk, x0 = g̃k−1)
optimizer.update(θk, g̃k)
k ← k + 1

end while

C HARDWARE IMPLEMENTATION

The thermodynamic NGD algorithm can be implemented in similar hardware to what is presented
in Refs. Aifer et al. (2023); Melanson et al. (2023). However, this requires one to construct the full
curvature matrix, which is quadratic in the number of parameters, and then send it to the analog
hardware. Therefore, an alternative hardware implementation that is described by the same electronic
circuit equations is preferred.

This alternative implementation is comprised of three arrays of resistors of size (bdz, N), (bdz, bdz)
and (N, bdz) for storing Jf , HL and J⊤

f , respectively (hence two of these are rectangular resistor
arrays). These three arrays of resistors enable one to implement the following differential equation in
hardware:

dV = −(JfHLJ
⊤
f + λI)V dt− bdt+N (0, 2κ0dt) (22)

where κ0 is the noise variance and V = (V1, V2, . . . , VN ) is a vector of voltages.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

−
+Vin1

R1

−
+Vin2

R2

−
+Vin3

R3

−

+

C1

Rλ1

V1

−

+

C2

Rλ2

V2

−

+

C3

Rλ3

V3

−+

R
J
11

−+

R
J
21

−

+

−

+

R J
11

R J
12

R J
13

R J
22

R J
21

R J
23

R
J
12 R

J
22

R
J
13 R

J
23

R H
11

R H
12

R H
21

R H
22

Let us consider the circuit diagram shown above, where N = 3, b = 1, dz = 2. We assume the
capacitors all have the same value C, and the resistors with no labels all have the same value R0. By
Kirchhoff’s current law, we obtain the equation of motion for the voltage vector V = (V1, V2, V3) as:

CV̇ = −(GV + λV −R−1Vin)

with Vin = (Vin1, Vin2, Vin3), R = diag(R1, R2, R3), λ = diag(1/Rλ1
, 1/Rλ2

, 1/Rλ3
). In the

case of TNGD we have

G = JT
f HLJf =


1

RJ
11

1
RJ

12
1

RJ
21

1
RJ

22
1

RJ
31

1
RJ

32

( 1
RH

11

1
RH

12
1

RH
21

1
RH

22

)( 1
R11

1
R21

1
R31

1
R12

1
R22

1
R32

)
1

R2
0

, (23)

where we therefore have one set of resistors RJ representing the J matrix and its transpose, and one
set of resistors representing RH the H matrix. At steady state the average voltage vector corresponds
to the natural gradient estimate, since for V̇ = 0, the average voltage vector is ⟨V ⟩ = G−1R−1Vin,
which corresponds to the solution of the linear system Ax = b with A = G, x = V , b = R−1Vin.
The resistor values RJ

ij (RH
ij ) can directly be calculated as 1/Jij (1/Hij) (or 1/Jji for the transpose),

and the total number of resistors in the circuit is (bdz)2 + 2bdzN (16 in the schematic shown). This
means that one may store Jf and HL in memory, and send Jf twice to the hardware (one to the left
resistor array, once to the right resistor array).
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One may run the thermodynamic linear solver by setting the voltage values Vin to the the gradient∇ℓ
with a digital-to-analog converter, and set the values of the programmable resistors thanks to a digital
controller.

N and dz enter the digital transfer time (since 2Nbdz + (bdz)
2 numbers with a given precision have

to be set on the device) and ADC time (N numbers to send back the natural gradient estimate to the
digital device), which are two contributions to the estimated runtime per iteration. The relaxation
time of the system is

τ =
RC

αmin

where R is a resistance scale (which means that all resistances Rij are a multiple of this), C is
the capacitance (assuming all the capacitances are the same), and αmin is the smallest eigenvalue
of the (unitless) G matrix. After this time, all the modes of the system will have relaxed, which
may be too conservative (for example, in the case where there is only one slow mode, and all other
modes are fast). With regularization, αmin is lower-bounded by the regularization factor λ (which
is 10−2 for the MNIST experiments, and 1 for the language model fine-tuning experiments). For
timing purposes, we kept RC as the relaxation time, because of the problem-dependence of αmin. To
obtain the comparisons to other digital methods, we considered the following procedure to run the
thermodynamic linear system on electrical hardware:

1. Digital-to-analog (DAC) conversion of the the gradient vector with a given bit-precision.

2. Set the configuration of the programmable resistors (bdz(bdz + 2N)) values with a given
bit precision to set).

3. Let the dynamics run for t (the analog dynamic time). Note that for experiments t was
chosen heuristically by exploring convergence in the solutions of the problem of interest.

4. Analog-to-digital (ADC) conversion of the solution measured at nodes Vi to the digital
device.

The runtime estimated are based on the following assumptions:

• 16 bits of precision.

• A digital transfer speed of 50 Gb/s.

• R = 103 Ω, C = 1 nF, which means RC = 1µs is the characteristic timescale of the system.

Finally, note that in all cases that were investigated, the dominant contribution to the total runtime of
TNGD was the digital steps to compute the gradients, Jacobian and Hessian matrices. Hence some
assumptions about the DAC/ADC may be relaxed and the total TNGD runtime would be similar. The
RC time constant may also be reduced to make the algorithm faster, although this is found to be
easily sub-dominant with respect to input operations (setting the configuration of the device).

D SIMULATING TNGD

The results reported in this paper require simulating the thermodynamic device. To do so, we employ
a Euler-Maruyama discretization of Eq. 15, where the update equation is:

g̃(k+1) = g̃(k) + δt(Gg̃(k) −∇ℓ) + z
√
2κ0δt (24)

where δt is a step size, z ∼ N (0, 1) and the GGN-vector product Gg̃(k) is evaluated in linear time,
with no need to construct G as explained in Section 3. One may consider higher-order schemes,
which in general will cost d GGN-vector products (hence 2d + 1 model calls, accounting for the
gradient) for each step of an order d solver.

With an Euler-Maruyama scheme, one therefore requires 3 model calls per time step, which results in
long simulation times for the larger t values we report.
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E EXPERIMENTAL DETAILS

All experiments except the one reported in Fig. 2 were carried out on a Nvidia A100 GPU with 80 GB
of RAM. The experiment corresponding to Fig. 2 was carried out on a AMD EPYC 7763 64-Core
CPU with 32 GB of RAM (the results on the GPU had too much variance even for a large number of
repetitions). For Fig. 2, b = 32, c = 200, and the results were obtained by repeating over 5 manual
random seeds, with the standard deviation over runs being shown as shaded areas. Modifying c has
the simple effect of shifting the curve on the scale.

All experiments are written in PyTorch (Paszke et al., 2019), and we have used the posteriors
library (Duffield et al., 2024) which supports GGN-vector products, constructing GGN matrices (for
exact NGD and NGD-Woodbury) and the conjugate gradient solver in PyTorch.

E.1 MNIST

For the MNIST experiments, we train on 10,000 images and test on 10,000 other images, with b = 64
for 10 epochs. Below is a table with hyperparameters for each figure in the main text:

Figure – Optimizer Optimizer parameters
Fig. 3 – Adam η = 0.001, β1 = 0.9, β = 0.999, ϵ = 1e− 8
Fig. 3 – TNGD η = 0.01, β = 0, t = 50τ, td = 0, λ = 0.01, δt = 0.1τ

Fig. 2(a) – TNGD η = 0.01, β = 0, λ = 0.01, δt = 0.1τ

For these experiments, the plotted data is the mean (and standard deviation) of the moving average
over 200 points for the five same manual random seeds. The Adam experiments took ∼ 5 minutes to
run, while the longest TNGD experiments took ∼ 14 hours (due to many time steps being required,
see Section D. We performed sweeps over the damping and learning rate value of TNGD which we
do not report in the paper that took ∼ 10 days of accumulated total runtime.

E.1.1 NOISY SIMULATION

One key feature of TNGD is that it is noise-resilient. Indeed, because the solution of the linear
system of equation 6 is encoded in the first moment of the equilibrium distribution, any noise that is
approximately Gaussian will not affect much the quality of the results for reasonable noise levels. In
Fig. 6, the loss vs. iterations are shown for varying noise levels, which are defined by the value of the
noise variance κ0. For κ0 < 0.01, the noise essentially does not affect the performance of TNGD (as
the influence of noise of performance starts to saturate at this value), even for a very small analog
dynamics time (here, t = τ ). For a realistic electrical device where θt are voltages, the contribution
of thermal noise to the noise level would be κ0 ∼ 10−6V . Other noise sources may contribute to
the noise level, but because of the nature of the TNGD algorithm, it exhibits a high noise-resilience.
Note that it is also possible to collect more samples from the device to reduce influence of the noise
if the noise level is large.

E.2 EXTRACTIVE QUESTION-ANSWERING

For the QA experiments, we train on 800 articles and test on 200 other articles of the SQuaD dataset,
with b = 32 for 5 epochs. Below is a table with hyperparameters for Fig. 5:

Figure – Optimizer Optimizer parameters
Fig. 5(a) – TNGD η = 0.01, β = 0, t = 0.4τ, td = 0, λ = 1
Fig. 5(a) – Adam η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e− 8

Fig. 5(b) – TNGD-Adam η = 0.001, β1 = 0, β2 = 0, ϵ = 1e− 8, td = 0, λ = 1, δt = 0.02τ

We apply low-rank adaptation (LoRA) to the Q,K, V modules and output projection matrices of the
attention layers with parameters r = 2, α = 32 and a dropout of 0.1. LoRA consists in replacing the
pre-trained weight matrices of the targeted layers W0 by:

W̃ = W0 +AB, (25)
where A and B are two rectangular matrices with their smaller dimension being α (hence AB is
low-rank). We used the peft package (Mangrulkar et al., 2022), which interfaces smoothly with
PyTorch and posteriors.
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Figure 6: Training loss vs. iterations for varying noise levels. The noise level is defined by the
noise variance κ0 entering equation 15. Here t = τ .

For these experiments we only report a single fixed random seed due to long simulation times. The
Adam experiments took ∼ 20 minutes, while the longest TNGD experiments took ∼ 2 days (due
to many time steps being required, see Section D. We performed sweeps over the damping and
learning rate value of TNGD and Adam which we do not report in the paper that took ∼ 10 days of
accumulated total runtime.
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