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Abstract
The tracking of all nuclei of an embryo in noisy and dense fluorescence microscopy data is a chal-
lenging task. We build upon a recent method that combines deep learning to extract candidate
solutions with an integer linear program (ILP) to select the most likely tracks. We present ex-
tensions of this method to specifically address the following challenging properties of C. elegans
embryo recordings: (1) Relatively many cell divisions compared to benchmark recordings of other
organisms, and (2) the presence of polar bodies, which look similar to cell nuclei and are thus easily
mistaken as such. To cope with (1), we devise and incorporate a learnt cell division detector. To
cope with (2), we devise and incorporate a learnt polar body detector. We further extend the method
to allow for automated ILP hyperparameter tuning via a structured SVM, thus alleviating the need
for tedious manual set-up of a respective grid search.

At the time of submission, our method heads the leaderboard of the cell tracking challenge on
the Fluo-N3DH-CE C. elegans embryo dataset. Furthermore, we report an extensive quantitative
evaluation of our method on two additional C. elegans datasets, namely a set of 3 fully annotated
confocal embryo recordings, and a set of 3 fully annotated lightsheet embryo recordings. We will
make these datasets public to serve as an extended benchmark for future method development. To
gauge the practical impact of our method, we include the software Starrynite as baseline. Starrynite
is commonly employed by biologists for the study of C. elegans. Our results suggest considerable
improvements, especially in terms of the correctness of division event detection and the number of
fully correct tracks.
Keywords: detection, tracking, deep learning, ILP, optimization, C. elegans, microscopy

1. Introduction

Advances in microscopy have made the recording of whole embryo development possible, even
for relatively large model organisms such as zebrafish and mouse (Keller et al., 2010; Krzic et al.,
2012). However there is an inherent tradeoff between frame rate, resolution and the prevention
of phototoxicity (Weigert et al., 2018). Hence, while it is possible to capture high signal-to-noise
images with high resolution, this damages the organism quickly, especially during early embryonic

∗ shared last

c© 2022 P. Hirsch, C. Malin-Mayor, S. Preibisch, D. Kainmueller & J. Funke.



TRACKING BY LEARNING AND OPTIMIZATION

ground truth annotations recreated tracks/lineage
raw data (3d+time)

U  Net

R
e
s  N

e
t

sS
V

M

ILP

candidate graph

cell indicators motion vectors

t

x y z 

GT

,

Figure 1: Overview of the method: The network learns to extract cell candidates and motion vectors
from the raw data that are used to construct a candidate graph. From this graph, using learned cell
state scores and hyperparamters found via a structured SVM, an ILP extracts the lineage.

development. Longer periods of embryonic development can be captured at lower resolution as
well as reduced signal-to-noise ratio (SNR). However, low SNR exacerbates the detection of cells.
This adds to the challenge posed by fluctuating signal strength in different cell development phases.
Furthermore, the low frame rate renders overlap-based tracking approaches inadequate, the low
textural variety between nuclei similarity-based ones. While purely manual tracking is theoretically
possible for single samples of relatively small organisms, it neither scale to larger organisms nor to
larger sets of samples.

To this end, a number of automated cell tracking approaches have been developed that are de-
signed to cope with reduced SNR as well as frame rates on the order of minutes. Such methods
have enabled a range of studies on a variety of organisms, where it wouldn’t have been feasible to
do tracking manually (Li et al., 2019; Murray et al., 2008; Cao et al., 2020; de Medeiros et al., 2021;
Wolff et al., 2018; Guignard et al., 2020). The Cell Tracking Challenge (Ulman et al., 2017), an ex-
tensive benchmark that contains 2d+time and 3d+time datasets of different organisms recorded with
a variety of microscopes, allows for a quantitative comparison of automated cell tracking methods.

In our work, we build upon a recent method that combines learning and optimization in a two-
step process (Malin-Mayor et al., 2021). We propose extensions of this method to capture properties
specific to recordings of the model organism C. elegans, namely relatively many cell divisions, and
the presence of polar bodies which look similar to cell nuclei. These extensions yield significantly
reduced errors on said data. Furthermore, we propose an extension that allows for ease of hyperpa-
rameter tuning, namely alleviating the need for manual configuration of a grid search by means of a
structured SVM. In summary, our contributions are:

• A learnt cell state and polar body detector, integrated into an existing approach that combines
deep learning and an integer linear program (ILP) for nuclei tracking.

• Fully automated tuning of the hyperparameters of the ILP via structured SVM.
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• Our method defines the new state-of-the-art for C. elegans cell tracking in the Cell Tracking
Challenge.

• Our method improves significantly over the tool currently used by practitioners on this type
of data, Starrynite, thereby reducing the time required for manual curation.

• We make a new dataset of three fully annotated confocal recordings and three fully annotated
lightsheet recordings of C. elegans available as a benchmark for future methods.

2. Related Work

Cell tracking methods can be broadly divided into two categories, namely tracking by model evolu-
tion and tracking by detection/assignment.

Tracking-by-detection methods first compute (candidate) cell detections in all frames, and in
a second step link matching cell detections across frames. E.g., Starrynite (Bao et al., 2006) uses
classical computer vision to detect locations of maximum signal in each frame, nearest neighbor
matching for the linking detections, and local post-processing to resolve ambiguities that occur in
case of cell divisions. More recently, Cao et al. (2020) replaced the classical detection step of
Starrynite by neural network-based cell segmentation. Detections can also be linked in a globally
optimal manner by means of combinatorial optimization, for a set of cell detections that is assumed
to be correct (Magnusson et al., 2015), as well as in the face of over- and underdetections that may
thus be amended (Schiegg et al., 2013), as well as for an overcomplete set of candidate detections
from which a feasible subset is thus extracted (e.g., Jug et al., 2014).

Tracking-by-model-evolution methods first detect cells in a key frame (usually the first or last),
constructs a model based on these, and then evolves the model by iteratively fitting it to the data
in the next frame, constrained by the previous frame (e.g., the number of cells). One example of
this category that is capable of handling very large datasets is TGMM (Amat et al., 2014; McDole
et al., 2018) that uses Gaussian Mixture Models. Other examples use active meshes, contours or
level sets (Dufour et al., 2010; Sun et al., 2020; Ray and Acton, 2002).

An important aspect of any tracking model of living cells is to observe certain biological con-
straints. Cells are limited in the way they evolve – e.g., a cell can divide into two (but not more)
cells, and two cells will never merge into one over time. Tracking-by-model-evolution methods typ-
ically construct a respective feasible tracking solution step-by-step, while tracking-by-assignment
approaches employ respective feasibility constraints as part of some optimization method (Kausler
et al., 2012; Schiegg et al., 2013; Jug et al., 2014; Schiegg et al., 2015; Jug et al., 2016; Haubold
et al., 2016).

3. Method

Our method extends the tracking-by-detection approach of Malin-Mayor et al. (2021). For an
overview of the (extended) method see Figure 1. Their detection step employs a deep neural net-
work to predict the position of each nucleus and its position in the previous time frame via a motion
vector. To cope with strong cell movement, for example during cell division and in later frames,
they employ a global optimization procedure for linking based on integer linear programming (ILP)
to exploit temporal context and incorporate prior knowledge, such as the fact that a cell can only
divide into two but not more daughter cells.
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In our work, we propose to include a separate network to classify the cell state to further improve
the performance. As dividing cells are relatively rare in comparison to non-dividing cells, this is
intended to help the ILP to correctly link cells, especially in denser areas. Furthermore, we propose
the use of a structured SVM (sSVM) to automatically find the optimal hyperparamters for the ILP.

By default, we do not perform any postprocessing on the tracks (such as removal of short track-
lets). However, we propose one respective exception, namely concerning the polar bodies, a pecu-
liarity of embryonic development that appears especially in C. elegans. A polar body is a cell that
is formed at the same time as the egg cell but cannot be fertilized and does not divide any further
(see Suppl. Figure 2 for an example). They do play an important role in the early development of C.
elegans. However, depending on the aspect studied they might not be of interest, and even if, they
are not contained in the ground truth tracks as they are not considered “proper” cells. That is why
we add them as an additional class to our cell state classifier and can thus optionally remove them
from the tracks. See Suppl. Sec. A.8 for details on how they are removed.

3.1. Deep Learning based Prediction

We use a 4d U-Net (Ronneberger et al., 2015; Cicek et al., 2016) to detect potential nuclei candidates
and their motion vector. We use a 3d ResNet (He et al., 2015) as cell state classifier. For more details
on the architecture and the training and inference procedures see Suppl. Sec. A.2.

3.1.1. CELL CANDIDATES

To detect nuclei we follow the approach of Malin-Mayor et al. (2021) and Höfener et al. (2018):
A Gaussian-shaped blob is placed at the location of every ground truth annotation and regressed.
During inference we employ a max pooling layer with stride one and a window size slightly smaller
than the size of a nucleus to perform non-maximum suppression (NMS) and extract the maxima to
serve as our cell candidates.

3.1.2. MOTION VECTORS

Additionally we learn to predict the motion of a cell between adjacent time frames. Follow-
ing Malin-Mayor et al. (2021), and similarly to Hayashida et al. (2020), we predict a vector pointing
backwards in time to the position in the previous time frame. A characteristic of developing em-
bryos is that objects, the cells, can only split going forward but not merge. Therefore every cell, if
there are no field of view of the microscope related issues and with the exception of the first frame,
has exactly one predecessor, but might have zero to two successors, zero in case of apoptosis (cell
death). This simplifies tracking backwards.

During inference we extract the motion vectors corresponding to our cell candidates from the
first network.

3.1.3. CELL STATE

We propose to incorporate a classifier to determine the cell state of each detection similarly to San-
tella et al. (2014). We assign to each detection one of four classes: parent cell (cell that is about to
undergo cell division), daughter cell (cell that just divided), polar body and none of those (contin-
uation). We use a ResNet-18 with 3d convolutions for this classification task. The scores for the
parent/daughter/continuation classes are incorporated as costs into the ILP (see Sec. 3.2). The score
for the polar body class is used in the optional postprocessing (see Suppl. Sec. A.8).
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3.2. ILP-based Linking

3.2.1. GRAPH-BASED OPTIMIZATION

Following Malin-Mayor et al. (2021), we use integer linear programming based optimization to
extract and improve the final tracks. The neural network predictions are used to construct a candidate
graph G = (V,E). All detections v with position pv at time frame tv after the NMS with a score sv
above some threshold th (we used 0.2 in all cases) are nodes V in the graph. To construct the edges
E we use the motion vectors mv. For each node v we compute its predicted position p̂v = pv +mv

in the previous time frame tv − 1. We collect every node u in tv − 1 that is within some distance d
of that position and connect it with an edge e = (v, u) to the node v.

The goal is to extract the binary forest from this graph with the minimal cost according to the
following objective and constraints, in formal terms:

min
y
C(y) s.t. G(y) ∈ F2 (1)

F2 refers to the set of all possible binary forests, y to a valid set of selected nodes and edges
represented by an indicator vector and C : y → R maps a cost to each such set. A set is valid if it
adheres to the given constraints. To compute the cost function we construct a sparse feature matrix
Sdim(y)×dim(w) based on the learnt tracking and cell state scores with one row per indicator. We
collect all ILP hyperparameters in a tunable weight vector w. Given some w the cost to minimize is
then

C(y) = 〈Sw, y〉. (2)

See Suppl. Sec. A.3 for more information on how the vector is constructed and how S and w are
defined.

In a last step we add a set of constraints. A valid solution has to be (biologically) morally sound
(e.g. cells can only divide into two daughter cells) and consistent (e.g. if an edge is selected, its
endpoint nodes have to be selected as well). For an overview of all constraints see Suppl. Sec. A.4.

We use Gurobi (Gurobi Optimization, 2021) for block-wise solving (see Suppl. Sec. A.3)

3.2.2. STRUCTURED SVM-BASED HYPERPARAMETERS SEARCH

The initial approach to find a good parameter vector w for the problem above is to perform a grid
search within some predefined range. However, if that range is unknown, this can be costly and a
new, matching range has potentially to be found for each new type of data. Given the solution y′ a
modified objective can also be solved for optimal weights w′, the ILP hyperparameters, instead of
optimal tracks. This can be done using a structured SVM (sSVM) with the objective

min
w

(
λ|w|2 + L(w)

)
, (3)

with L being the soft margin loss

L(w) = max
y

(
〈w, ST y′ − ST y〉+ ∆(y′, y)

)
(4)

with a Hamming cost function ∆ and a regularization factor λ.
With the help of the ground truth annotations we can compute a “best effort” indicator vector to

be used as y′. This equates to the best possible solution given the set of predicted cell candidates and
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motion vectors. The same constraints on y as in the original problem hold. The set of constraints,
the best effort indicator vector y′ and the feature matrix S are passed to a solver (Funke, 2017) that
returns the weight vector w′.

4. Results

To measure the performance of our method we evaluate it on three different datasets of developing
C. elegans embryos, the Fluo-N3DH-CE dataset of the Cell Tracking Challenge benchmark (CTC,
Ulman et al., 2017), three confocal recordings (mskcc confocal) and three lightsheet recordings
(nih ls). See Suppl. Sec. A.1 for more details on the data. Our method performs well on all three,
and heads, at the time of submission, the leaderboard for the tracking (TRA) and detection (DET)
scores of the CTC for this dataset.

4.1. CTC C. elegans data

The Fluo-N3DH-CE dataset (Murray et al., 2008) consists of four 3d+time anisotropic confocal
recordings approx. until the 350 cell stage; 2 public ones for training and 2 private ones for the
official evaluation. All tracks are annotated. At the time of submission our method heads the leader-
board for this dataset for the detection score (DET) and tracking score (TRA) out of 14 submissions,
outperforming the previous state of the art from Sugawara et al. (2021) (see Table 1).1

Table 1: Quantitative results for the Fluo-N3DH-CE C. elegans embyro test dataset of the Cell
Tracking Challgene. The DET score measures detection performance, the TRA score tracking per-
formance according to Matula et al. (2015) with 1 being the perfect score.

Fluo-N3DH-CE DET TRA

ours 0.981 0.979
Elephant (Sugawara et al., 2021) 0.979 0.975
Baxter (Magnusson et al., 2015) 0.959 0.945

4.2. Confocal C. elegans data

The mskcc confocal dataset consists of three longer fully annotated 3d+time anisotropic confocal
recordings (Santella et al., 2014). The ground truth has been created using Starrynite (Bao et al.,
2006; Santella et al., 2014), followed by manual curation. We use the uncurated Starrynite results
as a baseline. We train and evaluate all our models on the first 270 frames. Most divisions of the C.
elegans lineage have already occurred by the 270th frame and some cells have already undergone
apoptosis. In addition we evaluate the same models on the first 200 frames, which is in line with
many studies conducted on C. elegans (see Suppl. Sec. A.9).

For each experimental run we use one recording as training data, one for validation and one
as our test set. We do this for all six possible combinations. For each combination, we perform
three experimental runs, starting from different (standard random) weight initializations, leading to

1. The online leaderboards for the Cell Tracking Challenge can be found at http://celltrackingchallenge.net/
latest-ctb-results (TRA) and http://celltrackingchallenge.net/latest-csb-results (DET). Note that our results (named
JAN-US) have not been made available there yet at the time of submission.
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a total of 18 experimental runs. See Table 2 and Suppl. Figure 3 for quantitative results, where
each number we report there is obtained by averaging over the 18 runs. Divisions that are off by
one frame compared to the annotations are not counted as errors as the limited frame rate leads to
inherent inaccuracies in the data and annotations. For comparison with other methods we also report
node and edge recall. However their informative value is limited as the values are quite saturated,
still, there is some improvement (see Suppl. Table 6).

We conducted an ablation study on the mskcc confocal dataset, measuring the effect of the
individual parts of our method (see Table 3 and Suppl. Table 5). Instead of the ILP we perform
greedy nearest neighbor matching (while still observing biological correctness). Moreover, we
repeat the experiments without incorporating the cell state classifier in the ILP (this matches the
system in the prior work (Malin-Mayor et al., 2021)). Both strongly suffer from false positive
(fp)-type errors. We add filtering of polar bodies in the postprocessing (both from the predictions
and the ground truth). This drastically decreases fps: In addition to removing polar bodies, some
other fp detections that can be attributed to noise are also removed. Finally we compare the results
with automatically found ILP hyperparameters and with manually configured grid-searched ones,
and find that sSVM-determined hyperparameters yield competitive results. The sSVM finds similar
hyperparamters for all experimental runs (see Suppl. Figure 4).
Discussion. We did not expect to see large differences between sSVM-determined hyperparame-
ters and manually configured grid search as we have gathered experience in choosing appropriate
parameters for the hyperparameter grid search for this data. Thus the explicit search is often faster
as it can be parallelized indefinitely. However, for other data, where this information is not at
hand, the targeted sSVM is very convenient and is computationally more efficient. Interestingly,
depending on the hyperparameters the system appears to be able to exchange fp and fn errors. The
sSVM-determined hyperparameters seem to prioritize fp errors. By adapting the cost function ∆
one should be able to modulate this depending on respective application-specific needs.

4.3. Lightsheet C. elegans data

The nih ls dataset consists of three fully annotated 3d+time isotropic lightsheet recordings (Moyle
et al., 2021). The experimental setup is similar to the one for mskcc confocal. On this data, Star-
rynite produced large numbers of false positives, thus not delivering a meaningful baseline. We thus
merely present our results (see Table 2 and Suppl. Table 4), in combination with making the data
publicly available, as a baseline for future method developments.
Discussion. It is interesting to compare our results on nih ls and mskcc confocal: Due to the
isotropic resolution of nih ls we expected the results to be superior, yet so far the error metrics we
observe do not support this intuition. A closer look at qualitative results reveals some clues that may
explain part of it: Apoptotic cells are more distinct and visible earlier in nih ls (see Suppl. Figure 2
for an example) and thus have not been annotated in the ground truth. Yet in the current state our
model does not handle this transition explicitly and thus continues to track them temporarily, leading
to a larger number of false positives, as indicated by the quantitative results. As we already have a
cell state classifier as part of our model, it will be straightforward to add apoptotic cells as a remedy.

5. Conclusion

In this work we presented extensions to (Malin-Mayor et al., 2021) to improve tracking of all cells
during embryonic development of C. elegans. In addition to combining deep learning to learn
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Table 2: Quantitative results for mskcc confocal and nih ls, FP: false positive edge, FN: false
negative edge, IS: identity switch/cross-over of tracks, FP-div: false positive division, FN-div: false
negative division, total div: sum of division errors, total: sum of all errors, normalized per 1k edges.
REFT: ratio error free tracks (number of cells in the last frame whose reverse track has no error
divided by the number of GT cells in the last frame, biased in favor of fp as superfluous tracklets
ending earlier are not counted).

FP FN IS FP div FN div total div total REFT

mskcc confocal 270 frames

Starrynite 7.902 13.321 0.618 0.579 1.184 1.763 23.604 0.769
ours wo/cls 4.757 5.464 0.055 1.122 0.261 1.382 11.659 0.891
ours ssvm 3.684 5.703 0.048 0.066 0.513 0.579 9.909 0.839

nih ls 270 frames

ours w/cls 12.047 7.193 0.446 0.317 0.351 0.668 20.353 0.852

Table 3: Ablation study, on mskcc confocal data on 270 frames. We ablate solving an ILP alto-
gether (ILP), incorporating the cell state classifier (cls), employing an sSVM for hyperparameter
search (ssvm), and incorporating the polar body filter (pbf). Description of error types see Table 2.

ILP cls ssvm pbf FP FN IS FP div FN div total div total REFT

7 7 7 7 5.008 4.639 0.048 1.600 0.255 1.855 11.550 0.912
3 7 7 7 4.757 5.464 0.055 1.122 0.261 1.382 11.659 0.891
3 3 7 7 3.408 5.669 0.028 0.202 0.263 0.464 9.570 0.871
3 3 3 7 3.684 5.703 0.048 0.066 0.513 0.579 9.909 0.839
3 3 3 3 2.556 5.717 0.050 0.062 0.510 0.573 8.907 0.836

position and motion vectors of each cell and integer linear programming to extract tracks over time
and ensure long term consistency, we integrate cell state information into the ILP, together with
a method to automatically determine the ILP hyperparameters, alleviating the need for potentially
suboptimal manually configured grid-search.

At the time of submission our method heads the leaderboard of the CTC for the DET and
TRA scores for the Fluo-N3DH-CE dataset. On two other datasets of both confocal and lightsheet
recordings of C. elegans our method outperforms the tool Starrynite, which is often used by prac-
titioners for studies of C. elegans, by a wide margin. The low error rate, especially up to the 350
cell stage, will push down the required time for manual curation significantly. This will facilitate
studies that require a large number of samples. More effort is still necessary in the later stages
of development. In future work we will extend the tracking all the way to the end of the embry-
onic development. This poses additional challenges as the whole embryo starts to twitch, causing
abrupt movements. A second avenue of future work is to combine the two stages of the method.
Recent work (Pogani et al., 2020) has proposed a method to incorporate black box solvers into a
gradient-based end-to-end neural network learning process. This shows great promise to increase
the performance of our method even further.
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Appendix A. Appendix

A.1. Data

Fluo-N3DH-CE The Fluo-N3DH-CE dataset (Murray et al., 2008) consists of four 3d+time
recordings. It was recorded with a Zeiss LSM 510 Meta microscope with an Plan-Apochromat
63x/1.4 (oil) objective, a voxel size in microns of 0.09 x 0.09 x 1.0 (thus the data is anisotropic)
and a frame rate of one frame every 1.5min. For two recordings both the raw image data and the
annotations are public, used as the training set. We trained on one of them and validated on the
other to determine all hyperparameters and then retrained on both to make use of all training data.

The annotations consist of a few segmented slices that we did not use (each frame consists
of a z-stack of 2d xy images; a slice is a single element of such a stack) and the full tracks (point
annotations plus connections). The polar bodies are not annotated. For the other two recordings only
the raw image data is public (the test set). To get the score on this data the results plus employed
software have to be uploaded to the benchmark server. The organizers have to be able to reproduce
the results using the software. At the time of submission our method heads the leaderboard for this
dataset for the detection score (DET) and tracking score (TRA) (see Table 1).

The challenge evaluates a segmentation score, too. As our model does not produce segmentation
results we simulate it by employing the cell indicator prediction. We use the points of detection, as
determined by the ILP, as seed points in a seeded watershed. The (inverted) cell indicator map is
used as the watershed surface. We threshold the result twofold: Firstly, based on the prediction on
the training set we determine a threshold τ for the cell indicator map and use this as a foreground
mask. Secondly, we estimate the nuclei size across the time series by roughly measuring their size
at up to 5 frames with varying nuclei size and count. We then mask each instance with a sphere
(isotropic in world space, anisotropic in object space) centered at its point of detection and with a
size equal to the estimated nuclei size based on the next later estimated frame.

No further postprocessing, e.g., to filter very short tracklets, is applied. For the currently to the
CTC submitted results we did not filter the polar bodies from the created tracks resulting in some
additional false positives. This will be done in the next version.

mskcc confocal The mskcc confocal dataset consists of three fully annotated 3d+time record-
ings. It was recorded with a Zeiss LSM 510 confocal microscope, it is anisotropic as well and has
a frame rate of one frame/min. The ground truth has been created by using Starrynite (Bao et al.,
2006; Santella et al., 2014), followed by manual curation. We use the uncurated results as a base-
line. The raw data consists for 425 frames, with the first 370 frames of them being annotated and
curated. We train and evaluate all our models on the first 270 frames, in total there are 50k-60k cell
detections. At this stage C. elegans has around 550 cells, which is close to the maximum number
(558 for hermaphrodites). Most divisions have already occurred by the 270th frame and some cells
have already undergone apoptosis. In addition we evaluate the same models on the first 200 frames,
which is in line with many studies conducted on C. elegans. At this stage C. elegans has around 350
cells, and all but one round of divisions have occurred (about 20k cell detections)

In future work we will extend it to the full 370 frames. The more the embryonic development
progresses the denser the data becomes. Additionally the movement of the worm itself (in this
context referred to as twitching) increases significantly.

For each experimental run we use one recording as training data, one for validation and one as
our test set. We do this for all six possible combinations of assignment of our recordings to the
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three sets, and repeat each one three times with different random seeds, leading to a total of 18
experimental runs. Each number we report is obtained by averaging over the 18 run.

nih ls The nih ls data was recorded with an ASI diSPIM light sheet microscope (Kumar et al.,
2014), the views have been merged and the data deconvolved thus the data is isotropic. The time
range of the data is similar to the confocal data, as is the experimental setup. Again we train on the
first 270 frames and evaluate on the first 270 frames and the first 200 frames.

A.2. Network Architecture/Training

A.2.1. TRACKING/U-NET

The basic tracking setup follows the approach of Malin-Mayor et al. (2021), with some modifica-
tions. As the data is too large to be processed at once, it is processed in tiles. The input size can be
adapted depending on the available GPU memory. We follow the rules of Rumberger et al. (2021)
to enable seamless predictions. Therefore valid padding is used for all convolutions and the output
tiles during inference are cropped correctly before stitching. To exploit temporal context the input
of the network are 4d patches, 3d tiles of seven consecutive frames, that are used to compute the
output for the center frame. We employ 4d convolutions2 in the first layers to enable the network
to profit from this. For the anisotropic data we do not downsample the depth dimension z in the
first pooling layers until the voxel size is approximately isotropic (Heinrich et al., 2018). Separate
networks are trained for the cell candidates and the motion vectors in the sense that they have in-
dependent weights, however both are trained at the same time on the same batches and information
from the cell candidate network is used in the loss computation of the motion vector network.

We downsample three times in total using max pooling, for upsampling we use separable trans-
posed convolutions (Wojna et al., 2017). At each downsample step we increase the number of
feature maps fourfold, initially we start with 12. All convolutions have a kernel size of 3 (to be
precise 3d, 33 for 3d and 34 for 4d convolutions). The network is trained for 400k iterations with
a batch size of one. We use stochastic weight averaging (SWA) (Izmailov et al., 2018) every 1k
iterations starting after 50k iterations, this significantly boosts performance. We use a large set of
base augmentations: elastic deformations, rotation, flipping, resizing, intensity. For the confocal
data it proved beneficial to additionally add noise augmentations (salt&pepper and speckle) and a
histogram augmentation that varies the strength of the fluorescent nuclei signal by keeping the low
intensity pixels stable and varying the height of the intensity bump of high intensity pixels (typi-
cally the nuclei). During training we sample random patches: in 10% of cases a completely random
location is chosen, in the remaining 90% of cases we chose a location that contains at least some
randomly chosen point. The denser the area the less likely a specific point is chosen, otherwise
early frames remain under-sampled due to the lower number of cells. As divisions are quite rare we
over-sample them, in 25% of these cases one division has to be contained in the patch. One patch
typically contains multiple cells. We use the ADAM optimizer with a learning rate of 5e−5

Detection To detect nuclei we follow the approach of Malin-Mayor et al. (2021) and Höfener
et al. (2018). A Gaussian-shaped blob is placed at the location of every ground truth annotation and
regressed. The variance is chosen such that the blob approximately covers the respective stained
nucleus. If the ground truth annotations contain radii, these are used for this purpose, otherwise a
rough estimated radius is used (see Suppl. Sec. A.5). The resulting map is normalized such that

2. https://github.com/funkey/conv4d
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the maxima have a value of one. The output of the network is processed with a sigmoid activation
function and a simple pixelwise weighted mean squared loss function is used to learn a regression
model. We introduce pixelwise weights to highlight the area around nuclei. Pixels with a target
value (in the Gaussian map) above a certain threshold have weight 1, all other pixels a very low
weight (depending on the dataset, e.g., 1e−5 ). As the data is 3d, and especially for the isotropic
data, the ratio of background pixels to foreground pixels is much higher than for 2d data (cf. surface
area of circle and square vs. volume of sphere and cube). With all pixels having the same weight
the network can easily degenerate to pure background. Having a weight of zero for the background
is a good option for sparse annotations (cf. (Malin-Mayor et al., 2021)), however, this makes it
harder to discern false positives as the network has no information for data not in the vicinity of
ground truth annotations. As we have dense annotations, in the sense that all nuclei in a frame are
annotated, we can make use of this.

During inference we employ a max pooling layer with stride one and a window size slightly
smaller than the size of a nucleus to perform non-maximum suppression (NMS) and extract the
maxima, our cell candidates.

Motion Vector Additionally we learn to predict the motion of a cell between adjacent time frames.
Following Malin-Mayor et al. (2021), and similarly to Hayashida et al. (2020), we predict a vector
pointing backwards in time to the position in the previous time frame. For our 3d data the output of
this network is thus a three dimensional vector. We apply no activation function as the vector is, in
principle, unrestricted. Again, a weighted mean squared loss function is used. However the weights
are computed differently. At the start of the training each pixel inside a nucleus has weight one, and
outside weight zero. At the end of the training only the pixel with the maximum value in the cell
indicator map has weight one, the others zero. As the latter is very sparse we, to ease the learning
difficulty, we start with the former and blend these two together, the interpolation factor increases
smoothly from zero to one. The in the annotations included or estimated (see Sec. A.5) nucleus
radius is used to define inside vs. outside.

During inference we extract the motion vectors corresponding to our cell candidates from de-
tection network.

A.2.2. CELL STATE/RESNET

Similarly to Santella et al. (2014) we use a classifier to determine the cell state of each detection.
We assign to each detection one of four classes: parent cell (cell that is about to undergo cell
division), daughter cell (cell that just divided), polar body and none of those (continuation). We use
a ResNet-18 with 3d convolutions and bottleneck blocks for this task. The input is a mini-batch of
patches. Each patch is smaller than the U-Net input (8x64x64 (anisotropic) or 64x64x64 (isotropic)
pixels) and is centered on a single cell, though neighboring cells around it can be contained partly.
To capture temporal context each patch contains 5 3d patches, from the 2 time frames before and
after the cell in question. For this network we do not employ 4d convolutions but interpret them as
multiple input channels. We use global average pooling at the end followed by a 1x convolution to
the appropriate number of output neurons to get the output. For the Fluo-N3DH-CE and the nih ls
datasets we use a standard cross entropy loss, for the mskcc confocal dataset the focal loss (Lin
et al., 2017).

As the vast majority of detections belong to the continuation class we oversample instances of
the other three classes in each mini batch to reduce bias towards the majority class. Yet having
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each batch consist of equal parts of each class led to increased false positives. We determined em-
pirically on the validation set that 3

6 from the continuation class and 1
6 each from the other classes

balances false positives and false negatives for the minority classes nicely. The scores for the par-
ent/daughter/continuation classes are incorporated as costs into the ILP (see Sec. 3.2 and Suppl.
Sec. A.3). The score for the polar body class is used to optionally remove polar body tracks (see
Suppl. Sec. A.8). For a visual example of polar bodies see Suppl. Figure 2.

We train the network for up to 80k iterations performing early-stopping. We perform the same
augmentations as for the U-Net. We use the ADAM optimizer with a learning rate of 5e−4 , lowered
to 5e−6 after 20k iterations. For use in the ILP we execute the trained network on each candidate
detection.

A.3. ILP-based Linking

Following Malin-Mayor et al. (2021), to represent a solution candidate y we first create main indi-
cator variables for all nodes ynodes and edges yedges. A valid solution is fully represented by these,
though to facilitate our constraints we add additional dependent auxiliary indicators: A track cost
indicator ytrack per node to mark nodes that start a track (Tracks starting in the first frame are free,
and in a perfect solution no other tracks should start as all cells are connected by divisions). Par-
ent/daughter/continuation indicators yparent, ydaughter, ycontinuation per node to mark the cell state
(in line with the cell state classifier). We define a target indicator vector:

y =

[
ynodes, ytrack, yparent, ydaughter, ycontinuation, yedges

]T
∈ {0, 1}5|V |+|E|

To compute our costs we construct a sparse feature matrix Sdim(y)×dim(w) with one row per
indicator. The columns are: A node selection constant that is 1 for node indicators and 0 otherwise.
A node score that is equal to the cell indicator score sv for node indicators and 0 otherwise. An
edge score that is, given some edge e = (v, u), equal to the distance between the predicted position
p̂v and the actual position pu of the node u for edge indicators and 0 otherwise. A track cost score
that is 1 for track start indicators and 0 otherwise. A division constant that is 1 for parent class
indicators and 0 otherwise. A parent score that is equal to the parent class prediction for parent
indicators and 0 otherwise. A daughter score that is equal to the daughter class prediction for
daughter indicators and 0 otherwise. A continuation score that is equal to the continuation class
prediction for continuation indicators and 0 otherwise.

Finally, we create a weight vector with one tunable hyperparameter per column:

w =

[
wnode selection, wnode score, wedge score, wtrack cost, wdivision, wparent, wdaughter, wcontinuation

]T
Following Malin-Mayor et al. (2021) we use Gurobi (Gurobi Optimization, 2021) for block-

wise solving. For computational reasons the ILP is solved in blocks. We divide the whole recording
into non-overlapping blocks. The method itself is agnostic to the axes of division, the blocks can be
divided both spatially and temporally. This is necessary for large organisms, for C. elegans though
it is sufficient to divide it along the temporal axis. To ensure consistency each block takes some
amount of context around it into account, leading to overlapping blocks. If a neighboring block
has already been computed, its results are adhered to and incorporated via constraints into the local
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block ILP. Blocks can be computed in parallel as long as they are not adjacent. However, this block-
based processing means that the final tracks will not necessarily be the globally optimal tracks,
they might just approximate them. We argue that due to the temporal nature of the data, events in
temporally distant frames can be resolved independently without a significant loss in accuracy.

A.4. Optimization Constraints

We add a number of different constraints to the ILP to ensure the validity and consistency of the
resulting tracks. The base constraints according to Malin-Mayor et al. (2021) are:

For each edge e = (u, v) the edge consistency constraint 2yedgee − ynodev − ynodeu ≤ 0 ensures
that if an edge is selected its endpoints have to be selected as well.

To encourage temporal continuity one constraint per node is added: Let Pv be the set of edges
from node v at tv to nodes in tv − 1. The constraint

∑
p∈Pv

(ynodep) + ytrackv − ynodev = 0 ensures
that if node v is selected either its track indicator is set (signaling that this node is the start of a track
which comes with a cost attached) or there is exactly one edge to a node in the previous time frame.

To ensure biologically moral validity we add a constraint on cell divisions per node: Let Nv be
the set from nodes in tv +1 to a node v at tv. The constraint

∑
n∈Nv

(ynoden)−2ynodev ≤ 0 ensures
that for each selected node there can be at most two edges to the next time frame.

Simple equality constraints are added to ensure block-wise consistency. If a neighboring block
has already been computed its decisions for edges e in the overlap area are accepted: yedgee = 0 or
yedgee = 1 respectively.

In addition we add constraints to incorporate the learnt cell state classifier scores into the ILP.
The goal is to encourage the optimizer to select indicators in line with the state scores by lower-
ing the cost in case of agreement and increasing the cost in case of disagreement. The cell state
constraints are: For each edge e = (u, v) the constraints ydaughteru + yedgee − yparentv ≤ 1 and
yparentv + yedgee − ydaughterv ≤ 1 ensure that if the endpoint v at time tv of a selected edge has
yparentv selected than the endpoint u at time tv +1 has to have ydaughteru selected and vice versa. In
addition each selected node v has have either yparentv , ydaughterv or ycontinuationv active, enforced
via yparentv + ydaughterv + yparentv − ynodev = 0.

A.5. Radius Estimation

If no radius information is included in the annotations (such as in the Fluo-N3DH-CE data) we
estimate it roughly with a handful manual measurements. We open a few frames (across the whole
time line) in an appropriate image viewer (e.g., ImageJ/Fiji (Schindelin et al., 2012)) and measure
the current nucleus radius at a few representative cells. We then assign this radius to all cells in all
frames before this one (but after the previously examined frame). The radius is used both during
training to determine the variance for the regressed Gaussian blobs and the inside vs. outside of cells
for the weights in the motion vector loss and for the necessary segmentation in the computation of
the DET and TRA scores.

A.6. Foreground Mask

To remove spurious detections completely outside of an embryo we create a simple foreground
mask. We open a frame somewhere in the middle of the timeline in an appropriate viewer (e.g.,
napari (Sofroniew et al., 2021)) and draw a rough 2d polygon around it that is extended in the depth
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dimension z. All detections outside this area are discarded. If many samples have to be processed the
mask creation can also be automated by a combination of computer vision/morphology operations
(blurring, thresholding, hole-filling), however this failed in the case of the Fluo-N3DH-CE data due
to some artifacts contained in the data.

A.7. Polar and Apoptotic Bodies

polar bodies

apoptotic bodies

Figure 2: Examples of polar and apoptotic bodies in C. elegans

A.8. Postprocessing

Depending on the type of study the polar bodies are either of interest or should be removed. We
manually created polar bodies annotations for the training of our cell state classifier using Ma-
MuT (Wolff et al., 2018). If they are to be removed, we divide our tracks into chains by temporarily
removing all connections from daughter cells to their parent cell. We then perform a majority voting
per chain and remove all chains where the majority of cells were classified as a polar body. How-
ever, they are not removed in the current CTC results, this will happen in a future submission. No
further postprocessing is performed.

A.9. Experiments
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Table 4: Quantitative results for mskcc confocal and nih ls on both the first 200 frames (approx.
350 cells in last frame) and the first 270 frames (approx. 550 cells in last frame), FP: false posi-
tive edge, FN: false negative edge, IS: identity switch/cross-over of tracks, FP-div: false positive
division, FN-div: false negative division, total div: sum of division errors, total: sum of all errors,
normalized per 1k edges. REFT: ratio error free tracks (number of cells in the last frame whose
reverse track has no error divided by the number of GT cells in the last frame, biased in favor of fp
as superfluous tracklets ending earlier are not counted). ours wo/cls matches the prior work (Malin-
Mayor et al., 2021).

FP FN IS FP div FN div total div total REFT

mskcc confocal 200 frames

Starrynite 7.703 5.470 0.220 0.375 1.240 1.614 15.006 0.878
ours wo/cls 5.259 2.477 0.024 0.343 0.139 0.484 8.244 0.956
ours ssvm 5.719 1.647 0.026 0.036 0.595 0.631 8.031 0.934

mskcc confocal 270 frames

Starrynite 7.902 13.321 0.618 0.579 1.184 1.763 22.324 0.769
ours wo/cls 4.575 5.464 0.055 1.122 0.261 1.382 11.659 0.891
ours ssvm 3.684 5.703 0.048 0.066 0.513 0.579 9.909 0.839

nih ls 200 frames

ours w/cls 2.522 2.754 0.076 0.291 0.426 0.716 6.069 0.941

nih ls 270 frames

ours w/cls 12.047 7.193 0.446 0.317 0.351 0.668 20.353 0.852
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Table 5: Ablation study, on both the first 200 frames (approx. 350 cells in last frame) and the first
270 frames (approx. 550 cells in last frame) of the mskcc confocal data. We ablate solving an ILP
altogether (ILP), incorporating the cell state classifier (cls), employing an sSVM for hyperparameter
search (ssvm), and incorporating the polar body filter (pbf). Description of error types see Table 2.

ILP cls ssvm pbf FP FN IS FP div FN div total div total REFT

mskcc confocal 200 frames

7 7 7 7 7.032 1.032 0.016 0.644 0.139 0.783 8.863 0.967
3 7 7 7 5.259 2.477 0.024 0.343 0.139 0.484 8.244 0.956
3 3 7 7 5.037 1.876 0.016 0.094 0.242 0.336 7.265 0.954
3 3 3 7 5.719 1.647 0.026 0.036 0.595 0.631 8.031 0.934
3 3 3 3 3.016 1.714 0.029 0.032 0.565 0.594 5.356 0.932

mskcc confocal 270 frames

7 7 7 7 5.008 4.639 0.048 1.600 0.255 1.855 11.550 0.912
3 7 7 7 4.757 5.464 0.055 1.122 0.261 1.382 11.659 0.891
3 3 7 7 3.408 5.669 0.028 0.202 0.263 0.464 9.570 0.871
3 3 3 7 3.684 5.703 0.048 0.066 0.513 0.579 9.909 0.839
3 3 3 3 2.556 5.717 0.050 0.062 0.510 0.573 8.907 0.836

Table 6: For comparison with other methods we also report node and edge recall. However their
informative value is limited as the values are quite saturated, still, there is some improvement.

node recall edge recall

mskcc confocal 200 frames

Starrynite 0.9961 0.9827
ours wo/cls 0.9981 0.9833
ours ssvm 0.9993 0.9850

mskcc confocal 270 frames

Starrynite 0.9927 0.9851
ours wo/cls 0.9988 0.9920
ours ssvm 0.9991 0.9923

nih ls 200 frames

ours w/cls 0.998 0.988

nih ls 270 frames

ours w/cls 0.998 0.994
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Figure 3: Box and whisker plot of the errors of the different approaches on the mskcc confocal
data. Starrynite (Bao et al., 2006) is an often used method in the analysis of C. elegans tracks.
greedy refers to our method without the ILP (and thus without the cell state classifier). Ilp-no-cls
is our method without the cell state classifier and with grid-searched hyperparameters (matches the
prior work (Malin-Mayor et al., 2021)). Ilp-ssvm is the full method with automatically determined
hyperparameters. fp are false positive edges, fn are false negative edges, id sw are identity switches
(cross-over of tracks), fp div are false positive (superfluous) divisions, fn div are false negative
(missing) divisions, sum div is the sum of wrong divisions and sum the sum of all errors. All
numbers are normalized per 1000 ground truth annotations. Divisions that are off by one frame
compared to the annotations are not counted as errors as the limited frame rate leads to inherent
inaccuracies in the data and annotations. Each step lowers the number of errors. greedy lowers
especially the number of fp and fn edges, not as much the number of false divisions. The ILP on
its own (Ilp-no-cls) can already lower the number of false divisions a bit, but the inclusion of the
classifier in Ilp-ssvm lowers them drastically. For the numbers see Table 4 and Table 5.
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Figure 4: Box and whisker plot of the distribution of the automatically determined ILP hyperparam-
eters over the 18 experimental runs of the mskcc confocal dataset. The sSVM finds similar values
for each respective candidate graph and with a similar ratio to each other.
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