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Abstract

One area of medical imaging that has recently experienced innovative deep learning ad-
vances is diffusion MRI (dMRI) streamline tractography with recurrent neural networks
(RNNs). Unlike traditional imaging studies which utilize voxel-based learning, these studies
model dMRI features at points in continuous space off the voxel grid in order to propagate
streamlines, or virtual estimates of axons. However, implementing such models is non-
trivial, and an open-source implementation is not yet widely available. Here, we describe a
series of considerations for implementing tractography with RNNs and demonstrate they al-
low one to approximate a deterministic streamline propagator with comparable performance
to existing algorithms. We release this trained model and the associated implementations
leveraging popular deep learning libraries. We hope the availability of these resources will
lower the barrier of entry into this field, spurring further innovation.
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1. Introduction

Deep learning has transformed diffusion MRI (dMRI) processing, with many recent studies
focusing on streamline tractography with recurrent neural networks (RNNs) (Poulin et al.,
2019). Instead of stepping through temporal features to propagate a signal in time, these
studies step through voxel-based dMRI features to propagate a streamline, or a sequence of
points approximating a white matter (WM) tract in the brain, in space. However, imple-
menting RNNs to predict sequences of spatial points of arbitrary lengths that may not lie
on the voxel-grid with batch-wise backpropagation is non-trivial. Further, an open-source
implementation using commonly supported deep learning libraries is not yet widely avail-
able. To fill this gap, we detail considerations needed for implementing such a model, assess
how one trained with these implementations performs against traditional tractography al-
gorithms, and release the model and associated code implemented in PyTorch (v1.12).
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2. Methods

Defining and computing ground truth labels and losses. We define a batch of K
streamlines, S = s1, ..., sK , as a list of streamlines of non-uniform length. Specifically, we
define streamline sk of length nk as a list of points, sk = xk

1, ...,x
k
nk , where xk

i is a point in

continuous 3-dimensional voxel space. We define labels for xk
i as the Cartesian unit vector

∆xk
i =

xk
i+1−xk

i

||xk
i+1−xk

i ||
. We remove the last point from each streamline so that inputs and labels

have the same length, setting nk = nk − 1. However, as unit vectors have two degrees of
freedom, we do not have the RNN directly predict the labels in Cartesian space. Rather,
we predict the labels in spherical coordinates as ∆x̂k

i = (ϕk
i , θ

k
i ) and convert to Cartesian

as ∆x̂k
i = (sinϕk

i cos θ
k
i , sinϕ

k
i sin θ

k
i , cosϕ

k
i ) prior to loss computation. We utilize a cosine

similarity loss for each point of sk, L(∆x̂k
i ,∆xk

i ) = 1 − ⟨∆x̂k
i ,∆xk

i ⟩
||∆x̂k

i ||||∆xk
i ||
. Streamlines can be

propagated from the ith point to the next as x̂k
i+1 = xk

i + γ∆x̂k
i where γ is the step size.

Differentiably sampling dMRI features off the voxel grid. xk
i , defined as a 3-

dimensional coordinate in voxel space, provides little utility for efficiently querying dMRI
information at its location off the voxel grid. Thus, we instead convert each xk

i to cki , an
11-dimensional vector. Considering xk

i as an off-grid point contained within a lattice of 8
on-grid points, the first 3 elements of cki are the distance of xk

i from the lowest lattice point
along all 3 spatial axes in voxel space, xk

i − ⌊xk
i ⌋. The remaining 8 elements are the linear

indices of the 8 on-grid points in the image volume. With these 11 values, the lattice values
can be queried and interpolated trilinearly to obtain off-grid features for each point in sk

as qk
i = dMRI(cki ) (Kang, 2006). As trilinear interpolation is differentiable, this allows for

end-to-end training between input voxel grids and output losses at points off the grid.

Organizing data during training. As an example, we assume each qk
i is a 45-

dimensional feature vector, as is commonly the case if the dMRI grid is a grid of fiber
orientation distribution (FOD) spherical harmonic (SH) coefficients. Thus, S can be repre-
sented as a list of length K where each sk is a matrix of size nk×45. However, the variability
of nk across S is inefficient for the tensor-based parallelization frameworks utilized by deep
learning libraries. Thus, we convert S into a ”padded packed” tensor for training.

When aligned by the first element of each sk, S can be ”padded” with zeros to a tensor
of size M × K × 45, where M = max(n1, ..., nK) is the length of the longest streamline
in the batch. This padded tensor can then be ”packed” to a tensor of size N × 45, where
N =

∑K
k=1 n

k. The packed formulation allows for batch-wise steps in recurrent neural
networks for input sequences of different lengths, and the padded formulation allows for
easier querying of specific points in their corresponding streamlines for loss aggregation.
Both these operations and their inverses are natively supported in PyTorch.

The network predictions are also packed tensors of size N × 3 after conversion from
spherical to Cartesian coordinates. To compute the batch-wise loss, we convert the packed
predictions to padded representations of size M ×K× 3, use a mask to ignore the padding,

and average the loss across all the streamline points as 1
N

∑K
k=1

∑nk

i=1 L(∆x̂k
i ,∆xk

i ). For
efficiency, we compute masks and save the labels in padded form before training.

Parallelizing inference. Unlike traditional tractography algorithms which parallelize
tracking on the streamline level, RNNs must parallelize on the point level. In other words,
each step of the RNN must advance all streamlines in a batch, as outlined in algorithm 1.
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Algorithm 1: Parallelizing inference with a padded tensor where M = 1

1. x1
i , ...,x

K
i (size 1×K × 3) are the heads of K actively propagating streamlines

in a padded tensor. These points are seeded arbitrarily when i = 1.
2. Convert x1

i , ...,x
K
i to c1i , ..., c

K
i (size 1×K × 11).

3. Sample q1
i , ...,q

K
i (size 1×K × 45) off-grid from c1i , ..., c

K
i .

4. Compute ∆x̂1
i , ...,∆x̂K

i (size 1×K × 3) with the RNN from q1
i , ...,q

K
i .

5. Compute x̂1
i+1, ..., x̂

K
i+1 = x1

i + γ∆x̂1
i , ...,x

K
i + γ∆x̂K

i (size 1×K × 3).
6. Set x1

i , ...,x
K
i = x̂1

i+1, ..., x̂
K
i+1 and repeat.

This approach allows arbitrary stopping criteria to be evaluated for each streamline head
independently, after which it can be taken off the tensor, speeding up propagation for the
remaining streamlines. Since batches have a set size K, once all streamlines meet criteria,
new batches can be initialized and propagated until the desired number of streamlines are
generated. Last, K can vary, making this approach adaptable to different GPU capacities.

3. Results and Discussion

With these considerations, we train an RNN streamline propagator on dMRI data from
the Human Connectome Project to approximate the deterministic SDStream tractography
algorithm (Tournier et al., 2007) as described by Cai et al. (2023). Briefly, we use a multi-
layer perceptron- and gated recurrent unit-based architecture with 4.2 million parameters,
taking dMRI FODs represented on the voxel grid with 45 even-order SH coefficients as input.
Compared to SDStream, we find similar recovery of WM bundles between our method and
the iFOD2 probabilistic propagator (Tournier et al., 2010) (Figure 1).

We release this model and the associated code (github.com/MASILab/STrUDeL) to spur
further innovations in this field. We note these implementations are currently limited to
deterministic propagators, and probabilistic ones would require reparameterization.

Figure 1: Compared to reference, representative iFOD2 and RNN left arcuate fasciculii are
visually similar as are the median Dice coefficients across subjects per bundle.
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