
LLM Economist: Large Population Models and Mechanism Design in Multi-Agent Generative Simulacra

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 We present the *LLM Economist*, a novel framework that uses agent-based
2 modeling to design and assess economic policies in strategic environments
3 with hierarchical decision-making. At the lower level, bounded rational
4 worker agents—instantiated as persona-conditioned prompts sampled from
5 U.S. Census-calibrated income and demographic statistics—choose labor
6 supply to maximize text-based utility functions learned *in-context*. At the
7 upper level, a planner agent employs in-context reinforcement learning to
8 propose piecewise-linear marginal tax schedules anchored to the current U.S.
9 federal brackets. This construction endows economic simulacra with three
10 capabilities requisite for credible fiscal experimentation: (i) optimization
11 of heterogeneous utilities, (ii) principled generation of large, demographi-
12 cally realistic agent populations, and (iii) mechanism design—the ultimate
13 nudging problem—expressed entirely in natural language. Experiments with
14 populations of up to one hundred interacting agents show that the planner
15 converges near Stackelberg equilibria that improve aggregate social welfare
16 relative to Saez solutions, while a periodic, persona-level voting procedure
17 furthers these gains under decentralized governance. These results demon-
18 strate that large language model-based agents can jointly model, simulate,
19 and govern complex economic systems, providing a tractable test bed for
20 policy evaluation at the societal scale to help build better civilizations.

21 1 Introduction

22 The rapidly expanding marketplace of autonomous language agents forms *economic simul-
23 lacra*—synthetic societies whose allocation of effort and influence is governed by algorithmic
24 code rather than legislation. As web-agents book tickets, draft briefs, and trade cryptocurrencies,
25 they adapt to digital incentives, creating complex economic ecosystems requiring
26 governance to prevent early-mover exploitation.

27 Recent advances demonstrate remarkable potential for coherent multi-agent dynamics. Generative Agents [57, 58] sustain believable interactions with thousands of persona-conditioned
28 agents, Project Sid [1] scales toward "AI civilization" benchmarks, EconAgent [39] reproduces
29 macroeconomic indicators with striking fidelity, and OASIS [72] explores large population
30 simulacra of social media. These developments suggest LLMs exhibit sophisticated strategic
31 reasoning [74], making them compelling substrates for policy experimentation.

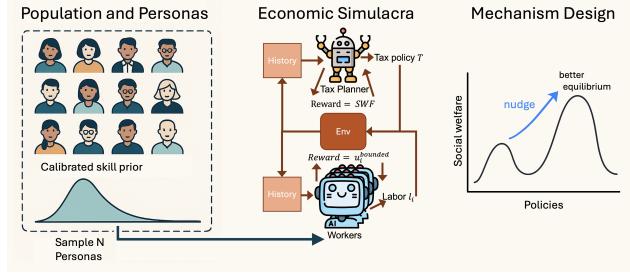


Figure 1: LLM Economist Framework. *Left:* Population of persona-conditioned agents. *Center:* Two-level economic simulacra. *Right:* Mechanism design via successive planner nudges.

- 33 In this work, we study designing tax mechanisms as a tractable and theoretically-grounded
 34 avenue for exploring governing agent societies. Classical optimal taxation faces two limitations
 35 in synthetic societies. First, solutions like the Saez formula [60, 61] assume fixed income
 36 elasticity, yet elasticity shifts dynamically with policy changes, making optimal rates moving
 37 targets requiring continuous recomputation. Second, human societies are heterogeneous and
 38 bounded rational [44, 50], while simulacra feature agents with text-specified motivations,
 39 requiring planners to reason over distributions of explicitly modeled personas.
- 40 We address both gaps by reframing optimal taxation as a repeated Stackelberg game
 41 optimized through two-level in-context reinforcement learning (ICRL) [35, 53, 54]. Building
 42 on the AI Economist’s deep RL approach [65, 75, 76], we replace value-function learning
 43 with interpretable language-based reasoning. Worker agents maximize persona-conditioned
 44 utilities via natural-language context encoding biographies, while a planner proposes tax
 45 schedules anchored to U.S. federal brackets through pure in-context optimization.
- 46 Our contributions: (i) *Large population models* [8] sampling Census-calibrated personas
 47 without manual utility engineering. (ii) In-context planners converging to Saez-level welfare
 48 through gradient-free optimization. (iii) Democratic turnover stabilizing outcomes and
 49 mitigating the Lucas critique [43] through synthetic counterfactuals.

50 2 LLM Economist

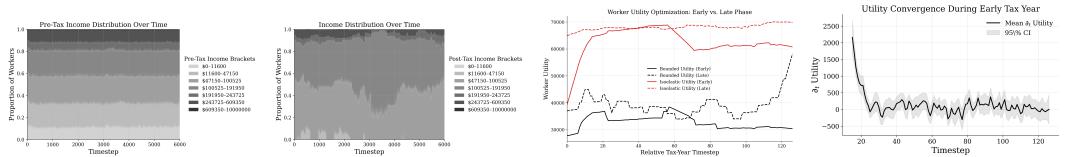
51 We model optimal taxation as a repeated Stackelberg game between a *planner* \mathcal{P} and
 52 workers $\mathcal{W} = \{\mathcal{W}_1, \dots, \mathcal{W}_N\}$. Time is divided into daily steps $t = 0, \dots, T - 1$ and tax
 53 years of length K . Each worker i has latent skill $s^i > 0$ and chooses labor l_t^i , yielding
 54 pre-tax income $z_t^i = s^i l_t^i$. The planner selects marginal tax schedule τ_k at year start,
 55 giving post-tax income $\hat{z}_t^i = z_t^i - T_{\tau_k}(z_t^i) + R_t$ where R_t is lump-sum rebate. Social welfare
 56 is $\text{SWF} = \sum_{i=1}^N w(z_t^i) u_i(\hat{z}_t^i, l_t^i)$ with distributional weights $w(z_t^i) = 1/z_t^i$. A Stackelberg
 57 equilibrium satisfies: $\tau^* \in \arg \max_{\tau} \mathbb{E}[\text{SWF}(\mathbf{l}, \tau)]$ and $l^{i*}(\tau) \in \arg \max_{l^i} \mathbb{E}[u_i(\hat{z}^i, l^i)]$ for each
 58 worker.

59 The LLM Economist realizes this Stackelberg game through language-based agents acting
 60 purely *in-context*, where state, history, and objectives are rendered as text while actions are
 61 JSON snippets parsed by the environment. Skills s^i are drawn from generalized-Beta fits
 62 to 2023 American Community Survey data [66]. Each worker receives a persona prompt
 63 encoding demographics and preferences—“*You’re a 32-year-old entrepreneur... You believe
 64 lower taxes let you reinvest in your company...*”—and uses bounded utility $u_i^{\text{bounded}}(\hat{z}, l) =$
 65 $\frac{\hat{z}^{1-\eta}-1}{1-\eta} - \psi l^\delta - (1-s_t^i)\phi$ where $s_t^i \in \{0, 1\}$ is LLM-judged satisfaction and ϕ is dissatisfaction
 66 penalty. Workers observe $(z_t^i, \hat{z}_t^i, \tau(z_t^i), R_t, \text{history})$ and return {"LABOR": X}.

67 The planner observes aggregate statistics and proposes bracket shifts $\Delta \tau_k \in [-20, 20]^B$ via
 68 {"DELTA": [...]}. At each daily step t , the environment serializes joint state o_t into prompt
 69 π_t , following exploration-exploitation phases with broad search then convergence. Replay
 70 buffers maintain best state-action-welfare triples for token-level credit assignment across
 71 long horizons. Unlike the AI Economist’s value-function learning, this design eliminates
 72 task-specific reward shaping while exposing agents’ rationales, enabling interpretable policy
 73 optimization. This approach leverages LLMs’ ability to identify patterns in textual reward

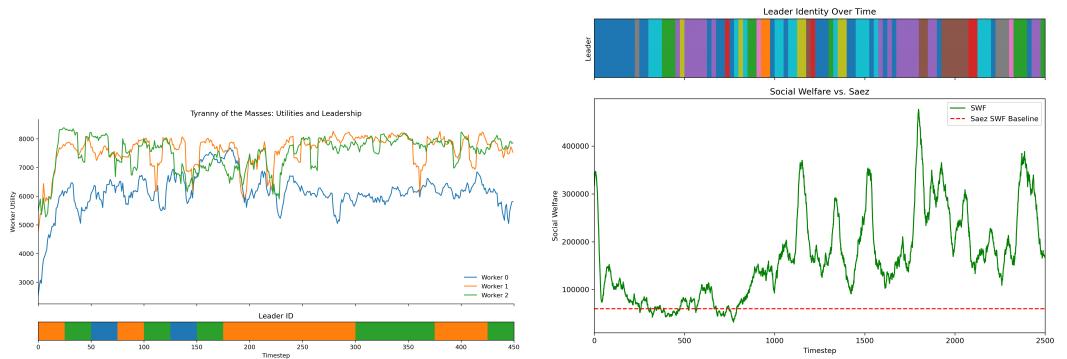
(a) Tax-year length			(b) Test-time search			
Steps / yr	Total steps	%SWF*	Variant	Expl.+Expl.	No Explore	No Exploit
8	310	62.3	%SWF*	84.9	77.9	63.0
16	600	64.9				
64	2 000	84.9				
128	6 000	90.0				
256	6 000	90.0				

Figure 2: In-context RL ablations. (a) Welfare saturates at $K = 128$. (b) Exploitation and exploration are both critical.



(a) Pre-tax income. (b) Post-tax income. (c) Utility gap closing. (d) Convergence in 120 steps.

(e) Persona heterogeneity. (f) Seven-bracket scenario. (g) Three-bracket scenario.



(h) Three-persona "tyranny." (i) 100-worker democracy.

Figure 3: Experimental results. (a-b) Income redistributes 15% downward. (c-d) Worker utilities adapt and converge. (e) Heterogeneous persona responses. (f-g) Tax schedules approach Saez optimum. (h-i) Democratic dynamics from tyranny to welfare-enhancing turnover.

74 histories—a key advantage when preferences shift and causal links between individual utilities,
75 policies, and outcomes must remain transparent.

76 3 Experiments

77 We evaluate: (i) design choices for planner and worker optimization, (ii) tax policy performance
78 versus baselines, and (iii) emergent voting dynamics.

79 **Setup:** We use Llama-3.1-8B (though no discernable differences with other models, open-
80 source and frontier, towards our hypotheses), $N = 100$ workers, $T = 3000$ steps with tax
81 years $K = 128$. Skills follow GB2 calibrated to ACS 2023 [66]. Workers choose $[0, 100]$
82 hours/week; planners optimize seven brackets with lump-sum rebates.

83 We compare against **Saez** (perturbed, intractable optimum) and **U.S. Fed** (2024 statutory
84 rates).

85 **3.1 Planner’s Social Welfare Optimization**

86 The planner-worker interaction in the LLM Economist requires successful ablation of two
87 design choices to reach stable Stackelberg equilibria: *time-scale separation* between planner
88 updates and worker adaptation, and balanced *exploration* and *exploitation* over tax years.
89 Table 2a demonstrates that very short tax years ($K \leq 16$) stall below 65% of optimal welfare
90 because workers lack time to adapt, while performance plateaus at $K = 128$ steps, capturing
91 90% of the theoretical optimum. Meanwhile, Table 2b reveals that both exploration and
92 exploitation are critical: LLM agents leverage their priors to reason about promising policies
93 (exploitation) while requiring systematic search to discover optimal schedules (exploration),
94 with exploitation being more impactful, but not sufficient. These results validate our
95 hypothesis that in-context reinforcement learning can achieve near-optimal social welfare
96 through careful design of temporal dynamics and test-time search.

97 **3.2 Workers’ Utility Optimization**

98 To test whether LLM workers optimize heterogeneous utilities under realistic income distribu-
99 tions, we initialize skills using Generalized-Beta fitted to ACS 2023 microdata. Figure 3a-b
100 show the learned policy redistributes 15% of workers to lower post-tax brackets while
101 preserving aggregate labor. Figure 3c demonstrates bounded workers nearly close a 30k dis-
102 satisfaction gap as the planner converges, while Figure 3e reveals persona-specific responses.
103 These results validate that LLM workers coherently adapt labor choices under evolving tax
104 incentives while maintaining realistic heterogeneity.

105 **3.3 Tax Policy Evaluation**

106 To test whether in-context reinforcement learning approach theoretically optimal policies, we
107 compare against Saez baselines in two settings: bounded-utility workers (seven U.S. brackets)
108 and isoelastic workers (three brackets). In the bounded case (Figure 3f), LLM Economist
109 achieves +93% welfare versus U.S. baseline while approaching perturbed grid search Saez
110 (+114%), with slightly less smooth schedules than the perturbed optimal. In the isoelastic
111 case (Figure 3g), perturbed Saez outperforms but LLM Economist preserves labor supply
112 through lower rates. The in-context RL planner achieves close to the Saez optimum without
113 gradient information in a sample efficient manner, demonstrating that agent-based modeling
114 approaches first-order optimal design—validating our hypothesis that LLMs can serve as
115 effective mechanism designers.

116 **3.4 Voting Simulacra**

117 To test whether LLM agents reproduce political-economy phenomena, we introduce demo-
118 cratic elections where agents elect planners by majority vote each tax year. Figure 3h shows
119 classic “tyranny of masses” in a three-agent society: two workers exploit the minority without
120 hard-coded rules. Figure 3i demonstrates that 100-agent leadership turnover enhances welfare
121 through electoral exploration, sometimes outperforming static optimal taxation.

122 **4 Discussion**

123 This work introduces the *LLM Economist*, an in-context reinforcement learning framework
124 that embeds a population of persona-conditioned agents and a tax planner in a two-tier
125 Stackelberg game. Our results show that LLM agents can (i) recover the Mirrleesian trade-off
126 between equity and efficiency, (ii) approach Saez-optimal schedules in heterogeneous settings
127 where analytical formulas are unavailable, and (iii) reproduce political phenomena—such as
128 majority exploitation and welfare-enhancing leader turnover—without any hand-crafted rules.
129 Taken together, the experiments suggest that the LLM Economist can serve as tractable test
130 beds for policy design long before real-world deployment, providing a bridge between modern
131 generative AI and classical economic theory. While our approach assumes static skills and
132 fixed population, and the framework could be misused to craft biased policies, it offers a
133 controlled environment for exploring economic mechanisms before real-world deployment.

134 **References**

- 135 [1] A. AL, A. Ahn, N. Becker, S. Carroll, N. Christie, M. Cortes, A. Demirci, M. Du, F. Li,
136 S. Luo, et al. Project sid: Many-agent simulations toward ai civilization. *arXiv preprint*
137 *arXiv:2411.00114*, 2024. 1
- 138 [2] K. J. Arrow et al. *Essays in the theory of risk-bearing*, volume 121. North-Holland
139 Amsterdam, 1974.
- 140 [3] Y. Bai, C. Jin, H. Wang, and C. Xiong. Sample-efficient learning of stackelberg
141 equilibria in general-sum games. *Advances in Neural Information Processing Systems*,
142 34:25799–25811, 2021.
- 143 [4] G. Brero, A. Eden, D. Chakrabarti, M. Gerstgrasser, A. Greenwald, V. Li, and D. C.
144 Parkes. Stackelberg pomdp: A reinforcement learning approach for economic design.
145 *arXiv preprint arXiv:2210.03852*, 2022.
- 146 [5] G. Brero, E. Mibuary, N. Lepore, and D. C. Parkes. Learning to mitigate ai collusion
147 on economic platforms. *Advances in Neural Information Processing Systems*, 35:37892–
148 37904, 2022.
- 149 [6] T. B. Brown. Language models are few-shot learners. *arXiv preprint arXiv:2005.14165*,
150 2020.
- 151 [7] R. Chetty. Sufficient statistics for welfare analysis: A bridge between structural and
152 reduced-form methods. *Annu. Rev. Econ.*, 1(1):451–488, 2009.
- 153 [8] A. Chopra. Large population models. *arXiv preprint arXiv:2507.09901*, 2025. 1
- 154 [9] A. Chopra, S. Kumar, N. Giray-Kuru, R. Raskar, and A. Quera-Bofarull. On the limits
155 of agency in agent-based models. *arXiv preprint arXiv:2409.10568*, 2024.
- 156 [10] J. J. Chung. Money as simulacrum: The legal nature and reality of money. *Hastings
157 Bus. LJ*, 5:109, 2009.
- 158 [11] X. Deng, Y. Gu, B. Zheng, S. Chen, S. Stevens, B. Wang, H. Sun, and Y. Su. Mind2web:
159 Towards a generalist agent for the web. *Advances in Neural Information Processing
160 Systems*, 36, 2024.
- 161 [12] P. A. Diamond and J. A. Mirrlees. Optimal taxation and public production i: Production
162 efficiency. *The American economic review*, 61(1):8–27, 1971.
- 163 [13] Y. Du, L. Han, M. Fang, J. Liu, T. Dai, and D. Tao. Liir: Learning individual intrinsic
164 reward in multi-agent reinforcement learning. *Advances in Neural Information Processing
165 Systems*, 32, 2019.
- 166 [14] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
167 A. Schelten, A. Yang, A. Fan, et al. The llama 3 herd of models. *arXiv preprint
168 arXiv:2407.21783*, 2024.
- 169 [15] P. Duetting, V. Mirrokni, R. Paes Leme, H. Xu, and S. Zuo. Mechanism design for large
170 language models. In *Proceedings of the ACM on Web Conference 2024*, pages 144–155,
171 2024.
- 172 [16] M. F. A. R. D. T. (FAIR)†, A. Bakhtin, N. Brown, E. Dinan, G. Farina, C. Flaherty,
173 D. Fried, A. Goff, J. Gray, H. Hu, A. P. Jacob, M. Komeili, K. Konath, M. Kwon,
174 A. Lerer, M. Lewis, A. H. Miller, S. Mitts, A. Renduchintala, S. Roller, D. Rowe, W. Shi,
175 J. Spisak, A. Wei, D. Wu, H. Zhang, and M. Zijlstra. Human-level play in the game of
176 <i>diplomacy</i> by combining language models with strategic reasoning. *Science*,
177 378(6624):1067–1074, 2022. doi: 10.1126/science.ade9097. URL <https://www.science.org/doi/abs/10.1126/science.ade9097>.
- 179 [17] M. F. A. R. D. T. (FAIR)†, A. Bakhtin, N. Brown, E. Dinan, G. Farina, C. Flaherty,
180 D. Fried, A. Goff, J. Gray, H. Hu, et al. Human-level play in the game of diplomacy
181 by combining language models with strategic reasoning. *Science*, 378(6624):1067–1074,
182 2022.
- 183 [18] E. Farhi. Capital taxation and ownership when markets are incomplete. *Journal of
184 Political Economy*, 118(5):908–948, 2010.

- 185 [19] X. Feng, Z. Wan, M. Wen, Y. Wen, W. Zhang, and J. Wang. Alphazero-like tree-search
 186 can guide large language model decoding and training. *arXiv preprint arXiv:2309.17179*,
 187 2023.
- 188 [20] X. Feng, Z. Wan, H. Fu, B. Liu, M. Yang, G. A. Koushik, Z. Hu, Y. Wen, and J. Wang.
 189 Natural language reinforcement learning. *arXiv preprint arXiv:2411.14251*, 2024.
- 190 [21] M. Fleurbaey. Normative economics and economic justice. 2004.
- 191 [22] X. Gabaix. A behavioral new keynesian model. *American Economic Review*, 110(8):
 192 2271–2327, 2020.
- 193 [23] S. Garg, D. Tsipras, P. S. Liang, and G. Valiant. What can transformers learn in-context?
 194 a case study of simple function classes. *Advances in Neural Information Processing
 195 Systems*, 35:30583–30598, 2022.
- 196 [24] S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Z. Wang, and Z. Hu. Reasoning with
 197 language model is planning with world model. *arXiv preprint arXiv:2305.14992*, 2023.
- 198 [25] S. Hoderlein. Nonparametric demand systems and a heterogeneous population. Technical
 199 report, Working Paper, Uni Mannheim, 2004.
- 200 [26] M. Hong, H. Wai, Z. Wang, and Z. Yang. A two-timescale framework for bilevel
 201 optimization: Complexity analysis and application to actor-critic, dec. 20. *arXiv
 202 preprint arXiv:2007.05170*, 2020.
- 203 [27] J. J. Horton. Large language models as simulated economic agents: What can we learn
 204 from homo silicus? Technical report, National Bureau of Economic Research, 2023.
- 205 [28] S. Hu, T. Huang, F. Ilhan, S. Tekin, G. Liu, R. Kompella, and L. Liu. A survey on
 206 large language model-based game agents. *arXiv preprint arXiv:2404.02039*, 2024.
- 207 [29] C. Ilut and R. Valchev. Economic agents as imperfect problem solvers. *The Quarterly
 208 Journal of Economics*, 138(1):313–362, 2023.
- 209 [30] D. Jeurissen, D. Perez-Liebana, J. Gow, D. Cakmak, and J. Kwan. Playing nethack
 210 with llms: Potential & limitations as zero-shot agents. *arXiv preprint arXiv:2403.00690*,
 211 2024.
- 212 [31] S. Karten, A. L. Nguyen, and C. Jin. Pokéchamp: an expert-level minimax language
 213 agent. *arXiv preprint arXiv:2503.04094*, 2025.
- 214 [32] M. Klissarov, P. D’Oro, S. Sodhani, R. Raileanu, P.-L. Bacon, P. Vincent, A. Zhang,
 215 and M. Henaff. Motif: Intrinsic motivation from artificial intelligence feedback. *arXiv
 216 preprint arXiv:2310.00166*, 2023.
- 217 [33] J. Y. Koh, R. Lo, L. Jang, V. Duvvur, M. C. Lim, P.-Y. Huang, G. Neubig, S. Zhou,
 218 R. Salakhutdinov, and D. Fried. Visualwebarena: Evaluating multimodal agents on
 219 realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.
- 220 [34] A. Korinek. Generative ai for economic research: Llms learn to collaborate and reason.
 221 Technical report, National Bureau of Economic Research, 2024.
- 222 [35] M. Laskin, L. Wang, J. Oh, E. Parisotto, S. Spencer, R. Steigerwald, D. Strouse,
 223 S. Hansen, A. Filos, E. Brooks, et al. In-context reinforcement learning with algorithm
 224 distillation. *arXiv preprint arXiv:2210.14215*, 2022. 1
- 225 [36] J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel. Multi-agent
 226 reinforcement learning in sequential social dilemmas. *arXiv preprint arXiv:1702.03037*,
 227 2017.
- 228 [37] J. Z. Leibo, A. S. Vezhnevets, W. A. Cunningham, S. Krier, M. Diaz, and S. Osindero.
 229 Societal and technological progress as sewing an ever-growing, ever-changing, patchy,
 230 and polychrome quilt. *arXiv preprint arXiv:2505.05197*, 2025.
- 231 [38] Y. Leng and Y. Yuan. Do llm agents exhibit social behavior? *arXiv preprint
 232 arXiv:2312.15198*, 2023.
- 233 [39] N. Li, C. Gao, M. Li, Y. Li, and Q. Liao. Econagent: large language model-empowered
 234 agents for simulating macroeconomic activities. *arXiv preprint arXiv:2310.10436*, 2023.
- 235 1

- 236 [40] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen. What makes good
237 in-context examples for gpt-3? *arXiv preprint arXiv:2101.06804*, 2021.
- 238 [41] X. Liu, H. Yu, H. Zhang, Y. Xu, X. Lei, H. Lai, Y. Gu, H. Ding, K. Men, K. Yang, et al.
239 Agentbench: Evaluating llms as agents. *arXiv preprint arXiv:2308.03688*, 2023.
- 240 [42] Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp. Fantastically ordered prompts
241 and where to find them: Overcoming few-shot prompt order sensitivity. *arXiv preprint*
242 *arXiv:2104.08786*, 2021.
- 243 [43] R. E. Lucas Jr. Econometric policy evaluation: A critique. In *Carnegie-Rochester*
244 *conference series on public policy*, volume 1, pages 19–46. North-Holland, 1976. 1
- 245 [44] R. D. Luce et al. *Individual choice behavior*, volume 4. Wiley New York, 1959. 1
- 246 [45] K. Ma, H. Zhang, H. Wang, X. Pan, W. Yu, and D. Yu. Laser: Llm agent with
247 state-space exploration for web navigation. *arXiv preprint arXiv:2309.08172*, 2023.
- 248 [46] W. Ma, Q. Mi, X. Yan, Y. Wu, R. Lin, H. Zhang, and J. Wang. Large language models
249 play starcraft ii: Benchmarks and a chain of summarization approach. *arXiv preprint*
250 *arXiv:2312.11865*, 2023.
- 251 [47] L. Maliar and S. Maliar. The representative consumer in the neoclassical growth model
252 with idiosyncratic shocks. *Review of Economic Dynamics*, 6(2):362–380, 2003.
- 253 [48] N. G. Mankiw, M. Weinzierl, and D. Yagan. Optimal taxation in theory and practice.
254 *Journal of Economic Perspectives*, 23(4):147–174, 2009.
- 255 [49] C. F. Manski. What is the general welfare? welfare economic perspectives. Technical
256 report, National Bureau of Economic Research, 2025.
- 257 [50] R. D. McKelvey and T. R. Palfrey. Quantal response equilibria for normal form games.
258 *Games and economic behavior*, 10(1):6–38, 1995. 1
- 259 [51] J. A. Mirrlees. An exploration in the theory of optimum income taxation. *The review*
260 *of economic studies*, 38(2):175–208, 1971.
- 261 [52] J. A. Mirrlees. Optimal tax theory: A synthesis. *Journal of public Economics*, 6(4):
262 327–358, 1976.
- 263 [53] A. Moeini, J. Wang, J. Beck, E. Blaser, S. Whiteson, R. Chandra, and S. Zhang. A
264 survey of in-context reinforcement learning. *arXiv preprint arXiv:2502.07978*, 2025. 1
- 265 [54] G. Monea, A. Bosselut, K. Brantley, and Y. Artzi. LLMs are in-context reinforcement
266 learners, 2024. URL <https://openreview.net/forum?id=YW791AHBUF>. 1
- 267 [55] G. H. Orcutt. Simulation of economic systems. *The American Economic Review*, 50(5):
268 893–907, 1960.
- 269 [56] D. Paglieri, B. Cupial, S. Coward, U. Piterbarg, M. Wolczyk, A. Khan, E. Pignatelli,
270 L. Kuciński, L. Pinto, R. Fergus, et al. Balrog: Benchmarking agentic llm and vlm
271 reasoning on games. *arXiv preprint arXiv:2411.13543*, 2024.
- 272 [57] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Generative
273 agents: Interactive simulacra of human behavior. In *Proceedings of the 36th annual acm*
274 *symposium on user interface software and technology*, pages 1–22, 2023. 1
- 275 [58] J. S. Park, C. Q. Zou, A. Shaw, B. M. Hill, C. Cai, M. R. Morris, R. Willer, P. Liang,
276 and M. S. Bernstein. Generative agent simulations of 1,000 people. *arXiv preprint*
277 *arXiv:2411.10109*, 2024. 1
- 278 [59] A. Rees-Jones and D. Taubinsky. Taxing humans: Pitfalls of the mechanism design
279 approach and potential resolutions. *Tax Policy and the Economy*, 32(1):107–133, 2018.
- 280 [60] E. Saez. Using elasticities to derive optimal income tax rates. *The review of economic*
281 *studies*, 68(1):205–229, 2001. 1
- 282 [61] E. Saez and S. Stantcheva. Generalized social marginal welfare weights for optimal tax
283 theory. *American Economic Review*, 106(01):24–45, 2016. 1
- 284 [62] N. E. Sanders, A. Ulinich, and B. Schneier. Demonstrations of the potential of ai-based
285 political issue polling. *arXiv preprint arXiv:2307.04781*, 2023.

- 286 [63] P. Srivastava, S. Golechha, A. Deshpande, and A. Sharma. Nice: To optimize in-context
 287 examples or not? *arXiv preprint arXiv:2402.06733*, 2024.
- 288 [64] O. Topsakal and J. B. Harper. Benchmarking large language model (llm) performance
 289 for game playing via tic-tac-toe. *Electronics*, 13(8):1532, 2024.
- 290 [65] A. Trott, S. Srinivasa, D. van der Wal, S. Haneuse, and S. Zheng. Building a foundation
 291 for data-driven, interpretable, and robust policy design using the ai economist. *arXiv
 292 preprint arXiv:2108.02904*, 2021. 1
- 293 [66] U.S. Census Bureau. American community survey, 2023 public-use microdata sample
 294 (pums). <https://www.census.gov/programs-surveys/acs>, 2023. Accessed May 14,
 295 2025. 2, 3
- 296 [67] H. Von Stackelberg. *Market structure and equilibrium*. Springer Science & Business
 297 Media, 2010.
- 298 [68] Y. Wang, Q. Liu, Y. Bai, and C. Jin. Breaking the curse of multiagency: Provably
 299 efficient decentralized multi-agent rl with function approximation. In *The Thirty Sixth
 300 Annual Conference on Learning Theory*, pages 2793–2848. PMLR, 2023.
- 301 [69] R. Willis, Y. Du, J. Z. Leibo, and M. Luck. Will systems of llm agents cooperate: An
 302 investigation into a social dilemma. *arXiv preprint arXiv:2501.16173*, 2025.
- 303 [70] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen. Large language
 304 models as optimizers, 2024. URL <https://arxiv.org/abs/2309.03409>.
- 305 [71] J. C. Yang, M. Korecki, D. Dailisan, C. I. Hausladen, and D. Helbing. Llm voting:
 306 Human choices and ai collective decision making. *arXiv preprint arXiv:2402.01766*,
 307 2024.
- 308 [72] Z. Yang, Z. Zhang, Z. Zheng, Y. Jiang, Z. Gan, Z. Wang, Z. Ling, J. Chen, M. Ma,
 309 B. Dong, et al. Oasis: Open agents social interaction simulations on one million agents.
 310 *arXiv preprint arXiv:2411.11581*, 2024. 1
- 311 [73] W.-B. Zhang. A discrete heterogeneous-group economic growth model with endogenous
 312 leisure time. *Discrete Dynamics in Nature and Society*, 2009(1):670560, 2009.
- 313 [74] Y. Zhang, S. Mao, T. Ge, X. Wang, A. de Wynter, Y. Xia, W. Wu, T. Song, M. Lan,
 314 and F. Wei. Llm as a mastermind: A survey of strategic reasoning with large language
 315 models. *arXiv preprint arXiv:2404.01230*, 2024. 1
- 316 [75] S. Zheng, A. Trott, S. Srinivasa, N. Naik, M. Gruesbeck, D. C. Parkes, and R. Socher.
 317 The ai economist: Improving equality and productivity with ai-driven tax policies. *arXiv
 318 preprint arXiv:2004.13332*, 2020. 1
- 319 [76] S. Zheng, A. Trott, S. Srinivasa, D. C. Parkes, and R. Socher. The ai economist:
 320 Taxation policy design via two-level deep multiagent reinforcement learning. *Science
 321 advances*, 8(18):eabk2607, 2022. 1
- 322 [77] A. Zhou, K. Yan, M. Shlapentokh-Rothman, H. Wang, and Y.-X. Wang. Language agent
 323 tree search unifies reasoning acting and planning in language models. *arXiv preprint
 324 arXiv:2310.04406*, 2023.
- 325 [78] R. Zhou, S. S. Du, and B. Li. Reflect-rl: Two-player online rl fine-tuning for lms. *arXiv
 326 preprint arXiv:2402.12621*, 2024.