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Abstract

We present the LLM Economist, a novel framework that uses agent-based1

modeling to design and assess economic policies in strategic environments2

with hierarchical decision-making. At the lower level, bounded rational3

worker agents—instantiated as persona-conditioned prompts sampled from4

U.S. Census-calibrated income and demographic statistics—choose labor5

supply to maximize text-based utility functions learned in-context. At the6

upper level, a planner agent employs in-context reinforcement learning to7

propose piecewise-linear marginal tax schedules anchored to the current U.S.8

federal brackets. This construction endows economic simulacra with three9

capabilities requisite for credible fiscal experimentation: (i) optimization10

of heterogeneous utilities, (ii) principled generation of large, demographi-11

cally realistic agent populations, and (iii) mechanism design—the ultimate12

nudging problem—expressed entirely in natural language. Experiments with13

populations of up to one hundred interacting agents show that the planner14

converges near Stackelberg equilibria that improve aggregate social welfare15

relative to Saez solutions, while a periodic, persona-level voting procedure16

furthers these gains under decentralized governance. These results demon-17

strate that large language model-based agents can jointly model, simulate,18

and govern complex economic systems, providing a tractable test bed for19

policy evaluation at the societal scale to help build better civilizations.20

1 Introduction21

The rapidly expanding marketplace of autonomous language agents forms economic simu-22

lacra—synthetic societies whose allocation of effort and influence is governed by algorithmic23

code rather than legislation. As web-agents book tickets, draft briefs, and trade cryptocur-24

rencies, they adapt to digital incentives, creating complex economic ecosystems requiring25

governance to prevent early-mover exploitation.26

Recent advances demonstrate remarkable potential for coherent multi-agent dynamics. Gen-27

erative Agents [57, 58] sustain believable interactions with thousands of persona-conditioned28

agents, Project Sid [1] scales toward "AI civilization" benchmarks, EconAgent [39] reproduces29

macroeconomic indicators with striking fidelity, and OASIS [72] explores large population30

simulacra of social media. These developments suggest LLMs exhibit sophisticated strategic31

reasoning [74], making them compelling substrates for policy experimentation.32

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not
distribute.



Figure 1: LLM Economist Framework. Left: Population of persona-conditioned agents. Center:
Two-level economic simulacra. Right: Mechanism design via successive planner nudges.

In this work, we study designing tax mechanisms as a tractable and theoretically-grounded33

avenue for exploring governing agent societies. Classical optimal taxation faces two limitations34

in synthetic societies. First, solutions like the Saez formula [60, 61] assume fixed income35

elasticity, yet elasticity shifts dynamically with policy changes, making optimal rates moving36

targets requiring continuous recomputation. Second, human societies are heterogeneous and37

bounded rational [44, 50], while simulacra feature agents with text-specified motivations,38

requiring planners to reason over distributions of explicitly modeled personas.39

We address both gaps by reframing optimal taxation as a repeated Stackelberg game40

optimized through two-level in-context reinforcement learning (ICRL) [35, 53, 54]. Building41

on the AI Economist’s deep RL approach [65, 75, 76], we replace value-function learning42

with interpretable language-based reasoning. Worker agents maximize persona-conditioned43

utilities via natural-language context encoding biographies, while a planner proposes tax44

schedules anchored to U.S. federal brackets through pure in-context optimization.45

Our contributions: (i) Large population models [8] sampling Census-calibrated personas46

without manual utility engineering. (ii) In-context planners converging to Saez-level welfare47

through gradient-free optimization. (iii) Democratic turnover stabilizing outcomes and48

mitigating the Lucas critique [43] through synthetic counterfactuals.49

2 LLM Economist50

We model optimal taxation as a repeated Stackelberg game between a planner P and51

workers W = {W1, . . . ,WN }. Time is divided into daily steps t = 0, . . . , T − 1 and tax52

years of length K. Each worker i has latent skill si > 0 and chooses labor lit, yielding53

pre-tax income zi
t = silit. The planner selects marginal tax schedule τk at year start,54

giving post-tax income ẑi
t = zi

t − Tτk
(zi

t) +Rt where Rt is lump-sum rebate. Social welfare55

is SWF =
∑N

i=1 w(zi
t)ui(ẑi

t, l
i
t) with distributional weights w(zi

t) = 1/zi
t. A Stackelberg56

equilibrium satisfies: τ∗ ∈ arg maxτ E[SWF(l, τ)] and li∗(τ) ∈ arg maxli E[ui(ẑi, li)] for each57

worker.58

The LLM Economist realizes this Stackelberg game through language-based agents acting59

purely in-context, where state, history, and objectives are rendered as text while actions are60

JSON snippets parsed by the environment. Skills si are drawn from generalized-Beta fits61

to 2023 American Community Survey data [66]. Each worker receives a persona prompt62

encoding demographics and preferences—"You’re a 32-year-old entrepreneur... You believe63

lower taxes let you reinvest in your company..."—and uses bounded utility ubounded
i (ẑ, l) =64

ẑ1−η−1
1−η −ψlδ − (1 − si

t)ϕ where si
t ∈ {0, 1} is LLM-judged satisfaction and ϕ is dissatisfaction65

penalty. Workers observe (zi
t, ẑ

i
t, τ(zi

t), Rt, history) and return {"LABOR": X}.66

The planner observes aggregate statistics and proposes bracket shifts ∆τk ∈ [−20, 20]B via67

{"DELTA":[...]}. At each daily step t, the environment serializes joint state ot into prompt68

πt, following exploration-exploitation phases with broad search then convergence. Replay69

buffers maintain best state-action-welfare triples for token-level credit assignment across70

long horizons. Unlike the AI Economist’s value-function learning, this design eliminates71

task-specific reward shaping while exposing agents’ rationales, enabling interpretable policy72

optimization. This approach leverages LLMs’ ability to identify patterns in textual reward73
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(a) Tax-year length

Steps / yr Total steps %SWF∗

8 310 62.3
16 600 64.9
64 2 000 84.9

128 6 000 90.0
256 6 000 90.0

(b) Test-time search

Variant Expl.+Expl. No Explore No Exploit

%SWF∗ 84.9 77.9 63.0

Figure 2: In-context RL ablations. (a) Welfare saturates at K = 128. (b) Exploitation and
exploration are both critical.

(a) Pre-tax income. (b) Post-tax income. (c) Utility gap clos-
ing.

(d) Convergence in
120 steps.

(e) Persona heterogeneity. (f) Seven-bracket scenario. (g) Three-bracket scenario.

(h) Three-persona "tyranny." (i) 100-worker democracy.

Figure 3: Experimental results. (a-b) Income redistributes 15% downward. (c-d) Worker
utilities adapt and converge. (e) Heterogeneous persona responses. (f-g) Tax schedules approach
Saez optimum. (h-i) Democratic dynamics from tyranny to welfare-enhancing turnover.

histories—a key advantage when preferences shift and causal links between individual utilities,74

policies, and outcomes must remain transparent.75

3 Experiments76

We evaluate: (i) design choices for planner and worker optimization, (ii) tax policy perfor-77

mance versus baselines, and (iii) emergent voting dynamics.78

Setup: We use Llama-3.1-8B (though no discernable differences with other models, open-79

source and frontier, towards our hypotheses), N = 100 workers, T = 3 000 steps with tax80

years K = 128. Skills follow GB2 calibrated to ACS 2023 [66]. Workers choose [0, 100]81

hours/week; planners optimize seven brackets with lump-sum rebates.82

We compare against Saez (perturbed, intractable optimum) and U.S. Fed (2024 statutory83

rates).84
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3.1 Planner’s Social Welfare Optimization85

The planner-worker interaction in the LLM Economist requires succesful ablation of two86

design choices to reach stable Stackelberg equilibria: time-scale separation between planner87

updates and worker adaptation, and balanced exploration and exploitation over tax years.88

Table 2a demonstrates that very short tax years (K ≤ 16) stall below 65% of optimal welfare89

because workers lack time to adapt, while performance plateaus at K = 128 steps, capturing90

90% of the theoretical optimum. Meanwhile, Table 2b reveals that both exploration and91

exploitation are critical: LLM agents leverage their priors to reason about promising policies92

(exploitation) while requiring systematic search to discover optimal schedules (exploration),93

with exploitation being more impactful, but not sufficient. These results validate our94

hypothesis that in-context reinforcement learning can achieve near-optimal social welfare95

through careful design of temporal dynamics and test-time search.96

3.2 Workers’ Utility Optimization97

To test whether LLM workers optimize heterogeneous utilities under realistic income distribu-98

tions, we initialize skills using Generalized-Beta fitted to ACS 2023 microdata. Figure 3a-b99

show the learned policy redistributes 15% of workers to lower post-tax brackets while100

preserving aggregate labor. Figure 3c demonstrates bounded workers nearly close a 30k dis-101

satisfaction gap as the planner converges, while Figure 3e reveals persona-specific responses.102

These results validate that LLM workers coherently adapt labor choices under evolving tax103

incentives while maintaining realistic heterogeneity.104

3.3 Tax Policy Evaluation105

To test whether in-context reinforcement learning approach theoretically optimal policies, we106

compare against Saez baselines in two settings: bounded-utility workers (seven U.S. brackets)107

and isoelastic workers (three brackets). In the bounded case (Figure 3f), LLM Economist108

achieves +93% welfare versus U.S. baseline while approaching perturbed grid search Saez109

(+114%), with slightly less smooth schedules than the perturbed optimal. In the isoelastic110

case (Figure 3g), perturbed Saez outperforms but LLM Economist preserves labor supply111

through lower rates. The in-context RL planner achieves close to the Saez optimum without112

gradient information in a sample efficient manner, demonstrating that agent-based modeling113

approaches first-order optimal design—validating our hypothesis that LLMs can serve as114

effective mechanism designers.115

3.4 Voting Simulacra116

To test whether LLM agents reproduce political-economy phenomena, we introduce demo-117

cratic elections where agents elect planners by majority vote each tax year. Figure 3h shows118

classic "tyranny of masses" in a three-agent society: two workers exploit the minority without119

hard-coded rules. Figure 3i demonstrates that 100-agent leadership turnover enhances welfare120

through electoral exploration, sometimes outperforming static optimal taxation.121

4 Discussion122

This work introduces the LLM Economist, an in-context reinforcement learning framework123

that embeds a population of persona-conditioned agents and a tax planner in a two-tier124

Stackelberg game. Our results show that LLM agents can (i) recover the Mirrleesian trade-off125

between equity and efficiency, (ii) approach Saez-optimal schedules in heterogeneous settings126

where analytical formulas are unavailable, and (iii) reproduce political phenomena—such as127

majority exploitation and welfare-enhancing leader turnover—without any hand-crafted rules.128

Taken together, the experiments suggest that the LLM Economist can serve as tractable test129

beds for policy design long before real-world deployment, providing a bridge between modern130

generative AI and classical economic theory. While our approach assumes static skills and131

fixed population, and the framework could be misused to craft biased policies, it offers a132

controlled environment for exploring economic mechanisms before real-world deployment.133
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