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Abstract

We present the LLM FEconomist, a novel framework that uses agent-based
modeling to design and assess economic policies in strategic environments
with hierarchical decision-making. At the lower level, bounded rational
worker agents—instantiated as persona-conditioned prompts sampled from
U.S. Census-calibrated income and demographic statistics—choose labor
supply to maximize text-based utility functions learned in-context. At the
upper level, a planner agent employs in-context reinforcement learning to
propose piecewise-linear marginal tax schedules anchored to the current U.S.
federal brackets. This construction endows economic simulacra with three
capabilities requisite for credible fiscal experimentation: (i) optimization
of heterogeneous utilities, (ii) principled generation of large, demographi-
cally realistic agent populations, and (iii) mechanism design—the ultimate
nudging problem—expressed entirely in natural language. Experiments with
populations of up to one hundred interacting agents show that the planner
converges near Stackelberg equilibria that improve aggregate social welfare
relative to Saez solutions, while a periodic, persona-level voting procedure
furthers these gains under decentralized governance. These results demon-
strate that large language model-based agents can jointly model, simulate,
and govern complex economic systems, providing a tractable test bed for
policy evaluation at the societal scale to help build better civilizations.

1 Introduction

The rapidly expanding marketplace of autonomous language agents forms economic simu-
lacra—synthetic societies whose allocation of effort and influence is governed by algorithmic
code rather than legislation. As web-agents book tickets, draft briefs, and trade cryptocur-
rencies, they adapt to digital incentives, creating complex economic ecosystems requiring
governance to prevent early-mover exploitation.

Recent advances demonstrate remarkable potential for coherent multi-agent dynamics. Gen-
erative Agents [57, 58] sustain believable interactions with thousands of persona-conditioned
agents, Project Sid [T] scales toward "Al civilization" benchmarks, EconAgent [39] reproduces
macroeconomic indicators with striking fidelity, and OASIS [72] explores large population
simulacra of social media. These developments suggest LLMs exhibit sophisticated strategic
reasoning [74], making them compelling substrates for policy experimentation.
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Figure 1: LLM Economist Framework. Left: Population of persona-conditioned agents. Center:
Two-level economic simulacra. Right: Mechanism design via successive planner nudges.

In this work, we study designing tax mechanisms as a tractable and theoretically-grounded
avenue for exploring governing agent societies. Classical optimal taxation faces two limitations
in synthetic societies. First, solutions like the Saez formula [60] 6I] assume fixed income
elasticity, yet elasticity shifts dynamically with policy changes, making optimal rates moving
targets requiring continuous recomputation. Second, human societies are heterogeneous and
bounded rational [44], [50], while simulacra feature agents with text-specified motivations,
requiring planners to reason over distributions of explicitly modeled personas.

We address both gaps by reframing optimal taxation as a repeated Stackelberg game
optimized through two-level in-context reinforcement learning (ICRL) [35] 53] [54]. Building
on the AT Economist’s deep RL approach [65, [75] [76], we replace value-function learning
with interpretable language-based reasoning. Worker agents maximize persona-conditioned
utilities via natural-language context encoding biographies, while a planner proposes tax
schedules anchored to U.S. federal brackets through pure in-context optimization.

Our contributions: (i) Large population models [§] sampling Census-calibrated personas
without manual utility engineering. () In-context planners converging to Saez-level welfare
through gradient-free optimization. (%i) Democratic turnover stabilizing outcomes and
mitigating the Lucas critique [43] through synthetic counterfactuals.

2 LLM Economist

We model optimal taxation as a repeated Stackelberg game between a planner P and
workers W = {W,...,Wy}. Time is divided into daily steps t = 0,...,7 — 1 and tax
years of length K. Each worker i has latent skill s* > 0 and chooses labor [}, yielding
pre-tax income z{ = s'l{. The planner selects marginal tax schedule 7 at year start,
giving post-tax income 2} = 2} — T}, (2}) + R; where R; is lump-sum rebate. Social welfare
is SWF = YN w(zi)ui(,17) with distributional weights w(z{) = 1/zi. A Stackelberg
equilibrium satisfies: 7* € arg max, E[SWF(1,7)] and [**(7) € arg max;: E[u;(2%,1%)] for each
worker.

The LLM Economist realizes this Stackelberg game through language-based agents acting
purely in-contert, where state, history, and objectives are rendered as text while actions are
JSON snippets parsed by the environment. Skills s* are drawn from generalized-Beta fits
to 2023 American Community Survey data [66]. Each worker receives a persona prompt
encoding demographics and preferences— "You're a 32-year-old entrepreneur... You believe
lower tazes let you reinvest in your company..."—and uses bounded utility uPounded(z 1) =
21:?7_1 —l° — (1 — 5%)¢ where si € {0,1} is LLM-judged satisfaction and ¢ is dissatisfaction
penalty. Workers observe (z¢, 2{, 7(z}), Ry, history) and return {"LABOR": X}.

The planner observes aggregate statistics and proposes bracket shifts A7y, € [~20,20]7 via
{"DELTA": [...]}. At each daily step t, the environment serializes joint state o; into prompt
m, following exploration-exploitation phases with broad search then convergence. Replay
buffers maintain best state-action-welfare triples for token-level credit assignment across
long horizons. Unlike the AT Economist’s value-function learning, this design eliminates
task-specific reward shaping while exposing agents’ rationales, enabling interpretable policy
optimization. This approach leverages LLMs’ ability to identify patterns in textual reward
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(a) Tax-year length (b) Test-time search

Steps /yr  Total steps  %SWF* Variant  Expl.+Expl. = No Explore = No Exploit
8 310 62.3 JoSWF™ 84.9 77.9 63.0
16 600 64.9
64 2000 84.9
128 6000 90.0
256 6000 90.0

Figure 2: In-context RL ablations. (a) Welfare saturates at K = 128. (b) Exploitation and
exploration are both critical.
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(h) Three-persona "tyranny." (i) 100-worker democracy.

Figure 3: Experimental results. (a-b) Income redistributes 15% downward. (c-d) Worker
utilities adapt and converge. (e) Heterogeneous persona responses. (f-g) Tax schedules approach
Saez optimum. (h-i) Democratic dynamics from tyranny to welfare-enhancing turnover.

histories—a key advantage when preferences shift and causal links between individual utilities,
policies, and outcomes must remain transparent.

3 Experiments

We evaluate: (i) design choices for planner and worker optimization, (i) tax policy perfor-
mance versus baselines, and (%) emergent voting dynamics.

Setup: We use Llama-3.1-8B (though no discernable differences with other models, open-
source and frontier, towards our hypotheses), N = 100 workers, T = 3000 steps with tax
years K = 128. Skills follow GB2 calibrated to ACS 2023 [66]. Workers choose [0, 100]
hours/week; planners optimize seven brackets with lump-sum rebates.

We compare against Saez (perturbed, intractable optimum) and U.S. Fed (2024 statutory
rates).
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3.1 Planner’s Social Welfare Optimization

The planner-worker interaction in the LLM Economist requires succesful ablation of two
design choices to reach stable Stackelberg equilibria: time-scale separation between planner
updates and worker adaptation, and balanced exploration and exploitation over tax years.
Table [2a] demonstrates that very short tax years (K < 16) stall below 65% of optimal welfare
because workers lack time to adapt, while performance plateaus at K = 128 steps, capturing
90% of the theoretical optimum. Meanwhile, Table reveals that both exploration and
exploitation are critical: LLM agents leverage their priors to reason about promising policies
(exploitation) while requiring systematic search to discover optimal schedules (exploration),
with exploitation being more impactful, but not sufficient. These results validate our
hypothesis that in-context reinforcement learning can achieve near-optimal social welfare
through careful design of temporal dynamics and test-time search.

3.2 Workers’ Utility Optimization

To test whether LLM workers optimize heterogeneous utilities under realistic income distribu-
tions, we initialize skills using Generalized-Beta fitted to ACS 2023 microdata. Figure [3p-b
show the learned policy redistributes 15% of workers to lower post-tax brackets while
preserving aggregate labor. Figure [3¢ demonstrates bounded workers nearly close a 30k dis-
satisfaction gap as the planner converges, while Figure [3k reveals persona-specific responses.
These results validate that LLM workers coherently adapt labor choices under evolving tax
incentives while maintaining realistic heterogeneity.

3.3 Tax Policy Evaluation

To test whether in-context reinforcement learning approach theoretically optimal policies, we
compare against Saez baselines in two settings: bounded-utility workers (seven U.S. brackets)
and isoelastic workers (three brackets). In the bounded case (Figure ), LLM Economist
achieves +93% welfare versus U.S. baseline while approaching perturbed grid search Saez
(+114%), with slightly less smooth schedules than the perturbed optimal. In the isoelastic
case (Figure ), perturbed Saez outperforms but LLM Economist preserves labor supply
through lower rates. The in-context RL planner achieves close to the Saez optimum without
gradient information in a sample efficient manner, demonstrating that agent-based modeling
approaches first-order optimal design—validating our hypothesis that LLMs can serve as
effective mechanism designers.

3.4 Voting Simulacra

To test whether LLM agents reproduce political-economy phenomena, we introduce demo-
cratic elections where agents elect planners by majority vote each tax year. Figure [3h shows
classic "tyranny of masses"' in a three-agent society: two workers exploit the minority without
hard-coded rules. Figure|3j demonstrates that 100-agent leadership turnover enhances welfare
through electoral exploration, sometimes outperforming static optimal taxation.

4 Discussion

This work introduces the LLM Economist, an in-context reinforcement learning framework
that embeds a population of persona-conditioned agents and a tax planner in a two-tier
Stackelberg game. Our results show that LLM agents can (%) recover the Mirrleesian trade-off
between equity and efficiency, (i) approach Saez-optimal schedules in heterogeneous settings
where analytical formulas are unavailable, and (%ii) reproduce political phenomena—such as
majority exploitation and welfare-enhancing leader turnover—without any hand-crafted rules.
Taken together, the experiments suggest that the LLM Economist can serve as tractable test
beds for policy design long before real-world deployment, providing a bridge between modern
generative Al and classical economic theory. While our approach assumes static skills and
fixed population, and the framework could be misused to craft biased policies, it offers a
controlled environment for exploring economic mechanisms before real-world deployment.
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