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Abstract
We study the smoothed online quadratic opti-
mization (SOQO) problem where, at each round
t, a player plays an action xt in response to a
quadratic hitting cost and an additional squared
ℓ2-norm cost for switching actions. This problem
class has strong connections to a wide range of
application domains including smart grid manage-
ment, adaptive control, and data center manage-
ment, where switching-efficient algorithms are
highly sought after. We study the SOQO problem
in both adversarial and stochastic settings, and in
this process, perform the first stochastic analysis
of this class of problems. We provide the online
optimal algorithm when the minimizers of the hit-
ting cost function evolve as a general stochastic
process, which, for the case of martingale pro-
cess, takes the form of a distribution-agnostic dy-
namic interpolation algorithm that we call Lazy
Adaptive Interpolation (LAI). Next, we present
the stochastic-adversarial trade-off by proving an
Ω(T ) expected regret for the adversarial optimal
algorithm in the literature (ROBD) with respect
to LAI and, a sub-optimal competitive ratio for
LAI in the adversarial setting. Finally, we present
a best-of-both-worlds algorithm that obtains a
robust adversarial performance while simultane-
ously achieving a near-optimal stochastic perfor-
mance.

1 Introduction
We study a class of smoothed online quadratic optimization
(SOQO) problems in which a player has to make an online
decision xt ∈ Rd, in response to a quadratic hitting cost
ft(x) =

1
2 (x− vt)

TA(x− vt) and ℓ2-norm switching cost,
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i.e., c(xt, xt−1) =
1
2∥xt−xt−1∥22. We consider the problem

over a finite horizon T , where the sequence of minimizers
{vt}Tt=1 can be adversarial or stochastic and is revealed in
an online fashion to the player.

In the last decade, the online optimization problem with
quadratic costs has received significant attention due to its
applications in several domains, including smart grid cost
management (Kim & Giannakis, 2017; Wang et al., 2014;
Narayanaswamy et al., 2012; Badiei et al., 2015; Mei et al.,
2011; Wang & Shahidehpour, 1993; dos Santos Coelho &
Lee, 2008), adaptive control (Shin et al., 2023; Li et al.,
2022; 2021; Goel & Wierman, 2019; Abbasi-Yadkori &
Szepesvári, 2011; Tang et al., 2021; Lale et al., 2020; Cohen
et al., 2019; Dean et al., 2018; Goel et al., 2017; Li et al.,
2018), data center management (Lin et al., 2011; 2012; Lu
et al., 2013b), electrical vehicle charging (Kim et al., 2015;
Gan et al., 2013), video transmission (Joseph & de Veciana,
2012), power systems (Narayanaswamy et al., 2012; Lu
et al., 2013a; Kim & Giannakis, 2017), and chip thermal
management (Zanini et al., 2009; 2010).

However, since its introduction, the smoothed online opti-
mization problem has been studied primarily from an adver-
sarial point of view (Andrew et al., 2013; Bansal et al., 2015;
Chen et al., 2015; Antoniadis et al., 2016; Chen et al., 2016;
2018; Antonios & Schewior, 2018; Goel et al., 2019; Zhang
et al., 2021; 2022; Rutten et al., 2023; Christianson et al.,
2022; 2023). Attempts to incorporate noise in the related
domain of LQR control consider very specific distributions
and dynamics of the system (Chen et al., 2015; 2016), most
of which cannot be translated to SOQO. Consequently, the
existing algorithms in the online optimization community
are overly pessimistic for situations that may have more
structure and potentially a stochastic behavior.

In related domains, such as scheduling, stochastic modeling
has been used to capture known data patterns, and algo-
rithms can then be designed to perform well for these known
models (Koutsopoulos & Tassiulas, 2011; Urgaonkar et al.,
2011; Jennings et al., 1996; Gandhi et al., 2010; Joseph &
de Veciana, 2012). In contrast, adversarially designed algo-
rithms must safeguard against arbitrary inputs and thus can-
not exploit the inherent structures within the environment.
This trade-off between average-case and worst-case perfor-
mance is long-standing in the algorithms literature (Sriskan-
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darajah & Sethi, 1989; Matsuo, 1990; Kuhn et al., 2003;
Robey et al., 2022).

In the case of SOQO, the design of algorithms for the case
of stochastic hitting cost functions is unexplored, with this
work being the first to address it. Since much of the litera-
ture in smoothed online optimization focuses on worst-case
performance, the algorithms and analysis methods are not
geared to exploit the structure which is now present in a
stochastic environment. This motivates us to address the
stochastic SOQO problem first in the quadratic setting, an-
swering the following question:

“Is there a simple characterization of a near-
optimal policy for stochastic SOQO? How do
existing policies, designed primarily for the ad-
versarial setting, compare to this (near-)optimal
policy?”

Tailoring to stochastic setting may lead to lack robustness
against adversarial input. This represents the other side of
the long-standing trade-off between optimizing average-case
and worst-case performance, and motivates us to answer the
second foundational question for SOQO:

“Is there an algorithm for SOQO that achieves
near-optimal performance simultaneously in
stochastic and adversarial settings?”

Such best-of-both-worlds algorithms are akin to the seminal
work by Bubeck and Slivkins (Bubeck & Slivkins, 2012),
which answers the question affirmatively in the multi-arm
bandit setting. Best-of-both-worlds algorithms are highly
sought after in the algorithms literature; however, they are
also rare, and there are key characteristics distinguishing the
SOQO framework from the multi-arm bandits’ framework
of (Bubeck & Slivkins, 2012), e.g., the unbounded contin-
uous action space and the dynamic optimal performance
benchmark (as opposed to a focus on static regret), that
make it questionable whether such a best-of-both-worlds
algorithm exists for SOQO.

Contributions. This paper provides answers to both of the
questions highlighted above. Specifically, the contributions
of this paper are four-fold:

(a) Characterization of a stochastic online-optimal algo-
rithm: We start by considering the SOQO problem in the
setting when the sequence of minimizers {vt}t (of the hit-
ting costs {ft}t) evolves as a stochastic process. We ana-
lyze the optimization problem through the lens of dynamic
programming and obtain a closed form solution for the on-
line optimal algorithm (Theorem 3.2). In particular, when
{vt}t forms a martingale, our optimal solution translates to

a distribution-agnostic algorithm, which we call the Lazy
Adaptive Interpolation (LAI, Algorithm 1). We further char-
acterize its total cost, observe it to be O(T ) (which is op-
timal), and to be insensitive to the distribution beyond the
variance (see Theorem 3.1). Notably, this algorithm is dy-
namic in nature and, as expected, has a much better per-
formance than any static hindsight-optimal decision (see
Theorem 3.4), which exhibits a Θ

(
T 2
)

cost.

(b) Stochastic suboptimality of the adversarial optimal:
When adversarial inputs are considered, the performance is
measured in terms of the competitive ratio, the worst-case
ratio of the cost of an algorithm to the cost of the hindsight
optimal sequence of decisions. In (Goel et al., 2019), the
authors propose the ROBD algorithm and show that it has
an optimal competitive ratio among all online algorithms.
When the inputs are martingale, however, we show that the
ROBD algorithm admits a linear regret (in the time horizon
T ) with respect to the stochastic optimal cost, i.e., the cost
of the aforementioned LAI algorithm (see Theorem 3.5).

(c) Adversarial analysis of stochastic optimal: To under-
stand the robustness of the LAI algorithm against adversarial
input, we perform its competitive analysis and find it po-
tentially suboptimal (see Theorem 3.8). En route, we also
establish competitive ratio bounds for a much wider class
of memoryless algorithms, which might be of independent
interest. The novelty of our analysis framework lies in its
applicability to algorithms with decision rules that change
over time (see Theorem 3.10).

(d) Best-of-both-worlds algorithm design: Our final con-
tribution focuses on the design of a best-of-both-worlds
algorithm for SOQO. We present a novel hyperparametric al-
gorithm called LAI(γ) (Algorithm 2) with γ ∈ [0, 1], which
delivers near-optimal performance (see Corollary 3.12) in
both stochastic and adversarial environments without lever-
aging prior knowledge about the nature of the environment.
Specifically, the hyperparameter γ ∈ [0, 1] determines the
algorithm’s position in the trade-off between adversarial
and martingale settings. For any choice of γ ∈ [0, 1], the
algorithm guarantees (i) a finite regret (that depends on γ)
with respect to the online-optimal LAI algorithm, and (ii)
a finite competitive ratio (that depends on γ) very close to
that of adversarial-optimal ROBD algorithm (see Theorem
3.11).

Analytical Contributions: Analytical tools in the literature
of smoothed online optimization focus solely on optimizing
over the current cost function, with no regard to the future
evolution of the minimizer. Further, works like (Lin et al.,
2021) argue that finding the optimal action sequence and
cost-to-go functions is near-impossible for general cost func-
tions. In light of these, and to obtain insight into stochastic
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smoothed online quadratic optimization, we make a number
of contributions on the methodological front.

In particular, at the core of our analysis, we characterize the
online optimal algorithm in the stochastic setting by lever-
aging the dynamic programming (DP) machinery. Although
the DP framework offers a powerful set of tools, a fundamen-
tal difficulty lies in understanding the structure of the value
function. This is compounded by the fact that our setting in-
volves finite horizon and unbounded continuous state space
and action space. The horizon being finite makes the value
function’s structure time-variant, decoding which was one
of the major hurdles. The infinite state/action space ruled out
tabular methods and demanded a closed form for the time-
variant value function. We overcame these by inductively
identifying structure in the value function (see Proposition
B.2 and Theorem C.1), enabling us to express the optimal
algorithm in a simple closed form. Beyond our stochastic
analysis, in the adversarial setting, the non-stationary nature
of our algorithms necessitated an extension of the existing
adversarial analysis methods to encompass a broader range
of algorithms, allowing tighter analysis than that provided
by existing methods. Lastly, the design of LAI(γ) required
careful weaving of properties of both stochastic optimal and
adversarial optimal, leading to a smooth transition between
the two worlds.

2 Model and Preliminaries
We study smoothed online quadratic optimization (SOQO)
and consider an action space Rd, d ≥ 1, over a finite time
horizon of T rounds. The hitting cost for round t is given
by ft(x) = 1

2 (x − vt)
TA(x − vt), where A represents a

known, positive definite d×d matrix, denoted as A ≻ 0, and
vt’s are revealed in an online fashion to the decision maker.
Additionally, there is a switching cost of 1

2∥xt − xt−1∥22
as the player transitions between actions. Therefore, the
player aims to minimize

∑T
t=1

(
ft(xt) +

1
2∥xt − xt−1∥22

)
in an online fashion. Our work explores SOQO in both
adversarial and stochastic environments.

2.1 Adversarial SOQO

Prior work on smoothed online optimization has considered
an adversarial setting in which algorithms seek to ensure a
performance guarantee against any sequence of minimizers
{vt}Tt=1. Performance in this context is assessed most com-
monly using the competitive ratio, defined for an online
algorithm ALG as the worst-case ratio of the total cost of
ALG and that of the offline optimal sequence of decisions.
For any finite time horizon {1, . . . , T}, we denote the cost
of ALG and the hindsight optimal solution by CostALG[1, T ]
and CostOPT[1, T ], respectively. Within the class of hitting
and switching costs considered in this work, recent work
in (Goel et al., 2019) has identified an algorithm, ROBD,

which maintains the optimal competitive ratio possible by
any online algorithm. ROBD is defined as follows.

Definition 2.1. The action of ROBD in round t is xt =
argminx ft(x) +

µ1

2 ∥x− xt−1∥22 +
µ2

2 ∥x− vt∥22 , where
µ1 ∈ [0, 1] and µ2 > 0 are hyperparameters. Op-
timizing over µ1 and µ2, the ROBD algorithm in our
setting is xt = CROBDxt−1 + (I − CROBD)vt where
CROBD =

(
A+ I + µ∗

2

(
λA
min

)
I
)−1

, with µ∗
2

(
λA
min

)
=

λA
min

2

(√
1 + 4

λA
min

− 1
)

and λA
min denoting the smallest

eigenvalue of A.

The competitive ratio of ROBD, as defined above, is given
by 1 + 1

2

(√
1 + 4

λA
min

− 1
)

(Goel et al., 2019). A notable

property of this competitive ratio used in this paper is its
1/
√
λA
min growth as λA

min → 0, which has been shown to
be optimal in (Goel et al., 2019).
Remark 2.2. The limiting behavior of the competitive ratio
under λA

min → 0 (or λA
i → 0 ∀ i) is the focus of smoothed

online optimization literature (Bansal et al., 2015; Anto-
niadis et al., 2016; Antonios & Schewior, 2018; Chen et al.,
2018; Goel et al., 2019; Goel & Wierman, 2019; Zhang
et al., 2021; Christianson et al., 2022; 2023; Rutten et al.,
2023). Here, hitting costs are very low compared to switch-
ing costs which renders follow-the-minimizer algorithm as
sub-optimal, demanding search for non-trivial algorithms.

2.2 Stochastic SOQO

We introduce and, for the first time, study a stochastic ver-
sion of SOQO. The stochasticity in the problem arises from
the sequence of minimizers {vt}Tt=1 being a stochastic pro-
cess, with Ft = σ ({vs}ts=1), t = 1, . . . , T , being the natu-
ral filtration generated by {vs}ts=1. In this work, we employ
the dynamic programming (DP) machinery in the stochas-
tic context, introduced by Bellman (Bellman, 1966), as a
method to find the optimal online action sequence with
respect to the expected total cost over the horizon. Here,
the optimal online action at round t, xDP

t , is given as the
minimizer of

min
x∈Rd

{
ft(x)+c

(
x, xDP

t−1

)
+E [Vt+1(x, vt+1)|Ft]

}
, (2.1)

where Vt

(
xDP
t−1, vt

)
, called the value function, is the min-

imum online expected current and future cost (or cost-to-
go) at round t. The algorithm derived from solving the
aforementioned problem represents the online optimal. It
is worthwhile to note that the optimal online algorithm is
usually characterized implicitly using the above-mentioned
DP approach. However, in most cases, it is non-trivial and
sometimes impossible to formulate a simple and explicit al-
gorithm that is online-optimal (Lin et al., 2021). We achieve
this is Section 3.1.
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We put special focus on the case where the sequence of
minimizers {vt}Tt=1 forms a martingale in Rd, i.e,

E[vs|Ft] = vt ∀ s ≥ t. (2.2)

In this case, we will design an algorithm that can simultane-
ously achieve near-optimal performance both in the stochas-
tic (in terms of regret with respect to the online optimal algo-
rithm) and in the adversarial case – thus, furnishing a best-of-
both worlds performance. The increments to the minimizers,
that is, vt − vt−1, are considered to have a finite covariance,
denoted as Σt. With a slight abuse of notation, we define the
‘variance’ of vt − vt−1 as σ2

t := E∥vt − vt−1∥22 = tr(Σt).

For the stochastic setting, we use the dynamic online op-
timal algorithm as the performance benchmark instead of
the static hindsight optimal commonly used in many online
optimization works. This is because the latter exhibits a
poor performance in the current setting, with a total cost
that is an order of magnitude higher than that of the online
optimal (Theorem 3.4). Such a benchmark is not uncommon
in the literature, as evidenced by (Vera et al., 2021). We
thus, consider the (dynamic) regret as the performance
metric in the stochastic case: For any online algorithm ALG
define

RegretALG[1, T ] := E[CostALG[1, T ]]− E[Cost∗[1, T ]],
(2.3)

where E[Cost∗[1, T ]] is the total cost of the online optimal
algorithm in the stochastic setting.
Remark 2.3. The stochastic and the adversarial settings
have different metrics due to the different behaviors of the
environments. Although an additive gap is preferred over
competitive ratio, the worst-case additive gap to OPT in
the adversarial setting is unbounded for finite T , unlike the
stochastic environment. This concept of different metrics for
separate assumptions already exists in the literature (Zhang
et al., 2021; Chen et al., 2018; Goel et al., 2019).

3 Algorithms and Main Results
We now present our main contributions, which include a
characterization of an online optimal stochastic SOQO algo-
rithm and an analysis of its performance in both stochastic
and adversarial settings, an analysis of an optimal adver-
sarial SOQO algorithm (ROBD) in the martingale setting,
and the design and analysis of a best-of-both-worlds algo-
rithm that is near-optimal in both martingale and adversarial
settings.

3.1 Optimal Stochastic SOQO

The optimal online algorithm in the stochastic setting (2.2)
can be characterized using the dynamic programming (DP)
machinery (2.1) discussed in the preliminaries. Our primary

Algorithm 1 Lazy Adaptive Interpolation
Input: A ≻ 0, b ∈ Rd, T
Initialize: {Ct}Tt=1 such that C−1

t = 2I +A−Ct+1 ∀ t ∈
{1, . . . , T−1} and CT = (I+A)−1

for t = 1, 2, . . . , T do
xLAI
t ← Ctx

LAI
t−1 + (I − Ct)vt

end for

contribution lies in simplifying the formulation of the opti-
mal action. The simple form we obtain is a departure from
the complexity typically associated with the underlying DP
methodology.

The online optimal action, as described by Algorithm 1, is
an interpolation between vt and the previous action. The
crux of the algorithm lies in the recursion followed by the
matrix sequence {Ct}t, that is, C−1

t = 2I + A − Ct+1,
obtained by solving the DP problem in the SOQO context.
The significance of this recursion lies in its connection to
(near-)optimal stochastic performance for the SOQO setting
we consider. Our first result states the optimality of LAI and
provides a closed form characterization of its optimal cost.

Theorem 3.1. Lazy Adaptive Interpolation LAI is online
optimal in the stochastic setting (2.2) with total cost

E[CostLAI[1, T ]]

=

T∑
t=1

1

2
E
[
(vt − vt−1)

T (I − Ct)(vt − vt−1)
]

≤
T∑

t=1

1

2
E
[
(vt − vt−1)

T (I − CL)(vt − vt−1)
]

where CL = A+2I−
√
A2+4A

2 and v0 = x0.

Notice that the optimal cost in the martingale setting, de-
scribed above, grows with the horizon as O(T ).

The fact that {Ct}t depends solely on A and the horizon T
unveils an unexpected aspect of the optimal online action:
its insensitivity to the specifics of the stochastic environment.
The proof of 3.1 is presented in detail in Appendix B.1.

For the martingale setting, we analyze the complete value
function to extract its closed form expression. This helps us
characterize both the optimal algorithm and its expected cost.
Looking deeper into the derivative of the value function, we
get the following online optimal algorithm:

Theorem 3.2. For the general case where {vt}Tt=1 is any
stochastic process, the optimal action at round t is given by

xt = Ctxt−1 + (I − Ct)vt

+

T∑
s=t+1

(
s−1∏
q=t

Cq

)
(I − Cs)E[vs − vs−1|Ft]
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where {Ct}Tt=1 are the coefficients defined in LAI.

The proof is presented in Appendix C. The most important
aspect is the derivative of the value function, which takes a
simple yet useful form, stated in Theorem C.1, which result
holds for general convex hitting costs and switching costs.

The optimality claims in Theorems 3.2 and 3.1 are agnostic
to distributions (beyond the martingale structure for the
latter). This implies that the optimality is robust to two
extreme stochastic scenarios: (i) distribution shifts and, (ii)
heavy tails (subject to finite variance).
Remark 3.3. Note that the LAI algorithm is the unique
online-optimal algorithm in this setting. This is because
any online-optimal action has to satisfy the value function
expression at every round (Bellman, 1954), which has a
unique solution due to its quadratic structure.

Within the online optimization literature, it is common prac-
tice to employ the optimal static action in hindsight as a
benchmark to evaluate online algorithms. However, the
following result illustrates that such a benchmark is not
appropriate within our framework. This highlights the ne-
cessity to design an algorithm that adapts dynamically in
time, in order to obtain good performance guarantees.

Theorem 3.4. Consider the stochastic setting (2.2) and
ft(x) = 1

2 ∥x− vt∥22 with the class of static algorithms
where the action is x ∈ Rd for all rounds. When the in-
crements to the minimizers, that is, {vt − vt−1}t, have the
same variance σ2, the cost of such an algorithm, denoted
by Costx[1, T ], satisfies

E
[
inf
x

Costx[1, T ]
]
= Θ

(
T 2
)

(3.1)

Theorem 3.4 is proved in Appendix D.1. This result has two
significant implications. First, in contrast with Theorem 3.1,
it highlights the poor performance of the entire class of static
algorithms in the stochastic SOQO framework. Second,
it emphasizes the need for a dynamic benchmark when
evaluating online algorithms; thereby leading us to use LAI
as the benchmark in this work.

3.2 Stochastic Analysis of ROBD and Fixed
Interpolation Algorithms

Having characterized the stochastic optimal algorithm, our
attention shifts to analyzing the performance of the adver-
sarial optimal algorithm, ROBD, in the martingale setting.
As previously highlighted, a common concern is that the
performance of adversarial algorithms may potentially be
sub-par in stochastic settings. The following result demon-
strates that ROBD indeed has markedly poorer performance
than the stochastic optimal algorithm LAI in the stochastic
setting.

Theorem 3.5. Consider the stochastic setting (2.2). Addi-
tionally, assume that the increments (vt − vt−1) have the
same covariance matrix Σ. Then for any A ̸= λI (which
occurs for d ≥ 2), the regret of ROBD is lower bounded as

RegretROBD[1, T ] ={
Ω(T ) if A and Σ do NOT have same eigenvectors
Ω(T ) otherwise if (A− λA

minI)Σ ̸= 0d×d

The most important takeaway here is the large class of co-
variance matrices for which the above negative result holds,
revealing that ROBD has linear regret even in very simple
stochastic settings. To induce such regret for ROBD, all that
is needed is positive variance along one of the eigenvectors
of A that does not correspond to the minimum eigenvalue.
The primary factor that causes ROBD to have linear regret
is the wide gap between the matrix CROBD and the matrix
sequence of LAI, that is, {Ct}Tt=1. In fact, this problem
persists in a large class of algorithms, of which ROBD is a
part.

Definition 3.6. Consider a symmetric matrix C with the
same set of eigenvectors as A such that C ≺ I . The class of
Fixed Interpolation (FI) algorithms makes decisions at time
t according to xt = Cxt−1 + (I − C)vt, ∀ t.

It is straightforward to see that ROBD is an FI algorithm, ow-
ing to CROBD ≺ I and having the same set of eigenvectors as
A. Although FI algorithms feature simplicity of implementa-
tion, the following result demonstrates their poor stochastic
performance and, consequently, the linear regret of ROBD.

Theorem 3.7. Consider the stochastic setting (2.2). Ad-
ditionally, assume the increments (vt − vt−1) have the
same covariance matrix Σ. Then for any C ̸= CL =
A+2I−

√
A2+4A

2 ,

RegretFI[1, T ] ={
Ω(T ) if A and Σ do NOT have same eigenvectors
Ω(T ) otherwise if (C − CL)Σ ̸= 0d×d

Here, the importance of the recursion followed by {Ct}Tt=1,
in the LAI algorithm, is highlighted in the context of fixed
interpolation algorithms. Unless the matrix C is CL, one
can show that a “non-vanishing gap” exists between C and
{Ct}Tt=1, which becomes the driving factor for the linear
regret. We present the proof of the above theorem along with
the exact expression of the lower bound, which quantifies
the factors responsible for the linear regret, in Theorem
B.5 in Section B.2. Note that the matrix CL, in fact, has
a vanishing gap to {Ct}Tt=1 and we revisit this important
property in upcoming subsections.
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3.3 Adversarial Analysis of Lazy Adaptive
Interpolation Algorithms

We now present the other half of the contrast between the
stochastic optimal and adversarially optimal algorithms.
Specifically, in this section, we bound the performance of
the stochastic optimal policy LAI in the adversarial setting.
Theorem 3.8. In the adversarial setting, the competitive
ratio of the LAI algorithm for hitting cost ft(x) = 1

2 (x −
vt)

TA(x − vt) and switching cost c(xt, xt−1) = 1
2∥xt −

xt−1∥22 satisfies CRLAI ≤ 1 + 1
λA
min

.

The above theorem is proved in Appendix E.1. Contrasting
the adversarial performance of LAI with that of ROBD, the
cost ratio between Lazy Adaptive Interpolation and ROBD
can become unbounded as λA

min shrinks, in the following
manner

CostLAI[1, T ]

CostROBD[1, T ]
≤

1 + 1
λA
min

1 + 1
2

(√
1 + 4

λA
min

− 1
)

Although the aforementioned observation serves as an up-
per bound, we note that the suboptimal performance of LAI
relative to ROBD is further evident in our numerical experi-
ments. The sub-optimality of LAI can be primarily attributed
to the fact that it relies only on the matrix CT , which further
dictates the entire matrix sequence {Ct}Tt=1 of LAI.

Note that the uniqueness of the online optimal algorithm
establishes that any algorithm aiming for optimality in the
stochastic setting behaves poorly in the adversarial setting.

We analyze the LAI algorithm in the adversarial context by
developing a framework that can furnish adversarial guar-
antees for a large of class of static and dynamic algorithms
within a broader family of cost functions. In that context,
we briefly introduce some terminology associated with this
framework, frequently encountered in the convex optimiza-
tion literature.
Definition 3.9. The Bregman divergence between two vec-
tors in Rd, y and x, with respect to h(·). is defined as
Dh(y||x) := h(y)− h(x)− ⟨∇h(x), y − x⟩. The function
h(x) is α-strongly convex and β-smooth if and only if

α

2
∥y − x∥22 ≤ Dh(y||x) ≤

β

2
∥y − x∥22 ∀ y, x (3.2)

We now present a bound on the competitive ratio of a general
set of policies, including LAI, for m-strongly convex hitting
costs ft(x) and switching costs as Dh(xt||xt−1), where h(·)
is α-strongly convex and β-smooth.
Theorem 3.10. Any online algorithm ALG that can be ex-
pressed in the following form, where gt(·) is α′

t−strongly
convex and β′

t−smooth for 0 ≤ α′
t ≤ βt,

xt = argmin
x

ft(x) +Dh(x||xt−1) +Dgt(x||vt) ∀ t.

Algorithm 2 Lazy Adaptive Interpolation (γ)

Input: A (= PDAP
T ), where DA is a diagonal matrix,

γ ∈ [0, 1]

Initialize: λ̃T
i =

(
1 + λA

i +
λA
i

2

((
1 + 4

λA
i

) γ
2 − 1

))−1

and D̃t = diag
(
λ̃t
1, . . . , λ̃

t
d

)
. Define C̃T = PD̃TP

T

and C̃−1
t = 2I + A − C̃t+1 ∀ t ∈ {1, . . . , T −

1}
for t = 1, 2, . . . , T do
xt ← C̃txt−1 + (I − C̃t)vt

end for

has a competitive ratio in the adversarial setting upper-
bounded as

CRALG ≤ 1 + max

{
maxt β

′
t

m
,

β2/α

mint α′
t−1 +m

}
The significance of this result lies in its applicability to
a broad spectrum of algorithms, all while preserving the
optimal competitive ratio (Goel et al., 2019) for squared
switching costs, that is, c(xt, xt−1) =

1
2 ∥xt − xt−1∥22. The

proof, presented in Section B.6, follows a potential function
technique, a popular approach in the adversarial online algo-
rithms literature. The cornerstone of the proof is a potential
function that is tailored to the algorithm considered here,
yielding a competitive ratio that is specific to the {gt(·)}t.

3.4 A Near-Optimal Algorithm for Stochastic and
Adversarial SOQO

In the previous two subsections, we demonstrated the short-
comings of the adversarial optimal algorithm in stochastic
settings and the sub-optimal performance of the stochastic
optimal algorithm in adversarial environments. Our aim
now is to design an algorithm that has adversarial perfor-
mance similar to that of ROBD without sacrificing stochastic
performance.

Our proposed algorithm builds on LAI, and is presented
in Algorithm 2. LAI(γ)’s design incorporates a parame-
ter γ, such that when γ = 0, it behaves as Lazy Adaptive
Interpolation, and when γ = 1, it becomes a fixed inter-
polation algorithm with C = CL, which achieves a near-
optimal competitive ratio. The expression in C̃t, specifically
λA
i

2

((
1 + 4

λA
i

) γ
2 − 1

)
, is chosen to replicate the structure

of ROBD, that is, λA
min

2

((
1 + 4

λA
min

) 1
2 − 1

)
, while being

close to LAI.

Our choice of C̃t is guided by two key observations from
previous subsections. First, we recognize the significance
of the recursion in LAI’s matrix sequence, which, as we will
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see, is instrumental in achieving near-optimal stochastic per-
formance. Second, we take into account the dependence of
ROBD on λA

min in Definition 2.1, and its effect on adversarial
performance.

Our main result below characterizes LAI(γ)’s performance
in both adversarial and stochastic settings across the entire
spectrum of γ values.

Theorem 3.11. The following two results hold for LAI(γ)
in the stochastic and adversarial settings:

(i) In the stochastic setting (2.2) with increments having
identical covariance Σ, LAI(γ) has constant regret
with respect to LAI where σ2 = tr(Σ).

RegretLAI(γ)[1, T ] ≤
σ2

4


(
1 + 4

λA
min

) γ
2 − 1

λA
min + 2

 .

(ii) In the adversarial setting, LAI(γ)’s competitive ratio,
CRLAI(γ), is upper bounded by

1 + max

{
1

2

(√
κ(A)2 +

4κ(A)

λA
min

− κ(A)

)
,

2

λA
min

((
1 +

4

λA
min

) γ
2

+ 1

)−1}

where κ(A) is the condition number of A.

The guarantee on adversarial performance, proved in Ap-
pendix B.7, results from this specific choice of C̃T , coupled
with the competitive analysis framework discussed in Theo-
rem 3.10. The proof of stochastic performance leverages the
structure of the recursion C̃−1

t = 2I + A− C̃t+1 to show
constant regret for any interpolation algorithm satisfying it.
We show this in detail in Appendix B.4.

Recall the importance of the case of λA
i ≪ 1 discussed in

Remark 2.2. We study CRLAI(γ) in this regime and contrast it
with the adversarial optimal ROBD (in terms of dependence
of the competitive ratio on λA

i ). Below, we present our
best-of-both-worlds result, with the proof in Appendix B.7.

Corollary 3.12. For the λA
max ≪ 1 regime in the adver-

sarial setting, the LAI(γ) algorithm with γ = 1 achieves a
competitive ratio of

CRLAI(1) ≤ 1 +

√
κ(A)

λA
min

while simultaneously achieving a constant regret in the
stochastic setting (2.2).

Comparing the above result with ROBD’s competitive ra-
tio of O(1/

√
λA
min) in the λA

min ≪ 1 regime highlights
that LAI(1) achieves a near-optimal competitive ratio in the
adversarial setting, for well-behaved hitting costs, while
simultaneously having near-optimal performance in the mar-
tingale setting.

4 Numerical Experiments
To further explore SOQO in stochastic and adversarial set-
tings, we conduct empirical experiments to evaluate the
performance of our algorithms in a range of environments.
Our experiments fall into two main categories: first, purely
stochastic experiments where we provide empirical evidence
for two primary claims – the inferior performance of ROBD
in comparison to LAI(γ) and LAI, and the robustness of
our algorithms to distribution shifts and variations in tail
behavior (light or heavy). Second, we delve into mixed
adversarial-stochastic experiments that combine elements
of both adversarial and stochastic scenarios, examining how
our algorithms perform in this hybrid setting. Although we
offer a summarized overview of our experimental setup here,
detailed procedures can be found in Appendix G.

In all of our experiments, we maintain a consistent action
space R10 and employ the matrix A with eigenvalues se-
lected from one of three sequences:

{
0.3i

}9
i=0

,
{
0.45i

}9
i=0

,

or
{
0.5i

}9
i=0

. The sequence of minimizers, denoted {vt}t,
is adjusted according to the specific type of experiment
under consideration. In both stochastic and adversarial en-
vironments, we compare the ROBD algorithm to the LAI(γ)
algorithm with γ = 1. The specific value of γ is chosen
to emphasize that even the adversarial extreme of LAI(γ)
demonstrates exceptional stochastic performance.

4.1 Experiments in purely stochastic environments

Our stochastic experiments are categorized into three dis-
tinct groups. The first category encompasses light tail dis-
tributions, featuring five zero-mean distributions: uniform,
normal, Laplace, logistic, and Gumbel. In this particular ex-
periment, we introduce a new distribution every T/5 rounds,
underscoring the robustness of our results to distribution
shifts. The following two categories focus on heavy-tail dis-
tributions, specifically log-normal and Pareto distributions.
Across all these experiments, the minimizer sequence ad-
heres to a martingale structure, where the increments exhibit
uniform variance and are drawn from the respective distribu-
tion. Our analysis involves plotting the expected total regret
(relative to LAI) for both

{
0.3i

}9
i=0

and
{
0.5i

}9
i=0

over var-
ious horizon values T ∈ {1, 2, . . . , 100}. We present the
results as the sample mean derived from N = 1000 runs,
accompanied by the 95th percentile for added clarity.

The trends in Fig. 1 validate our claims in Theorem 3.5
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Figure 1: Regret of LAI(1) and ROBD for martingale mini-
mizers with light and heavy tails

and Theorem 3.11 (i) regarding ROBD’s linear regret and
LAI(1)’s constant regret. In fact, we observe that the re-
gret of LAI(1) is virtually zero in contrast to that of ROBD,
demonstrating the superiority of LAI(γ) in practice. The
insensitivity of LAI(γ) to the form of the distribution is fur-
ther highlighted by its consistent near-optimal stochastic
performance in all simulated stochastic settings. In par-
ticular, we would like to stress the stability demonstrated
by LAI(γ) under shifting distributions and in heavy-tailed
stochastic environments. The negligible regret shown by
LAI(1) establishes the superiority of LAI(γ) over ROBD in
any distribution with finite variance.

4.2 Experiments in stochastic and adversarial
environments

In this series of experiments, we introduce adversarial mini-
mizers into a martingale minimizer sequence, with the ex-
tent of adversarial influence determined by the parameter
known as the adversarial percentage denoted (p). This
parameter spans from 0 (indicating a fully stochastic sce-
nario) to 100 (representing a fully adversarial scenario). To
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Figure 2: Behavior of LAI(1) and ROBD for a mixed se-
quence of minimizers. In each figure, the topmost plot corre-
sponds to

{
0.3i

}9
i=0

, the middle one represents
{
0.45i

}9
i=0

,

and the bottom-most plot pertains to
{
0.5i

}9
i=0

.

facilitate meaningful comparisons across stochastic and ad-
versarial environments, we calculated the ratio of an online
algorithm’s total cost to that of LAI. This normalization
technique helps account for the differences in the orders of
magnitude between the total costs in stochastic and adversar-
ial settings, allowing us to evaluate the relative performance
of various algorithms effectively.

In these experiments, we explore scenarios involving three
different sequences of eigenvalues:

{
0.3i

}9
i=0

,
{
0.45i

}9
i=0

,

and
{
0.5i

}9
i=0

. The key observation is that, on the adver-
sarial end, the relative performance of LAI(1) and ROBD is
consistent across different A matrices. However, it becomes
evident that the stochastic performance of ROBD deteriorates
significantly when a smaller A matrix is used.

As we gradually intensify the adversarial characteristics of
the environment, we notice a relatively smooth shift from
LAI(1) to ROBD in terms of identifying the “superior algo-
rithm.” In fact, until a certain threshold of adversarial influ-
ence, approximately around 20%, LAI(1) surpasses ROBD
in performance. This intriguing observation prompts a more
in-depth analysis of SOQO in a stochastic environment with
adversarial contamination.

5 Concluding Remarks
This research broadens the horizons of smoothed online op-
timization in two unexplored dimensions: the examination
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of SOQO within stochastic contexts and the concept of “best
of both worlds” algorithms in this domain. These directions
hold immense potential, especially the stochastic analysis
beyond quadratic costs. Within the framework discussed
in this work, two extensions are especially intriguing: (i)
multi-agents systems with costs coupling the agents and (ii)
learning the A matrix.
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A Detailed Literature Review

A.1 Stochastic Smoothed Online Optimization

It is noteworthy that the literature in smoothed online optimization focuses on achieving strong performance in adversar-
ial environments, without addressing the possibility of a stochastic environment, let alone seeking best-of-both-worlds
algorithms. In the LQR control literature, there have been some works that consider noisy inputs (Chen et al., 2015;
2016). However, their noise model and dynamics are very specific, while our set-up considers stochasticity in more
generality. In other problems involving dynamical systems, stochastic inputs have been considered, with prominent example
being staff/inventory management (Gandhi et al., 2010; Jennings et al., 1996) and power systems (Urgaonkar et al., 2011;
Koutsopoulos & Tassiulas, 2011).

In particular, within the realm of multi-arm bandits (MAB), (Bubeck & Slivkins, 2012) presents an algorithm that provides
robust performance guarantees for both Independent and Identically Distributed (IID) reward sequences as well as adversarial
reward sequences. In the context of Online Convex Optimization (OCO) literature, recent attention (Chen et al., 2023;
Sachs et al., 2022; 2023) has been directed towards bridging the gap between an IID environment, which is relevant to
stochastic (stationary) optimization, and an adversarial environment, representing the traditional OCO problem. However, it
is important to note that these works do not address switching costs, and the assumptions regarding hitting costs and action
spaces differ between OCO and ours.

A.2 Adversarial Smoothed Online Optimization

The body of research on smoothed online optimization is predominantly centered around adversarial results and can be
broadly divided into two distinct communities. The first community examines it through the lens of Metrical Task Systems
and employs the competitive ratio as the performance metric. Works of (Lin et al., 2011; Bansal et al., 2015) gave the first
results considering the one-dimensional case. Further research (Chen et al., 2018) established that assumptions stronger than
convexity, like α-polyhedrality or m−strong convexity are required for meaningful results. (Zhang et al., 2021) proved for
α-polyhedral hitting costs and ℓ1-norm switching costs that following the minimizer has a very good competitive ratio of(
max

{
1, 2

α

})
. (Goel & Wierman, 2019) gave an order-optimal algorithm ROBD for m−strongly convex hitting costs and

ℓ2-norm switching costs with a competitive ratio of 1 +O
(

1√
m

)
. The analytical tools present in these works, like potential

function analysis and receding horizon control, focus on guaranteeing worst-case performance, and do not take advantage of
structure in the hitting costs.

Apart from the competitive ratio, regret with respect to the dynamic, hindsight optimal sequence of decisions has been
another important performance metric, popular in the OCO literature. In the adversarial setting, (Andrew et al., 2013)
showed that for any online algorithm, it is impossible to simultaneously achieve a finite competitive ratio and a sublinear
regret. Subsequent research aimed to establish a dynamic regret that scales in relation to the path-length, denoted as LT , of
the optimal action sequence. For scenarios involving α-polyhedral convex hitting costs and ℓ2-norm switching costs, (Chen
et al., 2018) demonstrated a dynamic regret of O

(√
TLT

)
for a modified version of OBD. In cases with strongly convex

hitting costs and squared ℓ2-norm switching costs, (Li et al., 2018) established a lower bound of O (LT ) on the dynamic
regret. This bound was closely matched by (Goel et al., 2019). Finally, (Goel et al., 2019) demonstrated that ROBD achieves
a dynamic regret of O

(√
TLT

)
in these settings. The problem set-up in these results is different than the MTS-style ones,

and there is very little on their connection (Andrew et al., 2013).

It is worth noting that these dynamic regret results rely on the strong assumption that the action space has a bounded diameter.
Since we are dealing with metric switching costs, the absence of a boundedness assumption makes the problem much more
difficult. Considering we have a stochastic setting in this work, the absence of such assumptions generalizes our results to
any distribution over Rd with finite second moment (light or heavy tail), something one cannot achieve in the OCO setting.

B Main Proofs
In this section, we shed light on the analysis techniques employed in this work, through detailed proofs of some of our main
contributions. These include the stochastic optimality of LAI, the poor performance of ROBD algorithm, the near-optimality
of LAI(γ) in both stochastic and adversarial settings, and our general adversarial analysis framework.
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B.1 Proof of Theorem 3.1

To prove these results, we show that LAI is a dynamic programming solution in our stochastic setting (2.2); thus proving it
to be an optimal online algorithm. The first step is to show the optimality of the action at round T , given by the following
lemma.

Lemma B.1. The online optimal action at round T is

xLAI
T = CTx

LAI
T−1 + (I − CT ) vT

and, consequently, the value function (2.1) for round T is

VT

(
xLAI
T−1, vT

)
=

1

2

(
xLAI
T−1 − vT

)T
(I − CT )

(
xLAI
T−1 − vT

)
At round T , the optimal decision is

xT = argmin
x

1

2
(x− vT )

TA(x− vT ) +
1

2
∥x− xLAI

T−1∥22. (B.1)

Proof. Differentiating the objective,

A(x− vT ) + (x− xLAI
T−1) = 0 (B.2)

gives the online optimal action at round T as

xLAI
T = (A+ I)−1xLAI

T−1 + (A+ I)−1AvT (B.3)

= (A+ I)−1xLAI
T−1 + (I − (A+ I)−1)vT (B.4)

= CTx
LAI
T−1 + (I − CT )vT . (B.5)

Putting xLAI
T back into the current cost gives the value function at T ,

VT (x
LAI
T−1, vT ) =

1

2
(xT − vT )

TA(xT − vT ) +
1

2
∥xT − xT−1∥22 (B.6)

=
1

2
(xLAI

T−1 − vT )
T
(
(A+ I)−1A(A+ I)−1

)
(xLAI

T−1 − vT )

+
1

2
(xLAI

T−1 − vT )
T
(
(A+ I)−1A2(A+ I)−1

)
(xLAI

T−1 − vT )

(B.7)

=
1

2
(xLAI

T−1 − vT )
T
(
(A+ I)−1A

)
(xLAI

T−1 − vT ) (B.8)

=
1

2
(xLAI

T−1 − vT )
T (I − CT ) (x

LAI
T−1 − vT ) (B.9)

We next present the main element of the proof of LAI’s optimality in the form of the following proposition, from which
Theorem 3.1 directly follows.

Proposition B.2. Consider hitting costs 1
2 (x− vt)

TA(x− vt) and switching cost is 1
2∥xt − xt−1∥22 with the sequence of

minimizers being a martingale, that is (2.2). The exact value function at T − t is

VT−t(x
LAI
T−t−1, vT−t) =

1

2
(xLAI

T−t−1 − vT−t)
T (I − CT−t)(x

LAI
T−t−1 − vT−t)

+

t−1∑
s=0

1

2
E
[
(vT−s − vT−s−1)

T (I − CT−s)(vT−s − vT−s−1)|FT−t

]
13
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Proof. The proof follows via an induction argument. The value function at round T , according to Lemma B.1, is

VT (x
LAI
T−1, vT ) =

1

2
(xLAI

T−1 − vT )
T (I − CT ) (x

LAI
T−1 − vT ). (B.10)

The proposition is, therefore, true for t = 0 (sum from 0 to −1 is zero). Assuming the proposition for some t ≥ 0, we have
the optimal action at round T − t− 1 as

xLAI
T−t−1 = argmin

x

{
1

2
(x− vT−t−1)

TA(x− vT−t−1) +
1

2
∥x− xLAI

T−t−2∥22

+ E[VT−t(x, vT−t)|FT−t−1]

} (B.11)

= argmin
x

{
1

2
(x− vT−t−1)

TA(x− vT−t−1) +
1

2
∥x− xLAI

T−t−2∥22

+
1

2
E
[
(x− vT−t)

T (I − CT−t)(x− vT−t)|FT−t−1

]
+

t−1∑
s=0

1

2
E
[
(vT−s − vT−s−1)

T (I − CT−s)(vT−s − vT−s−1)|FT−t−1

]} (B.12)

= argmin
x

{
1

2
(x− vT−t−1)

T (A+ I − CT−t)(x− vT−t−1) +
1

2
∥x− xLAI

T−t−2∥22

+ (x− vT−t−1)
T (I − CT−t)E[vT−t−1 − vT−t|FT−t−1]

+
1

2
E[(vT−t − vT−t−1)

T (I − CT−t)(vT−t − vT−t−1)|FT−t−1]

+

t−1∑
s=0

1

2
E
[
(vT−s − vT−s−1)

T (I − CT−s)(vT−s − vT−s−1)|FT−t−1

]}
(B.13)

= argmin
x

{
1

2
(x− vT−t−1)

T (A+ I − CT−t)(x− vT−t−1) +
1

2
∥x− xLAI

T−t−2∥22

+

t∑
s=0

1

2
E
[
(vT−s − vT−s−1)

T (I − CT−s)(vT−s − vT−s−1)|FT−t−1

]} (B.14)

Differentiating the objective of the optimization problem above, we get

(A+ I − CT−t)(x− vT−t−1) + (x− xLAI
T−t−2) = 0 (B.15)

giving us the optimal action at round T − t− 1 as

xLAI
T−t−1 = (2I +A− CT−t)

−1xLAI
T−t−2 +

(
I − (2I +A− CT−t)

−1
)
vT−t−1 (B.16)

= CT−t−1x
LAI
T−t−2 + (I − CT−t−1) vT−t−1 (B.17)

where the invertibility of (2I + A − CT−t) is easy to prove and is provided in the appendix. Consequently, the value
function at round T − t− 1 as

VT−t−1(x
LAI
T−t−2, vT−t−1)

=
1

2
(xLAI

T−t−1 − vT−t−1)
TA(xLAI

T−t−1 − vT−t−1) +
1

2
∥xLAI

T−t−1 − xLAI
T−t−2∥22

+ E[VT−t(x
LAI
T−t−1, vT−t)|FT−t−1]

(B.18)

=
1

2
(xLAI

T−t−2 − vT−t−1)
TCT−t−1(C

−1
T−t−1 − I)CT−t−1(x

LAI
T−t−2 − vT−t−1)

+
1

2
(xLAI

T−t−2 − vT−t−1)
T (I − CT−t−1)

2(xLAI
T−t−2 − vT−t−1)

+

t∑
s=0

1

2
E
[
(vT−s − vT−s−1)

T (I − CT−s)(vT−s − vT−s−1)|FT−t−1

] (B.19)
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=
1

2
(xLAI

T−t−2 − vT−t−1)
T (I − CT−t−1)(x

LAI
T−t−2 − vT−t−1)

+

t∑
s=0

1

2
E
[
(vT−s − vT−s−1)

T (I − CT−s)(vT−s − vT−s−1)|FT−t−1

] (B.20)

proving the proposition through induction. The cost of LAI algorithm, which is also the online optimal cost, is

E [CostLAI[1, T ]] = E[V1(x0, v1)|F0] =

T∑
t=1

1

2
E
[
(vt − vt−1)

T (I − Ct)(vt − vt−1)|F0

]
(B.21)

where F0 is the trivial sigma field and v0 = x0. The upper bound in terms of CL is a consequence of the following important
observation.

Lemma B.3. The matrix sequence in LAI algorithm, that is, {Ct}t and CL are related as

CL ≺ C1 ≺ C2 ≺ . . . ≺ CT−1 ≺ CT .

The proof follows from the recursion satisfied by {Ct}t, that is, C−1
t−1 = 2I +A− Ct and the fact that CL is the stationary

point of this recursion. We prove this lemma, along with other interesting properties of {Ct}Tt=1, in Corollary D.5.

B.2 Proof of Theorem 3.7

We split the proof into four parts, one of which will present the exact characterization of the lower bound. The first step is
the cost of the FI algorithm, as the stated in the proposition below.

Proposition B.4. The following is the expected cost of the FI algorithm, with matrix C for martingale minimizers (2.2) with
increments having same covariance matrix, Σ,

E[CostFI[1, T ]] ≥
T∑

t=1

1

2
E
[
(vt − vt−1)

T
(
I − C2

)−1
(AC2 + (I − C)

2
)(vt − vt−1)

]
−

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2

The proof of this involves an induction argument to get the cost of the last t rounds and is presented right after the theorem
proof in Appendix B.3 to focus on the regret lower bound. The next step is to compare it to the cost of the LAI algorithm to
get the following lower bound to the regret.

Theorem B.5. Consider the hitting costs, switching costs and stochastic setting (2.2) from the problem set-up with (vt−vt−1)
having covariance matrix Σ. The following is the regret of the FI algorithm,

E[RegretFI[1, T ]] ≥
T

2

∑
j ̸∈Z

(
w
(
λA
j , λ

C
j

)
−
(
1− λL

j

))
(eTj P

TΣPej)−

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2
.

where w(α, c) = αc2+(1−c)2

1−c2 , Z = {i ∈ {1, . . . , d} : λC
i = λL

i }, P is the modal matrix of A and, λA
j , λ

C
j , λ

L
j are the jth

eigenvalues of A,C,CL respectively.

Proof. We can write A = PDAP
T , CL = PDLP

T and C = PDPT , where P is the modal matrix of A and the middle
matrix in each being the diagonal matrix of respective eigenvalues.

E[CostFI[1, T ]]− E[CostLAI[1, T ]]

≥
T∑

t=1

1

2
E
[
(vt − vt−1)

T
(
I − C2

)−1
(AC2 + (I − C)

2
)(vt − vt−1)

]
−

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2
−

T∑
t=1

E[(vt − vt−1)
T (1− CL)(vt − vt−1)]

(B.22)
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≥
T∑

t=1

1

2
E
[
(vt − vt−1)

TP
((

I −D2
)−1

(DAD
2 + (I −D)

2
)− (I −DL)

)
PT (vt − vt−1)

]
−

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2

(B.23)

Observe that we can write(
I −D2

)−1
(DAD

2 + (I −D)
2
)− (I −DL) (B.24)

= diag
(
w
(
λA
1 , λ

C
1

)
−
(
1− λL

1

)
, . . . , w

(
λA
d , λ

C
d

)
−
(
1− λL

d

))
(B.25)

We define the set of indices Z = {i ∈ {1, . . . , d} : λC
i = λL

i }. The following lemma shows that(
w
(
λA
j , λ

C
j

)
−
(
1− λL

j

))
> 0 ∀ j ̸∈ Z.

Lemma B.6. The minimum of w(α, c) has the following properties

argmin
c∈[0,1]

w(α, c) =
α+ 2−

√
α2 + 4α

2
=

2

α+ 2 +
√
α2 + 4α

= cL and min
c∈[0,1]

w(α, c) = 1− cL.

Now, using Lemma B.6, w
(
λA
i , λ

C
i

)
−
(
1− λL

i

)
> 0 if i ̸∈ Z and w

(
λA
i , λ

C
i

)
−
(
1− λL

i

)
= 0 if i ∈ Z. There has to be i

such that i ̸∈ Z. Otherwise, C and CL will have all eigenvalues and their corresponding eigenvectors same, making them
equal. Denoting PT (vt − vt−1) = yt, the gap of FI to LAI is

RegretFI[1, T ] ≥
T∑

t=1

1

2
E
[
yTt diag

(
w
(
λA
1 , λ

C
1

)
−
(
1− λL

1

)
, . . . , w

(
λA
d , λ

C
d

)
−
(
1− λL

d

))
yt
]

−

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2

(B.26)

=

T∑
t=1

1

2

∑
j ̸∈Z

(
w
(
λA
j , λ

C
j

)
−
(
1− λL

j

))
E(yt)2j −

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2
(B.27)

=
T

2

∑
j ̸∈Z

(
w
(
λA
j , λ

C
j

)
−
(
1− λL

j

))
E(y)2j −

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2
(B.28)

where

E(yt)2j = E[(eTj yt)2] (B.29)

= E[eTj ytyTt ej ] (B.30)

= E[eTj PT (vt − vt−1)(vt − vt−1)
TPej ] (B.31)

= eTj P
TΣPej . (B.32)

Therefore,

E[CostFI[1, T ]]− E[CostLAI[1, T ]]

≥T

2

∑
j ̸∈Z

(
w
(
λA
j , λ

C
j

)
−
(
1− λL

j

)) (
eTj P

TΣPej
)
−

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2
.

(B.33)

Proof of Theorem 3.7. Lastly, we show (eTj P
TΣPej) > 0 for both cases of Σ. Let’s consider the second case where A and

Σ have same eigenvectors. We have Σ = PDΣP
T giving us

E(y)2j = eTj P
TΣPej = DΣ(j, j) (B.34)
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and

RegretFI[1, T ] ≥
T

2

∑
j ̸∈Z

(
w
(
λA
j , λ

C
j

)
−
(
1− λL

j

))
DΣ(j, j)−

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2
. (B.35)

Now, (D − DL)DΣ = 0d×d =⇒ (CROBD − CL)Σ = 0d×d. Therefore, the condition in the second case, that is,
(C−CL)Σ ̸= 0d×d implies, D̄ = (D−DL)DΣ ̸= 0d×d, meaning, D̄(j, j) = 0 if j ∈ Z and D̄(j, j) =

(
λC
j − λL

j

)
DΣ(j, j)

if j ̸∈ Z. For D̄ ̸= 0, there has to be some j ̸∈ Z such that DΣ(j, j) > 0 proving that FI has Ω(T ) regret.

For the case where A and Σ different eigenvectors, Lemma B.7 below shows that E(y)2j > 0 ∀ j, giving Ω(T ) regret.

Lemma B.7. Consider A = PDAP
T , where DA is a diagonal matrix and a random vector ut ∈ Rd with covariance

matrix Σ. Suppose Σ has modal matrix Q ̸= P . Then PTut satisfies

E
[
eTj
(
PTutu

T
t P
)
ej
]
= eTj P

TΣPej > 0 ∀ j, t

Proof. We can write Σ = QDΣQ
T where Q is the matrix having eigenvectors of Σ as columns and DΣ is the diagonal

matrix of eigenvalues of Σ. We will have Q ̸= P and

eTj P
TΣPej = eTj P

TQDΣQ
TPej (B.36)

=

d∑
k=1

DΣ(k, k)(Q
TPej)

2
k (B.37)

Now, notice that QTPej is the decomposition of the jth eigenvector in P into the components along the eigenbasis defined
by Q. Since, P and Q are different eigenbases, Pej cannot be orthogonal to any eigenvectors in Q, that is any row of QT .
Therefore each element of QTPej is non-zero, giving us

(QTPej)
2
k > 0 ∀ k. (B.38)

There has to be at least one positive diagonal element in DΣ, otherwise Σ = 0 (as Σ ≽ 0). This proves

eTj P
TΣPej > 0 ∀ j (B.39)

B.3 Proof of Proposition B.4

We calculate the cost of the following iterative algorithm,

xt = Cxt−1 + (I − C)vt (B.40)

where C ≺ I . The following claim holds.

Claim: The cost from round T − t to T is

E[CostFI[T − t, T ]]

=
1

2
E

[
(xT−t−1 − vT−t)

T (AC2 + (I − C)2)

(
t∑

i=0

C2i

)
(xT−t−1 − vT−t)

]

+

t∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(I − C2s)(vT−s+1 − vT−s)
] (B.41)

We prove this claim by induction. First, we look at t = 0 or cost at round T .

E[CostFI[T, T ]] =
1

2
E
[
(xT−1 − vT )

TCAC(xT−1 − vT )
]

+
1

2
E
[
(xT−1 − vT )

T (I − C)(I − C)(xT−1 − vT )
] (B.42)
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=
1

2
E
[
(xT−1 − vT )

T (AC2 + (I − C)2)(xT−1 − vT )
]

(B.43)

Now, A,C, (I − C) are all real symmetric matrices with the same modal matrix P . This means their product is
commutative, which is used in the second inequality here.

Therefore, the claim holds for t = 0 (C0 = I and sum from 1 to 0 is zero). Further, we take 00 = 1. Assuming the claim
holds for some t ≥ 0, we have

E[CostFI[T − t, T ]]

=
1

2
E

[
(xT−t−1 − vT−t)

T (AC2 + (I − C)2)

(
t∑

i=0

C2i

)
(xT−t−1 − vT−t)

]

+

t∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(I − C2s)(vT−s+1 − vT−s)
] (B.44)

=
1

2
E

[
(xT−t−1 − vT−t−1)

T (AC2 + (I − C)2)

(
t∑

i=0

C2i

)
(xT−t−1 − vT−t−1)

]

+ E

[
(xT−t−1 − vT−t−1)

T (AC2 + (I − C)2)

(
t∑

i=0

C2i

)
E[vT−t − vT−t−1|FT−t−1]

]

+
1

2
E

[
(vT−t − vT−t−1)

T (AC2 + (I − C)2)

(
t∑

i=0

C2i

)
(vT−t − vT−t−1)

]

+

t∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(I − C2s)(vT−s+1 − vT−s)
]

(B.45)

=
1

2
E

[
(xT−t−1 − vT−t−1)

T (AC2 + (I − C)2)

(
t∑

i=0

C2i

)
(xT−t−1 − vT−t−1)

]

+
1

2
E
[
(vT−t − vT−t−1)

T (AC2 + (I − C)2)(I − C2)−1
(
I − C2(t+1)

)
(vT−t − vT−t−1)

]
+

t∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(I − C2s)(vT−s+1 − vT−s)
]

(B.46)

=
1

2
E

[
(xT−t−1 − vT−t−1)

T (AC2 + (I − C)2)

(
t∑

i=0

C2i

)
(xT−t−1 − vT−t−1)

]

+

t+1∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(I − C2s)(vT−s+1 − vT−s)
] (B.47)

The cost from round T − t− 1 to T , therefore, is

E[CostFI[T − t− 1, T ]]

=
1

2
E
[
(xT−t−1 − vT−t−1)

TA(xT−t−1 − vT−t−1)
]
+

1

2
E
[
∥xT−t−1 − xT−t−2∥22

]
+ E[CFI[T − t, T ]]

(B.48)

=
1

2
E

[
(xT−t−1 − vT−t−1)

T

(
(AC2 + (I − C)2)

(
t∑

i=0

C2i

)
+A

)
(xT−t−1 − vT−t−1)

]

+
1

2
E
[
∥xT−t−1 − xT−t−2∥22

]
+

t+1∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(I − C2s)(vT−s+1 − vT−s)
]

(B.49)
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=
1

2
E

[
(xT−t−2 − vT−t−1)

TC

(
(AC2 + (I − C)2)

(
t∑

i=0

C2i

)
+A

)
C(xT−t−2 − vT−t−1)

]

+
1

2
E
[
(xT−t−2 − vT−t−1)

T (I − C)2(xT−t−2 − vT−t−1)
]

+

t+1∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(I − C2s)(vT−s+1 − vT−s)
]

(B.50)

=
1

2
E

[
(xT−t−2 − vT−t−1)

T

(
(AC2 + (I − C)2)

(
t+1∑
i=1

C2i

)
+AC2 + (I − C)2

)
. . .

(xT−t−2 − vT−t−1)

]

+

t+1∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(I − C2s)(vT−s+1 − vT−s)
]

(B.51)

=
1

2
E

[
(xT−t−2 − vT−t−1)

T (AC2 + (I − C)2)

(
t+1∑
i=0

C2i

)
(xT−t−2 − vT−t−1)

]

+

t+1∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(I − C2s)(vT−s+1 − vT−s)
] (B.52)

Now, to complete the proof, the total cost is

E[CostFI[1, T ]]

=
1

2
E
[
(x0 − v1)

T (I − C2)−1(AC2 + (I − C)2)(I − C2T )(x0 − v1)
]

+

T−1∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(I − C2s)(vT−s+1 − vT−s)
] (B.53)

=

T∑
s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(vT−s+1 − vT−s)
]

−
T∑

s=1

1

2
E
[
(vT−s+1 − vT−s)

TC2s(vT−s+1 − vT−s)
] (B.54)

≥
T∑

s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(vT−s+1 − vT−s)
]

−
T∑

s=1

1

2
E
[
(vT−s+1 − vT−s)

T
(
λC
max

)2s
I(vT−s+1 − vT−s)

] (B.55)

≥
T∑

s=1

1

2
E
[
(vT−s+1 − vT−s)

T (I − C2)−1(AC2 + (I − C)2)(vT−s+1 − vT−s)
]

−

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2

(B.56)

≥
T∑

t=1

1

2
E
[
(vt − vt−1)

T
(
I − C2

)−1
(AC2 + (I − C)

2
)(vt − vt−1)

]
−

( (
λC
max

)2
1− (λC

max)
2

)
σ2

2

(B.57)
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B.4 Proof of Theorem 3.11 (i)

The analysis of the upper bound on the regret of LAI(γ) involves two key steps. The first is an upper bound on the cost of
LAI(γ), as stated in the following proposition.

Proposition B.8. The total cost of LAI(γ) for martingale minimizers (2.2) is upper bounded as

E[CostLAI(γ)[1, T ]] ≤
1

2

T∑
t=1

E
[
(vt − vt−1)

T (I − C̃t)(vt − vt−1)
]
. (B.58)

The proof of this proposition uses an induction argument by cleverly employing the recursion followed by {C̃t}t and
is proved right after the theorem proof in Appendix B.5. The second step uses the following key property exhibited by
eigenvalues of {C̃t}t of LAI(γ) and {Ct}t of LAI.

Lemma B.9. The ith eigenvalue of LAI(γ)’s C̃t, that is λ̃t
i, and the ith eigenvalue of LAI’s Ct, that is, λt

i, are related in the
following manner

(
λt
i − λ̃t

i

)
≤ λA

i

2

((
1 +

4

λA
i

) γ
2

− 1

)(
λT
i

)2(T−t+1)

The proof of this lemma uses the recursion followed by both {C̃t}t and {C̃t}t and is presented in Appendix F.1. We now
proceed to upper bound the regret of LAI(γ) algorithm.

Proof of Theorem 3.11. We write each Ct and C̃t as PDtP
T and PD̃tP

T where Dt and D̃t are the eigenvalue diagonal
matrices of Ct and C̃t respectively. Therefore, regret of LAI(γ) is upper-bounded as

E[CostLAI(γ)[1, T ]]− E[CostLAI[1, T ]] ≤
1

2

T∑
t=1

E
[
(vt − vt−1)

T (Ct − C̃t)(vt − vt−1)
]

(B.59)

=
1

2

T∑
t=1

E
[
(vt − vt−1)

TP (Dt − D̃t)P
T (vt − vt−1)

]
≤ 1

2

T∑
t=1

d∑
i=1

(
λt
i − λ̃t

i

)
E(yt)2i (B.60)

=
1

2

d∑
i=1

E(y)2i
T∑

t=1

(
λt
i − λ̃t

i

)
≤ 1

2

d∑
i=1

E(y)2i
T∑

t=1

λA
i

2

((
1 +

4

λA
i

) γ
2

− 1

)(
λT
i

)2(T−t+1)
(B.61)

≤ 1

2

d∑
i=1

E(y)2i
λA
i

2

((
1 +

4

λA
i

) γ
2

− 1

) ∞∑
t=1

(
λT
i

)2t
=

1

2

d∑
i=1

E(y)2i
λA
i

2

((
1 +

4

λA
i

) γ
2

− 1

) (
λT
i

)2
1−

(
λT
i

)2 (B.62)

=
1

2

d∑
i=1

E(y)2i

((
1 + 4

λA
i

) γ
2 − 1

)
2
(
λA
i + 2

) (B.63)

(B.64)

where yt = PT (vt − vt−1). Note that E(yt)2i = E(y)2i is time-invariant as all (vt − vt−1) have same covariance Σ. The

function
((

1 + 4
q

) γ
2 − 1

)
/(2 (q + 2)) is always decreasing in q for γ ∈ [0, 1]. Therefore,

RegretLAI(γ)[1, T ] ≤
1

4

((
1 + 4

λA
min

) γ
2 − 1

)
(
λA
min + 2

) d∑
i=1

E(y)2i =

((
1 + 4

λA
min

) γ
2 − 1

)
(
λA
min + 2

) σ2

4
(B.65)

where the last step uses
∑d

i=1 E(y)2i = σ2 = tr(Σ) which is stated and proved as Lemma F.1.
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B.5 Proof of Proposition B.8

Claim: The cost from round T − t to T for martingale minimizers is upper bound by

E[CostLAI(γ)[T − t, T ]] ≤1

2
E
[
(xT−t−1 − vT−t)

T (I − C̃T−t)(xT−t−1 − vT−t)
]

+
1

2

t−1∑
s=0

E
[
(vT−s − vT−s−1)

T (I − C̃T−s)(vT−s − vT−s−1)
] (B.66)

For t = 0, it is the expected cost of the final round, which is

E
[
CostLAI(γ)[T, T ]

]
=
1

2
E
[
(xT−1 − vT )

T
(
A(C̃T )

2 + (I − C̃T )
2
)
(xT−1 − vT )

]
(B.67)

=
1

2
E
[
(xT−1 − vT )

T (I − C̃T )(xT−1 − vT )
]

+
1

2
E
[
(xT−1 − vT )

T
(
A(C̃T )

2 + (I − C̃T )
2 − (I − C̃T )

)
(xT−1 − vT )

] (B.68)

=
1

2
E
[
(xT−1 − vT )

T (I − C̃T )(xT−1 − vT )
]

+
1

2
E
[
(xT−1 − vT )

T
(
A(C̃T )

2 − C̃T (I − C̃T )
)
(xT−1 − vT )

] (B.69)

=
1

2
E
[
(xT−1 − vT )

T (I − C̃T )(xT−1 − vT )
]

+
1

2
E
[
(xT−1 − vT )

T
(
C̃T (A+ I)(C̃T − (A+ I)−1)

)
(xT−1 − vT )

] (B.70)

Now, observe two things. First that λ̃T
i < 1

λA
i +1

and second that C̃T has the same set of eigenvectors as A. Therefore,

C̃T (A+ I)(C̃T − (A+ I)−1) will be negative definite as C̃T ≺ (A+ I)−1, C̃T ≻ 0 and (A+ I) ≻ I . Therefore,

E[CostLAI(γ)[T, T ]] ≤
1

2
E
[
(xT−1 − vT )

T (I − C̃T )(xT−1 − vT )
]

(B.71)

Therefore, the claim holds for t = 0 as the sum from −1 to 0 is zero. Assuming the claim holds for some t ≥ 0,

E[CostLAI(γ)[T − t, T ]] ≤1

2
E
[
(xT−t−1 − vT−t)

T (I − C̃T−t)(xT−t−1 − vT−t)
]

+
1

2

t−1∑
s=0

E
[
(vT−s − vT−s−1)

T (1− C̃T−s)(vT−s − vT−s−1)
] (B.72)

≤1

2
E
[
(xT−t−1 − vT−t−1)

T (I − C̃T−t)(xT−t−1 − vT−t−1)
]

+ E
[
(xT−t−1 − vT−t−1)

T (I − C̃T−t)(vT−t−1 − vT−t)
]

+
1

2
E
[
(vT−t−1 − vT−t)

T (I − C̃T−t)(vT−t−1 − vT−t)
]

+
1

2

t−1∑
s=0

E
[
(vT−s − vT−s−1)

T (I − C̃T−s)(vT−s − vT−s−1)
]

(B.73)

≤1

2
E
[
(xT−t−1 − vT−t−1)

T (I − C̃T−t)(xT−t−1 − vT−t−1)
]

+ E
[
(xT−t−1 − vT−t−1)

T (I − C̃T−t)E [vT−t−1 − vT−t|FT−t−1]
]

+
1

2

t∑
s=0

E
[
(vT−s − vT−s−1)

T (I − C̃T−s)(vT−s − vT−s−1)
] (B.74)
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≤1

2
E
[
(xT−t−1 − vT−t−1)

T (I − C̃T−t)(xT−t−1 − vT−t−1)
]

+
1

2

t∑
s=0

E
[
(vT−s − vT−s−1)

T (I − C̃T−s)(vT−s − vT−s−1)
] (B.75)

Therefore, the cost from T − t− 1 to T is

E[CostLAI(γ)[T − t− 1, T ]]

≤1

2
E
[
(xT−t−1 − vT−t−1)

TA(xT−t−1 − vT−t−1)
]

+
1

2
E∥xT−t−1 − xT−t−2∥22 + E[C̃LAI(γ)[T − t, T ]]

(B.76)

≤1

2
E
[
(xT−t−1 − vT−t−1)

T (A+ I − C̃T−t)(xT−t−1 − vT−t−1)
]

+
1

2
E
[
(xT−t−1 − xT−t−2)

T (xT−t−1 − xT−t−2)
]

+
1

2

t∑
s=0

E
[
(vT−s − vT−s−1)

T (I − C̃T−s)(vT−s − vT−s−1)
] (B.77)

≤1

2
E[(xT−t−2 − vT−t−1)

T C̃T−t−1(C̃
−1
T−t−1 − I)C̃T−t−1(xT−t−2 − vT−t−1)]

+
1

2
E
[
(vT−t−1 − xT−t−2)

T (I − C̃T−t−1)
2(vT−t−1 − xT−t−2)

]
+

1

2

t∑
s=0

E
[
(vT−s − vT−s−1)

T (I − C̃T−s)(vT−s − vT−s−1)
] (B.78)

≤1

2
E[(xT−t−2 − vT−t−1)

T
(
C̃T−t−1(I − C̃T−t−1) + (I − C̃T−t−1)

2
)
(xT−t−2 − vT−t−1)]

+
1

2

t∑
s=0

E
[
(vT−s − vT−s−1)

T (I − C̃T−s)(vT−s − vT−s−1)
] (B.79)

≤1

2
E[(xT−t−2 − vT−t−1)

T (C̃T−t−1 + I − C̃T−t−1)(I − C̃T−t−1)(xT−t−2 − vT−t−1)]

+
1

2

t∑
s=0

E
[
(vT−s − vT−s−1)

T (I − C̃T−s)(vT−s − vT−s−1)
] (B.80)

≤1

2
E[(xT−t−2 − vT−t−1)

T (I − C̃T−t−1)(xT−t−2 − vT−t−1)]

+
1

2

t∑
s=0

E
[
(vT−s − vT−s−1)

T (I − C̃T−s)(vT−s − vT−s−1)
] (B.81)

Now that our claim is proven, we can get the total cost of the algorithm by putting t = T − 1

E[CostLAI(γ)[1, T ]] ≤
1

2
E
[
(x0 − v1)

T (I − C̃1)(x0 − v1)
]

+
1

2

T−2∑
s=0

E
[
(vT−s − vT−s−1)

T (I − C̃T−s)(vT−s − vT−s−1)
] (B.82)

=
1

2
E
[
(x0 − v1)

T (I − C̃1)(x0 − v1)
]

+
1

2

T∑
t=2

E
[
(vt − vt−1)

T (I − C̃t)(vt − vt−1)
] (B.83)
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B.6 Proof of Theorem 3.10

The proof technique used here is inspired from ROBD’s competitive analysis in (Goel et al., 2019). The key aspect of our
proof is the potential function that depends on gt(·) of the online algorithm ALG in question. To recap, the online algorithm
ALG is

xt = argmin
x

ft(x) +Dh(x||xt−1) +Dgt(x||vt) (B.84)

where ft is m-strongly convex and h(·) is α-strongly convex and β-smooth. Recall that gt(·) is α′−strongly convex and
β′−smooth. This means

∇ft(xt) + (∇h(xt)−∇h(xt−1)) + (∇gt(xt)−∇gt(vt)) = 0. (B.85)

We denote the hindsight optimal action sequence as {x∗
t }t. Using strong convexity of ft

ft(x
∗
t ) ≥ft(xt) + ⟨∇ft(xt), x

∗
t − xt⟩+

m

2
∥x∗

t − xt∥22 (B.86)

=ft(xt)− ⟨∇h(xt−1)−∇h(xt), xt − x∗
t ⟩ (B.87)

− ⟨∇gt(vt)−∇gt(xt), xt − x∗
t ⟩+

m

2
∥x∗

t − xt∥22 . (B.88)

Lemma B.10 (Generalized Triangle Inequality). For any three points x, y, x ∈ Rn, the following holds for Bregman
divergence Dh(·||·) defined using a strongly convex function h(·)

⟨∇h(y)−∇h(z), z − x⟩ = Dh(x||y)−Dh(x||z)−Dh(z||y)

Using the above lemma for Dh (·||·) and Dgt (·||·), we have

⟨∇h(xt−1)−∇h(xt), xt − x∗
t ⟩ = Dh(x

∗
t ||xt−1)−Dh(x

∗
t ||xt)−Dh(xt||xt−1) (B.89)

and

⟨∇gt(vt)−∇gt(xt), xt − x∗
t ⟩ = Dgt(x

∗
t ||vt)−Dgt(x

∗
t ||xt)−Dgt(xt||vt). (B.90)

Substituting the two above identities into inequality (B.88), we get

ft(xt) +Dh(xt||xt−1) + (Dh(x
∗
t ||xt) +Dgt(x

∗
t ||xt)) +

m

2
∥x∗

t − xt∥22 +Dgt(xt||vt) (B.91)

≤ ft(x
∗
t ) +Dgt(x

∗
t ||vt) +Dh(x

∗
t ||xt−1) (B.92)

It follows that

ft(xt) +Dh(xt||xt−1) + (Dh(x
∗
t ||xt) +Dgt(x

∗
t ||xt)) +

m

2
∥x∗

t − xt∥22
≤ ft(x

∗
t ) +Dgt(x

∗
t ||vt) +Dh(x

∗
t ||xt−1)

(B.93)

Now, define the potential function ϕ(xt, x
∗
t ) = (Dh(x

∗
t ||xt) +Dgt(x

∗
t ||xt)) +

m
2 ∥x

∗
t − xt∥22 and the potential difference

as ∆ϕ = ϕ(xt, x
∗
t )− ϕ(xt−1, x

∗
t−1). Subtracting ϕ(xt−1, x

∗
t−1) from both sides of the above inequality, we get

ft(xt) +Dh(xt||xt−1) + ∆ϕ

≤ (ft(x
∗
t ) +Dgt(x

∗
t ||vt))︸ ︷︷ ︸

X1

+Dh(x
∗
t ||xt−1)− (Dh(x

∗
t−1||xt−1) +Dgt−1

(x∗
t−1||xt−1))−

m

2

∥∥x∗
t−1 − xt−1

∥∥2
2︸ ︷︷ ︸

X2

(B.94)

We now analyze X2

Dh(x
∗
t ||xt−1)−

(
Dh(x

∗
t−1||xt−1) +Dgt−1

(x∗
t−1||xt−1)

)
− m

2

∥∥x∗
t−1 − xt−1

∥∥2
2

(B.95)
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= (Dh(x
∗
t ||xt−1)−Dh(x

∗
t−1||xt−1))−Dgt−1

(x∗
t−1||xt−1)−

m

2

∥∥x∗
t−1 − xt−1

∥∥2
2

(B.96)

= Dh(x
∗
t ||x∗

t−1) + ⟨∇h(xt−1)−∇h(x∗
t−1), x

∗
t−1 − x∗

t ⟩ −Dgt−1
(x∗

t−1||xt−1)−
m

2

∥∥x∗
t−1 − xt−1

∥∥2
2

(B.97)

≤ Dh(x
∗
t ||x∗

t−1) + ∥∇h(xt−1)−∇h(x∗
t−1)∥2∥x∗

t−1 − x∗
t ∥2 −Dgt−1

(x∗
t−1||xt−1)−

m

2

∥∥x∗
t−1 − xt−1

∥∥2
2

(B.98)

≤ Dh(x
∗
t ||x∗

t−1) + β∥xt−1 − x∗
t−1∥2∥x∗

t−1 − x∗
t ∥2 −Dgt−1(x

∗
t−1||xt−1)−

m

2

∥∥x∗
t−1 − xt−1

∥∥2
2

(B.99)

≤ Dh(x
∗
t ||x∗

t−1) +
1

2

(
β2

α′
t−1 +m

)
∥x∗

t−1 − x∗
t ∥22 +

(
α′ +m

2

)
∥xt−1 − x∗

t−1∥22

−Dgt−1
(x∗

t−1||xt−1)−
m

2

∥∥x∗
t−1 − xt−1

∥∥2
2

(B.100)

= Dh(x
∗
t ||x∗

t−1) +
1

2

(
β2

α′
t−1 +m

)
∥x∗

t−1 − x∗
t ∥22 +

(
α′
t−1

2
∥xt−1 − x∗

t−1∥22 −Dgt−1
(x∗

t−1||xt−1)

)
(B.101)

≤ Dh(x
∗
t ||x∗

t−1) +
1

2

(
β2

α′
t−1 +m

)
∥x∗

t−1 − x∗
t ∥22 ≤

(
1 +

β2/α

α′
t−1 +m

)
Dh(x

∗
t ||x∗

t−1) (B.102)

Therefore,

ft(xt) +Dh(xt||xt−1) + ∆ϕ ≤ ft(x
∗
t ) +Dgt(x

∗
t ||vt) +

(
1 +

β2/α

α′
t−1 +m

)
Dh(x

∗
t ||x∗

t−1) (B.103)

≤ ft(x
∗
t ) +

β′
t

2
∥x∗

t − vt∥2 +
(
1 +

β2/α

α′
t−1 +m

)
Dh(x

∗
t ||x∗

t−1) (B.104)

=

(
1 +

β′
t

m

)
ft(x

∗
t ) +

(
1 +

β2/α

α′
t−1 +m

)
Dh(x

∗
t ||x∗

t−1) (B.105)

≤
(
1 +

maxt β
′
t

m

)
ft(x

∗
t ) +

(
1 +

β2/α

mint α′
t−1 +m

)
Dh(x

∗
t ||x∗

t−1) (B.106)

B.7 Proofs of Theorem 3.11 (ii) and Corollary 3.12

To bound the competitive ratio of LAI(γ), we use Theorem 3.10 by writing LAI(γ) in the form:

A(xt − vt) + (xt − xt−1) + (C̃−1
t − I −A)(xt − vt) = 0 (B.107)

or in the form of an optimization problem as

xt = argmin
x

1

2
(xt − vt)

TA(xt − vt) +
1

2
∥xt − xt−1∥22 +

1

2
(xt − vt)

T (C̃−1
t − I −A)(xt − vt). (B.108)

Therefore, gt(x) = 1
2x

T (C̃−1
t − I − A)x. Now, the eigenvalues satisfy the recursion 1

λ̃t
i

= 2 + λA
i − λ̃t+1

i as result of

C̃−1
t = 2I + A− C̃t+1 and C̃t having same eigenvectors as A. The above property, along with λ̃T

i ≥ λL
i (as γ ∈ [0, 1]),

gives λ̃t
i ≤ λ̃t+1

i ∀ i and CL ≼ C̃1 ≼ . . . ≼ C̃T . The proof of this fact is straightforward and is done in Corollary D.5.
Consequently,

C−1
L − (I +A) ≽ C̃−1

1 − (I +A) ≽ . . . ≽ C̃−1
T − (I +A) (B.109)

or

1

λL
i

− 1− λA
i ≥

1

λ̃1
i

− 1− λA
i ≥ . . . ≥ 1

λ̃T
i

− 1− λA
i . (B.110)

This means

max
t

β′
t = max

i

{
1

λL
i

− 1− λA
i

}
=

√
(λA

max)
2
+ 4λA

max − λA
max

2
=

λA
min

2

(√
κ(A)2 +

4κ(A)

λA
min

− κ(A)

)
(B.111)
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min
t

α′
t−1 = min

i

{
1

λ̃T
i

− 1− λA
i

}
= min

i

{
λA
i

2

((
1 +

4

λA
i

) γ
2

− 1

)}
(B.112)

Since, y
2

((
1 + 4

y

) γ
2 − 1

)
is a non-decreasing function in y ≥ 0 and any γ ∈ [0, 1], we have

min
t

α′
t−1 =

λA
min

2

((
1 +

4

λA
min

) γ
2

− 1

)
(B.113)

Using Theorem 3.10,

CRLAI(γ) = max

1 +
1

2

(√
κ(A)2 +

4κ(A)

λA
min

− κ(A)

)
, 1 +

1

λA
min

2

((
1 + 4

λA
min

) γ
2

+ 1

)
 (B.114)

Corollary B.11. In the adversarial setting where λA
max ≪ 1 , LAI(γ) has a competitive ratio of

CRLAI(γ) ≤ 1 + max

{√
κ(A)

λA
min

,
21−γ(

λA
min

)1− γ
2

}
∀ γ ∈ (0, 1].

Proof. With λA
max ≪ 1 =⇒ 1

λA
min

≫ κ(A) > 1 and γ ∈ (0, 1]

CRLAI(γ) = 1 +max


√

κ(A)

λA
min

,
1

λA
min

2 ·
(

4
λA
min

) γ
2

 = 1 +max

{√
κ(A)

λA
min

,
21−γ(

λA
min

)1− γ
2

}
. (B.115)

For γ = 1, this translates to

CRLAI(1) = 1 +max


√

κ(A)

λA
min

,
1(

λA
min

) 1
2

 = 1 +

√
κ(A)

λA
min

(B.116)

C General Value function derivative and Proof of Theorem 3.2
Before the proof of the theorem, we present an important property of the value function that is applicable to a much broader
class of convex hitting costs and switching costs.

Theorem C.1. Consider stochastic convex hitting costs ft(x) and switching costs Dh(xt||xt−1) where h(·) is a convex
function and Dh(xt||xt−1) is the Bregman divergence and the optimization problem to find the online optimal policy

argmin
{xt}T

t=1:xt∈Ft

E

[
T∑

t=1

ft(xt) +Dh(xt||xt−1)

]
.

The value function at round t, Vt(xt−1, vt), satisfies the following property

∇xt−1
V (xt−1, vt) = ∇2h(xt−1)(xt−1 − xt)

Proof. First, it is clear that the value function at round t is the optimal cost starting from round t, means it depends
only in the starting state, that is, (xt−1, vt). Further it is obtained by solving the following optimization problem where
E[Vt+1(x, vt+1)|Ft] is a function of vt because of the expectation with respect to Ft.

V(xt−1,vt) = argmin
x

ft(x) +Dh(x||xt−1) + E[Vt+1(x, vt+1)|Ft] (C.1)
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= argmin
x

ft(x) + (h(x)− h(xt−1)−∇h(xt−1)
T (x− xt−1)) + E[Vt+1(x, vt+1)|Ft] (C.2)

Therefore, we get the optimal action xt by solving the following differential equation

∇xft(x) + (∇xh(x)−∇h(xt−1)) +∇xE[V (x, vt+1)|Ft] = 0. (C.3)

Solving this gives xt as an operator on xt−1 and vt. We define the Jacobian of xt with respect to xt−1 as
[

δ(xt)j
δ(xt−1)i

]
i,j

=

J ∈ Rd×d. The optimal cost-to-go at round t is

V (xt−1, vt) = ft(xt) +Dh(xt, xt−1) + E[V (xt, vt+1)|Ft]. (C.4)

Therefore,

∇xt−1V (xt−1, vt)

=J∇xtft(xt) + J∇xth(xt)−∇h(xt−1)

− (J − I)∇h(xt−1)−∇2h(xt−1)(xt − xt−1) + J∇xt
E[V (xt, vt+1)|Ft]

(C.5)

=J(∇xtft(xt) +∇xth(xt)−∇xth(xt−1) +∇xtE[V (xt, vt+1)|Ft])−∇2h(xt−1)(xt − xt−1) (C.6)

=−∇2h(xt−1)(xt − xt−1) (C.7)

We use this in the proof of Theorem 3.2 where∇2h(xt−1) = I as our switching cost is 1
2 ∥xt − xt−1∥22.

Proof of Theorem 3.2. Irrespective of the stochastic process {vt}Tt=1, in the final round we know the current minimizer vT
and therefore the optimal action is given by Lemma B.1 as xT = CTxT−1 + (I − CT )vT . Therefore, the value function
derivative at round T is

∇xT−1
V (xT−1, vT ) = xT−1 − xT = (I − CT )xT−1 − (I − CT )vT (C.8)

The optimal action at round T − 1 is obtained by solving

A(xT−1 − vT−1) + (xT−1 − xT−2) + E[∇xT−1
V (xT−1, vT )|FT−1] = 0 (C.9)

which is

(2I +A− CT )xT−1 = xT−2 + (I +A− CT )vT−1 + (I − CT )E[vT − vT−1|FT−1] (C.10)

C−1
T−1xT−1 = xT−2 + (C−1

T−1 − I)vT−1 + (I − CT )E[vT − vT−1|FT−1] (C.11)

which gives

xT−1 = CT−1xT−2 + (I − CT−1)vT−1 + CT−1(I − CT )E[vT − vT−1|FT−1] (C.12)

proving the theorem for t = T − 1 and t = T (sum from T + 1 to T is zero). Suppose the result holds for some
t ∈ {1, . . . , T} then the optimal action at round t− 1 is a solution of

A(xt−1 − vt−1) + (xt−1 − xt−2) + E[xt−1 − xt|Ft−1] = 0 (C.13)

or

(2I +A− Ct)xt−1 =xt−2 +Avt−1 + (I − Ct)E[vt|Ft−1]

+

T∑
s=t+1

(
s−1∏
q=t

Cq

)
(I − Cs)E[vs − vs−1|Ft−1]

(C.14)

=xt−2 + (I +A− Ct)vt−1 + (I − Ct)E[vt − vt−1|Ft−1]

+

T∑
s=t+1

(
s−1∏
q=t

Cq

)
(I − Cs)E[vs − vs−1|Ft−1]

(C.15)
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=xt−2 + (C−1
t−1 − I)vt−1 + (I − Ct)E[vt − vt−1|Ft−1]

+

T∑
s=t+1

(
s−1∏
q=t

Cq

)
(I − Cs)E[vs − vs−1|Ft−1]

(C.16)

which gives

xt−1 =Ct−1xt−2 + (I − Ct−1)vt−1 + Ct−1(I − Ct)E[vt − vt−1|Ft−1]

+

T∑
s=t+1

Ct−1

(
s−1∏
q=t

Cq

)
(I − Cs)E[vs − vs−1|Ft−1]

(C.17)

=Ct−1xt−2 + (I − Ct−1)vt−1 +

T∑
s=t

(
s−1∏

q=t−1

Cq

)
(I − Cs)E[vs − vs−1|Ft−1] (C.18)

proving Theorem 3.2 by induction.

D Additional proofs in the stochastic environment

D.1 Proof of Theorem 3.4

We want the hindsight static optimal for ft(x) = λ
2 ∥x− vt∥22 and switching cost 1

2∥xt− xt−1∥22 with the minimizers evolve
as martingale. We write the minimizer at t as a sum of the initial point x0 and martingale differences uk = vk − vk−1 with
v0 = x0, described below

vt = x0 +

t∑
k=1

uk. (D.1)

The martingale differences uk are assumed to have a variance of at least σ2 > 0. The hindsight optimal minimizing the total
cost over the horizon is

x∗ = argmin
x

1

2
∥x− x0∥22 +

T∑
t=1

λ

2
∥x− vt∥22. (D.2)

The optimal solution will satisfy the following expression, obtained by differentiating the objective function,

(1 + λT )x∗ = x0 + λ

T∑
t=1

vt (D.3)

(D.4)

which gives

x∗ =

(
x0

1 + λT

)
+

(
λT

1 + λT

)(∑T
t=1 vt
T

)

=

(
x0

1 + λT

)
+

(
λT

1 + λT

)(
x0 +

∑T
t=1

∑t
k=1 uk

T

)

= x0 +

(
λT

1 + λT

)(∑T
t=1

∑t
k=1 uk

T

)

= x0 +

(
λT

1 + λT

)(∑T
k=1 uk

∑T
t=k 1

T

)

= x0 +

(
λT

1 + λT

)(∑T
k=1(T − k + 1)uk

T

)
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= x0 +

T∑
k=1

λ(T − k + 1)uk

1 + λT

This implies

x∗ − x0 =

T∑
k=1

λ(T − k + 1)uk

1 + λT
(D.5)

x∗ − vt =

T∑
k=1

λ(T − k + 1)uk

1 + λT
−

t∑
k=1

uk. (D.6)

We can simplify x∗ − vt to a more usable expression,

x∗ − vt =

T∑
k=1

λ(T − k + 1)uk

1 + λT
−

t∑
k=1

uk (D.7)

=

T∑
k=t+1

λ(T − k + 1)uk

1 + λT
+

t∑
k=1

(
λ(T − k + 1)

1 + λT
− 1

)
uk (D.8)

=

T∑
k=t+1

(
λ(T − k + 1)

1 + λT

)
uk −

t∑
k=1

(
λ(k − 1) + 1

1 + λT

)
uk (D.9)

(D.10)

Therefore, the total expected cost of using x∗ is

E[Costx∗ [1, T ]]− 1

2
E ∥x∗ − x0∥22 (D.11)

=

T∑
t=1

λ

2
E ∥x∗ − vt∥22 (D.12)

=

T∑
t=1

λ

2
E

∥∥∥∥∥
T∑

k=t+1

(
λ(T − k + 1)

1 + λT

)
uk −

t∑
k=1

(
λ(k − 1) + 1

1 + λT

)
uk

∥∥∥∥∥
2

2

(D.13)

=

T∑
t=1

λ

2(1 + λT )2
E

∥∥∥∥∥
T∑

k=t+1

λ(T − k + 1)uk −
t∑

k=1

(λ(k − 1) + 1)uk

∥∥∥∥∥
2

2

(D.14)

(D.15)

Now consider i > j for the following,

E[uT
j ui] = E[E[uT

j ui|Fi−1]] (D.16)

= E[uT
j E[ui|Fi−1]] (D.17)

= E[uT
j 0] = 0. (D.18)

This gives us

E[Costx∗ [1, T ]]− 1

2
E ∥x∗ − x0∥22 (D.19)

=
λ

2(1 + λT )2

T∑
t=1

(
T∑

k=t+1

λ2(T − k + 1)2σ2 +
t∑

k=1

(λ(k − 1) + 1)2σ2

)
(D.20)

=
λ

2(1 + λT )2

(
T∑

t=1

T∑
k=t+1

λ2(T − k + 1)2σ2 +

T∑
t=1

t∑
k=1

(λ(k − 1) + 1)2σ2

)
(D.21)
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=
λ

2(1 + λT )2

(
T∑

k=2

λ2(T − k + 1)2σ2
k−1∑
t=1

1 +

T∑
k=1

(λ(k − 1) + 1)2σ2
T∑

t=k

1

)
(D.22)

=
λ

2(1 + λT )2

(
T∑

k=2

(k − 1)λ2(T − k + 1)2σ2 +

T∑
k=1

(T − k + 1)(λ(k − 1) + 1)2σ2

)
(D.23)

=
λσ2

2(1 + λT )2

T∑
k=2

(T − k + 1)

[
λ2(k − 1)(T − k + 1) + (λ(k − 1) + 1)2

]
+

Tλσ2

2(1 + λT )2
(D.24)

=
λσ2

2(1 + λT )2

T∑
k=2

(T − k + 1)

[
λ2(k − 1)T − λ2(k − 1)2 + (λ(k − 1) + 1)2

]
+

Tλσ2

2(1 + λT )2
(D.25)

=
λσ2

2(1 + λT )2

T∑
k=2

(T − k + 1)

[
λ2(k − 1)T + 2λ(k − 1) + 1

]
+

Tλσ2

2(1 + λT )2
(D.26)

=
λσ2

2(1 + λT )2

T∑
k=2

(T − k + 1)

[
λ(k − 1)(λT + 2) + 1

]
+

Tλσ2

2(1 + λT )2
(D.27)

=
σ2λ2(λT + 2)

2(1 + λT )2

T∑
k=2

(T − k + 1)(k − 1) +
Tλσ2

2(1 + λT )2
+

λσ2

2(1 + λT )2

T∑
k=2

(T − k + 1) (D.28)

=
σ2λ2(λT + 2)

2(1 + λT )2

(
T

T∑
k=2

(k − 1)−
T∑

k=2

(k − 1)2

)
+

λσ2

2(1 + λT )2

(
T (T + 1)

2

)
(D.29)

=
σ2λ2(λT + 2)

2(1 + λT )2

(
T 2(T − 1)

2
− (T − 1)T (2T − 1)

6

)
+

λσ2

2(1 + λT )2

(
T (T + 1)

2

)
(D.30)

=
σ2λ2(λT + 2)

2(1 + λT )2

(
(T − 1)T (T + 1)

6

)
+

λσ2

2(1 + λT )2

(
T (T + 1)

2

)
(D.31)

=
σ2λ2

12

(
(λT + 2)(T − 1)T (T + 1)

(1 + λT )2

)
+

λσ2

2(1 + λT )2

(
T (T + 1)

2

)
(D.32)

= Θ(T 2) (D.33)

D.2 Properties of {Ct}t

Lemma D.1. For any t ∈ {1, . . . , T}, the matrix Ct satisfies the following properties:

(a) Ct is invertible

(b) Ct has the same set of eigenvectors as A.

(c) Eigenvalues of Ct lie in (0, 1), and hence, Ct is positive definite.

Proof. We prove this result using induction. Because A is a positive definite matrix, its eigenvalues are greater than 1.
Consequently, (I +A) is invertible and eigenvalues of CT = (I +A)−1 are in (0, 1). Further, (I +A)−1 has the same set
of eigenvectors as A. Therefore, the lemma holds for t = T . Now assume the claim for t ≤ T . From the recursion relation,
we have

C−1
t−1 = 2I +A− Ct (D.34)

Now, 2I+A−Ct will have the same eigenvectors as A. Further, eigenvalues of 2I+A−Ct are {2+λA
i −λt

i}t and greater
than 1 as {λt

i}t, the eigenvalues of Ct, are in (0, 1). Therefore, 2I + A− Ct is invertible and so is Ct−1. Consequently,
Ct−1 has same eigenvectors as that of A and the eigenvalues of Ct−1 are in (0, 1).
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D.3 Asymptotic behavior of {Ct}Tt=1

Lemma D.2. For any horizon T > 0, consider the sequence of numbers {ct}Tt=1 satisfying

1

ct
= 2 + λ− ct+1

with cT = 1
λ+1 for some λ > 0. Such a sequence of numbers has the following properties

1. For A = λI , the LAI algorithm will have

Ct = ctI ∀ t ∈ {1, . . . , T}

2. The evolution of ct is
(ct − cL) = (ct+1 − cL)ctcL

3. {ct}Tt=1 is an increasing sequence that is
cL < c1 < . . . < cT

4. {ct} satisfy
(ct − cL) ≤ (1− cL) (cT )

2(T−t+1)

5. The behavior of c1 as horizon goes to infinity is

lim
T→∞

c1 = cL

where cL = λ+2−
√
λ2+4λ

2 = 2
λ+2+

√
λ2+4λ

∈ (0, 1) for λ > 0.

Proof. For the part 1 of the lemma, we prove it by induction. First observe that

CT = (A+ I)−1 (D.35)

=

(
1

λ+ 1

)
I (D.36)

for λ > 0. This means part (i) holds for t = T . Assuming the claim for some t ≤ T , that is, Ct = ctI

Ct−1 = (2I +A− Ct)
−1 (D.37)

= ((1 + λ− ct)I)
−1 (D.38)

=

(
1

2 + λ− ct

)
I (D.39)

= ct−1I (D.40)

Now, observe that

cL +
1

cL
=

λ+ 2−
√
λ2 + 4λ

2
+

λ+ 2 +
√
λ2 + 4λ

2
(D.41)

= λ+ 2 (D.42)

and to recap {ct}Tt=1 satisfy the recursion of Lemma D.2, that is

1

ct
= 2 + λ− ct+1 (D.43)

and cT = 1
λ+1 . Therefore,

1

cL
− 1

ct
= ct+1 − cL (D.44)
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which gives

(ct − cL) = (ct+1 − cL)ctcL (D.45)

proving part 2 of the lemma. Now based on the recursion (D.43),

ct+1 ∈ (0, 1) =⇒ ct ∈ (0, 1) (D.46)

and cT = 1
λ+1 ∈ (0, 1), which inductively proves that ct ∈ (0, 1) for all t. Now, observe that cL ∈ (0, 1) for λ > 0 and

hence,

(ct − cL) < (ct+1 − cL)

ct < ct+1

(D.47)

Also notice that because of the recursion (D.44),

ct+1 > cL =⇒ ct > cL

and we know

cL =
2

(λ+ 1) + (1 +
√
λ2 + 4λ)

<
1

λ+ 1
= cT ∀ λ > 0 (D.48)

which inductively proves that ct > cL for all t completing the proof of part 3 of the lemma. Observe that

(ct − cL) = (ct+1 − cL)ctcL (D.49)

≤ (ct+1 − cL)c
2
T (D.50)

≤ (cT − cL)c
2(T−t)
T (D.51)

Also, note that

1

cT
= 2 + λ− 1 =⇒ (cT − cL) = (1− cL)cT cL (D.52)

and therefore,

(ct − cL) ≤ (1− cL)c
2(T−t+1)
T (D.53)

proving part 4 of the lemma. Finally because cT < 1 for λ > 0,

lim
T→∞

c1 ≤ lim
T→∞

(cT − cL)c
2T
T = 0 (D.54)

proving part 5 of the lemma.

Definition D.3. The square root of a real positive definite matrix M is the unique positive definite matrix M1/2 such that

M1/2
(
M1/2

)T
=
(
M1/2

)T
M1/2 = M.

Since, M can be written as PDMPT where DM is the diagonal matrix of eigenvalues of M and P is the matrix having
eigenvectors of M as columns (also called the modal matrix of A),

M1/2 = PD
1/2
M PT ,

and D
1/2
M is the diagonal matrix of square root of eigenvalues of M .
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Definition D.4. Define CL as

CL :=
A+ 2I −

√
A2 + 4A

2
.

Then CL will have the same set of eigenvectors as A, with eigenvalues
{
λL
i

}d
i=1

where

λL
i =

λA
i + 2−

√(
λA
i

)2
+ 4λA

i

2
=

2

λA
i + 2 +

√(
λA
i

)2
+ 4λA

i

.

Note that λL
i is a decreasing function of λA

i and therefore,

λL
min =

λA
max + 2−

√
(λA

max)
2
+ 4λA

max

2
(D.55)

λL
max =

λA
min + 2−

√(
λA
min

)2
+ 4λA

min

2
(D.56)

Corollary D.5. For any horizon T > 0, consider a matrix sequence {Mt}Tt=1 satisfying

M−1
t = 2I +A−Mt+1 ∀ t ∈ {1, . . . , T − 1} (D.57)

with CL ≺MT ≺ I and having eigenvectors same as A. Denoting the eigenvalues of {Mt}Tt=1 corresponding to the ith

eigenvector as {ρti}Tt=1, they satisfy the following properties:

1. The ith eigenvalue of the matrices {Mt}Tt=1 satisfy

1

ρti
= 2 + λA

i − ρt+1
i ∀ t ∈ {1, . . . , T − 1}

2. The ith eigenvalue of the matrices {Mt}Tt=1 satisfy(
ρti − λL

i

)
=
(
ρt+1
i − λL

i

)
ρtiλ

L
i

3. The following order holds for any horizon T

CL ≺M1 ≺ . . . ≺MT

4. The ith eigenvalues of {Mt}Tt=1 show the following behavior(
ρti − λL

i

)
≤
(
ρTi − λL

i

) (
ρTi
)2(T−t)

5. The asymptotic behavior of {Mt}Tt=1 is

lim
T→∞

zT (M1 − CL)z = 0 ∀ z ∈ Rd.

Proof. Consider the following matrix

CL =
A+ 2I −

√
A2 + 4A

2
(D.58)

where
√
A2 + 4A is the unique positive definite square root of the positive definite matrix (A2 + 4A). We know that the

square root has to be PD1/2PT where D is the diagonal matrix of eigenvalues of (A2 +4A) and P is the matrix having the
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corresponding eigenvectors of (A2 +4A) as columns. Therefore,
√
A2 + 4A has the same set of eigenvectors as (A2 +4A).

This means that CL has the same set of eigenvectors as A. This means that

λL
i =

λA
i + 2−

√(
λA
i

)2
+ 4λA

i

2
=

2

λA
i + 2 +

√(
λA
i

)2
+ 4λA

i

< ρTi (D.59)

where λL
i is the ith eigenvalue of CL and λA

i is the ith eigenvalue of A. Now, consider the recursion followed by {Ct}Tt=1,

M−1
t = 2I +A−Mt+1 (D.60)

and we know that each one of {Mt}Tt=1 has same the set of eigenvectors as A. This gives us the following recursion followed
by the ith eigenvalue of {Ct}Tt=1

1

ρti
= 2 + λA

i − ρt+1
i (D.61)

Now, from the value of λL
i , we know

λL
i +

1

λL
i

= 2 + λA
i . (D.62)

which when substituted in (D.61) gives (
ρti − λL

i

)
=
(
ρt+1
i − λL

i

)
ρtiλ

L
i (D.63)

Now observe that {ρti}
T
t=1 follows recursion (D.43) with λ = λA

i . Further, λL
i is cL with λ = λA

i . Therefore, applying the
properties in Lemma D.2, we get that

λL
i < ρ1i < . . . < ρTi ∀ i ∈ {1, . . . , d} (D.64)

and since, CL and each of {Mt}t have the same set of eigenvectors,

CL ≺M1 ≺M2 ≺ . . . ≺MT . (D.65)

Further,

(ρti − λL
i ) ≤ (ρt+1

i − λL
i ) · (ρTi )2 (D.66)

≤ (ρTi − λL
i ) · (ρTi )2(T−t) (D.67)

Since ρTi < 1 for every i, we have

lim
T→∞

(
ρ1i − λL

i

)
≤ lim

T→∞
(ρTi − λL

i ) · (ρTi )2(T−1) = 0 ∀ i ∈ {1, . . . , d}. (D.68)

Now, consider M1 and CL. We know M1 = PD1P
T and PDLP

T where D1 = diag
((

ρ1i
)d
i=1

)
, DL = diag

((
λL
i

)d
i=1

)
and P is the modal matrix of A.

zT (M1 − CL)z = zTP (M1 −DL)P
T z (D.69)

=
[
k1 . . . kd

]

ρ11 − ρL1 0 . . . 0

0 ρ12 − ρL2 . . . 0
...

. . . . . .
...

0 . . . . . . ρ1d − λL
d


k1...
kd

 (D.70)

=

d∑
i=1

(
ρ1i − λL

i

)
k2i (D.71)

for any z ∈ Rd. Therefore, in the case of infinite horizon,

lim
T→∞

zT (M1 − CL)z = 0 ∀ z ∈ Rd (D.72)
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D.4 Proof of Theorem 3.5

The ROBD solution for hitting costs ft(x) = 1
2 (x− vt)

TA(x− vt) and switching costs c(xt, xt−1) =
1
2∥xt − xt−1∥22 is

xt = argmin
x

1

2
(x− vt)

TA(x− vt) +
µ1

2
∥x− xt−1∥22 +

µ2

2
∥x− vt∥22. (D.73)

Equating the derivative of the objective to zero

(A+ µ1I + µ2I)x = µ1xt−1 + (A+ µ2)vt. (D.74)

Setting µ1 = 1, we get

xt = (A+ I + µ2I)
−1xt−1 + (I − (A+ I + µ2I)

−1)vt (D.75)
= CROBDxt−1 + (I − CROBD)vt (D.76)

with µ2 as

µ2 =
λA
min

2

(√
1 +

4

λA
min

− 1

)
. (D.77)

Now, lets have a look at eigenvalues of CROBD

CROBD = (A+ I + µ2I)
−1 (D.78)

= P (DA + I + µ2I)
−1PT (D.79)

which gives us

λCROBD

i =
1

λA
i + 1 +

√
(λA

min)
2
+4λA

min−λA
min

2

(D.80)

Therefore, A ̸= λI implies there exists i such that λA
i ̸= λA

min, giving us CROBD ̸= CL. Now,

λCROBD

i = λL
i ⇐⇒ λA

i = λA
min (D.81)

and therefore, we can replace the condition (CROBD − CL)Σ ̸= 0d×d and

Z = {i ∈ {1, . . . , d} : λCROBD

i = λL
i }

with (A− λA
minI)Σ ̸= 0d×d and

Z = {i ∈ {1, . . . , d} : λA
i = λA

min}

which proves the theorem through Theorem B.5.

D.5 Linear regret for Follow the Minimizer (FTM) algorithm

Lemma D.6. For ft(x) = 1
2 (x − vT )

TA(x − vt) and c(xt, xt−1) = 1
2∥xt − xt−1∥22 with minimizers {vt}t being a

martingale, the FTM algorithm has regret with respect to LAI as

RegretFTM[1, T ] ≥
(
λL
minσ

2

2

)
T

Proof. The cost of FTM algorithm for ft(x) = 1
2 (x− vt)

TA(x− vt) will be

E[CostFTM[1, T ]] = E

[
0 +

1

2
∥x0 − v1∥22 +

T∑
t=2

(
0 +

1

2
∥vt − vt−1∥22

)]
(D.82)
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and, therefore, the gap to LAI will be

E[CostFTM[1, T ]]− E[CostLAI[1, T ]] =E
[
1

2
(x0 − v1)

T (x0 − v1)

∣∣∣∣F0

]
+

T∑
t=2

E
[
1

2
(vt − vt−1)

T (vt − vt−1)

∣∣∣∣F0

]
− E

[
1

2
(x0 − v1)

T (I − C1)(x0 − v1)

∣∣∣∣F0

]
−

T∑
t=2

E
[
1

2
(vt − vt−1)

T (I − Ct)(vt − vt−1)

∣∣∣∣F0

]
(D.83)

=E
[
1

2
(x0 − v1)

TC1(x0 − v1)

∣∣∣∣F0

]
+

T∑
t=2

E
[
1

2
(vt − vt−1)

TCt(vt − vt−1)

∣∣∣∣F0

] (D.84)

≥E
[
1

2
(x0 − v1)

TCL(x0 − v1)

∣∣∣∣F0

]
+

T∑
t=2

E
[
1

2
(vt − vt−1)

TCL(vt − vt−1)

∣∣∣∣F0

] (D.85)

≥E
[
1

2
(x0 − v1)

TλL
minI(x0 − v1)

∣∣∣∣F0

]
+

T∑
t=2

E
[
1

2
(vt − vt−1)

TλL
minI(vt − vt−1)

∣∣∣∣F0

] (D.86)

=

(
λL
minσ

2

2

)
T (D.87)

E Additional proofs for LAI’s adversarial performance

E.1 Proof of Theorem 3.8

The LAI algorithm is

xt = Ctxt−1 + (I − Ct)vt (E.1)

which means

A(xt − vt) + (xt − xt−1) + (C−1
t −A− I)(xt − vt) = 0. (E.2)

The above equation can be written as

xt = argmin
x

1

2
(xt − vt)

TA(xt − vt) +
1

2
∥xt − xt−1∥22 +

1

2
(xt − vt)

T (C−1
t − (I +A))(xt − vt). (E.3)

This means m = λA
min and α = β = 1. Remember,

C−1
L ≻ C−1

1 ≻ . . . ≻ C−1
T (E.4)

which means

C−1
L − (I +A) ≻ C−1

1 − (I +A) ≻ . . . ≻ C−1
T − (I +A) = 0 (E.5)
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Now, α′
t will be the smallest eigenvalue of C−1

t − (I+A) and β′
t will be the largest eigenvalue of C−1

t − (I+A). Therefore,
mint α

′
t = α′

T = 0 and maxt β
′
t = β′

1. Now, the largest eigenvalue of C−1
1 − (I +A) is less than that of of C−1

L − (I +A),
that is

β′
1 < max

i

{
1

λL
i

− (1 + λA
i )

}
(E.6)

= max
i

√(
λA
i

)2
+ 4λA

i − λA
i

2
(E.7)

=

√
(λA

max)
2
+ 4λA

max − λA
max

2
(E.8)

This gives us the competitive ratio of dynamic programming for any horizon T as

CRLAI = max

1 +

√
(λA

max)
2
+ 4λA

max − λA
max

2λA
min

, 1 +
1

λA
min

 (E.9)

(E.10)

Now the (
√
y2 + 4y − y) < 2 for all y ≥ 0, which means the second term is always larger than the first and

CRLAI = 1 +
1

λA
min

(E.11)

F Additional proofs regarding LAI(γ)

F.1 Proof of Lemma B.9

As a consequence of {Ct}t and {C̃t} having eigenvectors same as that of A and satisfying

C−1
t = 2I +A− Ct+1 (F.1)

C̃−1
t = 2I +A− C̃t+1, (F.2)

the eigenvalues of Ct and C̃t follow the recursion

1

λt
i

= 2 + λA
i − λt+1

i (F.3)

1

λ̃t
i

= 2 + λA
i − λ̃t+1

i (F.4)

for t ∈ {1, . . . , T − 1} . This means

1

λ̃t
i

− 1

λt
i

= λt+1
i − λ̃t+1

i (F.5)

or (
λt
i − λ̃t

i

)
=
(
λt+1
i − λ̃t+1

i

)
λt
iλ̃

t
i (F.6)

≤
(
λt+1
i − λ̃t+1

i

)
λT
i λ̃

T
i (F.7)

≤
(
λt+1
i − λ̃t+1

i

) (
λT
i

)2
(F.8)

≤
(
λT
i − λ̃T

i

) (
λT
i

)2(T−t)
(F.9)

36



Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization

Further,

1

λT
i

= 2 + λA
i − 1 (F.10)

1

λ̃T
i

= 2 + λA
i −

(
1− λA

i

2

((
1 +

4

λA
i

) γ
2

− 1

))
(F.11)

meaning

λT
i − λ̃T

i =
λA
i

2

((
1 +

4

λA
i

) γ
2

− 1

)
λT
i λ̃

T
i (F.12)

≤ λA
i

2

((
1 +

4

λA
i

) γ
2

− 1

)(
λT
i

)2
. (F.13)

This gives (
λt
i − λ̃t

i

)
≤ λA

i

2

((
1 +

4

λA
i

) γ
2

− 1

)(
λT
i

)2(T−t+1)
(F.14)

Lemma F.1. Consider ys = PT (vT−s+1−vT−s) for s ∈ [1, T ]. For increments (vT−s+1−vT−s) having same covariance
matrix Σ, we have

d∑
i=1

E[(ys)2i ] = σ2

where (ys)i is the ith coordinate of y and σ2 = Tr(Σ).

Proof. We take ys = PT (vT−s+1 − vT−s). If all increments (vT−s+1 − vT−s) have same covariance matrix Σ, we will
have

E(ys)2i = E[eTi PT (vT−s+1 − vT−s)(vT−s+1 − vT−s)
TPei] (F.15)

= eTi P
TΣPei (F.16)

= E(y)2i . (F.17)

Therefore,

d∑
i=1

E(y)2i =

d∑
i=1

E[(vT−s+1 − vT−s)
TPeie

T
i P

T (vT−s+1 − vT−s)] (F.18)

= E[(vT−s+1 − vT−s)
TP

(
d∑

i=1

eie
T
i

)
PT (vT−s+1 − vT−s)] (F.19)

= E[(vT−s+1 − vT−s)
TPIPT (vT−s+1 − vT−s)] (F.20)

= E∥(vT−s+1 − vT−s)∥22 (F.21)

= σ2 (F.22)

Corollary F.2. For the relaxed assumption that increments only have same variance σ2 (and not necessarily the entire
covariance matrix), LAI(γ) has the following constant regret,

RegretLAI(γ)[1, T ] ≤
σ2

4

d∑
i=1


(
1 + 4

λA
i

) γ
2 − 1

λA
i + 2


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Proof. For the looser assumption (that the increments only have same variance and not the entire covariance matrix)

E[CostLAI(γ)[1, T ]]− E[CostLAI[1, T ]]

≤1

2

T∑
t=1

E
[
(vt − vt−1)

TP (Dt − D̃t)P
T (vt − vt−1)

] (F.23)

≤1

2

T∑
t=1

E

[
(vt − vt−1)

TP

(
d∑

i=1

λt
i − λ̃t

i

)
IPT (vt − vt−1)

]
(F.24)

=

T∑
t=1

(
d∑

i=1

λt
i − λ̃t

i

)
σ2

2
(F.25)

=
σ2

2

d∑
i=1

λA
i

2

((
1 +

4

λA
i

) γ
2

− 1

)
T∑

t=1

(
λT
i

)2(T−t+1)
(F.26)

≤σ2

2

d∑
i=1

λA
i

2

((
1 +

4

λA
i

) γ
2

− 1

) ∞∑
t=1

(
λT
i

)2t
(F.27)

=
σ2

4

d∑
i=1

λA
i

((
1 + 4

λA
i

) γ
2 − 1

)
(
λA
i + 1

)2 − 1

 (F.28)

=
σ2

4

d∑
i=1


(
1 + 4

λA
i

) γ
2 − 1

λA
i + 2

 (F.29)

G Details of Numerical Experiments

G.1 Purely-stochastic environment

In this subsection, we explain how the minimizer sequence {vt}t is developed for the experiments. First, the minimizer is
written as a sum of random variables {ut}t,

vt =

t∑
s=1

us (G.1)

which can be thought of as increments to the minimizers. The different distributions discussed are with respect to the the
increments {ut}t. We build {ut}t such that they are not necessarily independent of each other. The process for any subset
of the horizon τ ⊆ {1, . . . , T} involves the following steps:

1. Choosing a common distribution Fτ (·) and sampling zt

zt ∼ Fτ ∀ t ∈ τ (G.2)

2. Choosing a positive definite covariance matrix Σ ∈ R10|τ |×10|τ | and performing its Choleksy decomposition to get L,
such that LLT = Σ

3. Concatenating {zt}t∈τ into a single vector z ∈ R10|τ | and transforming it into

u = Lz (G.3)

and splitting it back into {ut}t∈τ
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For the light tail case, we want to exhibit the robustness to distribution shift. We, therefore, split the horizon into five subsets
{τi}4i=0 where τi = {(iT/5) + 1, . . . , (i + 1)T/5}. For each subset we create the increments ut according to the above
mentioned process, each subset pertaining to a different form of distribution.

To show that our results hold for heavy tail distributions, we choose the pareto distribution (Type 2, that is, Lomax) and the
log-normal distributions as our candidates. Since these distributions are one sided, we build the zt vector, in the process
above, by first sampling d = 10 elements from the one dimensional distribution and then multiply a p = 0.5 Bernoulli
random variable to each element, making zt a zero-mean heavy tail random vector.

G.2 Mixed Environment

Our next set of experiments deal with an environment which is partly stochastic and partly adversarial. We do this by putting
adversarial minimizers in an otherwise martingale sequence of minimizers. The level of adversarial infiltration ranges from
zero to hundred, with zero being martingale minimizers and hundred being completely adversarial minimizers. We perform
this in the following way:

1. First, we generate an IID sequence of increments {ut ∼ F : t ∈ {1, . . . , T}} and define a martingale minimizers as
vt =

∑t
s=1 us. Here, the underlying distribution F can be light or heavy tailed.

2. Next, we decide the percentage (p) of rounds we want to be adversarial and choose that many rounds from {1, . . . , T}
uniformly at random. The set of adversarial rounds τ is fixed for the N = 1000 sample runs.

3. During the runs, we replace {vt}t∈τ with {ṽt}t∈τ which are generated adversarially. Note that {ṽt}t∈τ is fixed for all
sample runs of a given adversarial percentage (p).

For light tail, we choose the normal distribution and for heavy tails we take the two-sided pareto and log-normal distributions.
The adversarial percentage (p) varies from 0 to 100 and we consider a horizon of T = 100. The scale of total cost for an
adversarial environment can be different than that of a stochastic environment. To mitigate this issue, we plot the ratio of
the total cost of an online algorithm ALG to that of LAI, that is, E[CostALG[1,T ]]

E[CostLAI[1,T ]] . Note that as the environment becomes more
adversarial than stochastic, the expectation has no effect.
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