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ABSTRACT

Self-supervised pre-training is an effective method for initializing the weights of
vision transformers. In this paper, we advocate for a novel learning objective
that trains the target model to use a minimal number of tokens to reconstruct im-
ages. Compared to the existing approaches including contrastive learning (CL)
and masked image modeling (MIM), our formulation not only offers a new per-
spective of visual pre-training from the information theory, but also alleviates the
degradation dilemma which may lead to instability. The idea is implemented us-
ing Semantic Merging and Reconstruction (SMR). SMR feeds the entire image
(without any degradation) into the target model, gradually reduces the number of
tokens throughout the encoder, and requires the decoder to maximally recover the
original image in the semantic space using the remaining tokens. We establish
SMR upon the vanilla ViT and two of its variants. Under the standard evaluation
protocol, SMR shows favorable performance in visual pre-training and various
downstream tasks. Additionally, SMR enjoys reduced pre-training time and mem-
ory consumption and thus is scalable to pre-train very large vision models. Code
is submitted as supplementary material and will be open-sourced.

1 INTRODUCTION

Self-supervised visual pre-training plays a fundamental role in computer vision and it is partlcularly
important to initialize the state-of-the-art vision transformers (

). Recent years have witnessed a rapid development of visual pre- tralmng The popular al-
gorithms include contrastive learning (CL) ( s ; s ) and masked image
modeling (MIM) ( s ; ; , ). These approaches have shown
the ability to learn representations from an 1mage dataset without semantic labels and transfer the
knowledge to various downstream tasks for visual recognition.

In this paper, we present a novel formulation for visual pre-training. It originates from the assump-
tion that the best vision model is the one that permits the greatest compression of the observed image
data ( , ); in other words, the goal of the pre-training stage is to train the model to
better compress image representations. Theoretically, we refer to the Kolmogorov complexity which
equals the length of the shortest program to reconstruct image data. However, the Kolmogorov com-
plexity itself is uncomputable, so we instead consider the dual optimization goal in which we train a
vision transformer to use a fixed number of tokens to reconstruct the image as accurately as possible.

We implement the above idea using the Semantic Merging and Reconstruction (SMR) framework.
SMR inherits the encoder-decoder design of MAE ( , ) where the encoder is used for
downstream tasks and the decoder plays an auxiliary role for image reconstruction. Differently,
SMR feeds the entire image into the input stage and forces the model to gradually discard less
important tokens throughout the encoder. We inject a plug-in module to determine which tokens
to discard into each transformer block. The module is easily replaceable and is discarded after the
pre-training stage. Hence, at the end of the encoder, the information is stored in a small number of
tokens and the decoder must reconstruct the original image with such incomplete information. The
reconstruction target can be either raw pixels or the semantic features of the full image extracted by
a reference model (e.g., CLIP ( , )). The latter choice prevents the model from
focusing on pixel-level details and leads to better pre-trained models.
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Compared to the existing literature of visual
pre-training, SMR claims two-fold contribu-
tions. First, SMR offers a new methodol-
ogy that explicitly connects visual pre-training
with information theory. Although the idea ap-
peared at an early age of Al (e. g with au-
toencoders (

, )), it has not been well ex-
plored in the context of vision transformers.
Note that our proxy task is degradation-free,
unlike MIM which masks out random patches,
or CL which crops image views, which may
suffer the degradation dilemma (i.e., a small
degradation is insufficient to challenge the tar-
get model, yet a large degradation can cause
the learning objective irrational). Second, SMR
applies to various vision transformer architec-
tures, where we showcase the vanilla ViT and
two variants in this work. The property that
SMR largely reduces the number of tokens

Method [non-deg.[arch-free|mins/ep| mem. | acc.

MoCo (CL) v 3327 20.1G7(83.2%
BEiT (MIM) 15.6 |18.7G|83.2%
MAE (MIM) 9.2 [16.8G |83.6%
SMR (ours)| v | v | 137 [141G[854%
Table 1: Comparison between SMR and recent

approaches for pre-training vision transformers
including MoCo ( , ), BEIT (

, )), and MAE ( , ). Here,
‘non-deg.” means that the input images are not de-
graded (e.g., cropped into two views or randomly
masked), and ‘arch-free’ means that the method
is easily applicable to any vision transformers.
We report the time (mins/ep) and memory (mem.)
costs using ViT-B on 8x V100 GPUs with a batch
size of 128 per GPU (f: 64 for MoCo). The
last column reports the classification accuracy on
ImageNet-1K after 300 epochs of pre-training.

in the encoder allows us to balance the pre-
training cost and performance (see Table 1) and scales it up to pre-train very large vision models.

We evaluate SMR using a standard protocol, i.e., pre-training the target model on ImageNet-
1K ( , ) and fine-tuning it on ImageNet-1K for classification, on COCO (

s ) for object detection and instance segmentation, and on ADE20K ( s ) for
semantic segmentation. Extensive and competitive results demonstrate the effectiveness of SMR. In
particular, after 300 epochs of pre-training, the ViT-B model achieves a top-1 accuracy of 85.4% on
ImageNet-1K, a box AP of 53.8% on COCO, and a mIoU of 53.1% on ADE20K, showing the poten-
tial of SMR. We also report stronger performance when the backbone is upgraded to HiViT (

, ) and ConViT ( , ). Additionally, the models pre-trained by SMR enjoy
a stronger ability to reconstruct semantics with partial information, revealing a positive correlation
between the compactness and effectiveness of visual representations.

2 RELATED WORK

The rapid development of computer vision has been driven by deep learnrng ( ),
especially deep neural networks. Recently, researchers have realized that vision transformers (

, , ) are powerful v1sual representatlon learners that outperform
convolutional neural networks ( R )in a W1de
range of computer vision tasks. The plaln (Vanrlla) vision transformers (

s ; s ) assume that the number of tokens remains
unchanged. Some variants later emerged called hierarchical vision transformers (

R s ), which gradually reduce the feature
sizes throughout the backbone. Des1gn dec1s1ons were also 1nher1ted from the pre- transformer era,
such as adding convolutions to vision transformers (

; , ) and various methods to reduce the computatronal costs of self-attentlons (

s s ’ 5 ’ )'

Recently, self-supervised learning has attracted widespread attention, which assumes that the
weights of vision transformers can be initialized by learning from a set of unlabeled image data.
There have been mainly two types of self-supervised learning approaches for vision transformers,
namely the contrastive learning (CL) algorithms ( R ), which
predate vision transformer ( , ; s ), and masked image modeling (MIM)
algorithms ( s ; ; s ), which have been reviewed because
they better fit the characteristics of vision transformers.

’

It is still an open problem to understand how self-supervised learning works ( , )
and how it benefits downstream recognition tasks ( s ; , ; s
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). Nevertheless, researchers have explored many variants beyond the existing methods, in-

cludlng changing the reconstruction target ( , ;b), degradation types ( , ;
; , ), and adapting it to various types of vision transformers ( , ;
, ; , ), etc.

This paper is also related to the 1dea of using fewer tokens for visual recognltlon in the context of
vision transformers ( , ; , ;

; s ; , ). In these approaches redundant
tokens are omrtted or merged throughout the backbone and redundancy is judged based on whether
similar semantic information is represented by other tokens. These methods were developed for im-
age classification, and in this work, we study the application of self-supervised learning by assuming
that powerful vision models emerge from compact visual representations.

3 METHOD

3.1 VISUAL PRE-TRAINING AS IMAGE COMPRESSION

Self-supervised visual pre-training aims to train a model to extract high-quality visual features with-
out relying on semantic labels (e.g., class labels). The key is to find some kind of unsupervised prior
to constrain the target model. The past years have witnessed an evolution in which the early priors
(e.g., understanding the spatial relationship of image patches ( , ), filling up
rnissing color ( s ) or contents ( s ), etc.) have been replaced by
two priors that are stronger and more frrendly to training vision models. They are (i) the contrastive
learning (CL) prior ( , ), assuming that the target model shall find the
relatronsh1p between two random views of an image in a large memory bank, and (ii) the masked
image modeling (MIM) prior ( ; ; , ), assuming that the
target model shall reconstruct the image when many of i 1ts patches are masked out.

We note that MIM is related to the information theory, suggesting that a powerful pre-trained model
shall have the ability to represent image data using as compressed information as possible. However,
MIM achieved the goal in a passive manner, i.e., patches are randomly masked out regardless of their
semantic importance. This may introduce the so-called degradation dilemma, i.e., the pre-training
algorithm needs to set a high masking ratio to challenge the target model, but a high masking ratio
increases the risk that important patches are unseen to the target model and thus the reconstruction
target becomes unreasonable. The dilemma also holds for contrastive learning where the difficulty
and risk lie in the strength of data augmentation ( , ; , ).

To alleviate the dilemma, we advocate for a novel framework for active compression. The optimiza-
tion goal for pre-training remains unchanged, i.e., using fewer tokens to reconstruct the image. But,
different from MIM, we feed the entire image to the target model (i.e., we do not mask out patches
randomly) and instead ask the model to determine which patches are less important and can be dis-
carded. Without degradation, we can freely increase the compression ratio (i.e., difficulty) without
worrying that the reconstruction target may become unreasonable.

The idea of setting data compression as the target for self-supervised learnrng is not new, e.g.,

has been the optimization target for autoencoders ( ,
). However, this objective has not been well studied recently, espe01a11y for pre-training vision

transformers. We hope to raise the attention of the community to this promising direction.

3.2 TowARDS A HIGH COMPRESSION RATIO OF IMAGE DATA

Let an image dataset be D = {x,}"_,, where N is the number of images and all x,, are not
equipped with semantic labels. The goal is to obtain a deep neural network f(x; ) to capture the
semantic distribution of these images. In this work, we assume that f(x; @) belongs to the family of
vision transformers (ViT), where the image is partitioned into patches, embedded into tokens, and
the tokens interact with each other through self-attentions into visual representations.

For each image x (we omit the subscript for simplicity), let the image patches be embedded into a

set of tokens, denoted as 7(¥) = PE(x) = {VEO), . vg\(})}, where PE(-) is the patch embedding
function, (0) is the block index, and M is the nurnber of tokens. There are a total of L transformer
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Figure 1: The overall framework of SMR. All tokens are preserved at the input stage. Throughout
the encoder stage, a compression function is used to reduce the number of tokens (e.g., by finding
less important tokens and dropping/merging them). At the end of the encoder, dummy tokens are
filled into the empty slots and a decoder is used for reconstructing raw pixels or CLIP features.

blocks, where the I-th block takes 7(~1) as input and produces 7 as output. Let f()(-) denote
the mathematical function of the [-th transformer block that contains some kind of compression
operations, then the overall transformer function can be rewritten as

fx:0)=fF o 0f@ofDoPE(x). (1)

Our goal is to optimize f(x; @) towards compressing image data. For this purpose, we refer to the
Kolmogorov complexity which equals the length of the shortest program that outputs x. However,
since the Kolmogorov complexity is uncomputable, we set the learning objective to be using minimal
information to reconstruct image data. A simple derivation (see Appendix A) shows that, in the
context of vision transformers, the amount of information, Z(x), is proportional to the smallest
number of tokens at any layer, i.e., Z(x) o< min; M @, where MW is the number of tokens at the
[-th layer. To measure the reconstruction quality of data, we introduce a decoder, g(-, T), that takes
f(x; 0) as input and produces reconstruction results. Hence, the learning objective is written as:

minBxepZ(x)), st |g(f(x:6),7) — h(x)| <o, @)

Here, h(x) is a reference model and § is a threshold. Setting h(x) = x and § = 0 asks for perfect,
pixel-level reconstruction which is often impossible yet meaningless (raw pixels often contain noise
and artifacts). So, we allow J > 0 and set h(x) to be a feature extractor (e.g., CLIP (Radford et al.,
2021)) which projects x to the semantic space (Wei et al., 2022b;c). But, since Z(x) is a discrete
variable, optimizing Eqn (2) is intractable. We note that the key of Eqn (2) lies in the tradeoff
between information and reconstruction, so we rewrite it into the dual form:

rginExeDHg(f(x; 0),7)— h(x)|], s.t. mlinM(l) =M, 3)

where M’ is an integer smaller than M. In other words, we ask the target model to reconstruct
the original image using a fixed number of tokens. Note that Eqn (3) is friendly to implementation
because we can fix the number of tokens at each layer and pack training images into mini-batches.

3.3 SEMANTIC MERGING AND RECOVERY

We implement the above formulation using the Semantic Merging and Reconstruction (SMR)
framework. The design of SMR is illustrated in Figure 1. SMR is degradation-free, i.e., it does
not perform random masking in the input stage, but instead asks the target model to recognize and
discard redundant (less important) tokens throughout the encoder stage.
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Mathematically, we equip each transformer block, say f()(-), with a token compression function,
TC(-; K®), where K" denotes the number of tokens to be dropped at this stage, i.e., TC(-; K1)
reduces M) by K, The numbers of { K1), ... K1)} is called the configuration of compression
and >, K)' < M. Letus denote F(.) as the variant of £()(-) with the token compression function
injected. Combining Eqns (1) and (3), the overall pre-training objective is rewritten as

Lyccon = Exen|g(fH o...0 f1) o PE(x)) — h(x)]. 4)

After the pre-training stage, all TC(-; K() are removed from f()(-) and the remaining part,
f(x;0), is used for downstream tasks. Below, we discuss some important design choices.

Network architecture. SMR is generalized to various architectures (see Section 4.1). We study
three of them in this paper, namely, ViT ( s ), HiViT ( R ), and
ConViT ( , ). Since SMR is degredation-free, its application on HiViT and ConViT
is straightforward, unlike MIM which needs special and costly treatments to avoid ‘information
leakage’ ( s ; s ).

Reconstruction target. SMR works well with both the pixel-level and semantic-level reconstruc-
tion targets and shows advantage over corresponding baselines (e.g., BEIiT ( , ),
MAE ( s ), SD ( s ), etc.). Yet, as we shall see in Section 4.3, using
CLIP features as the reconstruction target improves visual pre-training because it is unreasonable to
force the target model to reconstruct the raw pixels which may contain noise and artifacts.

Token compression function. Here we discuss the function of TC(+) which aims to compress the
number of tokens. Below we investigate some choices as special cases of CF(-), yet we emphasize
that SMR is open to other choices of CF(-). Each algorithm receives a token set 7 and a hyper-
parameter r indicating the number of tokens to be compressed, and produces a compressed token
set with r tokens fewer and it is possible that part of remain tokens are modified.

* Token merging (TM). This algorithm was introduced in ToMe ( , ) where
the token set is randomly partitioned into two equal-sized subsets and each token in the first
set is mapped to the most similar token in the second set. Then, the top-r tokens in the first
set with highest redundancy are averaged to the corresponding token in the second set.

* Token dropping (TD). We use the same strategy as TM to choose the top-r most redundant
tokens, but we directly remove them instead of averaging them into other tokens.

* Inattentive token fusion (ITF). This algorithm was introduced in EViT ( , )
where each token is assigned with an attentiveness score computed by self-attention. Then,
the top-r inattentive ones are weighted averaged into one token and the remaining (atten-
tive) tokens are preserved.

* Random dropping (RD). We randomly remove r tokens from the token set.

As shown in Section 4.3, stronger compression functions are helpful in preserving useful semantic
information and assisting learning representations.

3.4 DISCUSSIONS

MIM as a special case of SMR. MIM can be formulated using the above framework. If we
perform token dropping before the first transformer block (SMR does not allow it), i.e., setting K (©)
to be a specific value (e.g., 3/4 of the total number of tokens) and all other K (1) = 0, the framework
degenerates to MIM. However, since all tokens before the first transformer block are independent,
the selection of dropped tokens is random and may affect semantic understanding. As we shall see
in Appendix E, SMR learns to preserve important tokens for semantic reconstruction.

Advantages. We analyze the difference between SMR and MIM from two aspects. First, SMR
does not perform random masking on the input image, so it alleviates the burden of setting an irra-
tional reconstruction target via masking out essential content from the input image. To the best of
our knowledge, SMR is the first pre-training proxy for vision transformers which allows for chang-
ing the target difficulty but does not perform input degradation. Second, SMR learns to actively
select and remove redundant tokens, so it gains the ability to represent visual semantics using less
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information: this aligns with the working mechanism of autoencoders ( , )
that learn stronger representations by improving the compactness of visual features.

Computational complexity. Since the reconstruction is measured in the semantic space, the base-
line method uses the entire image (with part of patches replaced with [MASKED] tokens, as in
BEIiT ( s ) and SD ( s )) as input, meanwhile the number of tokens
remains unchanged throughout the encoder. In comparison, SMR enjoys a lower computational
complexity because the token number is gradually reduced. Let a vanilla vision transformer have L
layers and the I-th layer has M () tokens, the time and memory costs of pre-training are proportional
to O3>, MW2) and O3, M W), respectively. BEiT and SD keep M () = M for all I and thus the
numbers are O(LM?) and O(LM). Instead, SMR reduces the number of tokens at an early stage
(see diagnostics in Section 4.3 which show that early token compression leads to better results) and
thus a large portion layers have a smaller /(") In the pre-training stage, SMR is 15%—20% faster
than BEiT and SD: the advantage is made smaller by the decoder stage and the teacher in which all
methods have the same complexity and the advantage would be amplified with the pre-training of
larger models.

On the other hand, the advantage in memory usage is even larger, which allows us to pre-train very
large vision models. In practice, we scale up a ViT model into 50 layers with the dimension being
4,096. This model has more than 10B parameters and is unable to fit into GPUs with 80G memory
(e.g., NVIDIA Tesla-A800) using MIM or SD. Thanks to SMR, the memory usage is reduced and,
for the first time, we can train the 10B model without model partitioning (details in Appendix F).

4 EXPERIMENTS

Method Arch. Sup. |Eps Palr\z/alm. T

4.1 QUANTITATIVE STUDIES M) face.
MoCo v3 ( s )| ViT-B pixel [300 86 ([83.2

We evaluate SMR following the stan- iBoT ( ViT-B  pixel [1600 86 |84.0
dard protocol, ie., pre-training the BEiT( ViT-B  DALL-E| 400 86 [832
model on ImageNet-1K ( SimMIM ( Sv&./m-B pixel | 800 88 [84.0
ith . . MaskFeat ( ) ViT-B HOG |800 86 |[84.0

) ) (without using semantic ., " VIT-B DALL-E|800 86 |83.6
labels) followed by fine-tuning it on  \pyp ViT.B  CLIP-B | 300 86 |84.4
ImageNet-1K, COCO ( , ), CAE-v2( ) | VIiTB  CLIP-B|300 86 [85.3
and ADE20K (Zhou » 2017 Al e VITB  pixel |[1600 86 [83.6
implementation details are provided in gy crpp ( ) | VitB  cLIP-B|300 86 |[s4.9
Appendix B. BEiT-v2 ( VIT-B  CLIP-B|300 86 |85.0
. . . SMR ViT-B CLIP-B | 300 86 |85.4

ImageNet classification. The classi- gup Egﬁ;:; V;T_B CLIP-B | 300 86 |85.7
fication accuracy on ImageNet-1K is  gMR (ours) VIT-B  CLIP-L|300 86 |86.7
summarized in Table 2. One can see HIVIT ¢ prs— 1 1300 79 lsic
. iVil iViT- pixe .

that lslMt}f Outperf(%rms the C?lr.npetltors FD-CLIPT ( )| HIVITLB CLIP-B |300 79 (854
on al three trans ormer arc }tectures. BEIT-v21 ( ) | HIVIT-B CLIP-B |300 79 [85.4
Specifically, on the vanilla ViT-B, the MR (ours) HiVITB CLIP-B |300 79 (857
advantages of SMR over the three direct ConvMAE ( ) [ConViTB pixcl |300 88 [85.0
baselines (i.e., MAE for MIM, FD-CLIP >V % onvi=S  puxe :
! . X FD-CLIPT ( ) |ConViT-B CLIP-B | 300 88 |[85.5

fpr SD, and BEiT-v2 for their combina- g1\t ( ) |ConViT-B CLIP-B |300 88 |85.4
tion) are 1.8%, 0.5%, and 0.3%, respec-  SMR (ours) ConViL-B CLIP-B| 300 88 |[85.7

tively. The good practice also transfers
to the ViT-L backbone. By using CLIP-
L as the teacher model, SMR reports an
87.7% classification accuracy after 300
epochs of pre-training and 50 epochs of
fine-tuning on ImageNet-1K.

COCO and ADE20K. Results of the
downstream recognition tasks are sum-
marized in Table 3. SMR persists the advantages observed in the image classification experiments.
On COCO, SMR reports better box/mask APs when either head (Mask R-CNN or Cascade Mask
R-CNN) is used. Again, it is worth noting that SMR is easily transplanted to different network
architectures and achieves higher downstream recognition accuracy using stronger backbones.

Table 2: Top-1 classification accuracy (%) by fine-tuning
(FT) the pre-trained models on ImageNet-1K. We com-
pare models of different backbones including ViT (

, ), HiViT ( s ), and Con-
ViT ( , ). T: these numbers are reported by
our re-implementation.
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Param. COCO ADE20K
Method Arch. Sup- | EPS: "My | MR, 1x  CMR, 3x | UPerHead
MoCo-v3 ( s )| VIT-B pixel 300 86 [45.5/40.5 - 47.3
BEIT ( s ) ViT-B DALL-E | 400 86 42.1/37.8 - 47.1
iBoT ( s ) ViT-B pixel 1600 86 - 51.2/44.2 50.0
MAE ( R ) ViT-B pixel |[1600 86 |48.4/42.6 - 48.1
SimMIM ( s ) Swin-B pixel 800 88 - - 52.8
CAE ( s ) ViT-B  DALL-E | 1600 86 |50.0/44.0 - 50.2
MVP ( s ) ViT-B CLIP-B | 300 86 - 53.5/46.3 52.4
FD-CLIP ( s ) ViT-B CLIP-B | 300 86 - - 52.8
HiViT ( s ) HiViT-B pixel |[1600 66 |49.5/43.8 - 51.2
ConvMAE ( s ) |ConViT-B  pixel |1600 88 - - 51.7
BEiT-v2 ( s ) ViT-B CLIP-B | 300 86 - - 52.7
SMR (ours) ViT-B CLIP-B | 300 86 |52.0/45.0 53.8/46.5 53.1
SMR (ours) HiViT-B  CLIP-B | 300 79 | 52.6/45.4 54.3/47.0 54.0
SMR (ours) ConViT-B CLIP-B | 300 88 52.6/45.5 54.4/47.1 54.2

Table 3: Downstream recognition results (%) on COCO (for object detection and instance segmen-
tation) and ADE20K (for semantic segmentation). We report box/mask AP on COCO and mloU on
ADE20K. Abbreviations: MR is for Mask R-CNN and CMR is for Cascade Mask R-CNN.

4.2 QUALITATIVE STUDIES OF IMAGE COMPRESSION
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Figure 2: Average reconstruction loss with respect to the proportion of masked/compressed tokens.
(a) Each pre-trained model is directly tested on the task that it was trained with. The red and black
lines are copied to (b) and (c) for comparison. (b) The MIM-trained model is tested on the SMR
task (the red dashed line); the SMR-trained model is tested on the MIM task (the dashed line).
(¢) The MIM-trained model is tested on the SMR task after being fine-tuned shortly with SMR (the
red dashed line); the SMR-trained model is also fine-tuned with MIM (the dashed line).

SMR pre-training improves the compactness of visual representations. To better compare the
pre-training results of MIM (enhanced by SD ( , )) and SMR, we evaluate the pre-
trained ViT-B models on two reconstruction tasks, i.e., the MIM task where a random subset of
tokens are masked from input and the SMR task where a subset of tokens are actively chosen and
dropped throughout the encoder. The total numbers of dropped tokens for MIM and SMR are the
same. We set three compression ratios (25%, 50%, 75%) and record the average reconstruction loss
over a fixed subset of the ImageNet-1K validation set. Figure 2 summarizes the results, where the
x-axis shows the ratio of compressed tokens and the y-axis shows the reconstruction loss.

Clearly, there is a tradeoff between the feature compactness (positively correlated to the compression
ratio) and the quality of reconstruction. We find that SMR achieves a better tradeoff than MIM, either
when the model is directly tested on the same task or transferred to the other task. In other words,
SMR acquires a better ability to use few tokens to represent the image semantics. As we shall see in
the subsequent experiments, SMR reports better downstream recognition results than MIM and SD.
Hence, SMR validates the intrinsic connection between the compactness and effectiveness of visual
representations, and offers an efficient implementation for vision transformers.
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Figure 3: Visualization of token compression and image reconstruction. We compare different token
compression functions and different configurations. The default configuration in the left part is 25 x4
and the default compression function in the right part is TM.

Lastly, in Figure 3, we visualize the impact of different token compression functions and compres-
sion ratios. All three active functions (ITF, TM, TD) report similar results, and TM reports the
smallest reconstruction loss. Additionally, a moderate ratio (e.g., 25 x 4) leads to the best trade-
off between compression and reconstruction. These nice properties correspond to better pre-trained
models, see Tables 4f and 4e. More examples of visualization are available in Appendix E.

4.3 DIAGNOSTIC STUDIES

Table 4 summarizes the diagnostic results on ImageNet-1K classification. Unless specified, we use
100 epochs of pre-training followed by 100 epochs of fine-tuning. These experiments allow us to
better understand the properties of the proposed SMR framework. We choose token merging (ToMe)
as the compression operation by default.

Reconstruction target: Table 4a. We investigate two reconstruction targets, the raw pixels and
the CLIP features. Interestingly, SMR with CLIP features outperforms both the SD and MIM+SD
methods, but SMR with raw pixels reports inferior results to the MIM baseline (He et al., 2022). This

Method | Sup. |Acc. Method | Blocks | Acc. Method | Eps. | Acc. Method | Drop Alg. | Acc.
SD (SMRo)| pixel |81.8 SMRosxa| 1 |849 SD (SMRg) | 100 | 84.8 SMRis5x4| RD |84.2
SD (SMRy) | CLIP-B | 84.8 SMR 25« 4 2 85.1 SD (SMRy) | 300 | 85.0 SMR 25 % 4 RD 84.4
SMR25%4 | pixel |82.2 SMR 25 % 4 4 83.2 SMR25%4 | 100 | 85.1 SMR 15% 4 ™ 84.7
SMRo5 x4 | CLIP-B | 85.1 SMRosy4| 6 |82.1 SMRos x4 | 300 | 85.4 SMRosxa| TM | 85.1

(a) Reconstruction Target  (b) Length of Decoder (c) Difficulty (d) Dropping Strategy
Method | Drop Alg. | Acc. Method | # Drop | Acc. Method | # Drop | Acc. Method | B-IDs | Acc.
SMR - 84.8 SMRi5x4| 60 |84.7 SMR1gx10| 100 |84.6 SMRasx4 | 1-4 |85.1
SMR 25 x 4 ™ 85.4 SMR20px4| 80 |[85.0 SMR20 x5 100 | 84.9 SMRo25x4 | 3-6 |84.2
SMRosxa| TD  |85.2 SMRos x4 | 100 |85.1 SMRosy4 | 100 |85.1 SMRos x4 | 5-8 | 84.5
SMRasxa| ITF  [85.0 SMRsoxa | 120 |85.0 SMRsox2 | 100 |84.6 SMRos 4 | 7-10 | 84.4
SMR 5% 4 RD 84.4 SMR3s5x4 | 140 |84.8 SMR10ox1| 100 |84.3 SMRos5y4 | 9-12 | 84.4
(e) Compress. Function (f) # Dropped Tokens (g) Pace of Dropping (h) Position of Dropping

Table 4: Diagnostic studies. SMR g« means that K’ tokens are compressed after each of the
L' transformer blocks. To save space, we only show the factor(s) to be diagnosed in each subtable.
The default parameters are: using CLIP-B as supervision, the decoder length is 2, 100 pre-training
epochs, using TM for token compression, and token compression happens in the first L’ blocks.
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is explained by the nature of SMR: the goal is to represent the image contents with fewer tokens, so
compared to recovering raw pixels that may contain random artifacts or noise, a better solution is to
recover high-level semantic features.

Length of decoder: Table 4b. Unlike in MIM, using a heavy decoder (e.g., with 6 or 4 transformer
blocks) significantly harms the pre-training performance of SMR. This is because we have used
CLIP features as the reconstruction target, and we hope that the features at the end of the encoder
have a close relationship to the CLIP features.

Difficulty and comparison to SD: Table 4c. Token compression makes the pre-training task of
SMR more difficult, allowing the model to benefit from longer training epochs, e.g., from using 100
to 300 pre-training epochs, the improvement is 0.2% for SD and 0.3% for SMR. Additionally, when
the pre-training is extended to 800 epochs, SD suffers an 0.3% accuracy drop arguably because the
model over-fits the CLIP features, yet SMR is almost unaffected. However, as analyzed in Table 4f,
setting an over-high difficulty can still deteriorate the pre-trained model.

Choice of token compression function, Tables 4d and 4e. These experiments are pre-trained for
300 epochs. Among the different token compression functions, the token merging operation (TM)
achieves the best results. Interestingly, the random dropping operation reports even worse accuracy
than the baseline, while the other three functions surpass the baseline. This indicates that semantic-
aware compression functions help to improve the compactness of visual representations. We also
compare TM and RD with different numbers of dropped tokens. TM consistently outperforms RD,
and also obtains a larger gain when the dropping ratio increases (from 15 x 4 to 25 x 4). Combining
with the observation in Figure 2 that TM reports a smaller reconstruction loss, we conclude that
dropping semantically redundant tokens is a better option for compression-based visual pre-training.

Number of compressed tokens, Table 4f. Setting a moderate number of compressed tokens (i.e.,
a moderate difficulty) leads to the highest accuracy. Although SMR allows for a higher pre-training
difficulty, the best strategy does not lie in removing more tokens (i.e., reducing spatial information).
Other possibilities include reducing the feature dimensionality, which we will study in the future.

Pace of token compression, Table 4g. Setting a moderate pace leads to the highest accuracy,
because an over-fast pace can force the model to drop some critical tokens, yet an over-slow pace
can postpone the bottleneck which, according to the next paragraph, brings a negative impact.

Position of token compression, Table 4h. It is interesting that compressing tokens at the very
first blocks produces the highest accuracy. We conjecture that the ‘bottleneck’ (i.e., where token-
compression ends) shall appear early to leave the remaining part of the encoder to learn semantic
reconstruction. This aligns with MIM where masking happens at the input layer.

Summarizing the above analysis on the configuration of token compression, we find two pairs of
tradeoffs: one is between pursuing the difficulty of pre-training and ensuring the quality of recon-
struction, and the other is between a fast compression pace (for an earlier bottleneck) and a low
compression loss. We leave them as open problems for future research.

5 CONCLUSIONS

In this paper, we propose Semantic Merging and Reconstruction (SMR) as a novel approach for pre-
training vision transformers. The methodology originates from the information theory. In practice,
we force the target model to drop image tokens throughout the encoder and the decoder still has
the ability of image reconstruction. We discuss several design choices including the reconstruction
target, token compression function, and dropping options. SMR shows competitive performance in
a few downstream visual recognition tasks.

An intriguing takeaway of this paper lies in the insight that vision transformers benefit from the
objective of learning compact visual representations. Specifically, SMR offers a non-degradation
framework that paves the way to continue increasing the difficulty of pre-training tasks (e.g., by
increasing the compression ratio) without worrying about the rationality of difficult reconstruction
tasks. We look forward to future research efforts in this direction. Open topics include (1) applying
stronger algorithms for token compression, (2) exploring the possibility of information reduction
from other dimensions (e.g., compressing the number of channels for each token), (3) designing
specialized network architectures towards a higher ratio of token compression, efc.
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image datasets (e.g., ImageNet, COCO, ADE20K, etc.) and pre-trained models (e.g., CLIP).

REFERENCES

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
In International Conference on Learning Representations, 2022. 1,2,3,5,6,7, 14, 16

Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum description length principle in coding
and modeling. IEEE Transactions on Information Theory, 44(6):2743-2760, 1998. 1

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. In International Conference on Learning Repre-
sentations, 2023. 3,5

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: high quality object detection and instance
segmentation. [EEE Transactions on Pattern Analysis and Machine Intelligence, 43(5):1483—
1498, 2019. 14

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Infernational
Conference on Computer Vision, 2021. 2

Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale
vision transformer for image classification. In International Conference on Computer Vision,
2021a. 2

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, et al. Mmdetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155, 2019. 14

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
2020. 1,2,3

Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo, Yunhao Wang, Shumin Han,
Ping Luo, Gang Zeng, and Jingdong Wang. Context autoencoder for self-supervised representa-
tion learning. arXiv preprint arXiv:2202.03026, 2022. 2, 6,7, 14

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In International Conference on Computer Vision, 2021b. 2, 6,7

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. Advances in Neural Information Processing Systems, 2021. 2

Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen,
and Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped
windows. In Computer Vision and Pattern Recognition, 2022. 2

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2021. 1,2, 5,6, 14, 17

Peng Gao, Jiasen Lu, Hongsheng Li, Roozbeh Mottaghi, and Aniruddha Kembhavi. Container:
Context aggregation network. arXiv preprint arXiv:2106.01401, 2021. 2

Peng Gao, Teli Ma, Hongsheng Li, Jifeng Dai, and Yu Qiao. Convmae: Masked convolution meets
masked autoencoders. arXiv preprint arXiv:2205.03892, 2022. 2,3,5,6,7, 14, 17

10



Under review as a conference paper at ICLR 2024

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. Advances in Neural Information Processing Systems, 2021. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Computer Vision and Pattern Recognition, 2016. 2

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In International
Conference on Computer Vision, 2017. 14

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Computer Vision and Pattern Recognition, 2020.
1,2,3

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dolldr, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Computer Vision and Pattern Recognition, 2022. 1,
2,3,5,6,7,8

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504-507, 2006. 2, 3

Geoffrey E Hinton and Richard Zemel. Autoencoders, minimum description length and helmholtz
free energy. Advances in neural information processing systems, 6, 1993. 2, 3

Xinyue Huo, Lingxi Xie, Longhui Wei, Xiaopeng Zhang, Xin Chen, Hao Li, Zijie Yang, Wengang
Zhou, Hougqiang Li, and Qi Tian. Heterogeneous contrastive learning: Encoding spatial informa-
tion for compact visual representations. IEEE Transactions on Multimedia, 24:4224-4235, 2021.
3

Diederik P Kingma and Max Welling.  Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114,2013. 6

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei Niu, Mengshu Sun, Bin Ren, Minghai
Qin, Hao Tang, and Yanzhi Wang. Spvit: Enabling faster vision transformers via soft token
pruning. arXiv preprint arXiv:2112.13890, 2021. 3

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, 2012. 2

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436-444,
2015. 2

Ling Li, David Thorsley, and Joseph Hassoun. Sait: Sparse vision transformers through adaptive
token pruning. arXiv preprint arXiv:2210.05832, 2022a. 3

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer back-
bones for object detection. In European Conference on Computer Vision, 2022b. 2

Youwei Liang, GE Chongjian, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Evit: Ex-
pediting vision transformers via token reorganizations. In International Conference on Learning
Representations, 2022. 3, 5

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision, 2014. 2, 6

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In International Con-
ference on Computer Vision, 2021. 1,2

Sifan Long, Zhen Zhao, Jimin Pi, Shengsheng Wang, and Jingdong Wang. Beyond attentive tokens:
Incorporating token importance and diversity for efficient vision transformers. arXiv preprint
arXiv:2211.11315,2022. 3

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. 2017. 14

11



Under review as a conference paper at ICLR 2024

Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and
Oncel Tuzel. Token pooling in vision transformers. arXiv preprint arXiv:2110.03860, 2021. 3

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European conference on computer vision, pp. 69—-84. Springer, 2016. 3

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536-2544, 2016. 3

Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu Wei. Beit v2: Masked image modeling
with vector-quantized visual tokenizers. arXiv preprint arXiv:2208.06366, 2022. 6,7, 14

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
2021. 1,4

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. Advances in Neural Information
Processing Systems, 2021. 3

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115:211-252,2015. 2, 6

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck transformers for visual recognition. In Computer Vision and Pattern Recognition,
2021. 2

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, 2019. 2

Yunjie Tian, Lingxi Xie, Jiemin Fang, Mengnan Shi, Junran Peng, Xiaopeng Zhang, Jianbin Jiao,
Qi Tian, and Qixiang Ye. Beyond masking: Demystifying token-based pre-training for vision
transformers. arXiv preprint arXiv:2203.14313,2022a. 3

Yunjie Tian, Lingxi Xie, Zhaozhi Wang, Longhui Wei, Xiaopeng Zhang, Jianbin Jiao, Yaowei Wang,
Qi Tian, and Qixiang Ye. Integrally pre-trained transformer pyramid networks. arXiv preprint
arXiv:2211.12735, 2022b. 2

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In International Conference on Computer Vision, 2021. 2

Xiao Wang and Guo-Jun Qi. Contrastive learning with stronger augmentations. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(5):5549-5560, 2022. 3

Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer.
Masked feature prediction for self-supervised visual pre-training. In Computer Vision and Pattern
Recognition, 2022a. 3, 5, 6

Longhui Wei, Lingxi Xie, Wengang Zhou, Houqgiang Li, and Qi Tian. Mvp: Multimodality-guided
visual pre-training. In European Conference on Computer Vision, 2022b. 3,4, 6,7

Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao, Jianmin Bao, Dong Chen, and Baining
Guo. Contrastive learning rivals masked image modeling in fine-tuning via feature distillation.
arXiv preprint arXiv:2205.14141, 2022c. 4, 6,7, 16

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In European Conference on Computer Vision, 2018. 14

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han
Hu. Simmim: A simple framework for masked image modeling. In Computer Vision and Pattern
Recognition, 2022. 1,2,3,6,7

12



Under review as a conference paper at ICLR 2024

Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng
Gao. Focal self-attention for local-global interactions in vision transformers. arXiv preprint
arXiv:2107.00641, 2021. 2

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
Adaptive tokens for efficient vision transformer. In Computer Vision and Pattern Recognition,
2022. 3

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In International Conference on Computer Vision, 2021. 2

Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jianfeng Gao.
Multi-scale vision longformer: A new vision transformer for high-resolution image encoding. In
International Conference on Computer Vision, 2021. 2

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In Computer Vision—
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part Il 14, pp. 649-666. Springer, 2016. 3

Xiaosong Zhang, Yunjie Tian, Lingxi Xie, Wei Huang, Qi Dai, Qixiang Ye, and Qi Tian. Hivit: A
simpler and more efficient design of hierarchical vision transformer. In International Conference
on Learning Representations, 2023. 2,3,5,6,7, 14, 17

Xinyu Zhang, Jiahui Chen, Junkun Yuan, Qiang Chen, Jian Wang, Xiaodi Wang, Shumin Han,
Xiaokang Chen, Jimin Pi, Kun Yao, et al. Cae v2: Context autoencoder with clip target. arXiv
preprint arXiv:2211.09799, 2022. 6

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Computer Vision and Pattern Recognition, 2017. 2, 6

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832,2021. 6,7

A THE CONNECTION BETWEEN MINIMAL INFORMATION AND THE NUMBER
OF TOKENS

Here we explain why the amount of information to reconstruct x (i.e., Z(x)) is proportional to the
smallest number of tokens at any layer. Please refer to Section 3 for the background and mathemat-
ical notations.

According to the mechanism of vision transformers, (approximately) reconstructing x can be done
by taking out the features at any layer and forward propagating them through the subsequent part
of the model. That said, Z(x) is composed of two parts, (i) the features and (ii) a part of the vision
transformer weights and configurations. Part (i) is specific for each image and Part (ii) is shared
among all images.

Note that visual pre-training tends to minimize Z(x) on a very large dataset that potentially contains
all possible images in the world. When the number of images goes to infinity, Part (ii) is sufficiently
amortized so that its value is negligible, and Part (i) is the only information that we care about. In our
setting, the configuration of the target model is known, and so is the number of tokens at each layer
(after token compression). Therefore, the most efficient way for image reconstruction is to choose
any layer with the smallest number of tokens and use the set of tokens (and the subsequent part of
the pre-trained model) for reconstruction. Given a constant feature dimensionality, we conclude that
T(x) o< ming M,

The above derivation assumes that the architecture and configuration remain unchanged, but actually,
these factors can also be optimized. In this paper, we simply inherit classical architectures and apply
heuristic search to find better configurations. We leave a more efficient search paradigm to future
work.
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B IMPLEMENTATION DETAILS

In this section, we provide the implementation details to pre-train and fine-tune the models.

ImageNet pre-training. We pre-train the base-level model using three network architectures,
namely, the vanilla ViT ( , ), HiViT ( s ), and ConViT (

, ). The pre-training stage elapses 300 epochs (we also pre-train ViT-B for 800 epochs)
where the first 20 epochs are used for warm-up. We use an AdamW optimizer (

) with an initial learning rate of 1.5 x 10~ and it anneals following a cosine schedule. The
weight decay is set to be 0.05 and batch size set to be 2,048. For each sampled training image, we
perform a standard rescaling augmentation, randomly crop a 224 x 224 sub-image, and partition it
into 14 x 14 patches (each patch has 16 x 16 pixels). We will provide more details in the Table 5
and Table 6.

ImageNet classification. We append a linear layer to the end of the pre-trained encoder and fine-
tune the weights of the entire model. We use the AdamW optimizer with a total of 100 fine-tuning
epochs and 5 warm-up epochs. An initial learning rate of 5 x 10~* with layer decay of 0.65 is used
and it anneals following a cosine schedule. The weight decay is set to be 0.05 and the batch size is
set to be 1,024.

COCO detection and segmentation. The settings mostly follow CAE ( , ). We use
two detection heads, Mask R-CNN ( , ) with a 1x training schedule (12 epochs) and
Cascade Mask R-CNN ( . ) with a 3x training schedule (36 epochs), both
of which are implemented by the MMDetection ( , ) library. We use the AdamW
optimizer ( , ) with a weight decay of 0.05. The initial learning rate is 3 x
10~* and it decays twice by a factor of 10, after 3/4 and 11/12 of fine-tuning epochs, respectively.
The layer-wise decay rate is set to be 0.75, 0.85, and 0.75 for ViT, HiViT, and ConvViT, respectively.
We apply multi-scale training and single-scale testing.

ADE20K segmentation. We follow BEiT ( , ) to append a UPerHead ( ,

) to the end of the backbone. We use the AdamW optimizer ( , ) and
the learning rate is set to 3 x 1075, We fine-tune the model for a total of 160K iterations and the
batch size is set to be 16. The input resolution is set to be the default value, 512 x 512, and we do
not perform multi-scale testing.

We provide more implementation details here. The pre-training and fine-tuning details are provided
in Tables 5 and 6, respectively. During the pre-training stage, we do not use other training techniques
like the early-stage supervision at 3/4 of the third stage like BEiT-v2 ( , ).

C MORE ABLATIVE STUDIES

We provide more ablative studies in Table 7. All the results are obtained by pre-training the ViT-B
model for 100 epochs and fine-tuning it for 100 epochs. These results are complementary to the
results in Table 4 of the main article.

These additional experiments are mainly about the compression configuration of SMR. Specifically,

* In Table 7a, we conduct different experiments about compression frequency for Blocks 1-4
and we find that an even compression strategy leads to the best accuracy.

* In Table 7b, we provide the results of different compression paces of SMR, and all the
obtained results are slightly worse than the default configurations.

* We report more results about the number of compressed tokens in Table 7c, which implies
that a moderate difficulty leads to the best performance of pre-training.

D COMPUTATIONAL EFFICIENCY

We compare the pre-training complexity of SMR and SD in Table 8. One can see that SMR requires
fewer computational costs during the pre-training stage, especially for ViT and HiViT. Note that
ConvViT contains more FLOPs in the first 2 stages, which are not saved by SMR, so we observe a
smaller ratio of saved computational costs in ConvViT.
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Table 5: Hyperparameters for pre-training on ImagetNet-1K.

Hyperparameters | ViT-B  HiViT-B  ConvViT-B
Patch size 16
Hidden size 768 512 768
Layers 12 3-3-24 2-2-11
FFN hidden size 3072 2048 3072
Attention heads 12 8 12
Attention head size 64
Params. (M) 86 79 88
Hierarchical ViT X v v
Input resolution 224x224
Training epochs 300
Warmup epochs 30
Batch size 2048
Optimizer AdamW
Peak learning rate 1.5e-3
Mininal learning rate 2e-5
Learning rate schedule cosine decay
Gradient clipping None
Weight decay 0.05
Optimizer momentum 51,82 =0.9,0.98
Optimizer e le-8
Stoch. depth 0.1
Augmentation RandomResizeCrop
APE v
RPE X

Figure 4: Visualization of token compression and image reconstruction. We compare different token
compression functions with the default setting, i.e., dropping 25 tokens in each of the first 4 blocks.

E VISUALIZATION

We visualize more examples of token merging in Figure 5, including some images from the COCO
and ADE20K datasets. We show more examples of compression functions in Figure 4.
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Table 6: Hyperparameters for fine-tuning on ImagetNet-1K.

Hyperparameters | ViT-B  HiViT-B  ConvViT-B
Input resolution 224x224
Training epochs 100
Batch size 1024
Warmup epochs 20
Optimizer AdamW
Peak learning rate Se-4
Mininal learning rate 2e-6
Learning rate schedule cosine decay
Weight decay 0.05
Layer decay 0.65 0.85 0.75
Optimizer momentum 51,82 =0.9,0.999
Optimizer € le-8
Label smoothing 0.1
Stoch. path 0.2
Dropout X
Gradient clipping None
Repeated Aug. None
Augmentation RandAug (9,0.5)
Erasing prob. 0.25
Mixup prob. 0.8
Cutmix prob. 1.0
Color jitter 0.4
APE v
RPE v

F ScALING TO 10B MODEL

Thanks to SMR that reduces the time and memory costs of pre-training, we can pre-train a very

large vision model at an affordable overhead. In particular, we design a 10B model (with more

than 10 billion parameters). It is a vanilla vision transformer with 50 blocks and each token has a

feature dimension of 4,096. We use the DeepSpeed library to save memory. Note that, even with

DeepSpeed, the existing pre-training methods including MIM ( , ) and SD ( ,
) run out of memory even on NVIDIA Tesla-A800 GPUs (with 80GB memory).

We pre-train the 10B model on ImageNet-21K for 10 epochs using 8 x Tesla-A800 GPUs and fine-
tune the model on ImageNet-1K using the 224 x 224 resolution for 10 epochs. The model reports
an 86.2% classification accuracy, leaving space for future improvement. Our experiment showcases
the potential of SMR in pre-training very large vision models with limited computational budgets.

Block | # Compress | Acc. Block | # Compress | Acc. Method | B-IDs | Acc.

1-2-3-4 | 25-25-25-25 | 85.1 1-3-5-7 | 25-25-25-25 | 85.0 25 x4 | 14 | 851
1-2-3-4 | 40-30-20-10 | 84.8 1-3-5-7 | 40-30-20-10 | 84.8 25 x5 | 1-5 | 850
1-2-3-4 | 10-20-30-40 | 84.9 1-3-5-7 | 10-20-30-40 | 84.9 25 x6| 1-6 | 84.8
1-2-3-4 | 50-0-0-50 | 84.8 1-4-7-11 | 25-25-25-25 | 84.9 30x 5| 1-5 | 849
1-2-3-4 | 50-0-50-0 | 84.8 1-4-7-11 | 40-30-20-10 | 84.7 20x 5| 1-5 | 849
1-2-3-4 | 0-50-0-50 | 84.7 1-4-7-11 | 10-20-30-40 | 84.9
(c) # Dropped Tokens

(a) Position of Dropping (b) Pace of Dropping

Table 7: More diagnostic studies. Here, ‘Block’ means the position of token compression and
‘Compress’ is the corresponding number of compressed tokens.

16



Under review as a conference paper at ICLR 2024

Table 8: Pre-training complexity (FLOPs) comparison under the default configuration. We do not
count the complexity of the teacher model.

Method |ViT—B (Dosovitskiy et al., 2021) HiViT (Zhang et al., 2023) ConvViT (Gao et al., 2022)

baseline 17.6 18.1 23.2
SMR 12.8 13.3 19.1

input 10x4 20 x

AD.EZOK
Figure 5: More examples of token dropping as compression operation. For each image, we study
the cases where the 10 x 4, 20 x 4, 30 x 4, and 40 x 4 of 14 x 14 = 196 tokens are compressed after

the first four transformer blocks. We visualize the preserved tokens. We provide image examples
picked from ImageNet-1K, COCO, and ADE20K.

17



	Introduction
	Related Work
	Method
	Visual Pre-training as Image Compression
	Towards a High Compression Ratio of Image Data
	Semantic Merging and Recovery
	Discussions

	Experiments
	Quantitative Studies
	Qualitative Studies of Image Compression
	Diagnostic Studies

	Conclusions
	The Connection between Minimal Information and the Number of Tokens
	Implementation Details
	More Ablative Studies
	Computational Efficiency
	Visualization
	Scaling to 10B Model

