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Abstract

We propose a supervised learning algorithm for the
multi-period inventory problem (MPIP) that tackles
shortcomings of existing multi-step, model-based meth-
ods on the one and policy-free reinforcement learning
algorithms on the other hand. As a model-free end-
to-end (E2E) method that takes advantage of auxil-
iary data, it avoids pitfalls like model misspecification,
multi-step error accumulation and computational com-
plexity induced by a repeated optimization step. Fur-
thermore, it manages to leverage domain knowledge
about the optimal solution structure. To the best of our
knowledge, this is one of the first supervised learning
approaches to solve the MPIP and the first one to learn
policy parameters. Given the variety of settings in which
OR researchers have developed well-performing poli-
cies, our approach can serve as a blueprint of how to
design E2E methods that leverage that knowledge. We
validate our hypotheses on synthetic data and demon-
strate the effect of individual model characteristics.

Motivation & Related Work
As the field of supply chain management as a whole, the sub-
task of optimizing a firm’s inventory levels and order quan-
tities in the presence of uncertain demand has been a cen-
tral subject in operations research for decades, and its im-
portance has developed from a ”necessary evil” to a source
of competitive advantage (Snyder and Shen, 2019, Ch. 1).
First seminal works on the multi-period inventory problem
(MPIP) date back as far as Arrow, Harris, and Marschak
(1951), and Scarf (1960). The latter was the first to prove
the optimality of an (s, S) replenishment policy. Under this
policy, an order is placed to raise inventory to a target level S
whenever the inventory position drops below a reorder point
s. The author showed that the optimal, period-dependent
policy parameters (st, St) can be computed by solving a dy-
namic program, and that the optimality result extends to the
case of a positive, deterministic lead time. Kaplan (1970)
and Ehrhardt (1984) generalized the (s, S)-optimality to
stochastic lead times in the finite an infinite horizon setting,
respectively.

More recently, OR researchers have been focusing on
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data-driven algorithms for inventory management, with an
increasing emphasis on supervised learning approaches (Qi,
Mak, and Shen 2020). Those efforts have led to convinc-
ing results especially in single-period problems, such as the
Newsvendor model. Both shallow and deep neural networks
have proven effective in predicting optimal order quantities
from auxiliary data (Huber et al. 2019; Oroojlooyjadid, Sny-
der, and Takác 2016). Other successful machine learning
(ML) methods include clustering approaches like k-nearest-
neighbor (kNN), classification and regression trees (CART),
random forests (Bertsimas and McCord 2019), and modi-
fied kernel regression methods (Ban and Rudin 2018). All
of these methods exploit some notion of geometrical prox-
imity between feature vectors to approximate the demand
distribution non-parametrically in a first step, and then ar-
rive at an ordering decision by completing the optimization
step.

The common denominator of all data-driven approaches
and their source of power is the effective use of meaningful
feature data and the renunciation of model-based decision-
making, which is known to invite biases from model mis-
specification (Huber et al. 2019). The E2E methods combine
this advantage with the integration of the prediction and the
optimization step, thereby avoiding an accumulation of inac-
curacies common to multi-step decision-making (Qi, Mak,
and Shen 2020). The success of those approaches raises the
question whether similar ideas may perform well for multi-
period problems.

However, transferring the available methods to multi-
period problems, such as the MPIP, is not straightforward.
In essence, the challenges can be broken down into two
root problems. First of all, the single-period predict-then-
optimize (PTO, (Qi et al. 2020)) methods take advantage
of the fact that the solution of the Newsvendor Problem
(the famous Newsvendor quantile) is well-known. Depend-
ing on the specific setting, however, the optimal solution
for the multi-period counterpart can be mathematically in-
tractable (Qi et al. 2020). Second, even in settings in which
an optimal solution can be computed, other intricacies in-
herent to the MPIP pose problems. A direct transfer of the
single-period PTO approaches suffers from computational
complexity and would require knowledge of auxiliary data
for the entire optimization horizon ahead of time. While
the single-period E2E models do not necessarily require an



explicit optimal solution, it is not obvious how to gener-
alize them as they now need to be aware of the problem-
inherent intertemporal dependencies. As a consequence, the
field is dominated by two kinds of approaches. First, there
are methods – mainly from the realm of reinforcement learn-
ing – that discard any potential prior knowledge about well-
performing policies, may they be optimal or heuristic, and
search for a close-to-optimal policy themselves. The obvi-
ous disadvantage is the disregard of useful structural infor-
mation about the solution. Consequently, and despite con-
siderable computational effort, RL policies may be outper-
formed by simplistic heuristics (Gijsbrechts et al. 2019).
The second group consists of model-based, multi-step meth-
ods that solve the dynamic optimization program, either ap-
proximately or optimally, or implement a well-performing
parametrized heuristic policy. Those methods necessitate to
first estimate a demand distribution and then perform the op-
timization step (Qi et al. 2020). The common pitfalls are an
ill-chosen demand model, the potential of error accumula-
tion during the multiple steps, and often high computational
effort.

To the best of our knowledge, the only currently available
E2E supervised learning approach for the MPIP has been
put forward by Qi et al. (2020). Given historical data, the
method learns order quantities. As those depend on the cur-
rent inventory level and in turn affect future inventory, this
approach has to take care of intertemporal dependencies, e.g.
by artificially enriching the data to expose the ML model to
multiple combinations of the same feature vector with differ-
ent inventory levels. This complicates the learning process.

In this paper, we aim to solve the above shortcomings by
proposing a distribution-free, E2E approach that leverages
prior knowledge about a well-performing policy and can
predict optimal replenishment decisions in real-time. The
core distinction of our method is that it seeks to learn policy
parameters, rather than order quantities. We demonstrate our
approach in an environment where an (s, S)-policy is prov-
ably optimal (see the following two section for details). The
concept can be generalized to any setting in which a well-
performing policy is known. This is true for many practically
relevant settings, and the respective policies often outper-
form even sophisticated ML approaches (Gijsbrechts et al.
2019). Our method is validated on synthetic data, on which
we compare its performance to the ex-post optimal solution
as well as a sophisticated model-based, two-step approach.

The remainder of the paper is organized as follows. In
Section 2, we present the problem setting and the nature of
its optimal solution. Section 3 gives an overview of related
work, while our approach is described in detail in Section
4. We describe the setting in which we carried out our ex-
periments in Section 5 and report the results in Section 6.
Finally, Section 7 discusses the results, potential limitations
and future work.

Multi-Period Inventory Management
The problem that lies at the core of this paper is the multi-
period replenishment model with fixed cost, zero lead time,
backlogged excess demand and linear holding and backlog-
ging costs. We focus on a finite, but long planning hori-

zon, such that end-of-period effects can be neglected. Math-
ematically, one may formulate the problem as follows (Scarf
1960; Snyder and Shen 2019).

Let Vt(It−1) denote the minimum expected cost incurred
in periods t, t + 1, ..., T if we enter period t with starting
inventory It−1 and act optimally thereafter. Then the deci-
sion in period t is whether to order anything at all and, if so,
what level y > It−1 to raise inventory to, and this decision
depends on the current inventory, and both the current and
future demand. More precisely,

Vt(It−1) = min
y≥It−1

(
K1y>I + ct(y − It−1) + Lt(y)

+ E[Vt+1(y −Dt)]
)

= min
y≥It−1

(
Gt(y) +K1y>It−1 − ctIt−1

)
,

It = y −Dt,

(1)

where z+ = max{z, 0}. For future reference
we simplified the notation defining Lt(y) =
E [ht(y −Dt)

+ + bt(Dt − y)+], and Gt(y) =
cty + Lt(y) + E [Vt+1(y −Dt)]. The notation is clar-
ified further in Table 1. The initial inventory I0 is fixed
externally, and we set VT+1 ≡ 0.
We emphasize that It is allowed to be negative, hence

Variable Name Variable Description
T number of periods
K fixed order cost
ct unit variable order cost in period t
ht unit inventory holding cost in period t
bt unit backlogging cost in period t
It inventory at the end of period t
Dt random demand in period t
dt realized demand in period t
xt feature vector in period t

Table 1: Description of variables.

excess demand is backlogged, and we make the non-
restrictive assumption that demand is universally bounded,
i.e. |Dt| ≤ D a.s. for all t = 1, ..., T .

Under these circumstances, it is well-known that the
optimal order policy is of the type (st, St)t=1,...,T , i.e.
if It−1 ≤ st it is optimal to order up to St, while for
It−1 > st we do not place an order at all (Scarf 1960).
We emphasize that this result holds for any sequence of
potentially non-stationary distributions Dt ∼ Dt, and thus
it is still true in the case in which those distributions depend
on feature data (xt)t=1,...,T , i.e. Dt ∼ D|xt. We exploit this
fact to predict the optimal replenishment policy (st, St) of
period t, given the period’s feature vector xt.

Policy Learning
Besides historical demand data (dt)t=1,...,T we assume
availability of contextual information in the form of feature
vectors (xt)t=1,...,T ⊆ Rn×T . Our goal is to learn the pa-
rameters (st, St) of an (s, S) policy, which necessitates la-
belling the feature data, i.e. assigning a target (st, St) to each



feature vector xt.
Thanks to Scarf (1960), we know that
(i) an (st, St)-policy is optimal in period t, and

(ii) the optimal policy parameters are given by

St = argminy Gt(y), and

st = max{y ≤ St : Gt(St) +K = Gt(y)}.
(2)

Exploiting (i), and in line with Ban (2020), we may refor-
mulate (1) as

Vt(It−1) =

{
Gt(St) +K − ctIt−1, It−1 ≤ st,
Gt(It−1)− ctIt−1, It−1 > st.

(3)

Plugging (3) into the definition of Gt, we conclude

Gt(y) =


cty + Lt(y), t = T,

(ct − ct+1)y + ct+1E[Dt] + Lt(y)

+ (Gt+1(St+1) +K)E
[
1y−Dt≤st+1

]
+ E

[
Gt+1(y −Dt)1y−Dt>st+1

]
, t < T.

(4)
As a side note for later reference we remark that, for

uncensored demand data, Ban (2020) showed that the in-
tuitive way of approximating the expectations on the RHS
with empirical means leads to consistent estimators for st
and St. That is, if the distribution of the demand at time t
can be sampled from, then sampling N values dt,1, ..., dt,N ,
replacing the expectations in (4) with empirical means
over dt,1, ..., dt,N and solving (2) gives policy parameters
(ŝt,N , Ŝt,N ) which converge to the true values (st, St) in
probability as N →∞.

For now, however, our focus is a different one: we wish to
label the feature vectors xt with the ex-post optimal (st, St)-
strategy. That is, we wish to compute the reorder point st and
up-to-order level St that are optimal given dt, dt+1, ..., dT .
We find these ex-post optimal values by plugging the his-
torical demand data (dt)t=1,...,T into (4), thereby virtually
assuming a degenerate, deterministic distribution, and then
solve (2) for the ex-post optimal values (st, St). Independent
of the yet unknown starting inventory It−1, these values rep-
resent the policy for period t that is optimal in the long-term,
assuming that demand unfolds exactly as dt, dt+1, ..., dT .

Solving (2) entails four technical steps. For given Gt+1,
we first pre-compile Gt based on a fine-grid approximation
using cubic splines. Second, we compute initial guesses for
(st, St) using the algorithm put forward by Bollapragada
and Morton with a modified step size of .5 (section 2.2 in
Bollapragada and Morton, 1999). Third, we solve (2) us-
ing scipy’s implementation of the BFGS algorithm (Broyden
1970; Fletcher 1970; Goldfarb 1970; Shanno 1970) to find
St. Fourth, we use Brent’s method (Brent 1973) to solve the
root problem Gt(St) +K = Gt(st). Finally, we label fea-
ture vector xt by the 2-dimensional target (st, St).

Upon completion of the labelling step, we may train
any supervised learning algorithm on the labelled data
(xt(st, St))t=1,...,T . In essence, given a feature vector xt,
this algorithm learns to predict demand for a number of
periods m ahead, to assemble the corresponding functions
Gt, ..., Gt+m, and then to recursively solve (2) to arrive at

the optimal policy values (st, St). We note that while in the-
ory m = T − t, we observed in our experiments that after
a small number of periods m, the effect of future periods on
the current optimal policy values vanishes. We established
empirically that for our parameters, m ≈ 20.
Due to the complexity of the function to be learned, the fact
that deep neural networks (DNNs) are powerful enough to
learn any continuous function (Hornik 1991), and as DNNs
have been applied successfully in time series forecasting
(Zhang, Eddy Patuwo, and Y. Hu 1998; Oroojlooyjadid,
Snyder, and Takác 2016; Müller et al. 2020), we opt for a
DNN as our choice of supervised learning algorithm. Hence-
forth, we refer to our method as ”(s, S)-DNN”.

Experimental Setting
We test the performance of (s, S)-DNN with respect to two
metrics, total cost and computation time required for pre-
diction. For that purpose, we require a data set comprising
feature and demand data, which we then have to label by the
optimal policy parameters (st, St). To highlight the impor-
tance of feature data, we simulate demand as a function of
generated features subject to some additive as well as mul-
tiplicative, i.e. heteroscedastic noise. Heteroscedasticity in-
duces the demand distribution to depend even stronger and
more subtly on the auxiliary data, which is hard to pick up
for feature-ignorant approaches. To demonstrate the signifi-
cance of our findings, we create multiple data sets and report
performance statistics such as median and confidence inter-
vals. Creation of both feature and demand data were inspired
by Bertsimas and McCord (2019).

Specifically, we create i = 1, ..., N = 100 i.i.d. data sets,
each containing t = 1, ..., T = 640 (xt,i, dt,i) records with
xt,i ∈ R5, dt,i ∈ R≥0. The 5 features evolve as indepen-
dent (p, q)-ARMA time series, where 1 ≤ pj ≤ 2 and
0 ≤ qj ≤ 2 for j = 1, ..., 5. More precisely, we have

xjt,i = εjt,i +

pj∑
l=1

ajlx
j
t−l,i +

qj∑
l=1

bjl ε
j
t−l,i

for j = 1, ..., 5 with xjt,i = εjt,i = 0 for all i, j and t < 0 and
εjt,i ∼ N (0, 1) otherwise . Demand is generated following a
simple factor model, i.e.

dt,i = max{0, 250 + fTi xt,i + hTi xt,iθt,i + ψt,i.}

We set f = [17, 22,−12, 5,−8]T , h = [1, 0, 0, 0, 0]T and
let fi, hi be arbitrary permutations thereof, distinct across
data sets but fixed for a given set. Noise is governed by
θt,i ∼ N (0, 125), and ψt,i ∼ N (0, 50).

For simplicity, cost factors were held constant over time
at K = 500, c = 1.5, h = 1, b = 5. For each data set,
the labels (st,i, St,i) were computed for a training set of
520 periods and a test set of 120 periods separately. The
last 20 periods of both sets were discarded to avoid any
end-of-period effect, as foreshadowed in the Section ”Pol-
icy Learning”. For each data set, we train a deep neural
network on a training set of 500 (xt, (st, St)) records and
subsequently evaluate it on a test horizon of 100 periods.



Although the underlying dynamics for feature and demand
data were the same across data sets, performance could be
improved by searching for individual hyperparameters. That
is, for each dataset we optimized the number of layers L
– not counting the input layer – (2 ≤ L ≤ 4), the num-
ber of epochs E (500 ≤ E ≤ 6000), the learning rate
lr (0.001 ≤ lr ≤ 0.2), the number of nodes per layer nl
(nl ∈ [23, 24, 25, 26, 27] for all l = 1, ..., L), and the regular-
ization parameters (”dropout” vs. ”L2”, while for the latter
we chose 100 ≤ λ ≤ 1000). We sped up the hyperparame-
ter search resorting to sequential model-based optimization
using Bergstra, Yamins, and Cox’s (2013) tree parzen esti-
mator method. We experimented with both a generic RMSE
and a problem-specific loss function. The latter considers the
fact that deviations from the target (st, St) have asymmet-
ric implications in two ways. First, on average, slight devi-
ations from the reorder point st can be expected to have a
smaller effect than deviations of the same magnitude from
the up-to-order level St, as the latter induces incorrect or-
der quantities in every period with a non-zero order quan-
tity, while the first has only an effect if a period’s starting
inventory It−1 is close to st. Second, for both reorder point
and up-to-order level, depending on the cost structure over-
and underestimating the optimal parameter can have differ-
ent implications, and thus they should be punished differ-
ently. Performance was improved further when trained with
this problem-specific loss. The exact problem-specific loss
function is given by

L((ŝt, Ŝt, (st, St)) = C+
S (Ŝt − St)

+ + C−
S (St − Ŝt)

+

+ C+
s (ŝt − st)+ + C−

s (st − ŝt)+.

The coefficients C+
S , C

−
S , C

+
s , C

−
s express the expected ef-

fect of a unit deviation from the respective component in the
respective direction assuming we act optimally in all other
periods. In detail, we define Ct(I, d) = ht(I−d)++bt(d−
I)+ and compute

C+
S =

1

T − k

T−k∑
t=1

Ct,k(st, St+1, It−1)−Ct,k(st, St, It−1),

(5)
with

Ct,k(s, S, I) = [K + ct(S − I) + Ct(S, dt)]1I≤s

+ Ct(I, dt)1I>s

+

t+k∑
i=t+1

([
K + ci(Si − Ii−1) + Ci(Si, di)

]
1Ii−1≤si

+ Ci(Ii−1, di)1Ii−1>si

)
,

Ii = Ii−1 − di + (Si − Ii−1)1Ii−1≤si , and
It−1 = I, St = S, st = s,

where It−1 is the ending inventory of period t− 1 if we act
optimally up to and including period t−1. C−

S , C
+
s , and C−

s
are estimated analogously. The parameter k needs to be cho-
sen carefully such that T − k is small enough for (5) to be a
good approximation of the expectation, but large enough for

(5) to capture the full cost effect of a deviation. An empirical
analysis showed that any value 20 ≤ k ≤ 100 led to similar,
stable results. We chose k = 100.
To assess the performance of (s, S)-DNN on the test set,
we compare it to two baselines. First, we compute the ex-
post optimal solution of (1) by plugging in the historical de-
mand values dt for the random variables Dt. The resulting
mixed integer linear program (MILP) is a modification of
the Wagner-Whitin model (Snyder and Shen, 2019, Ch. 3)
to allow for backorders:

min
q1,...,qT

T∑
t=1

KSt + ctqt + htot + btut

qt ≤MSt, t = 1, ..., T,

It = It−1 + qt − dt, t = 1, ..., T,

ot ≥ It, t = 1, ..., T,

ut ≥ −It, t = 1, ..., T,

St ∈ {0, 1}, qt, ut, ot ≥ 0, t = 1, ..., T,

(6)

where M denotes a large constant satisfying max{q∗t |t =
1, ..., T} ≤M for the optimal order quantities (q∗t )t=1,...,T .
We solved (6) with Gurobi 9.1.2 to optimality.

The second approach, (s, S)-logistic, is a classic model-
based, two-step approach. We first choose a parameterized
distribution as demand model and estimate its parameters
from historical demand data. We then perform the optimiza-
tion step by simulating demand data for the test horizon
and solving (2) with Gt given by (4). Ban (2020) showed
that for only 50 demand values per period, 95% of the rela-
tive absolute errors were smaller than 2% and difference in
expected cost was 0.6%. Based on these fast convergence
properties, we decided to simulate 50 demand values per
period. Demand was tested for several distributions using
the Kolmogorov-Smirnov test, with the logistic distribution
turning out to be an extraordinarily good fit. At the 1% sig-
nificance level, there is not a single data set for which the
null hypothesis that demand follows a logistic distribution
is rejected (cf. Figures 1 and 2). We note that this results
in very high expectations on the cost performance of this
approach. If demand was truly logistically distributed then
asymptotically speaking, the resulting (st, St) policy would
indeed be optimal – based on our distribution tests and Ban’s
analysis, both of those assumptions are realistic.

Results
Our most important findings are summarized in Figure 3. On
average, we can observe that the (s, S)-DNN method op-
erates within a 10.85% gap to the ex-post optimal solution
(MILP) and outperforms the model-based approach (s, S)-
logistic w.r.t. total cost by 2.41% (Figure 3 a)). This is partic-
ularly noteworthy given the excellent fit of the logistic distri-
bution, which causes (s, S)-logistic to perform extraordinar-
ily well. Furthermore, (s, S)-DNN can make predictions in
real-time and thus saves a considerable amount of effort and
computation time in comparison to a multi-step approach
(Figure 3 b)).

To allow a more detailed analysis, we introduce the fol-



Figure 1: Testing the demand data for logistic distribution -
p-values of Kolmogorov-Smirnov tests by data set.

lowing taxonomy, characterizing any approach solving (1)
along four binary dimensions:

(a) Use of prior knowledge: yes vs. no
(b) Distribution approximation: non-parametric (NP) vs.

model-based (MB)
(c) Use of feature data: yes vs. no
(d) Number of steps: E2E vs. multi-step
Our own approach, (s, S)-DNN, constitutes a non-
parametric, feature-aware, E2E method that manages to
leverage knowledge about the nature of the optimal solu-
tion. On the other hand, (s, S)-logistic can be categorized
as a model-based, feature-ignorant, multi-step method that
is aware of the optimal solution structure. While we can
venture educated guesses about the performance effect of
some of the components (e.g., it is fairly straightforward that
multi-step methods require more computational effort at pre-
diction time), in general it is not obvious to which extent the
individual characteristics contribute to an approach’s perfor-
mance. To investigate the isolated effect of a single com-
ponent, we need to carry out experiments which compare
approaches that differ in only that component. As we cannot
simply turn off/on every individual component in our exist-
ing approaches (s, S)-DNN and (s, S)-logistic, it is neces-
sary to develop new methods. We opt for the following three
additional approaches, which all constitute slight modifica-
tions of (s, S)-DNN or (s, S)-logistic that mimic their be-
haviour if only one characteristic were modified:
(i) (s,Q)-logistic: In order to analyze the effect of leverag-

ing prior knowledge about the optimal policy structure,
we introduce a model-based, feature-ignorant, multi-step
method that mimics the performance of (s, S)-logistic
if the policy was mis-specified as an (s,Q) policy. An
(st, Qt) policy orders quantity Qt whenever the starting
inventory It−1 drops below the reorder point st, instead
of raising it to some up-to-order level St. We choose
(s,Q) as opposed to other policies (e.g., base-stock and
capped base stock) as it is widely used and performed
the best among the mentioned misspecified strategies on
the development set. To determine st and Qt, we simu-
late logistically distributed demand samples with dynam-
ically updated parameters, select Qt as the economic or-
der quantity and st – to maintain comparability – as the

Figure 2: Visual goodness-of-fit test of demand data during
training for logistic distribution. Subplots a1) and a2) refer
to data from one randomly chosen data set, subplots b1) and
a2) to data from all 100 sets.

quantile of the logistic distribution that matches the cy-
cle service level obtained by (s, S)-logistic. This allows
us measure the effect of specifying the crrect policy by
comparing (s,Q)-logistic to (s, S)-logistic.

(ii) (s, S)-NP: To measure the impact of approximating the
demand non-parametrically instead of via an inflexible
distribution model, we suggest to monitor (s, S)-NP,
a model-free, feature-ignorant, multi-step method that
leverages prior knowledge and thus mimics the behaviour
of (s, S)-logistic if we simply changed the latter’s way
of modelling demand. Consequently, instead of sampling
from a logistic distribution, we simulate dt,1, ..., dt,N
with N = 50 for the entire test set (t = 1, ..., 120) by
sampling with replacement from the historical demand.
Subsequently, we solve (2) in the exact same way as we
did for (s, S)-logistic. This allows us to measure the per-



Figure 3: Performance metrics. a) Ratio of cost to ex-post-
optimal cost (MILP). b) Computation time for predictions
on test horizon (100 periods) in seconds. Median and 90%
confidence intervals over 100 data sets.

formance effects of the way we approximate the demand
distribution by comparing (s, S)-NP to (s, S)-logistic.

(iii) (s, S)-NPkNN: In an attempt to evaluate the effect of
leveraging auxiliary data and develop a method that is
comparable to both (s, S)-NP and (s, S)-DNN, we re-
fine (s, S)-NP in the following way. From our earlier
analysis, we know that the current period’s optimal pol-
icy values (st, St) are affected by only the current and
the future 19 periods. For a given feature vector xt,
we select k distinct nearest neighbors xs1 , ..., xsk with
sk ≤ t− 20 and approximate relevant future demand by
dt+j,i = dsi+j , j = 0, 1, ..., 19, i = 1, ..., k. We deter-
mined k = 4 by cross-validation on the development set.
Finally, we solve (2) in the usual way. This constitutes
a non-parametric, feature-aware, multi-step method that
leverages prior knowledge. It differs from (s, S)-NP only
by the treatment of feature data. Furthermore, it mim-
ics the behaviour of (s, S)-DNN with the only difference
that the optimization step is performed explicitly as op-
posed to in an integrated way. Therefore, (s, S)-NPkNN
qualifies for analyzing the effect of feature data (when
compared to (s, S)-NP) and multi-step integration (when
compared to (s, S)-DNN).

The characteristics of all of the approaches are summa-
rized in Table 2. In the following, we report the results
of the four experiments. This can be viewed as an in- Ta
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cremental refinement of the most naive approach (s,Q)-
logistic by first leveraging prior knowledge ((s,Q)-logistic
→ (s, S)-logistic), secondly relaxing the distribution as-
sumption ((s, S)-logistic → (s, S)-NP), thirdly including
auxiliary data ((s, S)-NP→ (s, S)-NPkNN) and finally in-
tegrating the multi-step procedure into an E2E method to
arrive at the most sophisticated approach, (s, S)-DNN. The
results are summarized in Figure 3. Performance differences
between two approaches were tested for significance using a
paired t-test.

(a) Prior knowledge: (s,Q)-logistic vs. (s, S)-logistic.
While (s,Q)-logistic optimizes its parameters using a
single-period function, (s, S)-logistic requires a dynamic
program to be solved. It is therefore not surprising that
the latter is computationally more expensive. We empha-
size the cost difference of 15.3% and the large optimality
gap of (s,Q)-logistic (28.56%), both of which are signif-
icant at the 1% level. This demonstrates the importance
of considering prior knowledge about the structure of the
optimal strategy.

(b) Distribution approximation: (s, S)-logistic vs. (s, S)-NP.
As both methods solve the identical optimization prob-
lem of the same complexity (N = 50 for both meth-
ods), the computational effort is comparable. Given the
good fit of the logistic distribution, relaxing the logis-
tic assumption does not yield a noticeable cost improve-
ment – with a p-value of 0.42, the decrease in median
cost of 0.44% was not significant. This can be expected
to change when repeating the experiment with real-world
data, as it is unlikely for real data to follow a specific dis-
tribution as closely.

(c) Feature data: (s, S)-NP vs. (s, S)-NPkNN. The notice-
able and significant difference in the computation time
comes from the fact that (s, S)-NP solves the dynamic
optimization problem of recursively computing (st, St)
once for a horizon of 100 periods, while (s, S)-NPkNN
repeats the procedure for each of the 100 periods of the
test horizon, each time solving the optimization prob-
lem with a 20 period horizon. In effect, this means that
(s, S)-NPkNN solves a problem with 2000 periods. It
is only due to the difference in complexity of the prob-
lems (N = 50 for (s, S)-NP, N = 4 for (s, S)-NPkNN)
that this does not lead to a time increase of factor 20.
The higher computational effort allows an effective use
of feature data that generates comparability of (s, S)-
NPkNN and (s, S)-DNN, as the latter approach lever-
ages auxiliary data of every period, too. In an attempt to
increase comparability to (s, S)-NP by aligning the com-
putation times, one could have added an approach (s, S)-
NPkNN-naive, which generates sequences of length 100
instead of 20 and thereby only makes use of the test hori-
zon’s initial feature vector. We avoided this for simplic-
ity. The median cost difference of 1.96% between the two
approaches was significant at the 1% level and demon-
strates the importance of considering feature data, as well
as using it in an effective way.

(d) Number of steps: (s, S)-NPkNN vs. (s, S)-DNN. The
most obvious difference between the two methods is of

course the reduction of computational effort by integrat-
ing multiple steps into one. We note that this is of practi-
cal interest in itself, as especially an approach as (s, S)-
NPkNN is hardly applicable in a practical environment,
where computational complexity is increased even fur-
ther by the necessity of a larger k due to a more complex
feature-demand-dependence and the presence of multiple
products. With this in mind, it is an achievement in it-
self to efficiently integrate the two complex steps of pre-
diction and optimization into one single function with-
out suffering a considerable cost increase. (s, S)-DNN
achieves this task without incurring any cost increase.
With a p-value of .95, the actual median cost decrease
of .01% was not significant - it is safe to say that the
two approaches perform on the same level. Due to the
complexity of the function the DNN has to learn and the
excellent demand approximation of (s, S)-NPkNN, the
finding that a sophisticated multiple-steps method can
compete with an E2E approach is not surprising, and
it is in line with results presented in Punia, Singh, and
Madaan (2020) and Müller et al. (2020), where multi-
step methods have even been shown to outperform inte-
grated methods for specific tasks.

Discussion & Future Work
On average, our flagship E2E ML Method (s, S)-DNN per-
formed within a 10.85% gap of the ex-post optimal solu-
tion and outperformed the standard multi-step, model-based
method (s, S)-logistic by 2.41%, leading to a cost decrease
that was significant at the 1% level. This demonstrates the
learnability of optimal ordering policies to a degree where
an ML method can outperform computationally more ex-
pensive multi-step, model-based methods. This is especially
noteworthy as the specified model fits the data exceptionally
well and the computational effort guarantees a close-to opti-
mal solution.

While any E2E ML approach may require considerable
initial effort to search for optimal hyperparameters and to
train the model, this can be made up for at prediction time.
When put to production in a real-world environment, this
can provide substantial efficiency gains.

Judging from the detailed analysis of the approaches ’
individual characteristics, the performance effects can be
ranked in the following order. The most important notion is
to take domain knowledge into account, even when resorting
to an ML solution. This confirms the result of Gijsbrechts
et al. (2019), where, despite considerable training effort,
an RL agent that ignores potential knowledge about well-
performing policies was outperformed by a simple heuristic,
a capped base-stock policy. Secondly, we demonstrated that
the effective use of meaningful auxiliary data can boost per-
formance. Thirdly, we want to highlight that for our specific
data, replacing an inflexible model with a non-parametric
way of approximating the demand distribution did yield a
slight but insignificant performance improvement. This can
be attributed to the unrealistically good fit of the logistic dis-
tribution which is unlikely to repeat itself in an experiment
with real-world data. Finally, encapsulating demand predic-
tion and the complex optimization step into a single function



achieved large efficiency gains while maintaining the same
level of performance.

As a consequence, we interpret our initial results as a
promising start into the field of learning ordering policies
in a supervised fashion and plan to refine our work by the
following steps. First of all, we are confident that the deep
neural network of our (s, S)-DNN approach can improve
further. So far, (s, S)-DNN has been trained with increas-
ingly sophisticated methods (data set-individual hyperpa-
rameters, sequential model-based hyperparameter optimiza-
tion, problem-specific loss function), but rather low com-
putational power, suggesting an increase of raw computing
time as an obvious next step. Secondly, we realize that bla-
tantly misspecifying the ordering policy is a rather aggres-
sive way of demonstrating the importance of leveraging do-
main knowledge. While the chosen (s,Q)-policy is justifi-
able due to its popularity and superior performance among
several heuristics, we plan to replace it by a policy-free rein-
forcement learning approach. We hope this lets us empha-
size the importance of considering prior knowledge even
more strongly. Thirdly, while our experiments on synthetic
data serve as a proof-of-concept, we have yet to demonstrate
the soundness of (s, S)-DNN on real-world data. While the
observed challenges of integrating prediction and optimiza-
tion into one step will surely remain, we expect the effect of
approximating the demand distribution non-parametrically
to play a much higher role and the positive impacts of lever-
aging prior knowledge and auxiliary data to repeat. This
gives us confidence that (s, S)-DNN yields good results on
real-world data. Finally, we plan to investigate other prob-
lem settings, such as extensions with positive or stochastic
lead times and multiple products. In many of those environ-
ments, well-performing policies exist, even if they are not
proven to be optimal. It will be interesting to see if and with
how much effort we can transfer our approach to such prob-
lems, and what level of performance can be achieved.
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