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Abstract001

Mixture-of-Experts (MoE) scales large lan-002
guage models by increasing parameters with003
nearly constant inference FLOPs via sparse ac-004
tivation, but incurs significant memory over-005
head. This necessitates model compression006
techniques. Post-training quantization offers007
a powerful approach for model compression.008
Existing methods adopt a fixed quantization009
precision for the entire MoE model. This rigid010
setup can lead to suboptimal performance, with-011
out considering the inherent sparse structure.012
For instance, consistently activated shared ex-013
perts may require higher precision than selec-014
tively used token-conditioned experts. This015
paper investigates fine-grained, MoE structure-016
aware quantization, exploring heuristics from017
coarse (MoE layers) to fine (linear layers) gran-018
ularity. Our extensive benchmarking on two019
MoE models across six tasks reveals a criti-020
cal principle: different MoE structures require021
varying bit precisions for effective quantiza-022
tion. Our fine-grained mixed-precision ap-023
proach achieves state-of-the-art average per-024
formance (65.35%) compared to baselines like025
GPTQ (64.30%). Based on these findings, we026
introduce novel data-driven bit allocation tech-027
niques, including an outlier-aware linear layer028
scorer and a block importance predictor.029

1 Introduction030

Large Language Models (LLMs) have achieved re-031

markable success in various natural language pro-032

cessing tasks (OpenAI et al., 2024; Touvron et al.,033

2023). However, the rapid growth in model size,034

with state-of-the-art LLMs containing billions of035

parameters, poses significant challenges to compu-036

tational resources and memory consumption (Am-037

inabadi et al., 2022; Lin et al., 2024; Shoeybi et al.,038

2020). Mixture-of-Experts (MoE) (Shazeer et al.,039

2017) has emerged as a promising solution to ad-040

dress the computation overhead. MoE allows for041

the scaling up of LLMs while maintaining roughly042
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Figure 1: After our post-training quantization, the
MoE (a) is quantized into (b) with mixed precisions.

constant FLOPs. By incorporating multiple experts 043

and employing a sparse gating mechanism, MoE 044

achieves efficient computation, enabling the devel- 045

opment of larger models within the constraints of 046

limited computation (Dai et al., 2024). 047

Despite its advantages, MoE still suffers from ex- 048

tensive memory costs due to its vast parameter size, 049

which hinders its practical deployment. For exam- 050

ple, pretrained in 8-bit precision, the DeepSeek- 051

V3 (Liu et al., 2024) MoE model takes around 052

1.3 TB memory while only 74 GB parameters are 053

activated for each input token. Model compres- 054

sion techniques tailored to MoE architectures are 055

essential to address this issue. Existing MoE com- 056

pression methods can be categorized into two main 057

approaches: merging and pruning. Expert merging, 058

such as MC-MoE(Li et al., 2024), aims to reduce 059

the memory footprint by combining similar experts 060

based on routing policy and compressing the result- 061

ing model using low-rank decomposition. Expert 062

pruning, such as task-specific pruning (Chen et al., 063

2022), focuses on identifying and removing the 064

least important experts or connections based on 065

their contribution to a specific task. However, these 066

approaches not only necessitate prohibitively ex- 067

pensive model retraining but also operate under 068

task-specific settings, limiting their practicality. 069

Post-training quantization is a family of model 070

compression techniques that converts pre-trained 071

model weights from high-precision formats (e.g., 072

FP32) to lower-precision representations without 073
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model retraining or task-specific tuning. Recent074

works, such as GPTQ (Frantar et al., 2023a), which075

adapts quantization intervals based on the Hes-076

sian information, and SmoothQuant (Lin et al.,077

2024), which jointly quantizes the model weight078

and activation by offline migrating the activation079

outliers, have demonstrated the effectiveness of080

post-training quantization for dense LLMs toward081

4 bits compression. This advantage is particularly082

desired for MoE-based LLMs given their vast pa-083

rameter sizes and prevailing deployment for various084

tasks (Jiang et al., 2024; Liu et al., 2024).085

However, our experiments show that directly de-086

ploy those techniques for MoE models leads to087

subpar performance. Existing methods employ a088

uniform bit-width across all components of the089

MoE model. This one-size-fits-all approach fails090

to account for the inherent sparse structure of the091

MoE architecture. For example, the sparse expert092

activations in MoE models exhibit distinct statisti-093

cal properties from dense activations, suggesting094

adaptive bit allocation among experts’ quantization.095

This yields the primary research question:096

(RQ) Do different MoE structures require vary-097

ing numbers of bits for effective quantization?098

Our investigations reveal that different compo-099

nents in MoE require varying bit allocations, as100

shown in Figure 1. For example, shared experts and101

the first few MoE layers demand higher precision102

for effective quantization. Moreover, these findings103

naturally motivate two key questions: (1) How to104

identify the layers that are more sensitive to quan-105

tization; (2) How to systematically determine the106

importance of each MoE layer for bit allocation. To107

address these questions, we introduce novel data-108

driven techniques for optimizing bit allocation in109

MoE quantization, including the outlier-aware lin-110

ear layer scorer that captures weight magnitude111

variations, and the MoE block importance predic-112

tor that leverages block-level activations patterns.113

Our key contributions are listed:114

1. We establish the first benchmark for Mixture-115

of-Experts post-training quantization, i.e.,116

QuantMoE-Bench. This benchmark encom-117

passes investigations into four critical MoE-118

related heuristics by evaluating different119

quantization methods including GPTQ and120

SmoothQuant, and analyzes multiple bit allo-121

cation strategies on attention layers, FFNN lay-122

ers, experts, and MoE blocks. Our evaluation123

covers two representative MoE LLMs and six124

benchmark tasks.125

2. Our benchmark study uncovers critical MoE 126

quantization principles: attention layers require 127

higher precision than FFNNs, shared experts 128

need more bits than token-conditioned experts 129

(4-bit v.s. 2-bit), and earlier MoE layers de- 130

mand higher precision compared to later ones. 131

These insights enable optimal bit allocation un- 132

der constrained memory budgets while main- 133

taining model performance. 134
3. Through extensive experiments, we demonstrate 135

that our fine-grained mixed precision quantiza- 136

tion approach achieves state-of-the-art perfor- 137

mance, improving average task performance by 138

1.05% compared to existing methods (GPTQ). 139
4. Leveraging the insights from our benchmark 140

study, we introduce novel data-driven tech- 141

niques to optimize bit allocation in MoE quan- 142

tization. These include the development of 143

outlier-aware linear layer scorer and MoE block 144

importance predictor, which significantly im- 145

prove the effectiveness of mixed-precision quan- 146

tization by 0.97%. 147

2 Related Works 148

Mixture-of-Experts. Mixture-of-Experts (MoE) 149

approach (Shazeer et al., 2017) enhances neural 150

network scalability by using router networks to ac- 151

tivate model segments according to input tokens 152

selectively. Numerous efforts have adapted feed- 153

forward neural networks (FFNNs) within Trans- 154

formers to incorporate MoE layers, constructing 155

MoE language models (Dai et al., 2024; Fedus 156

et al., 2022; Jiang et al., 2024). Several variants, 157

for example, DeepSeek-MoE (Dai et al., 2024) em- 158

ploys finely segmented experts and designates a 159

select few as shared experts to capture common 160

knowledge. MoE is widely acknowledged for its 161

superior generative abilities and remarkable effi- 162

ciency (Artetxe et al., 2022; Dai et al., 2024; Fedus 163

et al., 2022; Jiang et al., 2024; Krajewski et al., 164

2024; Rajbhandari et al., 2022). The recent work 165

Mixtral (Jiang et al., 2024) illustrates that MoE can 166

match the performance of equivalent full-parameter 167

LLMs while utilizing far fewer active parameters. 168

However, MoE suffers from significant memory 169

overhead, posing challenges to its efficient deploy- 170

ment (Li et al., 2024; Liu et al., 2024; Xue et al., 171

2024; Krajewski et al., 2024; Luo et al., 2024). 172

MoE Compression. Current works to reduce the 173

memory overhead of MoE models mainly focus 174

on reducing the number of experts. An earlier ap- 175

proach (Chen et al., 2022) involves pruning non- 176
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Figure 2: Visualization of expert usage of the two MoE models used in this work. It is profiled on our quantization
calibration data, i.e., 512 random 4096 token sequences from the WikiText dataset (Merity et al., 2016).

essential experts for a specific downstream task177

during fine-tuning, utilizing statistics based on cu-178

mulative usage frequency. MC-SMoE (Li et al.,179

2024) identifies and groups similar experts, subse-180

quently merging them and further decomposing the181

merged expert into low-rank components within182

each group. However, these approaches are devel-183

oped under task-specific fine-tuning settings and184

do not explore the development of the MoE com-185

pression towards general LLMs.186

Post-Training Quantization. Post-training quan-187

tization reduces computational and storage de-188

mands by converting pre-trained models from high-189

precision to lower-precision formats without ex-190

tensive retraining (Frantar et al., 2023b,a). It has191

been widely applied to LLMs, optimizing them192

for deployment on resource-constrained devices.193

Techniques like layer-wise quantization and mixed-194

precision schemes are designed for minimal per-195

formance degradation while reducing model size196

and computational requirements (Liu et al., 2023;197

Pan et al., 2023; Sharify et al., 2024). Recent198

methods such as SmoothQuant (Xiao et al., 2024),199

GPTQ (Frantar et al., 2023a), AWQ (Lin et al.,200

2024), and address specific challenges for LLMs.201

GPTQ (Frantar et al., 2023a) employs layer-wise202

and mixed-precision quantization to balance effi-203

ciency and accuracy. AWQ (Lin et al., 2024) adapts204

to weight sensitivity, preserving critical weights’205

precision while aggressively quantizing less sen-206

sitive ones. These advancements in PTQ enable207

significant reductions in LLM computing and stor-208

age while preserving performance. However, their209

effectiveness on MoE models is underexplored.210

3 Preliminary211

3.1 Quantization Method212

The primary objective of this work is to benchmark213

several MoE-related heuristics combined with es-214

tablished LLM quantization techniques. Given that215

the substantial memory overhead of MoE mod-216

els predominantly originates from their weights,217

we adopt GPTQ (Frantar et al., 2023a), a popu- 218

lar weight quantization method. GPTQ executes 219

layer-by-layer weight quantization by addressing 220

a specific reconstruction problem for each layer. 221

Specifically, let W be the weights of a linear layer 222

and X be the input to that layer derived from a 223

small subset of calibration data, the reconstruction 224

problem is defined as: 225

argmin
Ŵ
, ||WX− ŴX||22 226

This objective, being the sum of squared errors, 227

forms a quadratic equation, allowing the greedy- 228

optimal update of weights to be calculated element- 229

by-element using the Hessian information, H = 230

2XX⊤. GPTQ further enhances this process by 231

incorporating a lazy-batch update and a Cholesky 232

reformulation, to improve scalability and numerical 233

stability for LLM quantization. 234

3.2 Mixture-of-Experts 235

There are several variants of MoE in the context 236

of LLMs, such as attention MoE and FFNN MoE. 237

In this work, we explore the quantization of MoE 238

models that utilize router networks to selectively 239

activate FFNNs for different input tokens. Specif- 240

ically, for the i-th expert’s feed-forward function 241

at the l-th transformer layer, denoted as FFNNil(·), 242

the output of the MoE layer for the input hidden 243

states X is given by: 244

FFNNlMoE(X) =

l∑
i=1

G(WlX) · FFNNli(X), 245

where Wl represents a linear routing matrix and 246

G(·) is a routing function that typically employs a 247

top-k selection mechanism, resulting in a sparse 248

output. Due to the duplication of FFNN layers, the 249

principal memory overhead in the MoE model is 250

attributed to the FFNN component. 251

3.3 Expert Usage as A Heuristic 252

As the routing of experts in MoE models is not ide- 253

ally balanced, expert usage frequency and its vari- 254
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ants have emerged as prevalent heuristics for mea-255

suring the importance of different experts within256

an MoE block (Chen et al., 2022; Li et al., 2024).257

For instance, task-specific expert pruning proposed258

by (Chen et al., 2022) uses a criterion based on259

cumulatively calculated expert routing probabili-260

ties for pruning during fine-tuning on a specific261

task. In this paper, focusing on post-training quan-262

tization, we utilize the routing distribution from263

the calibration data as the heuristic for expert us-264

age. Specifically, for the l-th MoE block, equipped265

with a routing matrix Wl ∈ Re×d and input hid-266

den states X ∈ Rb×d from the calibration data, the267

expert usage heuristic is:268

usage = normalize

(∑
i

G(WlXi)

)
,269

where G(·) is the routing function employing a270

top-k selection mechanism that yields a sparse bi-271

nary output. We visualize the calculated expert272

usage of Mixtral-8x7B and DeepSeek-MoE-16B-273

base MoE models on the quantization calibration274

data, as shown in Figure 2. Note that Mixtral-8x7B275

demonstrates a more balanced routing distribution276

than DeepSeek-MoE-16B-base.277

4 Benchmark Post-Quantization for MoE278

In this section, we present several heuristics for279

MoE quantization and the empirical performance280

of them. Our benchmarking covers two MoE mod-281

els and six popular tasks.282

4.1 Benchmark Setups283

MoE Models. We select two representative MoE284

models for our benchmark evaluation, i.e., Mixtral-285

8x7B (Jiang et al., 2024) and DeepSeek-MoE-16B-286

base (Dai et al., 2024). Mixtral-8x7B substitutes287

every FFNN with a MoE block and has 8 experts288

per MoE block with top-2 routing, while DeepSeek-289

MoE-16B-base uses a fine-grained MoE architec-290

ture by including 64 experts with top-6 routing and291

2 shared experts per MoE block.292

Quantization. We mainly focus on weight-only293

mixed-precision quantization, we further extend294

our experiments and conclusions to its combina-295

tion with activation quantization in Section 5. We296

use GPTQ (Frantar et al., 2023a) for quantization,297

without loss of generality. Throughout this work,298

we use a group size of 128. Our experiments em-299

phasize an extreme quantization scenario, where300

most weights are quantized to either 2 or 4 bits.301

Calibration and Evaluation Details. We use the302

calibration data consisting of 512 random 4096303

token sequences from the WikiText dataset (Mer- 304

ity et al., 2016), following GPTQ (Frantar et al., 305

2023a). Unlike previous literature that fo- 306

cuses on language modeling benchmarks (Xiao 307

et al., 2024; Lin et al., 2024; Frantar et al., 308

2023a), we evaluate all the methods on six pop- 309

ular LLM tasks for a practical benchmarking: 310

WinoGrande (ai2, 2019), COPA (Gordon et al., 311

2012), OpenBookQA (OBQA) (Mihaylov et al., 312

2018), HellaSwag (Zellers et al., 2019), and 313

MMLU (Hendrycks et al., 2021). We report the 314

performance on MMLU with 5-shot and all oth- 315

ers with zero-shot. All experiments are conducted 316

with PyTorch on 8 NVIDIA H100s, and we utilize 317

lm-evaluation-harness 1 for the evaluation. 318

4.2 Problem Formulation 319

In this section, we formalize the intrinsic tradeoff 320

between model performance and bit allocation in 321

MoE quantization as Pareto optimization. 322

Given an MoE model with n weight components 323

(attention layers, MoE FFNN experts, etc.), we aim 324

to find the optimal bit allocation strategy that bal- 325

ances model performance and memory efficiency. 326

Let b = (b1, b2, . . . , bn) represent a bit allocation 327

vector, where bi ∈ {2, 4} is the quantization preci- 328

sion for the i-th component. We formulate this as a 329

bi-objective optimization problem: 330
max

b
P(b)

min
b

B(b) = 1

n

n∑
i=1

bi

subject to bi ∈ {2, 4}, ∀i ∈ {1, 2, . . . , n},

331

where P(b) is the model performance and B(b) is 332

the average bit-width across all components. 333

Given the combinatorial nature of this problem 334

and the difficulty in obtaining a closed-form expres- 335

sion for P(b), we approach it using the structure- 336

aware heuristics described in the following sections, 337

leveraging our observations about the varying im- 338

portance of MoE components. As shown in Fig- 339

ure 3, our mixed-precision approach effectively 340

navigates the Pareto frontier, offering superior per- 341

formance compared to uniform bit allocation. 342
4.3 Benchmark Results 343

We first evaluate the four bit-allocation heuris- 344

tic MoE quantization approaches using GPTQ on 345

Mixtral-8x7B and DeepSeek-MoE-16B. 346

Table 1 presents the overall comparison per- 347

formance of our mixed-precision MoE quantiza- 348

tion strategies v.s. baseline (i.e. GPTQ) across 349

1https://github.com/EleutherAI/lm-evaluation-harness
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Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

GPTQ 3 73.56 93.00 44.80 75.31 79.11 58.37 70.69

GPTQ 2 49.33 63.00 25.40 28.18 52.99 24.29 40.53
+Attn 2.06 54.14 65.00 26.80 44.87 57.78 27.38 46.00 ↑5.47
+Attn+Freq 3.27 73.09 92.00 44.80 77.03 78.29 63.05 71.38 ↑30.85
+Attn+Freq+FirstL 3.51 73.32 95.00 44.00 80.06 79.71 64.89 72.83 ↑32.30
+Attn+LinearOSP 3.12 72.85 92.00 43.40 78.14 78.40 62.92 71.29 ↑30.76
+Attn+LayerISP 3.35 71.19 93.00 44.00 77.03 78.29 63.15 71.11 ↑30.58

DeepSeek-MoE-16B-base

GPTQ 3 67.87 87.00 40.40 72.92 78.50 39.12 64.30

GPTQ 2 53.27 76.00 30.20 45.32 66.53 25.28 49.43
+Attn 2.06 61.72 83.00 34.00 61.93 73.45 26.53 56.77 ↑7.34
+Attn+Shared 2.12 65.67 85.00 39.20 67.84 76.28 35.28 61.55 ↑12.12
+Attn+Shared+Freq 3.00 68.82 88.00 42.00 73.32 77.31 41.51 65.16 ↑15.90
+Attn+Shared+Freq+FirstL 3.06 68.35 88.00 42.60 73.85 77.69 41.58 65.35 ↑15.92
+Attn+Shared+LinearOSP 3.06 67.32 88.00 41.60 72.45 77.48 41.64 64.84 ↑15.41
+Attn+Shared+LayerISP 3.06 69.30 87.00 42.00 73.56 77.86 41.86 65.27 ↑15.67

Table 1: Comparison of quantization bit allocation strategies including attention (Attn) and shared expert (Shared)
prioritization, frequency-based expert selection (Freq), first-layer prioritization (FirstL), linear outlier score
predictor (LinearOSP) and layer importance score predictor (LayerISP). We evaluate performance on Mixtral-8x7B
and DeepSeek-MoE-16B-base across multiple benchmarks. Unlike uniform-precision quantization (i.e. GPTQ), our
approach shows superiority by tailoring bit allocation to the MoE structure.

Table 1

Bits Mixed-Precision 8-Bits 4-Bits 3-Bits Pareto-Optimal

0 2.0 49.43768091 67.81 66.78 64.30 0

1 2.06732452 57.31534112 67.81 66.78 64.30 0

2 2.125890444 61.14490253 67.81 66.78 64.30 0

3 2.184456367 61.878887050000000 67.81 66.78 64.30 0

4 2.21 60.97278644000000 67.81 66.78 64.30 0

5 2.24 61.689419300000000 67.81 66.78 64.30 0

6 2.29 61.27 67.81 66.78 64.30 0

7 2.297249998 61.340443060000000 67.81 66.78 64.30 0

8 2.297249998 61.340443060000000 67.81 66.78 64.30 0

9 2.32 62.49 67.81 66.78 64.30 0

10 2.33 62.014529150000000 67.81 66.78 64.30 0

11 2.41 62.7 67.81 66.78 64.30 0

12 2.432819266 62.242479680000000 67.81 66.78 64.30 0

13 2.432819266 62.242479680000000 67.81 66.78 64.30 0

14 2.44 62.020000000000000 67.81 66.78 64.30 0

15 2.48 62.986864 67.81 66.78 64.30 0

16 2.52 63.030000000000000 67.81 66.78 64.30 0

17 2.54 59.56505674 67.81 66.78 64.30 0

18 2.54 60.386853630000000 67.81 66.78 64.30 0

19 2.54 58.87751257 67.81 66.78 64.30 0

20 2.54 62.433937040000000 67.81 66.78 64.30 0

21 2.55 63.1 67.81 66.78 64.30 0

22 2.568388533 62.60019339 67.81 66.78 64.30 0

23 2.568388533 62.60019339 67.81 66.78 64.30 0

24 2.64 63.79698443 67.81 66.78 64.30 0

25 2.67 63.6 67.81 66.78 64.30 0

26 2.7 63.04 67.81 66.78 64.30 0

27 2.703957801 63.66881518 67.81 66.78 64.30 0

28 2.703957801 63.66881518 67.81 66.78 64.30 0

29 2.714803342 63.692541220000000 67.81 66.78 64.30 0

30 2.725648884 64.1072221 67.81 66.78 64.30 0

31 2.758185508 64.21578897 67.81 66.78 64.30 0

32 2.79 64.0108031 67.81 66.78 64.30 0

33 2.798314011 63.388881500000000 67.81 66.78 64.30 0

34 2.812413215 63.69942604 67.81 66.78 64.30 0

35 2.82 63.01 67.81 66.78 64.30 0

36 2.839527069 64.07486339 67.81 66.78 64.30 0

37 2.839527069 64.07486339 67.81 66.78 64.30 0

38 2.844949839 64.38557025 67.81 66.78 64.30 0

39 2.85 63.9 67.81 66.78 64.30 0

40 2.85037261 64.80802845 67.81 66.78 64.30 0

41 2.866640922 64.20126057 67.81 66.78 64.30 0

42 2.866640922 64.13127025 67.81 66.78 64.30 0

43 2.867725476 64.10196516000000 67.81 66.78 64.30 0

44 2.893754776 64.41660957 67.81 66.78 64.30 0

45 2.920868629 64.14303748 67.81 66.78 64.30 0

46 2.920868629 64.03858892 67.81 66.78 64.30 0

47 2.920868629 64.35680606000000 67.81 66.78 64.30 0

48 2.937136941 64.33456726 67.81 66.78 64.30 0

49 2.94 64.66078665 67.81 66.78 64.30 0

50 2.947982483 64.77399438 67.81 66.78 64.30 0

51 2.947982483 64.77399438 67.81 66.78 64.30 0

52 2.96 64.56 67.81 66.78 64.30 0

53 2.99 64.65000000000000 67.81 66.78 64.30 0

54 3.0 65.13968491 67.81 66.78 64.30 0

55 3.09 65.33887325000000 67.81 66.78 64.30 0

56 3.11 64.75 67.81 66.78 64.30 0

57 3.14 65.59 67.81 66.78 64.30 0

58 3.24 65.87477512 67.81 66.78 64.30 0

59 3.26 65.98 67.81 66.78 64.30 0

60 3.29 65.87000000000000 67.81 66.78 64.30 0

61 3.4 65.67 67.81 66.78 64.30 0

62 3.43 65.28 67.81 66.78 64.30 0

63 3.55 66.74168224 67.81 66.78 64.30 0

64 3.7 66.26000000000000 67.81 66.78 64.30 0

65 4.0 66.77875483 67.81 66.78 64.30 0
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Figure 3: Comparison of allocating more bits (i.e. 4
bits) for attention and frequent experts with uniform-
bits quantization. The Pareto-optimal bit is 3.29.
multiple benchmarks Mixtral-8x7B and DeepSeek-350

MoE-16B-base. The results highlight that uni-351

form quantization leads to substantial performance352

degradation, reinforcing the need for structure-353

aware, fine-grained quantization strategies. By in-354

corporating methods such as attention-aware ad-355

justments (+Attn), expert frequency-based bit al-356

location (+Freq), and prioritization of early MoE357

layers (+FirstL), importance-based quantization358

(+LinearOSP and +LayerISP), we observe im-359

provements in model performance, particularly in360

lower-bit settings. A mixed-precision approach tai-361

lored to the MoE structure outperforms fixed-bit362

quantization. In particular, expert usage frequency-363

based quantization (+Freq) improves performance364

by dynamically allocating more bits to frequently365

used experts, though its impact varies per the366

routing balance of models. Prioritizing the first367

few MoE blocks (+FirstL) yields better results.368

Lastly, importance-based strategies(+LinearOSP,369

+LayerISP) further refine bit allocation.370

To gain deeper insights, we further systemati-371

cally analyze four key research questions: (1) the372

effectiveness of expert usage frequency as a quan- 373

tization heuristic, (2) whether attention or FFNN 374

layers deserve more bit precision, (3) the impor- 375

tance of the first versus last MoE blocks in quanti- 376

zation, and (4) the necessity of allocating more bits 377

to shared experts. The following sections provide a 378

detailed discussion of each aspect. 379

Q1: Is expert usage frequency a good quanti- 380

zation heuristic? A: Fairly good. Expert usage 381

frequency is a popular heuristic in the compression 382

of MoE models, predicated on the insight that less 383

frequently used experts are likely less crucial. Our 384

experiments in Table 2 show its effectiveness as 385

a quantization heuristic for MoE. Specifically, for 386

the DeepSeek model, this heuristic outperforms 387

randomly allocating more bits to experts, likely 388

due to the model’s unbalanced routing distribution. 389

However, for the Mixtral model, where routing dis- 390

tribution is more balanced, the advantage of using 391

expert usage frequency is less significant. 392

393Q2: Attention vs. FFNN: Which Deserves More 394

Bits in MoE? A: Attention layers are more bit- 395

efficient. Because of the unique characteristics of 396

the FFNN within the MoE framework, we compare 397

the attention layer and the FFNN layer to deter- 398

mine which deserves more bits. We compare the 399

performances by quantizing the attention layers 400

with more bits v.s. randomly selecting experts in 401

the FFNN layers with more bits, with the same 402

average bits of the entire MoE model for a fair 403

comparison. Specifically, we quantize the atten- 404

tion or randomly selected FFNN weight to {2, 4, 405
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Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

Random 2 2.54 58.59± 2.57 68.00± 11.27 33.00± 1.78 46.60± 18.21 60.14± 9.32 28.26± 4.64 49.10± 7.73
Frequent 2 2.54 58.33 76.00 32.00 56.62 66.21 36.01 54.20

Random 4 3.03 67.77± 0.36 86.33± 3.51 38.47± 0.31 67.48± 0.52 73.99± 0.52 48.13± 2.57 63.70± 0.49
Frequent 4 3.03 68.82 86.00 38.80 67.68 72.20 49.42 63.82

DeepSeek-MoE-16B-base

Random 10 2.53 67.28± 0.04 88.50± 1.50 38.40± 0.80 70.99± 0.50 76.74± 0.84 35.23± 0.09 62.86± 0.60
Frequent 10 2.53 66.46 87.00 39.60 70.31 76.71 37.84 62.99

Random 15 2.68 67.25± 0.47 84.50± 2.50 40.00± 0.60 71.79± 0.43 76.85± 0.08 35.71± 0.82 62.68± 0.71
Frequent 15 2.68 67.17 88.00 39.00 71.09 76.93 40.59 63.80

Random 20 2.83 67.25± 0.47 84.50± 2.50 40.00± 0.60 71.79± 0.43 76.85± 0.08 35.71± 0.82 62.68± 0.71
Frequent 20 2.83 67.25 86.00 40.40 72.06 77.58 40.78 64.01

Random 25 2.97 67.72± 0.24 89.00± 1.00 40.70± 0.10 71.98± 0.19 77.04± 0.05 36.54± 1.55 63.83± 0.04
Frequent 25 2.97 67.72 90.00 39.20 72.83 77.15 41.06 64.66

Table 2: Comparison of the expert usage frequency heuristic v.s. random allocation. For the Mixtral-8x7B model,
we compare the allocation of 4 bits to the top-{2, 4} most frequently used experts per MoE block against randomly
selecting {2, 4} experts for the same bit allocation. For the DeepSeek-MoE-16B-base model, we keep shared expert
{8} bits and compare between top-{10, 15, 20, 25} most frequently used experts against randomly selecting {10,
15, 20, 25} experts per MoE block. Other experts are quantized to 2 bits, while all attention layers are uniformly
quantized to 4 bits. We provide the mean value a and standard deviation b over 3 independent trials as a± b..

Table 1

Bits Bits Attention FFNN FFNN Std

2.00 2.00 40.53 40.53 0.00

2.06 2.06 46.00 41.39 0.57

2.17 2.17 49.39 41.43 0.52

Attention v.s. FFNN

Pe
rfo

rm
an

ce

40

45

50

Average Bits
1.9 2 2.1 2.2

Attention
FFNN

Shared v.s. Others

56

60

64

Average Bits
1.9 2.1 2.3

Shared
Others

1

Figure 4: Comparison of quantizing more bits for atten-
tion v.s. FFNN and shared experts v.s. others, evaluated
on Mixtral model. FFNN and others’ results show the
mean and standard deviation from 3 independent trials.

8} bits, while all other weights are quantized to 2406

bits. As illustrated in Figure 4 (left), quantizing407

attention weights to more bits (i.e., 4 or 8 bits) con-408

sistently results in significant performance gains409

(over 5%) under each average bit allocation for the410

MoE model. This greater efficiency likely stems411

from the fact that attention weights are activated412

for every token, while FFNN weights only engage413

with a subset of input tokens. Consequently, in-414

creasing the quantization bits for FFNN weights415

does not benefit all inputs. Based on these findings,416

attention weights are quantized to 4 bits by default417

in all following experiments.418

Q3: Do the model’s first or last MoE blocks419

deserve more bits in quantization? A: The first420

MoE blocks. We investigate which layer of the421

MoE block is more critical and thus deserves more422

bits during for quantization. As shown in Table 3,423

we evaluate the performance of allocating more424

bits to the first k blocks v.s. the last k blocks in425

quantization. The results consistently indicate that 426

higher bit quantization of the first few blocks yields 427

better performance, suggesting that we can allocate 428

more bits to the quantization of the first blocks. 429

This aligns with prior studies that empirically show 430

the greater importance of first few Transformer 431

blocks (Dai et al., 2024; Ma et al., 2023). 432
Q4: Does the shared expert always deserve more 433

bits? A: Yes. The DeepSeek MoE model in- 434

cludes two shared experts in each MoE block to 435

capture common knowledge across domains. To 436

evaluate their role in quantization, we compare al- 437

locating more bits to the two shared experts v.s. 438

randomly selecting two non-shared experts, with 439

the same average bits for a fair comparison. The 440

shared or random non-shared experts are quantized 441

to 2, 4, 8 bits, while attention weights are set to 4 442

bits and all other weights to 2 bits. As shown in 443

Figure 4 (right), allocating more bits (i.e., 4 or 8 444

bits) to shared experts consistently yields superior 445

performance. This is attributed to the shared ex- 446

perts being activated for every input token, unlike 447

non-shared experts that only engage with subsets. 448

5 Extended Study 449

In this section, we introduce two novel data-driven 450

techniques aimed at identifying crucial components 451

in MoE to improve quantization performance. 452

5.1 Outlier-Aware Linear Layer Scorer 453

Insight. From the quantization perspective, the 454

larger the range of a weight magnitude group, the 455

more difficult it will be for quantization. We found 456
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Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

First 4 2.30 57.85 72.00 32.80 52.80 61.59 29.65 51.12
Last 4 2.30 53.75 60.00 27.80 46.25 58.87 26.56 45.54

First 8 2.54 62.11 85.00 35.80 62.72 67.74 35.61 58.16
Last 8 2.54 52.09 69.00 29.60 47.87 59.58 26.03 47.36

DeepSeek-MoE-16B-base

First 4 2.29 65.27 85.00 38.40 64.42 72.74 28.88 59.12
Last 4 2.29 62.90 83.00 36.00 64.41 74.65 27.38 58.06

First 8 2.63 64.09 86.00 38.75 67.84 75.35 30.12 60.36
Last 8 2.63 62.83 83.00 37.80 65.94 75.73 31.00 59.38

Table 3: Comparison between quantizing first k v.s. last k MoE blocks with higher (i.e. 4) bits. All weights in
attention layers are quantized to 4 bits, and the other weights are quantized to 2 bits. In DeepSeek-MoE-16B-base
model, we keep the first block that is dense block as 4 bits by default. We evaluate k of 4 and 8. The higher
performance of each comparison pair is marked as bold.

(a) Outlier-Aware Linear Layer Scorer (b) MoE Block Importance Score Predictor
Figure 5: (a) Visualization of the outlier-score metric applied to each FFNN linear weight matrix in the Mixtral model. We
present the gate projection (left), up projection (middle), and down projection (right) in FFNN experts separately. (b) Visualization
of the MoE block importance score metric applied on the DeepSeek MoE model.

that, in MoE, each FFNN linear weight matrix457

consists predominantly of values within a narrow458

range, interspersed with a few significant outliers.459

Consequently, we propose a weight-magnitude-460

based metric to identify those linear layers that461

are challenging to quantize effectively, thereby ne-462

cessitating a higher allocation of quantization bits.463

Methodology. We define the metrics to estimate464

the outliers of weights by the maximum ratio of the465

largest to the average absolute magnitude within466

each column. Specifically, for a weight matrix467

W ∈ Rm×n, we compute this metric as follows:468

outlier-score(W) = maxj

(
max(|W:, j|)
mean(|W:, j|)

)
,469

With this metric, we can identify those linear lay-470

ers that require more quantization bits and allo-471

cate more to them, providing an effective trade-off472

between performance and efficiency. The overall473

procedure is detailed in Algorithm 1.474

Experiments. We evaluate this metric by compar-475

ing its application for the top-p% of linear layers476

against randomly selecting linear layers, using per-477

centages of 25% and 50%. As shown in Table 4,478

our proposed scorer consistently outperforms the479

random baseline on both models and almost all480

tasks (except HellaSwag and MMLU). This is par-481

ticularly evident in the DeepSeek model, where it 482

achieves an average performance improvement of 483

about 3%, aligning with our expectations. 484

Visualization. As shown in Figure 5 (a), we visual- 485

ize the proposed outlier-score for each FFNN 486

linear weight of the Mixtral model. Given that each 487

FFNN expert includes three linear layers, i.e. gate 488

projection, up projection, and down projection, we 489

visualize these components separately. Notably, 490

many of the down projection linear layers, particu- 491

larly later layers in the model, exhibit significantly 492

higher outlier-scores compared to others. 493

5.2 MoE Block Importance Score Predictor 494

Inspired by Q3 in Section 4.3, which demonstrates 495

that allocating more bits to different MoE blocks 496

yields variable performance improvements, we pro- 497

pose a novel method to identify and quantize those 498

critical blocks with additional bits. 499

Insight. We find an increasing cosine similarity be- 500

tween the tensors generated before and after FFN 501

blocks for some of the MoE blocks, indicating 502

less important computing output produced by these 503

blocks. This observation aligns with observations 504

on dense models in previous literature (Jaiswal 505

et al., 2024). Therefore, the basic idea is that less 506

accurate output of these blocks producing tokens 507

with high cosine similarity will not affect the over- 508
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Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

Random 25% 2.54 60.74± 0.63 78.67± 4.62 34.07± 1.63 57.36± 0.53 68.19± 0.74 32.49± 1.60 55.25± 0.95
Ours top-25% 2.54 62.19 83.00 35.80 57.04 68.23 30.95 56.20

DeepSeek-MoE-16B-base

Random 25% 2.54 64.04± 0.78 84.67± 4.73 37.53± 0.46 67.39± 0.71 74.61± 0.60 29.43± 1.31 59.61± 0.76
Ours top-25% 2.54 66.14 85.00 38.80 71.65 76.82 36.19 62.43

Table 4: Comparison between using our linear weight scorer vs. random selection of linear layers for bit allocation in
quantization. We quantize 25% of linear layers across all MoE blocks to 4 bits. All attention weights are quantized
to 4 bits, all other weights are quantized to 2 bits. In each comparison pair, the higher performance is highlighted in
bold. We provide the mean value a and standard deviation b over 3 independent trials as a± b.

Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

DeepSeek-MoE-16B-base

Random 4 2.29 61.09± 0.78 83.00± 0.00 37.20± 0.85 64.88± 0.30 74.21± 0.08 27.82± 0.46 58.03± 0.13
First 4 2.29 65.27 85.00 38.40 64.42 72.74 28.88 59.12
Predicted 4 2.29 65.27 83.00 36.60 64.88 74.54 37.75 60.34

Random 8 2.63 64.48± 0.83 85.33± 3.21 38.73± 0.95 67.57± 0.40 75.43± 0.14 31.41± 2.17 60.49± 0.56
First 8 2.63 64.09 86.00 38.75 67.84 75.35 30.12 60.36
Predicted 8 2.63 65.35 86.00 38.00 68.77 75.35 30.01 60.58

Random 12 2.92 64.64± 0.89 83.50± 0.71 39.60± 2.83 69.51± 0.56 75.98± 0.42 32.57± 0.30 60.97± 0.62
First 12 2.92 67.48 88.00 38.60 70.59 75.95 39.25 63.31
Predicted 12 2.92 68.11 88.00 39.20 71.82 76.66 38.45 63.71

Table 5: Comparison between using our MoE block importance predictor v.s. two baselines: ①random selecting
and ②first k MoE blocks. The predicted or selected MoE blocks are quantized to 4 bits, all attention weights are
quantized to 4 bits, and all other weights are quantized to 2 bits. In each comparison, the highest performance is
highlighted in bold. We provide the mean value a and standard deviation b over 3 independent trials as a± b.

all model performance much, thus lower weight509

bits might not hurt performance much.510
Methodology. To capture the generalized hidden511

states’ dynamic information of each MoE block, we512

train a two-layer FFNN with a tangent activation513

function. This network predicts the cosine simi-514

larity between the input and output hidden states.515

We train it on 400 sequences, each of 1024 tokens516

from WikiText (Merity et al., 2016). The training517

procedure is in Algorithm 2. During quantization,518

we apply this predictor and compute an average519

predicted score for each MoE layer across all to-520

kens. A higher score indicates less importance521

and fewer bits for quantization.522

Experiments. In Table 5, we compare the per-523

formance of using our block importance predic-524

tor to select k MoE blocks for 4 bits and others525

for 2 bits quantization with two other baselines:526

① random selecting k MoE blocks, and ② first k527

MoE blocks (as it is the best in Q3 in Section 4.3).528

Evaluation results on the DeepSeek-MoE-16B-base529

model are presented in Table 5, showing the superi-530

ority of our method against the other two baselines.531

Visualization. We visualize the predicted scores532

of MoE blocks using our trained predictors in the533

DeepSeek model, as shown in Figure 5 (b). No-534

tably, MoE blocks in the middle of the model,535

which exhibit higher scores, are regarded as less 536

critical. Consequently, these blocks are quantized 537

to fewer bits (i.e., 2 bits), reflecting their lower 538

importance. Besides, Figure 5 (b) demonstrates 539

that the first few MoE blocks are more important 540

aligned with Q3. Interestingly, the last two blocks 541

of the DeepSeek model are also crucial, thereby al- 542

locating more bits and yielding better performance. 543

6 Conclusion 544

This work introduces mixed-precision MoE post- 545

training quantization (PTQ) through a systematic 546

investigation of various heuristic-based approaches. 547

While conventional quantization techniques (e.g., 548

GPTQ) show limited effectiveness when directly 549

applied to MoE models, the question of optimal 550

bit allocation across different MoE model com- 551

ponents requires deeper exploration. We present 552

QuantMoE-Bench, the first comprehensive bench- 553

mark to study PTQ of MoE models that reveals 554

critical insights, including significant importance 555

variations in the MoE model. Drawing on these 556

insights, we further develop a block importance 557

predictor and a linear layer outlier range scorer 558

to more precisely identify critical components in 559

quantization. Our methods significantly improve 560

the effectiveness of MoE model quantization. 561
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Limitation562

We primarily focus on weight-only quantization563

GPTQ, without extensively exploring alternative564

quantization techniques (e.g. AWQ) or activation565

quantization. Our proposed approaches, while ef-566

fective, lack theoretical guarantees. Our evaluation567

metrics prioritize task performance without real-568

world, efficient implementation.569
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A Appendix 729

A.1 Evaluation Datasets 730

In this section, we introduce details of the datasets 731

in our evaluation. For a more comprehensive study, 732

we have selected six popular benchmark tasks: 733

WinoGrande, COPA, OpenBookQA (OBQA), Hel- 734

laSwag, and MMLU. 735

WinoGrande (ai2, 2019) is a large-scale dataset 736

designed for commonsense reasoning, consisting 737

of pronoun resolution problems. Each instance in 738

the dataset presents a sentence with an ambiguous 739

pronoun that needs to be resolved based on context. 740

This task tests the model’s ability to understand 741

and reason about everyday situations. 742

The Choice of Plausible Alternatives (COPA) 743

dataset (Gordon et al., 2012) focuses on causal 744

reasoning. Each question in COPA consists of a 745

premise and two choices, where the model must 746

select the more plausible alternative. This task 747

evaluates the model’s understanding of cause-and- 748

effect relationships in natural language. 749

OpenBookQA (Mihaylov et al., 2018) is a 750

multiple-choice question-answering dataset that re- 751

quires the model to use both scientific facts and 752

commonsense knowledge. The dataset challenges 753

the model’s ability to combine factual knowledge 754

with reasoning to answer questions correctly. 755

HellaSwag (Zellers et al., 2019) is a benchmark 756

for commonsense NLI (Natural Language Infer- 757

ence) that tests the model’s ability to predict the 758

most plausible continuation of a given sentence. 759

The dataset contains scenarios from various do- 760

mains, such as cooking and sports, requiring the 761

model to understand context and plausibility. 762

The Massive Multitask Language Under- 763

standing (MMLU) benchmark (Hendrycks et al., 764

2021) evaluates models across a wide range of sub- 765

jects, from elementary mathematics to law. For 766

this study, we report performance on MMLU with 767

a 5-shot setting, where the model is given five ex- 768

amples per task before evaluation, allowing us to 769

gauge the model’s few-shot learning capabilities. 770

We perform a zero-shot evaluation on Wino- 771

Grande, COPA, OpenBookQA, and HellaSwag, 772

where the model is not provided with any task- 773

specific training examples. For MMLU, a 5-shot 774
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evaluation protocol is adopted, providing five ex-775

amples per task. This setup helps us assess the776

generalization ability of the models across differ-777

ent types of reasoning and knowledge-based tasks.778

A.2 Random Seed779

For all the random selection experiments, we use780

random seeds {42, 43, 44} to conduct three inde-781

pendent trials and then report the standard deviation782

and mean.783

A.3 Further Discussion784

In this section, we present further discussion of785

the DeepSeek-MoE-16B-base performance across786

different bits.787

Expert usage frequency.As shown by Q1 in Sec-788

tion 4.3, expert usage frequency is a critical metric789

in the compression of MoE models, predicated on790

the insight that less frequently used experts are791

likely less crucial. We present further discussion792

of ablation on the bits allocation in the expert-793

frequency-based methods.794

In Table 8, we compare the allocation of {4, 8}795

bits of the selected top-k experts, while all other ex-796

perts are quantized to 2 bits. We quantize the shared797

experts and attention weights to 8 bits. Table 8 in-798

dicates that increasing the bit width of frequently799

activated experts improves performance. However,800

the gain from increasing the top-k expert bits from801

4 to 8 is minimal.802

Combination of the weight outlier and expert us-803

age frequency. We conducted additional exper-804

iments on the DeepSeek-MoE-16B-base model805

by integrating bit-width allocation based on lay-806

ers with significant weight outliers with allocation807

based on expert usage frequency to explore the808

trade-off between them. Specifically, we aimed for809

a total average bit budget of 2.97. We select por-810

tions of the model to be quantized to 4 bits using a811

combination of the two heuristics, while quantizing812

all attention weights to 4 bits and all other weights813

to 2 bits. For selecting the 4-bit weights, we intro-814

duce a hyper-parameter, α (0 ¡ α ¡ 1), representing815

the proportion of weights chosen based on expert816

usage frequency, with the remainder selected based817

on weight outliers. We varies α to illustrate the818

trade-off between these methods, as detailed above.819

As shown in Table 7, the optimal combination of820

these two methods occurs when alpha is set to 0.1.821

This means that 20% of the 4-bit MoE weights are822

selected based on expert usage frequency, while823

the remaining 80% are chosen according to weight 824

outliers. 825

Baseline results of low-precision quantization. We 826

provide the 16-bit (FP16), 4-bit, and 2-bit baselines 827

of both Mixtral-8x7B and DeepSeek-MoE-16B- 828

base models in Table 9. 829

Algorithm 1 The Procedure of MoE Mixed-
Precision Quantization with outlier-score.

1: Initialize: A MoE model with l linear layers
across all the FFNN experts, the number of
linear layers for 4 bit quantization k.

2: LetM and S represent the set of each linear
layer matrix in FFNN and its score, respec-
tively.

3: for linear layer i = 1, . . . , l do
4: W←M[i]

5: S[i]← maxj
(

max(|W:,j|)
mean(|W:,j|)

)
6: end for
7: α← sorted(S)[k]
8: 4bits-quantize ({M[i] | S[i] >= α})
9: 2bits-quantize ({M[i] | S[i] < α})

10: Return: A quantized mixed-precision MoE
model.

Algorithm 2 The Training Procedure of Block
Score Predictor.

1: Initialize: A MoE block M , token in-
put and output embedding set at block M
{(xi,yi)}i∈[N ].

2: Let BSP denotes the block score predictor.
3: X ← {xi | i ∈ [N ]}
4: S ← {cosine(xi,yi) | i ∈ [N ]}
5: BSP ← train(X ,S)
6: Return: The importance scorer BSP for MoE

Block M .

11



Table 6: Baseline results of the 16-bit (FP16), 4-bit, and 2-bit quantization.

Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

16 76.48 93.00 47.00 83.98 82.37 70.35 75.33
4 74.98 92.00 46.20 81.65 80.85 67.65 73.89
2 49.33 63.00 25.40 28.18 52.99 24.29 40.53

DeepSeek-MoE-16B-base

16 70.40 91.00 44.20 77.35 78.72 44.77 67.74
4 71.35 87.00 43.20 76.39 78.51 44.22 66.78
2 53.28 76.00 30.20 45.33 66.54 25.28 49.44

Table 7: The combination of weight outlier and expert usage frequency, evaluated on the DeepSeek-MoE-16B-base
model.

Bits α WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

2.97

0.0 67.72 90.00 39.20 72.83 77.15 41.06 64.66
0.1 68.11 89.00 41.60 72.88 77.80 41.84 65.21
0.2 69.21 89.00 41.20 72.60 76.93 41.60 65.09
0.3 68.92 88.00 42.00 72.06 76.65 41.21 64.81
0.4 67.48 89.00 41.40 71.88 76.71 40.96 64.57
0.5 67.32 90.00 40.80 71.89 76.93 40.21 64.52
0.6 65.90 87.00 39.40 71.86 76.76 38.67 63.27
0.7 66.21 87.00 41.40 71.45 76.87 36.98 63.32
0.8 66.45 89.00 41.00 70.89 76.60 37.67 63.60
0.9 66.37 84.00 40.20 70.83 76.87 39.84 63.02
1.0 68.19 87.00 41.60 71.01 76.11 40.81 64.12

Table 8: Ablation on the allocated bits for the selected top-k experts based on frequency. We compare the allocation
of {4, 8} bits of the top-k experts based on frequency, and all other experts are quantized to 2 bits.

Top Top-k bits Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

1
4 2.29 66.30 83.00 39.00 69.28 75.03 35.02 61.27
8 2.35 66.14 87.00 39.80 69.44 75.30 34.04 61.95

2
4 2.32 66.38 88.00 38.60 69.44 76.06 36.49 62.49
8 2.44 65.98 90.00 38.60 69.77 76.33 35.82 62.75

5
4 2.41 66.54 87.00 38.40 70.13 76.12 38.02 62.70
8 2.70 64.96 89.00 39.40 70.56 75.90 38.56 63.06

10
4 2.55 67.17 86.00 39.20 70.55 76.55 39.11 63.10
8 3.14 66.06 88.00 39.00 70.81 76.71 39.30 63.31

15
4 2.70 67.17 83.00 39.00 71.72 76.93 40.41 63.04
8 3.58 65.75 85.00 41.00 71.34 76.39 40.48 63.33

20
4 2.85 67.88 84.00 40.20 72.35 77.69 41.25 63.90
8 4.02 66.61 89.00 38.00 72.58 77.64 41.25 64.18

25
4 2.99 67.17 87.00 40.00 73.26 78.07 42.38 64.65
8 4.46 68.67 86.00 41.00 73.00 78.67 41.79 64.86

30
4 3.14 69.69 89.00 40.60 73.92 77.53 42.82 65.59
8 4.90 67.56 88.00 40.80 73.88 78.56 41.94 65.12
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Table 9: Baseline results of the 16-bit (FP16), 4-bit, and 2-bit quantization.

Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

16 76.48 93.00 47.00 83.98 82.37 70.35 75.33
4 74.98 92.00 46.20 81.65 80.85 67.65 73.89
2 49.33 63.00 25.40 28.18 52.99 24.29 40.53

DeepSeek-MoE-16B-base

16 70.40 91.00 44.20 77.35 78.72 44.77 67.74
4 71.35 87.00 43.20 76.39 78.51 44.22 66.78
2 53.28 76.00 30.20 45.33 66.54 25.28 49.44
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