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Abstract

Mixture-of-Experts (MoE) scales large lan-
guage models by increasing parameters with
nearly constant inference FLOPs via sparse ac-
tivation, but incurs significant memory over-
head. This necessitates model compression
techniques. Post-training quantization offers
a powerful approach for model compression.
Existing methods adopt a fixed quantization
precision for the entire MoE model. This rigid
setup can lead to suboptimal performance, with-
out considering the inherent sparse structure.
For instance, consistently activated shared ex-
perts may require higher precision than selec-
tively used token-conditioned experts. This
paper investigates fine-grained, MoE structure-
aware quantization, exploring heuristics from
coarse (MOoE layers) to fine (linear layers) gran-
ularity. Our extensive benchmarking on two
MoE models across six tasks reveals a criti-
cal principle: different MoE structures require
varying bit precisions for effective quantiza-
tion. Our fine-grained mixed-precision ap-
proach achieves state-of-the-art average per-
formance (65.35%) compared to baselines like
GPTQ (64.30%). Based on these findings, we
introduce novel data-driven bit allocation tech-
niques, including an outlier-aware linear layer
scorer and a block importance predictor.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable success in various natural language pro-
cessing tasks (OpenAl et al., 2024; Touvron et al.,
2023). However, the rapid growth in model size,
with state-of-the-art LLMs containing billions of
parameters, poses significant challenges to compu-
tational resources and memory consumption (Am-
inabadi et al., 2022; Lin et al., 2024; Shoeybi et al.,
2020). Mixture-of-Experts (MoE) (Shazeer et al.,
2017) has emerged as a promising solution to ad-
dress the computation overhead. MoE allows for
the scaling up of LLMs while maintaining roughly
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Figure 1: After our post-training quantization, the
MoE (a) is quantized into (b) with mixed precisions.

constant FLOPs. By incorporating multiple experts
and employing a sparse gating mechanism, MoE
achieves efficient computation, enabling the devel-
opment of larger models within the constraints of
limited computation (Dai et al., 2024).

Despite its advantages, MoE still suffers from ex-
tensive memory costs due to its vast parameter size,
which hinders its practical deployment. For exam-
ple, pretrained in 8-bit precision, the DeepSeek-
V3 (Liu et al., 2024) MoE model takes around
1.3 TB memory while only 74 GB parameters are
activated for each input token. Model compres-
sion techniques tailored to MoE architectures are
essential to address this issue. Existing MoE com-
pression methods can be categorized into two main
approaches: merging and pruning. Expert merging,
such as MC-MoE(Li et al., 2024), aims to reduce
the memory footprint by combining similar experts
based on routing policy and compressing the result-
ing model using low-rank decomposition. Expert
pruning, such as task-specific pruning (Chen et al.,
2022), focuses on identifying and removing the
least important experts or connections based on
their contribution to a specific task. However, these
approaches not only necessitate prohibitively ex-
pensive model retraining but also operate under
task-specific settings, limiting their practicality.

Post-training quantization is a family of model
compression techniques that converts pre-trained
model weights from high-precision formats (e.g.,
FP32) to lower-precision representations without



model retraining or task-specific tuning. Recent

works, such as GPTQ (Frantar et al., 2023a), which

adapts quantization intervals based on the Hes-
sian information, and SmoothQuant (Lin et al.,

2024), which jointly quantizes the model weight

and activation by offline migrating the activation

outliers, have demonstrated the effectiveness of
post-training quantization for dense LLMs toward

4 bits compression. This advantage is particularly

desired for MoE-based LLMs given their vast pa-

rameter sizes and prevailing deployment for various

tasks (Jiang et al., 2024; Liu et al., 2024).
However, our experiments show that directly de-

ploy those techniques for MoE models leads to

subpar performance. Existing methods employ a

uniform bit-width across all components of the

MOoE model. This one-size-fits-all approach fails

to account for the inherent sparse structure of the

MoE architecture. For example, the sparse expert

activations in MoE models exhibit distinct statisti-

cal properties from dense activations, suggesting
adaptive bit allocation among experts’ quantization.

This yields the primary research question:

(RQ) Do different MoE structures require vary-
ing numbers of bits for effective quantization?

Our investigations reveal that different compo-
nents in MoE require varying bit allocations, as
shown in Figure 1. For example, shared experts and
the first few MoE layers demand higher precision
for effective quantization. Moreover, these findings
naturally motivate two key questions: (1) How to
identify the layers that are more sensitive to quan-
tization; (2) How to systematically determine the
importance of each MoE layer for bit allocation. To
address these questions, we introduce novel data-
driven techniques for optimizing bit allocation in

MokE quantization, including the outlier-aware lin-

ear layer scorer that captures weight magnitude

variations, and the MoE block importance predic-
tor that leverages block-level activations patterns.

Our key contributions are listed:

1. We establish the first benchmark for Mixture-
of-Experts post-training quantization, i.e.,
QuantMoE-Bench. This benchmark encom-
passes investigations into four critical MoE-
related heuristics by evaluating different
quantization methods including GPTQ and
SmoothQuant, and analyzes multiple bit allo-
cation strategies on attention layers, FFNN lay-
ers, experts, and MoE blocks. Our evaluation
covers two representative MoE LLMs and six
benchmark tasks.

2. Our benchmark study uncovers critical MoE
quantization principles: attention layers require
higher precision than FFNNs, shared experts
need more bits than token-conditioned experts
(4-bit v.s. 2-bit), and earlier MoE layers de-
mand higher precision compared to later ones.
These insights enable optimal bit allocation un-
der constrained memory budgets while main-

taining model performance.
3. Through extensive experiments, we demonstrate

that our fine-grained mixed precision quantiza-
tion approach achieves state-of-the-art perfor-
mance, improving average task performance by

1.05% compared to existing methods (GPTQ).
4. Leveraging the insights from our benchmark

study, we introduce novel data-driven tech-
niques to optimize bit allocation in MoE quan-
tization. These include the development of
outlier-aware linear layer scorer and MoE block
importance predictor, which significantly im-
prove the effectiveness of mixed-precision quan-
tization by 0.97%.

2 Related Works

Mixture-of-Experts. Mixture-of-Experts (MoE)
approach (Shazeer et al., 2017) enhances neural
network scalability by using router networks to ac-
tivate model segments according to input tokens
selectively. Numerous efforts have adapted feed-
forward neural networks (FFNNs) within Trans-
formers to incorporate MoE layers, constructing
MoE language models (Dai et al., 2024; Fedus
et al., 2022; Jiang et al., 2024). Several variants,
for example, DeepSeek-MoE (Dai et al., 2024) em-
ploys finely segmented experts and designates a
select few as shared experts to capture common
knowledge. MoE is widely acknowledged for its
superior generative abilities and remarkable effi-
ciency (Artetxe et al., 2022; Dai et al., 2024; Fedus
et al., 2022; Jiang et al., 2024; Krajewski et al.,
2024; Rajbhandari et al., 2022). The recent work
Mixtral (Jiang et al., 2024) illustrates that MoE can
match the performance of equivalent full-parameter
LLMs while utilizing far fewer active parameters.
However, MoE suffers from significant memory
overhead, posing challenges to its efficient deploy-
ment (Li et al., 2024; Liu et al., 2024; Xue et al.,
2024; Krajewski et al., 2024; Luo et al., 2024).

MoE Compression. Current works to reduce the
memory overhead of MoE models mainly focus
on reducing the number of experts. An earlier ap-
proach (Chen et al., 2022) involves pruning non-
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Figure 2: Visualization of expert usage of the two MoE models used in {)his work. It is profiled on our quantization
calibration data, i.e., 512 random 4096 token sequences from the WikiText dataset (Merity et al., 2016).

essential experts for a specific downstream task
during fine-tuning, utilizing statistics based on cu-
mulative usage frequency. MC-SMoE (Li et al.,
2024) identifies and groups similar experts, subse-
quently merging them and further decomposing the
merged expert into low-rank components within
each group. However, these approaches are devel-
oped under task-specific fine-tuning settings and
do not explore the development of the MoE com-
pression towards general LLMs.

Post-Training Quantization. Post-training quan-
tization reduces computational and storage de-
mands by converting pre-trained models from high-
precision to lower-precision formats without ex-
tensive retraining (Frantar et al., 2023b,a). It has
been widely applied to LLLMs, optimizing them
for deployment on resource-constrained devices.
Techniques like layer-wise quantization and mixed-
precision schemes are designed for minimal per-
formance degradation while reducing model size
and computational requirements (Liu et al., 2023;
Pan et al., 2023; Sharify et al., 2024). Recent
methods such as SmoothQuant (Xiao et al., 2024),
GPTQ (Frantar et al., 2023a), AWQ (Lin et al.,
2024), and address specific challenges for LLMs.
GPTQ (Frantar et al., 2023a) employs layer-wise
and mixed-precision quantization to balance effi-
ciency and accuracy. AWQ (Lin et al., 2024) adapts
to weight sensitivity, preserving critical weights’
precision while aggressively quantizing less sen-
sitive ones. These advancements in PTQ enable
significant reductions in LLM computing and stor-
age while preserving performance. However, their
effectiveness on MoE models is underexplored.

3 Preliminary
3.1 Quantization Method

The primary objective of this work is to benchmark
several MoE-related heuristics combined with es-
tablished LLM quantization techniques. Given that
the substantial memory overhead of MoE mod-
els predominantly originates from their weights,

we adopt GPTQ (Frantar et al., 2023a), a popu-
lar weight quantization method. GPTQ executes
layer-by-layer weight quantization by addressing
a specific reconstruction problem for each layer.
Specifically, let W be the weights of a linear layer
and X be the input to that layer derived from a
small subset of calibration data, the reconstruction
problem is defined as:

argmingy, [[WX — WXH%

This objective, being the sum of squared errors,
forms a quadratic equation, allowing the greedy-
optimal update of weights to be calculated element-
by-element using the Hessian information, H =
2XX . GPTQ further enhances this process by
incorporating a lazy-batch update and a Cholesky
reformulation, to improve scalability and numerical
stability for LLM quantization.

3.2 Mixture-of-Experts

There are several variants of MoE in the context
of LLMs, such as attention MoE and FFNN MoE.
In this work, we explore the quantization of MoE
models that utilize router networks to selectively
activate FFNNs for different input tokens. Specif-
ically, for the i-th expert’s feed-forward function
at the I-th transformer layer, denoted as FFNNi'(-),
the output of the MoE layer for the input hidden
states X is given by:

!
FFNNyoe(X) = > G(W,X) - FENN}(X),
=1

where W, represents a linear routing matrix and
G(-) is a routing function that typically employs a
top-k selection mechanism, resulting in a sparse
output. Due to the duplication of FENN layers, the
principal memory overhead in the MoE model is
attributed to the FFENN component.

3.3 Expert Usage as A Heuristic

As the routing of experts in MoE models is not ide-
ally balanced, expert usage frequency and its vari-



ants have emerged as prevalent heuristics for mea-
suring the importance of different experts within
an MoE block (Chen et al., 2022; Li et al., 2024).
For instance, task-specific expert pruning proposed
by (Chen et al., 2022) uses a criterion based on
cumulatively calculated expert routing probabili-
ties for pruning during fine-tuning on a specific
task. In this paper, focusing on post-training quan-
tization, we utilize the routing distribution from
the calibration data as the heuristic for expert us-
age. Specifically, for the /-th MoE block, equipped
with a routing matrix W; € R¢*? and input hid-
den states X € R?*? from the calibration data, the
expert usage heuristic is:

usage = normalize (Z Q(W1X2)> ,

(2

where G(-) is the routing function employing a
top-k selection mechanism that yields a sparse bi-
nary output. We visualize the calculated expert
usage of Mixtral-8x7B and DeepSeek-MoE-16B-
base MoE models on the quantization calibration
data, as shown in Figure 2. Note that Mixtral-8x7B
demonstrates a more balanced routing distribution
than DeepSeek-MoE-16B-base.

4 Benchmark Post-Quantization for MoE

In this section, we present several heuristics for
MOoE quantization and the empirical performance
of them. Our benchmarking covers two MoE mod-
els and six popular tasks.

4.1 Benchmark Setups

MoE Models. We select two representative MoE
models for our benchmark evaluation, i.e., Mixtral-
8x7B (Jiang et al., 2024) and DeepSeek-MoE-16B-
base (Dai et al., 2024). Mixtral-8x7B substitutes
every FFNN with a MoE block and has 8 experts
per MoE block with top-2 routing, while DeepSeek-
MOoE-16B-base uses a fine-grained MoE architec-
ture by including 64 experts with top-6 routing and
2 shared experts per MoE block.

Quantization. We mainly focus on weight-only
mixed-precision quantization, we further extend
our experiments and conclusions to its combina-
tion with activation quantization in Section 5. We
use GPTQ (Frantar et al., 2023a) for quantization,
without loss of generality. Throughout this work,
we use a group size of 128. Our experiments em-
phasize an extreme quantization scenario, where
most weights are quantized to either 2 or 4 bits.
Calibration and Evaluation Details. We use the
calibration data consisting of 512 random 4096

token sequences from the WikiText dataset (Mer-
ity et al., 2016), following GPTQ (Frantar et al.,
2023a).  Unlike previous literature that fo-
cuses on language modeling benchmarks (Xiao
et al., 2024; Lin et al., 2024; Frantar et al.,
2023a), we evaluate all the methods on six pop-
ular LLLM tasks for a practical benchmarking:
WinoGrande (ai2, 2019), COPA (Gordon et al.,
2012), OpenBookQA (OBQA) (Mihaylov et al.,
2018), HellaSwag (Zellers et al., 2019), and
MMLU (Hendrycks et al., 2021). We report the
performance on MMLU with 5-shot and all oth-
ers with zero-shot. All experiments are conducted
with PyTorch on 8 NVIDIA H100s, and we utilize
Im-evaluation-harness ' for the evaluation.

4.2 Problem Formulation

In this section, we formalize the intrinsic tradeoff
between model performance and bit allocation in
MOoE quantization as Pareto optimization.

Given an MoE model with n weight components
(attention layers, MoE FFNN experts, efc.), we aim
to find the optimal bit allocation strategy that bal-
ances model performance and memory efficiency.
Letb = (b1, bg,...,b,) represent a bit allocation
vector, where b; € {2,4} is the quantization preci-
sion for the i-th component. We formulate this as a

bi-objective optimization problem:
max P(b)

171
i b:fgbi
min B(b) n 2

subjectto  b; € {2,4}, Vie {1,2,...,n},

where P(b) is the model performance and B(b) is
the average bit-width across all components.

Given the combinatorial nature of this problem
and the difficulty in obtaining a closed-form expres-
sion for P(b), we approach it using the structure-
aware heuristics described in the following sections,
leveraging our observations about the varying im-
portance of MoE components. As shown in Fig-
ure 3, our mixed-precision approach effectively
navigates the Pareto frontier, offering superior per-
formance compared to uniform bit allocation.
4.3 Benchmark Results
We first evaluate the four bit-allocation heuris-
tic MoE quantization approaches using GPTQ on
Mixtral-8x7B and DeepSeek-MoE-16B.

Table 1 presents the overall comparison per-
formance of our mixed-precision MoE quantiza-
tion strategies v.s. baseline (i.e. GPTQ) across

"https://github.com/Eleuther Al/lm-evaluation-harness



Methodology ‘ Bits ‘ WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)
Mixtral-8x7B
GPTQ ‘ 3 ‘ 73.56 93.00 44.80 75.31 79.11 58.37 70.69
GPTQ 2 ‘ 49.33 63.00 25.40 28.18 52.99 24.29 40.53
+Attn 2.06 54.14 65.00 26.80 44.87 57.78 27.38 46.00
+Attn+Freq 3.27 73.09 92.00 44.80 77.03 78.29 63.05 71.38
+Attn+Freq+FirstL 3.51 73.32 95.00 44.00 80.06 79.71 64.89 72.83
+Attn+LinearOSP 3.12 72.85 92.00 43.40 78.14 78.40 62.92 71.29
+Attn+LayerISP 3.35 71.19 93.00 44.00 77.03 78.29 63.15 71.11
DeepSeek-MoE-16B-base

GPTQ ‘ 3 ‘ 67.87 87.00 40.40 72.92 78.50 39.12 64.30
GPTQ 2 ‘ 53.27 76.00 30.20 45.32 66.53 25.28 49.43
+Attn 2.06 61.72 83.00 34.00 61.93 73.45 26.53 56.77
+Attn+Shared 2.12 65.67 85.00 39.20 67.84 76.28 35.28 61.55
+Attn+Shared+Freq 3.00 68.82 88.00 42.00 73.32 77.31 41.51 65.16
+Attn+Shared+Freq+FirstL | 3.06 68.35 88.00 42.60 73.85 77.69 41.58 65.35
+Attn+Shared+LinearOSP 3.06 67.32 88.00 41.60 72.45 77.48 41.64 64.84
+Attn+Shared+LayerISP 3.06 69.30 87.00 42.00 73.56 77.86 41.86 65.27

Table 1: Comparison of quantization bit allocation strategies including attention (Attn) and shared expert (Shared)
prioritization, frequency-based expert selection (Freq), first-layer prioritization (FirstL), linear outlier score
predictor (LinearOSP) and layer importance score predictor (LayerISP). We evaluate performance on Mixtral-8x7B
and DeepSeek-MoE-16B-base across multiple benchmarks. Unlike uniform-precision quantization (i.e. GPTQ), our
approach shows superiority by tailoring bit allocation to the MoE structure.
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Figure 3: Comparison of allocating more bits (i.e. 4

bits) for attention and frequent experts with uniform-
bits quantization. The Pareto-optimal bit is 3.29.
multiple benchmarks Mixtral-8x7B and DeepSeek-
MOoE-16B-base. The results highlight that uni-
form quantization leads to substantial performance
degradation, reinforcing the need for structure-
aware, fine-grained quantization strategies. By in-
corporating methods such as attention-aware ad-
justments (+Attn), expert frequency-based bit al-
location (+Freq), and prioritization of early MoE
layers (+FirstL), importance-based quantization
(tLinearQOSP and +LayerISP), we observe im-
provements in model performance, particularly in
lower-bit settings. A mixed-precision approach tai-
lored to the MoE structure outperforms fixed-bit
quantization. In particular, expert usage frequency-
based quantization (+Freq) improves performance
by dynamically allocating more bits to frequently
used experts, though its impact varies per the
routing balance of models. Prioritizing the first
few MoE blocks (+FirstL) yields better results.
Lastly, importance-based strategies(+LinearOSP,
+LayerISP) further refine bit allocation.

To gain deeper insights, we further systemati-
cally analyze four key research questions: (1) the

effectiveness of expert usage frequency as a quan-
tization heuristic, (2) whether attention or FFNN
layers deserve more bit precision, (3) the impor-
tance of the first versus last MoE blocks in quanti-
zation, and (4) the necessity of allocating more bits
to shared experts. The following sections provide a
detailed discussion of each aspect.

Q1: Is expert usage frequency a good quanti-
zation heuristic? A: Fairly good. Expert usage
frequency is a popular heuristic in the compression
of MoE models, predicated on the insight that less
frequently used experts are likely less crucial. Our
experiments in Table 2 show its effectiveness as
a quantization heuristic for MoE. Specifically, for
the DeepSeek model, this heuristic outperforms
randomly allocating more bits to experts, likely
due to the model’s unbalanced routing distribution.
However, for the Mixtral model, where routing dis-
tribution is more balanced, the advantage of using
expert usage frequency is less significant.

Q2: Attention vs. FFNN: Which Deserves More
Bits in MoE? A: Attention layers are more bit-
efficient. Because of the unique characteristics of
the FENN within the MoE framework, we compare
the attention layer and the FFNN layer to deter-
mine which deserves more bits. We compare the
performances by quantizing the attention layers
with more bits v.s. randomly selecting experts in
the FFNN layers with more bits, with the same
average bits of the entire MoE model for a fair
comparison. Specifically, we quantize the atten-
tion or randomly selected FFNN weight to {2, 4,



Methodology ‘ Bits ‘ WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%)  Average (%)
Mixtral-8x7B
Random 2 2.54 | 58.59+2.57 68.00+£11.27 33.00+1.78 46.60+ 18.21 60.14 £9.32 28.26 +4.64 49.10+7.73
Frequent 2 2.54 58.33 76.00 32.00 56.62 66.21 36.01 54.20
Random 4 3.03 67.77 £0.36 86.33 £3.51 38.4740.31 67.48 £0.52 73.99£0.52 48.13+2.57 63.70 £0.49
Frequent 4 3.03 68.82 86.00 38.80 67.68 72.20 49.42 63.82
DeepSeek-MoE-16B-base
Random 10 2.53 | 67.284-0.04 8850+1.50 3840+0.80 70.99+0.50 76.74+0.84 35.23+0.09 62.86+0.60
Frequent 10 2.53 66.46 87.00 39.60 70.31 76.71 37.84 62.99
Random 15 2.68 | 67.25+0.47 84.50 £2.50 40.00+0.60 71.79+043 76.85+0.08 3571+0.82 62.68+0.71
Frequent 15 2.68 67.17 88.00 39.00 71.09 76.93 40.59 63.80
Random 20 2.83 67.25 £0.47 84.50 £ 2.50  40.00 £ 0.60 71.79 £0.43 76.85£0.08 35.71+£0.82 62.68+0.71
Frequent 20 2.83 67.25 86.00 40.40 72.06 77.58 40.78 64.01
Random 25 2.97 67.72+£0.24 89.00 £1.00 40.70+0.10 71.98+0.19 77.04 £0.05 36.54+1.55 63.83+0.04
Frequent 25 2.97 67.72 90.00 39.20 72.83 77.15 41.06 64.66

Table 2: Comparison of the expert usage frequency heuristic v.s. random allocation. For the Mixtral-8x7B model,
we compare the allocation of 4 bits to the top-{2, 4} most frequently used experts per MoE block against randomly
selecting {2, 4} experts for the same bit allocation. For the DeepSeek-MoE-16B-base model, we keep shared expert
{8} bits and compare between top-{10, 15, 20, 25} most frequently used experts against randomly selecting {10,
15, 20, 25} experts per MoE block. Other experts are quantized to 2 bits, while all attention layers are uniformly
quantized to 4 bits. We provide the mean value a and standard deviation b over 3 independent trials as a £ b..
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Figure 4: Comparison of quantizing more bits for atten-
tion v.s. FFNN and shared experts v.s. others, evaluated
on Mixtral model. FFNN and others’ results show the
mean and standard deviation from 3 independent trials.

8} bits, while all other weights are quantized to 2
bits. As illustrated in Figure 4 (left), quantizing
attention weights to more bits (i.e., 4 or 8 bits) con-
sistently results in significant performance gains
(over 5%) under each average bit allocation for the
MOoE model. This greater efficiency likely stems
from the fact that attention weights are activated
for every token, while FFNN weights only engage
with a subset of input tokens. Consequently, in-
creasing the quantization bits for FFNN weights
does not benefit all inputs. Based on these findings,
attention weights are quantized to 4 bits by default
in all following experiments.

Q3: Do the model’s first or last MoE blocks
deserve more bits in quantization? A: The first
MOoE blocks. We investigate which layer of the
MOoE block is more critical and thus deserves more
bits during for quantization. As shown in Table 3,
we evaluate the performance of allocating more
bits to the first k blocks v.s. the last k£ blocks in

quantization. The results consistently indicate that
higher bit quantization of the first few blocks yields
better performance, suggesting that we can allocate
more bits to the quantization of the first blocks.
This aligns with prior studies that empirically show
the greater importance of first few Transformer

blocks (Dai et al., 2024; Ma et al., 2023).
Q4: Does the shared expert always deserve more

bits? A: Yes. The DeepSeek MoE model in-
cludes two shared experts in each MoE block to
capture common knowledge across domains. To
evaluate their role in quantization, we compare al-
locating more bits to the two shared experts v.s.
randomly selecting two non-shared experts, with
the same average bits for a fair comparison. The
shared or random non-shared experts are quantized
to 2, 4, 8 bits, while attention weights are set to 4
bits and all other weights to 2 bits. As shown in
Figure 4 (right), allocating more bits (i.e., 4 or 8
bits) to shared experts consistently yields superior
performance. This is attributed to the shared ex-
perts being activated for every input token, unlike
non-shared experts that only engage with subsets.

5 Extended Study

In this section, we introduce two novel data-driven
techniques aimed at identifying crucial components
in MoE to improve quantization performance.

5.1 Outlier-Aware Linear Layer Scorer

Insight. From the quantization perspective, the
larger the range of a weight magnitude group, the
more difficult it will be for quantization. We found



Methodology ‘ Bits ‘ WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

First 4 2.30 57.85 72.00 32.80 52.80 61.59 29.65 51.12
Last 4 2.30 53.75 60.00 27.80 46.25 58.87 26.56 45.54
First 8 2.54 62.11 85.00 35.80 62.72 67.74 35.61 58.16
Last 8 2.54 52.09 69.00 29.60 47.87 59.58 26.03 47.36
DeepSeek-MoE-16B-base
First 4 2.29 65.27 85.00 38.40 64.42 72.74 28.88 59.12
Last 4 2.29 62.90 83.00 36.00 64.41 74.65 27.38 58.06
First 8 2.63 64.09 86.00 38.75 67.84 75.35 30.12 60.36
Last 8 2.63 62.83 83.00 37.80 65.94 75.73 31.00 59.38

Table 3: Comparison between quantizing first k£ v.s. last & MoE blocks with higher (i.e. 4) bits. All weights in
attention layers are quantized to 4 bits, and the other weights are quantized to 2 bits. In DeepSeek-MoE-16B-base
model, we keep the first block that is dense block as 4 bits by default. We evaluate k£ of 4 and 8. The higher

performance of each comparison pair is marked as bold.
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Figure 5: (a) Visualization of the outlier-score metric applied to each FFNN linear weight matrix in the Mixtral model. We
present the gate projection (left), up projection (middle), and down projection (right) in FENN experts separately. (b) Visualization
of the MoE block importance score metric applied on the DeepSeek MoE model.

that, in MoE, each FFNN linear weight matrix
consists predominantly of values within a narrow
range, interspersed with a few significant outliers.
Consequently, we propose a weight-magnitude-
based metric to identify those linear layers that
are challenging to quantize effectively, thereby ne-
cessitating a higher allocation of quantization bits.
Methodology. We define the metrics to estimate
the outliers of weights by the maximum ratio of the
largest to the average absolute magnitude within
each column. Specifically, for a weight matrix
W € R™*" we compute this metric as follows:

max(|W:, j]) >
mean(|W:, j|) )’

With this metric, we can identify those linear lay-
ers that require more quantization bits and allo-
cate more to them, providing an effective trade-off
between performance and efficiency. The overall
procedure is detailed in Algorithm 1.

Experiments. We evaluate this metric by compar-
ing its application for the top-p% of linear layers
against randomly selecting linear layers, using per-
centages of 25% and 50%. As shown in Table 4,
our proposed scorer consistently outperforms the
random baseline on both models and almost all
tasks (except HellaSwag and MMLU). This is par-

outlier-score(W) = max; <

ticularly evident in the DeepSeek model, where it
achieves an average performance improvement of
about 3%, aligning with our expectations.
Visualization. As shown in Figure 5 (a), we visual-
ize the proposed outlier-score for each FFNN
linear weight of the Mixtral model. Given that each
FENN expert includes three linear layers, i.e. gate
projection, up projection, and down projection, we
visualize these components separately. Notably,
many of the down projection linear layers, particu-
larly later layers in the model, exhibit significantly
higher outlier-scores compared to others.

5.2 MoE Block Importance Score Predictor
Inspired by Q3 in Section 4.3, which demonstrates
that allocating more bits to different MoE blocks
yields variable performance improvements, we pro-
pose a novel method to identify and quantize those
critical blocks with additional bits.

Insight. We find an increasing cosine similarity be-
tween the tensors generated before and after FFN
blocks for some of the MoE blocks, indicating
less important computing output produced by these
blocks. This observation aligns with observations
on dense models in previous literature (Jaiswal
et al., 2024). Therefore, the basic idea is that less
accurate output of these blocks producing tokens
with high cosine similarity will not affect the over-



Methodology | Bits | WinoGrande (%) ~ COPA (%)  OBQA (%)

HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

Random 25% | 2.54 60.74 + 0.63 78.67+4.62 34.07+1.63 57.36£0.53 68.19+£0.74 32.494+1.60 55.25+£0.95

Ours top-25% | 2.54 62.19 83.00 35.80 57.04 68.23 30.95 56.20
DeepSeek-MoE-16B-base

Random 25% | 2.54 64.04 +0.78 84.67+4.73 37.53+0.46 67.39+0.71 74.61+0.60 29.43+1.31 59.61+0.76

Ours top-25% | 2.54 66.14 85.00 38.80 71.65 76.82 36.19 62.43

Table 4: Comparison between using our linear weight scorer vs. random selection of linear layers for bit allocation in
quantization. We quantize 25% of linear layers across all MoE blocks to 4 bits. All attention weights are quantized
to 4 bits, all other weights are quantized to 2 bits. In each comparison pair, the higher performance is highlighted in

bold. We provide the mean value a and standard deviation

b over 3 independent trials as a £ b.

Methodology ‘ Bits ‘ WinoGrande (%)  COPA (%) OBQA (%)  HellaSwag (%) PIQA (%) MMLU (%) Average (%)
DeepSeek-MoE-16B-base
Random 4 2.29 61.09 £0.78 83.00 £0.00 37.20+0.85  64.88+0.30 7421 £0.08 27.82£0.46 58.03+0.13
First 4 2.29 65.27 85.00 38.40 64.42 72.74 28.88 59.12
Predicted 4 2.29 65.27 83.00 36.60 64.88 74.54 37.75 60.34
Random 8 2.63 64.48 £ 0.83 85.33£3.21 38.73+£0.95 67.57+£040 7543+0.14 31.41+£217 60.49=£0.56
First 8 2.63 64.09 86.00 38.75 67.84 75.35 30.12 60.36
Predicted 8 2.63 65.35 86.00 38.00 68.77 75.35 30.01 60.58
Random 12 292 64.64 + 0.89 83.50 £0.71 39.60+2.83 69.51 £0.56 75.98 £0.42 32.57+£0.30 60.97 +0.62
First 12 2.92 67.48 88.00 38.60 70.59 75.95 39.25 63.31
Predicted 12 | 2.92 68.11 88.00 39.20 71.82 76.66 38.45 63.71

Table 5: Comparison between using our MoE block importance predictor v.s. two baselines: ®random selecting
and @first kK MoE blocks. The predicted or selected MoE blocks are quantized to 4 bits, all attention weights are
quantized to 4 bits, and all other weights are quantized to 2 bits. In each comparison, the highest performance is
highlighted in bold. We provide the mean value a and standard deviation b over 3 independent trials as a £ b.

all model performance much, thus lower weight

bits might not hurt performance much.
Methodology. To capture the generalized hidden

states’ dynamic information of each MoE block, we
train a two-layer FFNN with a tangent activation
function. This network predicts the cosine simi-
larity between the input and output hidden states.
We train it on 400 sequences, each of 1024 tokens
from WikiText (Merity et al., 2016). The training
procedure is in Algorithm 2. During quantization,
we apply this predictor and compute an average
predicted score for each MoE layer across all to-
kens. A higher score indicates less importance
and fewer bits for quantization.

Experiments. In Table 5, we compare the per-
formance of using our block importance predic-
tor to select kK MoE blocks for 4 bits and others
for 2 bits quantization with two other baselines:
@ random selecting k¥ MoE blocks, and @ first k
MoE blocks (as it is the best in Q3 in Section 4.3).
Evaluation results on the DeepSeek-MoE-16B-base
model are presented in Table 5, showing the superi-
ority of our method against the other two baselines.

Visualization. We visualize the predicted scores
of MoE blocks using our trained predictors in the
DeepSeek model, as shown in Figure 5 (b). No-
tably, MoE blocks in the middle of the model,

which exhibit higher scores, are regarded as less
critical. Consequently, these blocks are quantized
to fewer bits (i.e., 2 bits), reflecting their lower
importance. Besides, Figure 5 (b) demonstrates
that the first few MoE blocks are more important
aligned with Q3. Interestingly, the last two blocks
of the DeepSeek model are also crucial, thereby al-
locating more bits and yielding better performance.

6 Conclusion

This work introduces mixed-precision MoE post-
training quantization (PTQ) through a systematic
investigation of various heuristic-based approaches.
While conventional quantization techniques (e.g.,
GPTQ) show limited effectiveness when directly
applied to MoE models, the question of optimal
bit allocation across different MoE model com-
ponents requires deeper exploration. We present
QuantMoE-Bench, the first comprehensive bench-
mark to study PTQ of MoE models that reveals
critical insights, including significant importance
variations in the MoE model. Drawing on these
insights, we further develop a block importance
predictor and a linear layer outlier range scorer
to more precisely identify critical components in
quantization. Our methods significantly improve
the effectiveness of MoE model quantization.



Limitation

We primarily focus on weight-only quantization
GPTQ, without extensively exploring alternative
quantization techniques (e.g. AWQ) or activation
quantization. Our proposed approaches, while ef-
fective, lack theoretical guarantees. Our evaluation
metrics prioritize task performance without real-
world, efficient implementation.
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A Appendix

A.1 Evaluation Datasets

In this section, we introduce details of the datasets
in our evaluation. For a more comprehensive study,
we have selected six popular benchmark tasks:
WinoGrande, COPA, OpenBookQA (OBQA), Hel-
laSwag, and MMLU.

WinoGrande (ai2, 2019) is a large-scale dataset
designed for commonsense reasoning, consisting
of pronoun resolution problems. Each instance in
the dataset presents a sentence with an ambiguous
pronoun that needs to be resolved based on context.
This task tests the model’s ability to understand
and reason about everyday situations.

The Choice of Plausible Alternatives (COPA)
dataset (Gordon et al., 2012) focuses on causal
reasoning. Each question in COPA consists of a
premise and two choices, where the model must
select the more plausible alternative. This task
evaluates the model’s understanding of cause-and-
effect relationships in natural language.

OpenBookQA (Mihaylov et al., 2018) is a
multiple-choice question-answering dataset that re-
quires the model to use both scientific facts and
commonsense knowledge. The dataset challenges
the model’s ability to combine factual knowledge
with reasoning to answer questions correctly.

HellaSwag (Zellers et al., 2019) is a benchmark
for commonsense NLI (Natural Language Infer-
ence) that tests the model’s ability to predict the
most plausible continuation of a given sentence.
The dataset contains scenarios from various do-
mains, such as cooking and sports, requiring the
model to understand context and plausibility.

The Massive Multitask Language Under-
standing (MMLU) benchmark (Hendrycks et al.,
2021) evaluates models across a wide range of sub-
jects, from elementary mathematics to law. For
this study, we report performance on MMLU with
a 5-shot setting, where the model is given five ex-
amples per task before evaluation, allowing us to
gauge the model’s few-shot learning capabilities.

We perform a zero-shot evaluation on Wino-
Grande, COPA, OpenBookQA, and HellaSwag,
where the model is not provided with any task-
specific training examples. For MMLU, a 5-shot
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evaluation protocol is adopted, providing five ex-
amples per task. This setup helps us assess the
generalization ability of the models across differ-
ent types of reasoning and knowledge-based tasks.

A.2 Random Seed

For all the random selection experiments, we use
random seeds {42, 43, 44} to conduct three inde-
pendent trials and then report the standard deviation
and mean.

A.3 Further Discussion

In this section, we present further discussion of
the DeepSeek-MoE-16B-base performance across
different bits.

Expert usage frequency.As shown by Q1 in Sec-
tion 4.3, expert usage frequency is a critical metric
in the compression of MoE models, predicated on
the insight that less frequently used experts are
likely less crucial. We present further discussion
of ablation on the bits allocation in the expert-
frequency-based methods.

In Table 8, we compare the allocation of {4, 8}
bits of the selected top-k experts, while all other ex-
perts are quantized to 2 bits. We quantize the shared
experts and attention weights to 8 bits. Table 8 in-
dicates that increasing the bit width of frequently
activated experts improves performance. However,
the gain from increasing the top-k expert bits from
4 to 8 is minimal.

Combination of the weight outlier and expert us-
age frequency. We conducted additional exper-
iments on the DeepSeek-MoE-16B-base model
by integrating bit-width allocation based on lay-
ers with significant weight outliers with allocation
based on expert usage frequency to explore the
trade-off between them. Specifically, we aimed for
a total average bit budget of 2.97. We select por-
tions of the model to be quantized to 4 bits using a
combination of the two heuristics, while quantizing
all attention weights to 4 bits and all other weights
to 2 bits. For selecting the 4-bit weights, we intro-
duce a hyper-parameter, o (0 j o j 1), representing
the proportion of weights chosen based on expert
usage frequency, with the remainder selected based
on weight outliers. We varies « to illustrate the
trade-off between these methods, as detailed above.
As shown in Table 7, the optimal combination of
these two methods occurs when alpha is set to 0.1.
This means that 20% of the 4-bit MoE weights are
selected based on expert usage frequency, while
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the remaining 80% are chosen according to weight
outliers.

Baseline results of low-precision quantization. We
provide the 16-bit (FP16), 4-bit, and 2-bit baselines
of both Mixtral-8x7B and DeepSeek-MoE-16B-
base models in Table 9.

Algorithm 1 The Procedure of MoE Mixed-
Precision Quantization with outlier-score.

1: Initialize: A MoE model with [ linear layers
across all the FFNN experts, the number of
linear layers for 4 bit quantization k.

2: Let M and S represent the set of each linear
layer matrix in FFNN and its score, respec-
tively.

3: for linear layeri = 1,...,l do

4: W «— M[i]

5: S[i] + max; <7m[laaxn((‘|‘<2VV:,]g“|)))

6: end for

7: « < sorted(S)[k]

8: 4bits-quantize ({M[i] | S[i] >= a})

9: 2bits-quantize ({M][i] | S[i] < a})

10: Return: A quantized mixed-precision MoE

model.

Algorithm 2 The Training Procedure of Block
Score Predictor.

1: Initialize: A MOoE block M, token in-
put and output embedding set at block M
{(Xi7Yi)}i€[N]-

Let BSP denotes the block score predictor.
X« {x;|i€[N]}

S + {cosine(x;,y;) | i € [N]}

BSP + train(X,S)

Return: The importance scorer BSP for MoE
Block M.

AN AN




Table 6: Baseline results of the 16-bit (FP16), 4-bit, and 2-bit quantization.

Bits | WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)
Mixtral-8x7B

16 76.48 93.00 47.00 83.98 82.37 70.35 75.33

4 74.98 92.00 46.20 81.65 80.85 67.65 73.89

2 49.33 63.00 25.40 28.18 52.99 24.29 40.53
DeepSeek-MoE-16B-base

16 70.40 91.00 44.20 77.35 78.72 44.77 67.74

4 71.35 87.00 43.20 76.39 78.51 44.22 66.78

2 53.28 76.00 30.20 45.33 66.54 25.28 49.44

Table 7: The combination of weight outlier and expert usage frequency, evaluated on the DeepSeek-MoE-16B-base
model.

Bits « ‘WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

0.0 67.72 90.00 39.20 72.83 77.15 41.06 64.66
0.1 68.11 89.00 41.60 72.88 77.80 41.84 65.21
0.2 69.21 89.00 41.20 72.60 76.93 41.60 65.09
0.3 68.92 88.00 42.00 72.06 76.65 41.21 64.81
0.4 67.48 89.00 41.40 71.88 76.71 40.96 64.57
297 0.5 67.32 90.00 40.80 71.89 76.93 40.21 64.52
0.6 65.90 87.00 39.40 71.86 76.76 38.67 63.27
0.7 66.21 87.00 41.40 71.45 76.87 36.98 63.32
0.8 66.45 89.00 41.00 70.89 76.60 37.67 63.60
0.9 66.37 84.00 40.20 70.83 76.87 39.84 63.02
1.0 68.19 87.00 41.60 71.01 76.11 40.81 64.12

Table 8: Ablation on the allocated bits for the selected top-k experts based on frequency. We compare the allocation
of {4, 8} bits of the top-k experts based on frequency, and all other experts are quantized to 2 bits.

Top Top-k bits Bits ‘ WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

4 2.29 66.30 83.00 39.00 69.28 75.03 35.02 61.27
1 8 2.35 66.14 87.00 39.80 69.44 75.30 34.04 61.95
4 2.32 66.38 88.00 38.60 69.44 76.06 36.49 62.49
2 8 2.44 65.98 90.00 38.60 69.77 76.33 35.82 62.75
4 2.41 66.54 87.00 38.40 70.13 76.12 38.02 62.70
5 8 2.70 64.96 89.00 39.40 70.56 75.90 38.56 63.06
4 2.55 67.17 86.00 39.20 70.55 76.55 39.11 63.10
10 8 3.14 66.06 88.00 39.00 70.81 76.71 39.30 63.31
4 2.70 67.17 83.00 39.00 7172 76.93 40.41 63.04
15 8 3.58 65.75 85.00 41.00 71.34 76.39 40.48 63.33
4 2.85 67.88 84.00 40.20 72.35 77.69 41.25 63.90
20 8 402 66.61 89.00 38.00 72.58 77.64 41.25 64.18
4 2.99 67.17 87.00 40.00 73.26 78.07 42.38 64.65
25 8 4.46 68.67 86.00 41.00 73.00 78.67 41.79 64.86
4 3.14 69.69 89.00 40.60 73.92 77.53 42.82 65.59
30 8 4.90 67.56 88.00 40.80 73.88 78.56 41.94 65.12
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Table 9: Baseline results of the 16-bit (FP16), 4-bit, and 2-bit quantization.

Bits ‘ WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

16 76.48 93.00 47.00 83.98 82.37 70.35 75.33

4 74.98 92.00 46.20 81.65 80.85 67.65 73.89

2 49.33 63.00 25.40 28.18 52.99 24.29 40.53
DeepSeek-MoE-16B-base

16 70.40 91.00 44.20 77.35 78.72 44.77 67.74

4 71.35 87.00 43.20 76.39 78.51 44.22 66.78

2 53.28 76.00 30.20 45.33 66.54 25.28 49.44

13



	Introduction
	Related Works
	Preliminary
	Quantization Method
	Mixture-of-Experts
	Expert Usage as A Heuristic

	Benchmark Post-Quantization for MoE
	Benchmark Setups
	Problem Formulation
	Benchmark Results

	Extended Study
	Outlier-Aware Linear Layer Scorer
	MoE Block Importance Score Predictor

	Conclusion
	Appendix
	Evaluation Datasets
	Random Seed
	Further Discussion


