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Abstract
We define the local complexity of a neural net-
work with continuous piecewise linear activations
as a measure of the density of linear regions over
an input data distribution. We show theoretically
that ReLU networks that learn low-dimensional
feature representations have a lower local com-
plexity. This allows us to connect recent empirical
observations on feature learning at the level of the
weight matrices with concrete properties of the
learned functions. In particular, we show that
the local complexity serves as an upper bound on
the total variation of the function over the input
data distribution and thus that feature learning
can be related to adversarial robustness. Lastly,
we consider how optimization drives ReLU net-
works towards solutions with lower local complex-
ity. Overall, this work contributes a theoretical
framework towards relating geometric properties
of ReLU networks to different aspects of learning
such as feature learning and representation cost.

1. Introduction
Despite the numerous achievements of deep learning, many
of the mechanisms by which deep neural networks learn
and generalize remain unclear. An “Occam’s Razor” style
heuristic is that we want our neural network to parameterize
a simple solution after training, but it can be challenging to
establish a useful metric of the complexity of a deep neural
network (Hu et al., 2021). We may gain more insights in the
case where we use piece-wise linear activation functions,
such as ReLU, LeakyReLU, or Maxout. If ϕ is a continuous
piecewise linear (CPWL) activation function and Ai(x) =
Wix − βi is a parameterized affine linear function, i =
1, . . . , L, we consider a network of the following form:

Nθ(x) = AL ◦ ϕ ◦AL−1 · · ·ϕ ◦A1(x), x ∈ Rn0 . (1)
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Montúfar <montufar@math.ucla.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

The network function Nθ : Rn0 → RnL parameterized by
θ = (Wi, βi)i is then also be a CPWL function. For any
fixed choice of the parameter θ, the input domain Rn0 is
partitioned into linear regions where the function is linear.
These partitions of the input space have been used exten-
sively to study diverse topics such as the expressive power,
decision boundaries in classification, gradients and param-
eter initialization, and generalization (e.g., Montúfar et al.,
2014; Raghu et al., 2017; Zhang et al., 2018; Balestriero
& Baraniuk, 2018; Grigsby & Lindsey, 2022; Brandenburg
et al., 2024; Telgarsky, 2016). In this work we aim to ad-
vance a theoretical framework towards better understanding
the local distribution of linear regions near the data distribu-
tion and how it relates to other relevant aspects of learning
such as robustness and representation learning.

1.1. Motivation

In the kernel regime, neural networks with piecewise linear
activations are observed to follow lazy training (Chizat et al.,
2019) and bias towards smooth interpolants which do not
significantly change the structure of linear regions during
training (see, e.g., Williams et al., 2019; Jin & Montúfar,
2023). On the other hand, for networks in the active regime,
which are not well approximated by linearized models, one
observes significant movement of the linear regions and
in some cases a bias towards interpolants that have only a
small number of linear regions (e.g., Maennel et al., 2018;
Williams et al., 2019; Shevchenko et al., 2022). Character-
izing the dynamics of linear regions at a theoretical level
remains a significant outstanding challenge, even for shal-
low networks. Recent empirical studies have demonstrated
interesting dynamics of the linear regions near the training
data points. In particular, Humayun et al. (2024b) have
shown that in the terminal phase of training, the number
of linear regions near the data drops significantly, and this
drop corresponds to an increase in the model’s adversarial
robustness. We replicate similar experiments in Figure 3.
In this work, we aim to develop theory to explain some of
the empirical results of Humayun et al. (2024b). Grokking
describes a sudden improvement in generalization error or
robustness after prolonged training, typically occurring once
the training loss is near zero. It is linked to representation
learning, suggesting that late generalization arises when a
network develops the appropriate representations (Liu et al.,
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2022). This leads to our first question:

Question 1: How does representation learning relate to the
distribution of linear regions?

Some studies indicate that networks form low-dimensional
representations during grokking (Fan et al., 2024; Yunis
et al., 2024b;a). So, to better understand representation
learning, we study the dimension of the feature manifold
as measured by the average rank of the Jacobian of the in-
termediate layer representations with respect to the input.
In particular, based on the structure of various theoretical
bounds (Montúfar, 2017; Serra et al., 2018; Hinz, 2021),
we expect that networks that learn low-dimensional feature
manifolds will generally also have fewer linear regions. Em-
pirical results also show that networks which undergo a drop
in the number of linear regions tend to be simpler, having a
nearly piecewise constant structure, hinting at a connection
between the distribution of the linear regions and the global
structure of the learned function (Humayun et al., 2024b).
Related is the concept of “neural collapse”, which refers to
a phenomenon where, in the terminal phase of training, the
within-class variance of the last layer features tends towards
zero (Papyan et al., 2020). Furthermore, prior literature has
suggested a connection between the size of linear regions
and robustness (Croce et al., 2019). Thus, a natural question
we concern ourselves with is:

Question 2: Can we connect the local density of linear
regions to the robustness of a network?

We attempt to answer this question by defining a measure
of the local density of linear regions, and comparing this to
the total variation of the network over the input space. As-
pects in this direction have appeared in context of parameter
initialization and the gradients of a network with respect to
its inputs (e.g., Hanin & Rolnick, 2018; Tseran & Montúfar,
2023). Lastly, we are interested in the relation between
parameters and functions, and how optimization may cause
networks to converge to solutions with lower complexity in
terms of linear regions. To this end we compare our mea-
sure of local complexity to the distribution of parameters,
building on ideas that have been used to study the expected
number of linear regions (Hanin & Rolnick, 2019b), and
the representation cost of a network, a quantity which has
been previously linked to sparsity of weight matrices (Jacot,
2023a).

1.2. Contributions

This work takes steps towards establishing quantitative links
in ReLU networks between the distribution of linear regions
in the input space, representation learning, and optimization:

• We introduce a novel framework for understanding
model complexity based on the linear regions over the

input space. In Section 3 we define the local complex-
ity (LC) as the average density of non-linearites over
a dataset. To capture the typical behavior of the func-
tions, we define this measure in a way that is robust to
perturbations of the bias parameters.

• In Section 4 we establish theoretical connections be-
tween the proposed local complexity and the local rank,
which we define as the average dimension of the fea-
ture manifold at intermediate layers. This offers a link
between the network complexity and representation
learning.

• In Section 5 we demonstrate a bound between the local
complexity and the total variation of a network over the
input space. This offers a possible path towards under-
standing how the linear regions can relate to adversarial
robustness and phenomena like neural collapse.

• We explore links between local complexity and param-
eter optimization. In Section 6 we show that the local
complexity is bounded by the representation cost and
by the ranks of the weight matrices. As a consequence,
we can relate the density of linear regions to results
on the implicit regularization of the ranks of weight
matrices.

2. Related Works
Several works have studied bounds on the number of linear
regions of the functions represented by deep ReLU networks
(e.g., Pascanu et al., 2014; Montúfar et al., 2014; Serra et al.,
2018). For deep neural networks the maximum number of
linear regions will typically be polynomial in the width and
exponential in the input dimension and number of layers.
However, the parameters that achieve this upper bound typi-
cally occupy only a small region of the parameter space. In
fact, if one considers the expected number of linear regions
over a probability distribution of parameters that satisfies
certain reasonable conditions, one finds that this is bounded
above by the number of neurons raised to the input dimen-
sion (Hanin & Rolnick, 2019b;a; Tseran & Montúfar, 2021).
In other words, for a random choice of the parameters, one
is more likely to see a number of linear regions that is much
smaller than the hard upper bound. Some works have ana-
lyzed the distortion length of curves in the input space by
ReLU networks (Raghu et al., 2017). Hanin et al. (2022)
looks at how the expected length of these curves changes
from input to output of a network. In a similar vein, Goujon
et al. (2024) estimate the typical number of non-linearity
points encountered by a 1D curve in the input space. Other
works have studied the effect that the architecture may have
on the geometry and the topology of decision boundaries in
classification (Zhang et al., 2018; Grigsby & Lindsey, 2022;
Alfarra et al., 2023; Brandenburg et al., 2024).
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A few works have tried to understand the local behavior
and the dynamics of linear regions during training. In par-
ticular, Humayun et al. (2024b) compare the phenomenon
of grokking to a simplification of the linear regions near
the training data points. They demonstrate empirically that
during the terminal phase of training, a relatively sudden
drop in the number of linear regions corresponds to an im-
provement in the model’s adversarial robustness. Cohan
et al. (2022) study the evolution of linear regions in the
state space of networks trained for deep reinforcement learn-
ing, finding a decrease in the density during training, as
measured by trajectories in the state space. In a related
work, Zhu et al. (2020) derive an algorithm for computing
an upper bound on the number of linear regions near a data
point and look into the training dynamics of the linear re-
gions. Sattelberg et al. (2023) examine the linear regions
local to a dataset of trained networks and note that they tend
to be relatively simple. Croce et al. (2019) relate the size
of linear regions to adversarial robustness. Another result
that links complexity of the linear regions to robustness is
that of Humayun et al. (2023b), which leverages the linear
region structure of ReLU networks to design an algorithm
which improves adversarial robustness. Similar to some
of our results, Li et al. (2022) relate adversarial robustness
to model complexity as defined by the VC dimension. In
a similar flavor to our definition of the local complexity,
Gamba et al. (2022) build a complexity measure related to
linear regions and propose that the exact number of linear
regions may not be the best metric for model complexity,
preferring instead to focus on a more robust measure. Other
studies have examined knot points (non-linearities) from an
optimization perspective. Notably, Shevchenko et al. (2022)
bounded the number of knots between training inputs for
univariate shallow ReLU networks in the mean-field regime
(Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2022).

We may also highlight a few of the works that look at the di-
mensionality of representations, such as those of Humayun
et al. (2024a); Jacot (2023a;b); Jacot et al. (2024); Scarvelis
& Solomon (2024). Our definition of local rank bears simi-
larity to that of Humayun et al. (2024a) and Patel & Shwartz-
Ziv (2024) as well as the “Jacobian rank” introduced by
Jacot (2023a). The low-rank bias of neural networks is a
related idea that has been studied by Súkenı́k et al. (2024)
and Timor et al. (2023). Several other works in this area
have sought to characterize the dimension of data manifolds
through the use of diffusion models (Stanczuk et al., 2022).
A connection between the rank of learned embeddings and
the representation cost was demonstrated in the work of Ja-
cot (2023a). The papers of Dherin et al. (2022); Munn et al.
(2024) highlight connections between neural collapse and a
quantity they called the “geometric complexity”, which is
generally reminiscent of the Dirichlet energy. Our definition
of the total variation of a network over the data distribu-

tion bears resemblance to their definition of the geometric
complexity.

3. The Local Complexity of ReLU Networks
We first aim to define a notion that captures the density of
linear regions locally near a given dataset. We will consider
ReLU networks defined as in (1), with input dimension
n0, hidden layers of widths n1, . . . , nL−1, and output di-
mension nL = 1. Given a fixed parameter θ and an input
x, the ℓth layer feature vector pre-activation is given by
vℓ(x) = Aℓ ◦ ϕ ◦ Aℓ−1 · · ·ϕ ◦ A1(x) ∈ Rnℓ . The array of
sign vectors [sgn(vℓ(x))]L−1

ℓ=1 is called the activation pattern
for the input x, and the set of all inputs that share the same
activation pattern is the corresponding activation region in
input space, for the given parameter θ. For each fixed param-
eter value, the function Nθ has a constant slope over each
activation region. We make the mild assumption that no two
activation regions whose activation pattern differ by one
neuron will share the same slope. This is a generic property
that holds true for all parameters except for a zero Lebesgue
measure subset (Hanin & Rolnick, 2019b; Grigsby & Lind-
sey, 2022), and implies that the activation regions coincide
with the linear regions.

For fixed parameter θ, the nonlinear locus of the network
Nθ over the input space is given by

BNθ
= {x ∈ Rn0 : ∇xNθ(·) is discontinuous at x}. (2)

This partitions the input space into the linear regions.

3.1. Computing Local Complexity

We seek to define a measure for the local density of linear
regions that are robust to small perturbations of the weights.
We take the view that the average number of linear regions
over a local region of parameter space can be more mean-
ingful than the number of regions at a fixed parameter value.
Thus, we wish to understand BNθ

as a random object given
a choice of weight matrices.

Tracking the number of linear regions for particular pa-
rameters requires that one solves a system of parametric
equations of the form zℓ,i(x) = βℓ,i, which can be diffi-
cult. On the other hand, examples from algebraic geometry
suggest that tracking expected values of the number of so-
lutions to parametric systems can be easier (Malajovich,
2023). This approach and the resulting proof techniques
bear resemblance to the application of the co-area formula
in the work of Hanin & Rolnick (2019b) or the Kac-Rice
formula, which is known for characterizing the size of level
sets in random fields (Berzin et al., 2022). However, a key
distinction lies in our focus. In contrast to the definitions of
Hanin & Rolnick (2019b), we will consider the distribution
of linear regions over the input space and the behavior de-
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Figure 1. Left: Linear regions of a trained neural network over a two-dimensional input domain. The nonlinear locus is shown in black and
linear regions are colored at random. Right: Heat map of the numerically estimated local complexity density function f(x) over the same
domain. Precise details are provided in Appendix B.1. The figure shows that our definition of local complexity, as well as the equations
derived in Theorem 2, are consistent with our interpretation of this quantity as a local density of non-linearity over the input space.

pending on specific parameters, which are aspects that are
not covered in their work.

Here and in the following we will write the pre-activation
of the ith unit at the ℓth layer as vℓ,i(x) = zℓ,i(x) − βℓ,i,
where βℓ,i is the bias. The simplest model that allows us
to consider expected values is to introduce additive noise
δℓ,i and track the 0 level set of vℓ,i(x) + δℓ,i. It is possible
to introduce additive noise to both biases and weights, but
we will focus on the biases since these only translate the
activation boundaries, whereas the weights affect both the
position and the orientation of the activation boundaries. In
Appendix B we provide numerical illustrations showcas-
ing the effects of adding noise either only to the biases or
adding noise to both the biases and the weights and how
both models produce qualitatively similar results.

Let θ = (W1, β1,W2, β2, . . . ,WL, βL) be a particular
choice of parameters. Consider then the parameters with
noisy biases θ̃ = (W1, β1 + δ1,W2, β2 + δ2, . . . ,WL, βL +
δL), where the noise terms are mutually independent
and identically distributed zero-mean Gaussian, δl ∼
N(0, σInl

), with some fixed standard deviation σ > 0. We
denote the bias with the noise term as bl = βl + δl. For this
random variable, we consider the expected volume of the
non-linear locus BNθ̃

around any input point x and define a
corresponding density as the limit:

f(x) = lim
ϵ→0

1

Zϵ
Ẽ
θ

[
voln0−1(BNθ̃

∩Bϵ(x))
]
, x ∈ Rn0 .

(3)
Here the expectation is taken with respect to the random
parameter θ̃ or more specifically the noise terms δ1, . . . , δl.

The limit is taken with respect to the radius ϵ of a ball Bϵ(x)
around the input point x, and the normalization factor is
given by the volume of the ball:

Zϵ = voln0
(Bϵ(0)) ∝ ϵn0 . (4)

We illustrate this definition in Figure 1, where we numeri-
cally estimate the density function f over the input space
for a network with two-dimensional input. We demonstrate
the impact of σ on the local complexity qualitatively in
Appendix B.1. We now define the local complexity of our
neural network as the expectation of f over the input data
distribution. We denote by p the probability distribution of
the data over the input space Rn0 , which we will assume to
have a density and a compact support Ω.

Definition 1 (Local Complexity). We define the local com-
plexity of a network N at parameter θ with respect to the
input data distribution p as

LC(Nθ, p) = E
x∼p

[f(x)]. (5)

For simplicity of notation we will omit the arguments Nθ

and p when there is no risk of confusion. We define local
complexity by taking the expectation of f over the data
distribution to estimate the density of linear regions near
the dataset, where model complexity is most relevant. To
provide further intuition for this definition and later results,
we conduct a direct computation of the local complexity for
a few illustrative examples in Appendix A.2.
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3.2. Towards a Theoretical Understanding of the Local
Complexity

We can now introduce our first results in understanding this
measure of the complexity of a neural network with respect
to the data distribution p. As before, we denote the pre-bias
value of the ith neuron of the network at input x by zi(x),
for i = 1, . . . ,

∑L−1
ℓ=1 nℓ. For a neuron zi in layer l, we

say that zi is good at x if the computation graph of the net-
work evaluated at input x contains a path of active neurons
zjl+1

, . . . , zjL−1
from layers l+ 1 to L, where for each neu-

ron in this path, zji(x) > bji . In particular, this means that
the neuron zi affects the network’s output when evaluated
at x. More details on this can be found in Appendix A.1.
We denote by ρbi the Gaussian density function for the bias
of neuron zi perturbed by δi. We will denote by ∇zi(x)
the gradient of function zi with respect to x where this is
well defined. The non-differentiable points form a null set
and are inconsequential in the following results. The follow-
ing theorem provides an explicit formula for computing the
local complexity, which we prove in Appendix A.3.

Theorem 2. Let ρbi(x) = N(βi, σ) be the density for the
bias of neuron zi. Then the following holds:

LC =
∑

neuron zi

E
x, θ̃

[∥∇zi(x)∥2 ρbi(zi(x)) 1zi is good at x] ,

(6)
where for each neuron the expectation is taken over θ̃ and
x ∼ p.

This theorem gives us a way to compute the local complex-
ity empirically by computing the gradients at each neuron
and estimating (6) using samples (we leverage this in our
numerical experiments in Figures 1, 2, 3). We can now
introduce bounds on the local complexity, which will be
useful for our later analysis because they allow us to focus
on the gradient terms.

Corollary 3. In the same setting as Theorem 2, let Cgrad

be an upper bound on the norm of the gradient of ev-
ery neuron zi, ∥∇zi(x)∥ ≤ Cgrad for all x ∈ Ω, θ̃ =
(W1, β + δ1, . . . ,WL, β + δL), let Cbias = 1√

2πσ
, and let

B = Eθ̃,x∼p

[∑
neuron zi

1zi not good at x
]

denote the expected
number neurons that are not good. Then we have that:

LC ≤ Cbias

∑
neuron zi

E
θ̃;x∼p

[∥∇zi(x)∥2 ] . (7)

Furthermore, for any η > 0 there are constants cηbias =

1√
2πσ

e
−η2

2σ2 and ξ̄η = Θ

(
e

−η2

2σ2 /η2
)

1 such that:

LC ≥ cηbias

∑
neuron zi

E
θ̃;x∼p

[∥∇zi(x)∥2 ]−ξ̄η−B·Cgrad·Cbias.

(8)

We note that the term B · Cgrad · Cbias, while a neces-
sary inclusion based on our proof technique, may be quite
small. Indeed at initialization Hanin & Rolnick (2019a,
Appendix D) observe that for any neuron z and x ∈ Rn0 ,
P(z is good at x) ≥ 1−

∑L
l=1 2

−nl . Thus, at initialization,
B ≤ NL 2−n, where N =

∑
l nl and n = minl nl, which

decays exponentially with the width. Our empirical results
in Appendix B.4 have shown that, for fully MLPs of rea-
sonable width, B is typically measured to be constant at
0. Similarly, the term ξ̄η can also be small, and notably is
asymptotically smaller than cηbias for large values of η.

4. Connections to the Rank of Learned
Representations

We define the feature manifold at layer l, denoted Ml ⊆
Rnl , to be the pre-activation values of the lth layer when
evaluated on the support of the input data distribution,
Ω. We proceed by introducing a measure of the dimen-
sion of the feature manifold, which we call the local
rank. We write zl = [zl,1, . . . , zl,nl

] for the vector of
pre-bias pre-activations at the lth layer and Jxzl(x) =
[∇xzl,1(x), . . . ,∇xzl,nl

(x)]T for the Jacobian with respect
to the input. With this notation, we can write the feature
manifold as Ml = zl(Ω).

Definition 4 (Local Rank). We define the local rank (LR)
of the lth layer’s features as the expectation value of the
dimension of the feature manifold over the input data distri-
bution:

LRl = E
x∼p,θ̃

[rank(Jxzl(x))] . (9)

We will find it more convenient, both numerically
and analytically, to work with the approximate rank,
rankϵ(A) = |{σ ≥ ϵ : σ singular value of A}|, which satis-
fies limϵ→0 LR

ϵ
l = LRl,

LRϵ
l = E

x∼p,θ̃

[rankϵ(Jxzl(x))] . (10)

A generic input point x will lie inside a linear region of
zl, and the Jacobian matrix Jxzl provides this linearization
of zl. The null space of the Jacobian indicates the input
dimensions that are discarded near the input x, and the
rank is equal to the dimension of the set of feature values

1We use the standard Big Theta notation f(x) = Θ(g(x))
to signify that there exist c1, c2, x0 such that c1g(x) ≤ f(x) ≤
c2g(x) for all x > x0.
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Figure 2. Relation between the local rank (10) at intermediate layers and the local complexity (2) of linear regions in the terminal phase
of training. We train a 4 layer MLP with 200 neurons per layer to estimate a map between two multivariate Gaussians with a random
cross-covariance matrix. More information can be found in Appendix B.2.

traced as we perturb the input x. Thus, this is a meaningful
measure of the rank of the learned representations.

Our aim is to provide a connection between the local rank
of the representations in Definition 4 and the local complex-
ity of the learned functions in Definition 1. We prove the
following result in Appendix A.5, linking the two notions:

Theorem 5. For any ϵ > 0, the local ranks across layers
can be bounded in terms of the local complexity as follows:

1

n0 Cbias
LC ≤

L∑
l=1

√
C2

grad LR
ϵ
l +ϵ2nl. (11)

Moreover, in the same setting as in Corollary 3,

L∑
l=1

LRϵ
l ≤

1

cηbiasϵ
2

[
LC+ ξ̄η +B · Cgrad · Cbias

]
. (12)

We can also make a weaker claim about the exact local rank,
which we prove in Corollary 13 in the appendix: LC ≤
n0 CbiasCgrad

∑L
l=1

√
LRl.

We showcase the relation between the local rank and local
complexity in a simple example. Figure 2 shows the evolu-
tion of LC and LR during training, for Gaussian input and
output data. In this example both quantities appear to be
tightly related and we observe a stark and sudden drop in the
local rank late in training. The information theoretic proper-
ties of the rank of representations for this particular example
has been studied in the prior work of Patel & Shwartz-Ziv
(2024). While this behavior is not unique to this example,
on other datasets the dynamics of the local rank can become
much more complex, as we showcase in Figure 12 in the
appendix.

5. Networks with Lower Local Complexity
May Be More Robust

Neural networks have been shown to sometimes converge to
solutions that exhibit neural collapse (Papyan et al., 2020).
In this case, the networks have a low within-class variance
of representations in the last hidden layer, implying that
the learned function is flat around the data points. We
will attempt to understand this specific geometric prop-
erty by considering the total variation of a trained neu-
ral network over the data distribution, which we define as
TV = Eθ̃,x∼p[∥∇xN (x)∥]. A low expected total varia-
tion indicates that the gradient of the network function is
typically small over the data distribution. Consequently,
these networks develop stable regions around training data
points where the function is nearly constant, aligning with
the characteristics of neural collapse.

We remark that low total variation has implications for ad-
versarial robustness. Standard methods for generating adver-
sarial examples, such as Projected Gradient Descent (PGD),
rely on first-order optimization techniques for constructing
adversarial examples (Madry et al., 2018). Low total vari-
ation with respect to the data distribution makes it harder
for such methods to find adversarial examples, since small
gradients limit the effectiveness of first-order optimization.
In some settings, the total variation can be related directly
to the existence of adversarial examples. Suppose we have
a univariate network Nθ : R → R for classification, with
a decision boundary at Nθ(x) = 0. For a given x̄ with
Nθ(x̄) > 0, a point x ∈ Bϵ(x̄) is an adversarial example if
Nθ(x) < 0. Then we have the following proposition, which
we prove in Appendix A.7.
Proposition 6. Suppose our data distribution admits a den-
sity function p with support Ω. Consider a point x̄ in the
interior of Ω, with classification margin Nθ(x̄) > γ. For
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Figure 3. Drop in the expected total variation (7) and local complexity (2) of a network in the terminal phase of training. We find that this
corresponds to an increase in the adversarial robustness of our network. Here we train a 4 layer MLP with 200 neurons in each layer on a
subset of 1000 images across all classes in the MNIST dataset. We use an initialization scale that is 2x the standard He initialization.
More information and an ablation on the initialization scale is available in Appendix B.3.

any ϵ > 0 with Bϵ(x̄) ∈ Ω, let cϵ = infx∈Bϵ(x̄) p(x). Then
TV ≤ cϵγ implies there are no adversarial examples in
Bϵ(x̄).

Empirical results have shown that a drop in the local number
of linear regions is accompanied by an increase in adversar-
ial robustness (Humayun et al., 2024b). We can understand
this by developing a bound between the local complexity
and the expected total variation of that network. A proof
can be found in Appendix A.8.

Theorem 7. Let gl denote the rest of the network after the
lth layer, so that Nθ = gl ◦ ϕ(zl − bl). Let Cl denote the
Lipschitz constant of gl. Then with the same setting and
notations as Theorem 2:

TV ·
Lcηbias

max1≤l≤L Cl
− ξ̄η −B · Cgrad · Cbias ≤ LC . (13)

This bound could help explain the findings of Humayun
et al. (2024b), where ReLU networks trained in a classi-
fication task converged to solutions that are flat near data
points and the non-linear locus is concentrated around the
decision boundaries. We empirically demonstrate this be-
havior on the MNIST dataset in Figure 3. We note however
that this theoretical result may not fully explain the relation-
ship between the total variation and the local complexity
during training. Indeed, in Appendix B.3 we illustrate that
the dynamics can be more complex as a consequence of
the relationship between TV and the Lipschitz constants
max1≤l≤L Cl. A more detailed empirical study analysis on
the tightness of this bound can be found in Appendix B.4.

6. The Drop of Local Complexity, and a
Connection to Grokking

In this section, we explore ways in which the local com-
plexity might be implicitly minimized during training via
representation cost and implicit regularization of weights.

6.1. Representation Cost

The representation cost of a function f is the smallest pos-
sible parameter norm needed for a neural network Nθ to
exactly compute f . We define this as R(f) = infθ{∥θ∥F :
Nθ(x) = f(x) for all x ∈ Ω}.2 Prior works have analyzed
the representation cost of shallow networks of arbitrary
width (Savarese et al., 2019). The representation cost for
linear networks can be explicitly calculated in certain cases,
and is often connected to sparsity. For instance, in fully-
connected linear networks, it is a Schatten quasi norm of
the end-to-end matrix (Dai et al., 2021). Deeper nonlinear
networks also share a connection between the representa-
tion cost and sparsity in terms of rank (Jacot, 2023a). The
following proposition, which we prove in Appendix A.9,
provides a way to view the representation cost as a metric
of sparsity, this time in terms of the linear regions.

Proposition 8. In the same setting as Theorem 2, where nl

is the maximum hidden layer dimension,

n0

Cbias
LC ≤ n

1−L
2

l L1−L
2 R(Nθ)

L. (14)

This bound provides some understanding of how weight
decay and the resulting reduction of parameter norms may

2One may also take infθ{∥θ∥F : ∥f − Nθ∥ ≤ ϵ} for some
appropriate norm and a limit in ϵ.
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play a role in the simplification of linear regions that we find
late in training, as we will discuss below in Corollary 10.

6.2. Linking Local Complexity to Neural Network
Optimization

Humayun et al. (2024b) presents empirical results that re-
late grokking to a migration of the linear regions in the
terminal phase of training. In particular, they find a drop in
the local number of linear regions near data points late in
training. We aim to understand this drop of linear regions
late in training as a drop in the local complexity. We can
leverage as a heuristic the view of grokking provided by
Lyu et al. (2024), who show grokking can be induced by a
dichotomy of early and late phase implicit biases. This is
only a heuristic way for us to view grokking in our setting,
since that work requires the network to be everywhere C2

smooth, which is only true almost everywhere for our ReLU
networks. However, it may be possible to generalize their re-
sult with a careful analysis with Clarke sub-differentials (Ji
& Telgarsky, 2020; Clarke, 1975). Nevertheless, following
Lyu et al. (2024) we consider:

dθ

dt
= −∇L(θ)− λ∥θ∥2.

They show that networks will first operate in the “kernel”
regime (Jacot et al., 2018), during which the parameters do
not move far from initialization. We show in Appendix A.10
that this implies that the local complexity also does not
change much from initialization in shallow networks. After
enough time, the network will eventually enter the “rich”
regime and converge in direction to a KKT point of the
following optimization problem; where {(xi, yi)}ni=1 ⊆
Rn0 × {−1, 1} is the training dataset:

min
θ

1

2
∥θ∥2 s.t. yiNθ(xi) ≥ 1, ∀i ∈ [n]. (15)

In this setting, Timor et al. (2023) show that the global
optimum of (15) has bounded ratios between the Frobenius
norm and operator norm of weight matrices. We can relate
this to the local complexity and show that in this setting the
local complexity is also bounded as follows.

Proposition 9. Let {(xi, yi)}ni=1 ⊆ Rn0 × {−1, 1} be a
binary classification dataset, and assume that there is i ∈
[n] with ∥xi∥ ≤ 1. Assume that there is a fully-connected
neural network N of width m ≥ 2 and depth k ≥ 2, such
that for all i ∈ [n] we have yiN (xi) ≥ 1, and the weight
matrices W1, . . . ,Wk of N satisfy ∥Wi∥F ≤ B for some
B > 0. Let Nθ be a fully-connected neural network of
width m′ ≥ m and depth k′ > k parameterized by θ. Let
θ∗ = [W ∗

1 , . . . ,W
∗
L] be a global optimum of the above

optimization problem (15). Then, assuming the same setting
as Theorem 2, we have the following bound on the local

complexity:

1

Lmaxl∈[L] ∥W ∗
i ∥op

 n0

Cbias n
1−L

2

l L1−L
2

LC

 1
L

− γ

(16)

≤
√
2 ·
(

B√
2

) k
L

·
√

L+ 1

L
, (17)

where, γ = ∥W ∗
i ∥F

(√
1

∥W∗
l ∥op

−
√

1
∥W∗

i ∥op

)2
.

We observe that the result in Proposition 9 is rigorous, but
the corresponding bound only holds when our network is at
the global minimum of (15). Another view we can take is by
considering the norm of the weights. Lyu et al. (2024) show
in the rich phase of training that ∥θ(t)∥2 = Θ

(
(log 1

λ )
1/L
)
.

If we assume that this holds, using calculations in Ap-
pendix A.9, we can show that the local complexity is asymp-
totically bounded by the weight decay parameter λ.

Corollary 10. [Informal] Suppose that ∥θ(t)∥2 =
Θ
(
(log 1

λ )
1/L
)

holds. Then, in the “rich” phase of training
the local complexity is bounded:

n0

Cbiasn
1−L

2

l L1−L
2

LC ≤ Θ(log 1
λ ). (18)

We empirically validate this claim in Figure 13, where we
demonstrate that the local complexity will typically be lower
for networks trained with a larger weight decay. However, it
should be noted that the bound in (8) does not leverage the
dependence on the data distribution, so it is likely that these
bounds could be improved through a more exact analysis.

7. Conclusions and Future Work
Summary We presented a framework for analyzing the
distribution of linear regions of the functions parametrized
by neural networks with piecewise linear activations. We
introduced a measure of local complexity that is robust with
respect to perturbations of the parameters and used this to
gain insights into relevant aspects of learning such as robust-
ness and representation learning. Specifically, we establish
that networks that learn low-dimensional representations
tend to exhibit a lower local complexity. Further, we con-
nected the local complexity of linear regions to the total
variation of the network functions and thus to robustness.
We also analyze how the local complexity can be implicitly
minimized during training by connecting it to properties
of the weight matrices. Overall, this work contributes a
theoretical framework that illustrates interesting interrela-
tions between geometric properties of ReLU networks and
learning that we hope might motivate further investigations.
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Limitations and future research We focused on the
ReLU activation function but we think that our proof tech-
niques could be adapted to obtain similar results for gen-
eral piecewise linear activation functions. Such generaliza-
tions could be approached as Tseran & Montúfar (2021)
approached the analysis of expected complexity for maxout
networks building on the work of Hanin & Rolnick (2019a)
for ReLU. Though we find interesting results suggesting
the proposed local complexity measure might be implicitly
minimized during training, a detailed analysis addressing
the training dynamics of the local complexity remains an
open problem. Empirically, in certain settings we can of-
ten observe complex interactions between local complexity
and local rank, as well as between local complexity and
total variation. This suggests that the explicit relationship
between the local complexity and other measures of model
complexity may be much richer than what is covered by our
theoretical results. Another natural direction would be to
construct explicit bounds on the generalization gap based
on the local complexity, as one would expect that networks
with a simple structure in terms of their linear regions would
also generalize well.
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On the Local Complexity of Linear Regions in Deep ReLU Networks

A. Main Theoretical Results
A.1. Notation and Setup

Let N be a fully connected network with L layers with input dimension n0 output dimension 1 and ReLU non-linearity
function ϕ(x) = max{0, x}. We denote ϕ(v) for v ∈ Rn0 to be the ReLU function applied element-wise. For simplicity,
we will typically make the assumption that nl = nj for all hidden layers j ∈ [L]. We denote by hl the post-activations after
layer l. That is,

N (x) = WLhL(x).

Here, each hi : Rn0 → Rni is of the form:

hi(x) = ϕ(Wihi−1(x)− βi),

h0(x) = x.

We will write the pre-activations at neuron j as zj(x) = W j
i hi−1(x). We can then write the vector of pre-activations at

layer l as zl = (zl,1, zl,2, . . . , zl,nl
). We can then write

hl(x) = ϕ(zl(x)− βl).

We also use βj
i denotes the j-th element of vector βi. When it is clear, we will write βz = βj

i . If neurons are indexed by i,
such as zi, we can write βi = βzi to denote the bias associated to neuron zi. We write as l(z) to denote the layer index that
neuron z appears.

We will typically use βi to refer to the deterministic choice of biases, and reserve bi = βi + δi to refer to the random
variable representing the biases plus noise. We denote by θ = [WL, . . . ,Wl, βL, . . . , β1] the parameters of a network.
We will write Nθ to denote the network N parameterized by θ. We represent the random variable for our parameters as
θ̃ = [WL, . . . ,Wl, bL, . . . , b1]. When θ̃ is treated as a random variable, we also consider Nθ̃(x) to be a random variable,
along with the corresponding quantity zi(x), which represents the random variable associated with a neuron.

Now define:
Sz = {x ∈ Rn0 | z(x)− bz = 0},

as the set of points where neuron z switchs from on to off. Furthermore, define

O = {x ∈ Rn0 | ∀ j ∈ [L] ∃ neuron z with l(z) = j : ϕ′(z(x)− bz) ̸= 0},

S̃z = Sz ∩ O.

Then, O is the set of inputs x for which there exists an open path from x to the output of the function N . Thus, we can read
S̃z as the collection of points in the input space where z switches between its linear regions, and this appears in the function
computed by N . Notice also in the case of the ReLU activation function, we can re-write O as the following:

O = {x ∈ Rn0 | ∀ j ∈ [l] ∃ neuron z with l(z) = j : z(x)− bz ≥ 0}.

We will also define BN to be:
BN = {x ∈ Rn0 : ∇xN (·) discontinuous at x},

which is the set of non-linearities of the function N . We call this the nonlinear locus of N .

ON A NEURON BEING “GOOD”

We will sometimes take a path-wise representation of a ReLU network. In this case, we will first write z(l) to denote a
neuron in the lth layer. Let γ = (γ1, γ2, . . . , γL) denote a path in the computation graph of N , where each γi indexes
a neuron in the ith layer. To clarify notation since the ith neuron in a path will always be in the ith layer, we will write
zγi = z

(i)
γ . We can also note that there is an associated sequence of weights on the edges of that computation graph, which

we can denote by w
(l)
γ = “weight connecting z

(l−1)
γ to z

(l)
γ ”. More formally, if W is the l − 1 layer weight matrix, then
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w
(l)
γ = Wγl−1,γl

. Denote by Γi the set of all paths in the computation graph of N leading from the ith input to the output
node. We can now give a path-wise representation of our neural network N as:

N (x) =

n0∑
i=1

xi

∑
γ∈Γi

L∏
l=1

1{z(l)
γ (x)−bz≥0}w

(l)
γ +N (0).

In this case, a neuron in γ is open when z
(l)
γ (x)− bz ≥ 0. A neuron z is good at x it is contained in a path γ leading from

the input to the output, where every neuron after z is open.

A.2. Illustrative Examples of the Local Complexity

COMPUTING THE LOCAL COMPLEXITY OF A SINGLE NEURON

As an illustrative example, and to gain some intuition for Theorem 2, we compute explicitly the local complexity of a single
neuron. Our model is as follows, where v, w, β ∈ R, and ϕ denotes the ReLU function. Our parameters are θ = (v, w, β),
and our model is

Nθ(x) = vϕ(wx− β), x ∈ R.

Notice first that the breakpoint (non-linearity) of this function is always at x = β
w . Now recall the definition of the local

complexity density function f :

f(x) = lim
ϵ→0

1

Zϵ
Ẽ
θ

[
voln0−1(BNθ̃

∩Bϵ(x))
]
, x ∈ Rn0 .

For our setting here, θ̃ = (w, b) where b is Gaussian with variance σ2 centered at β. The normalizaiton factor is given by
Zϵ = 2ϵ For now consider fixing ϵ > 0, then notice that:

Ẽ
θ

[
voln0−1(BNθ̃

∩Bϵ(x))
]
= E

b
[1 b

w∈(x−ϵ,x+ϵ)]

= P(
b

w
∈ (x− ϵ, x+ ϵ))

= P(b ∈ (wx− wϵ,wx+ wϵ))

=

∫ wx+wϵ

wx−wϵ

ρb(b)db

=

∫ x+ϵ

x−ϵ

|w|ρb(wb̃)db̃.

Notice we gain a factor of w in the integrand through a change of variables. We illustrate this because this is very similar to
how the term ∇z(x) shows up in the proof of Theorem 2. In particular, this is one way to see how the co-area formula which
we utilize in the main proof is a generalization of the typical change of variables formula. We can proceed now to see that:

f(x) = lim
ϵ→0

1

2ϵ

∫ x+ϵ

x−ϵ

|w|ρb(wb̃)db̃ = |w|ρb(wx).

Our local complexity for this single neuron is then given as follows, where p is the data distribution:

LC = E
x∼p

[f(x)] = E
x∼p

[|w|ρb(wx)].

Notice this is precisely what we would arrive at by a direct application of Theorem 2 to our model.

COMPUTING THE LOCAL COMPLEXITY OF A 2 HIDDEN LAYER NETWORK

To illustrate how these results start to generalize to deeper networks, we show a direct computation of the local complexity
for a univariate neural network with one neuron in the first hidden layer and one neuron in the second hidden layer. In
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particular, consider the following network parameterized by θ = (w2, w1, β2, β1),

N (x) = ϕ(w2ϕ(w1x− β1)− β2).

We also will write

z1(x) = w1x,

and

z2(x) = w2ϕ(w1x− β1) = w2ϕ(z1(x)− β1).

Then computing derivatives on N gives that:

N ′(x) = 1z2(x)>β2
1z1(x)>β1

w1w2.

The breakpoints at which N ′ is not continuous are then given by these indicator functions, so then:

BN = {x : N ′(x) not continuous at x }

= { b1
w1

if z2 open at x =
b1
w1

} ∪ { b2
w1w2

+
b1
w 1

if z1 open at x =
(b2 + w2b1)

w2w1
}.

Now let ϵ > 0, and suppose that b1 is normal with mean β1 and variance σ2 and that b2 is normal with mean β2 and variance
σ2. Then we have that

E
b1,b2

[vol0(BNθ̃
∩ (x− ϵ, x+ ϵ)] = E

b1,b2
[1 b1

w1
∈(x−ϵ,x+ϵ)

1
z2(

b1
w1

)>b2

+ 1 b2
w1w2

+
b1
w 1

∈(x−ϵ,x+ϵ)
1
z1(

b2
w1w2

+
b1
w 1

)>b1
]

= E
b2
[E
b1
[1 b1

w1
∈(x−ϵ,x+ϵ)

1
z2(

b1
w1

)>b2
]]

+ E
b1
[E
b2
[1 b2

w1w2
+

b1
w1

∈(x−ϵ,x+ϵ)
1
z1(

b2
w1w2

+
b1
w 1

)>b1
]].

Now first we compute on the first term,

E
b1
[1 b1

w1
∈(x−ϵ,x+ϵ)

1
z2(

b1
w1

)>b2
] =

∫ ∞

−∞
ρb1(b)1 b1

w1
∈(x−ϵ,x+ϵ)

1z2(
b

w1
)>b2

db

=

∫ w1(x+ϵ)

w1(x−ϵ)

ρb1(b)1z2(
b

w1
)>b2

db

=

∫ (x+ϵ)

(x−ϵ)

|w1|ρb1(w1b)1z2(b)>b2db.

So then,

E
b2
[E
b1
[1 b1

w1
∈(x−ϵ,x+ϵ)

1
z2(

b1
w1

)>b2
]] = E

b2
[

∫ (x+ϵ)

(x−ϵ)

|w1|ρb1(w1b)1z2(b)>b2db].

From the above we can see that by taking limits we get:

lim
ϵ→0

1

Zϵ
E
b2
[E
b1
[1 b1

w1
∈(x−ϵ,x+ϵ)

1
z2(

b1
w1

)>b2
]] = E

b2
[|w1|ρb1(w1x)1z2(x)>b2db].
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Now on the other term we calculate:

E
b2
[1 b2

w1w2
+

b1
w1

∈(x−ϵ,x+ϵ)
1
z1(

b2
w1w2

+
b1
w 1

)>b1
]

=

∫ ∞

−∞
ρb2(b)1 b

w1w2
+

b1
w1

∈(x−ϵ,x+ϵ)
1
z1(

b
w1w2

+
b1
w1

)>b1
db

=

∫ ∞

−∞
ρb2(b)1 b

w1w2
∈(x−ϵ− b1

w1
,x+ϵ− b1

w1
)
1
z1(

b
w1w2

+
b1
w1

)>b1
db

=

∫ ∞

−∞
ρb2(b)1b∈w1w2(x−ϵ− b1

w1
,x+ϵ− b1

w1
)
1
z1(

b
w1w2

+
b1
w1

)>b1
db

=

∫ w1w2(x+ϵ− b1
w1

)

w1w2(x−ϵ− b1
w1

)

ρb2(b)1z1(
b

w1w2
+

b1
w1

)>b1
db

=

∫ (x+ϵ− b1
w1

)

(x−ϵ− b1
w1

)

|w1w2|ρb2(w1w2b)1z1(b+
b1
w1

)>b1
db.

From the above equation, we can take limits and see that:

lim
ϵ→0

1

Zϵ
E
b1
[E
b2
[1 b2

w1w2
+

b1
w1

∈(x−ϵ,x+ϵ)
1
z1(

b2
w1w2

+
b1
w 1

)>b1
]] = E

b1
[|w1w2|ρb2(w1w2(x− b1

w1
))1z1(x)>b1 ].

We can now see that |z′1(x)| = |w| and |z′2(x)| = 1z1(x)>b1 |w1w2|. Furthermore, w1w2(x− b1
w1

) = w2(w1x− b1) = z2(x)
on {z1(x) > b1}. Now notice that z2 is always good at x since it is directly connected to the output layer. So then,

f(x) = E
b1
[|z′2(x)|ρb2(z2(x))] + E

b2
[|z′1(x)|ρb1(z1(x))1z1 good at x]

= E
b1
[|z′2(x)|ρb2(z2(x))1z2 good at x] + E

b2
[|z′1(x)|ρb1(z1(x))1z1 good at x].

Which, after taking expectations over x ∼ p, is equivalent to the main result in Theorem 2.

A.3. Proof of Theorem 2

The proof of this result will follow an argument that is closely inspired in the work of Hanin & Rolnick (2019a). Key to our
proof is use of the generalized co-area formula, which we review here for completeness.

A.3.1. GENERALIZED CO-AREA FORMULA

For u with support on Ω ⊆ Rn, where u : Rn → Rk and is Lipschitz, for an L1 function g, we have that:∫
Ω

g(x)∥Jku(x)∥dx =

∫
Rk

∫
u−1(t)

g(x)dvoln−k(x)dt.

Where:
∥Jku(x)∥ = det(Ju(x)Ju(x)T )

1
2 .

A.3.2. LEMMA 11

The following lemma bears strong resemblance to Proposition 9 in the work of Hanin & Rolnick (2019a).

Lemma 11. We have that almost surely:

BN =
⋃

z neuron

S̃z.

Furthermore, this union is disjoint modulo a null set with respect to the Hausdorff n0 − 1 measure.
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Proof. We will first check that BN ⊆
⋃

z neuron S̃z by checking if the following equation (19) holds:⋂
z neuron

S̃c
z ⊆ Bc

N . (19)

Note that this suffices since,
(⋃

z neuron S̃z

)c
=
⋂

z neuron S
c
z . Fix x ∈

(⋃
z neuron S̃z

)c
. We will now write:

Z+
x = {z neurons |z(x)− bz > 0},

Z−
x = {z neurons |z(x)− bz < 0},
Z0
x = {z neurons |z(x)− bz = 0}.

Notice that on the left hand side of (19) we have a finite intersection of open sets which is also an open set. As a consequence,
the map x → Z∗

x must be locally constant, and there exists some ϵ−neighborhood around x so that ∥x− y∥ ≤ ϵ implies
that:

Z−
x ⊆ Z−

y , Z+
x ⊆ Z+

y , Z+
y ∪ Z0

y ⊆ Z+
x ∪ Z0

x. (20)

Now to prove (19) we will leverage the path-wise representation of our neural network N , following the notation in
Appendix A.1.

N (y) =

n0∑
i=1

yi
∑
γ∈Γi

L∏
l=1

1{z(l)
γ (y)−bz≥0}w

(l)
γ +N (0).

Now we have that, since x ∈
(⋃

z neuron S̃z

)c
, for every path γ that hits z ∈ Z0

x:

∃j ∈ [L] : z(j)γ ∈ Z−
x .

By extension and by (20) we have that this holds in a neighborhood of x:

∀y ∈ Rn0 : ∥x− y∥ ≤ ϵ =⇒ z(j)γ ∈ Z−
y .

And for y in a neighborhood of x:

N (y) =

n0∑
i=1

yi
∑

γ∈Γi, γ⊆Z+
x

L∏
l=1

1{z(l)
γ (y)−bz≥0}w

(l)
γ +N (0).

But then notice that we also have:
z(x)− bz > 0 =⇒ z(y)− bz > 0.

So then, for y close to x,
1{z(l)

γ (x)−bz≥0} = 1{z(l)
γ (y)−bz≥0},

and so we can write:

N (y) =

n0∑
i=1

yi
∑

γ∈Γi, γ⊆Z+
x

L∏
l=1

1{z(l)
γ (x)−bz≥0}w

(l)
γ +N (0).

From which it is clear that ∂N/∂yi is independent of y. Therefore, the function N is a continuous linear function in a
neighborhood of x and we have shown (19). We will now aim to show:⋃

z neuron

S̃z ⊆ BN . (21)

First note that since our biases are admit a density with respect to the Lebesgue measure, we have that the following holds
almost surely (a.s.) for j ̸= i:

voln0−1(Szi ∩ Szj ) = 0 (a.s.). (22)
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So then (21) would follow almost surely from showing that:

⋃
z neuron

S̃z \
⋃
z′ ̸=z

Sz′

 ⊆ BN . (23)

Now pick x ∈
(
S̃z \

⋃
z′ ̸=z Sz′

)
for some fixed neuron z. Note that in a small enough ϵ−neighborhood of x, we have that

y → z(y) is linear in y. So then it follows that in this neighborhood of x, S̃z \
⋃

z′ ̸=z Sz′ is a hyperplane of co-dimension 1.
Pick y1 so that 0 < ∥x− y1∥ ≤ ϵ and z(y1) > bz and y2 so that 0 < ∥x− y2∥ ≤ ϵ and z(y2) < bz . So then it follows that
x separate s two different activation patterns, and by assumption we have that x is a discontinuity point of ∇xN (x). This
proves equation (23).

Notice we have already proved that this union is (a.s.) almost everywhere disjoint with respect to the Hausdorff n0 − 1
measure in equation (22). The claim follows.

A.3.3. LEMMA 12

The following lemma is from Hanin & Rolnick (2019a) and is provided here with minor tweaks for convenience.

Lemma 12. Let z1, . . . , zk be distinct neurons in the same layer of N . Then for any compact K ⊂ Rn0 ,

Ẽ
θ

[voln0−k(S̃z1,...,zk ∩K)] =

∫
K

Ẽ
θ

[∥Jz1,...,zk(x)∥ · ρb1,··· ,bk(z1(x), . . . zk(x))1∀j: zj good at x]dx,

where the expectation is taken with respect the noise terms δi in the biases.

Proof. Let z1, . . . , zk be some distinct neurons in N . Let K ⊆ Rn0 . Then notice that:

voln0−k

(
S̃z1,...,zk ∩K

)
=

∫
S̃z1,...,zk

∩K

1 dvoln0−k

=

∫
Sz1,...,zk

∩K

1O dvoln0−k

=

∫
Sz1,...,zk

∩K

1∀j: zj good at x dvoln0−k.

First equality is clear, in the second equality we use that:

S̃z1,...,zk ∩K =

 k⋂
j=1

S̃zj

 ∩K =

 k⋂
j=1

Szj ∩ O

 ∩K =

 k⋂
j=1

Szj ∩K

 ∩ O.

For the third equality, note that for all x ∈ Sz1,...,zk ∩K, x ∈ O implies that there is a path of open neurons that connects
from x to the output layer of the neural network. We also have that at x all of the neurons zi, i ∈ [k], satisfy zi(x)− bi = 0.
So then we just need that there is a path from all of these neurons to the output later. Now we may re-write:

z =

z1
...
zk

 b =

b1
...
bk

 =⇒ Sz1,··· ,zk = {x ∈ Rn : z(x)− b = 0}.

Then,

voln0−k

(
S̃z1,...,zk ∩K

)
=

∫
{z(x)=b}∩K

1∀j: zj good at x dvoln0−k.
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For notational convenience let b = βi + δi Now recall that we have the Gaussian density function ρb : Rk → [0, 1] over the
biases. Then we will first take expectations over b, conditioned on the rest of the biases, which we will denote by b̂:

E
b∼ρb

[
voln0−k

(
S̃z1,...,zk ∩K

)
|b̂
]

(24)

=

∫
Rk

ρb(b)
∫
{z(x)=b}∩K

1∀j: zj good at x dvoln0−k(x) db (25)

=

∫
Rk

∫
{z(x)=b}∩K

ρb(z(x)) 1∀j: zj good at x dvoln0−k(x) db. (26)

To apply the co-area formula here, we take, borrowing notation from Appendix A.3.1, that:

u−1(b) = {z(x) = b} ∩K.

So then,

u = z|K ,

and

g(x) = ρb(z(x)) 1∀j: zj good at x.

Notice u is Lipschitz in K and g is dominated by an L1 function ρb so we have that we may apply the co-area formula and
we get: ∫

Rk

∫
{z(x)=b}∩K

ρb(z(x)) 1∀j: zj good at x dvoln0−k(x) db

=

∫
K

∥Jz(x)∥ ρb(z(x)) 1∀j: zj good at x dx.

We can now take expectations with respect to the remaining biases, since by the law of total expectation:

Ẽ
θ

E
b∼ρb

[
voln0−k

(
S̃z1,...,zk ∩K

)
|b̂
]
= Ẽ

θ

[voln0−k

(
S̃z1,...,zk ∩K

)
].

A.3.4. PROOF OF THEOREM 2

For the sake of readability, we restate the theorem here,

Theorem 2. Let ρbi(x) = N(βi, σ) be the density for the bias of neuron zi. Then the following holds:

LC =
∑

neuron zi

E
x, θ̃

[∥∇zi(x)∥2 ρbi(zi(x)) 1zi is good at x] , (6)

where for each neuron the expectation is taken over θ̃ and x ∼ p.

Proof. Recall first the definition of the local complexity density function f :

f(x) = lim
ϵ→0

1

Zϵ
Ẽ
θ

[
voln0−1(BNθ̃

∩Bϵ(x))
]
. (27)
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Now from here, we can compute, by using Lemma 11 in the second equality and using Lemma 12 fifth equality:

f(x) = lim
ϵ→0

1

Zϵ
Ẽ
θ

[voln0−1(BN ∩Bϵ(x))]

= lim
ϵ→0

1

Zϵ
Ẽ
θ

[
voln0−1

(⋃
zi

(
S̃zi ∩Bϵ(x)

))]

= lim
ϵ→0

1

Zϵ
Ẽ
θ

[ ∑
neuron zi

voln0−1

(
S̃zi ∩Bϵ(x)

)]

=
∑

neuron zi

lim
ϵ→0

1

Zϵ
Ẽ
θ

[
voln0−1

(
S̃zi ∩Bϵ(x)

)]
=

∑
neuron zi

lim
ϵ→0

1

Zϵ

(∫
Bϵ(x)

Ẽ
θ

[∥∇zi(x)∥ ρbi(zi(x)) 1zi good at x]dx

)
=

∑
neuron zi

Ẽ
θ

[∥∇zi(x)∥ ρbi(zi(x)) 1zi good at x].

In the last equality we use that the term Eθ̃ [∥∇zi(x)∥ ρbi(zi(x)) 1zi good at x] is continuous in x, which is a consequence of
taking expectation over the biases. Taking expectation over x ∼ p completes the proof.

A.4. Proof of Corollary 3

Corollary 3. In the same setting as Theorem 2, let Cgrad be an upper bound on the norm of the gradient of every
neuron zi, ∥∇zi(x)∥ ≤ Cgrad for all x ∈ Ω, θ̃ = (W1, β + δ1, . . . ,WL, β + δL), let Cbias = 1√

2πσ
, and let B =

Eθ̃,x∼p

[∑
neuron zi

1zi not good at x
]

denote the expected number neurons that are not good. Then we have that:

LC ≤ Cbias

∑
neuron zi

E
θ̃;x∼p

[∥∇zi(x)∥2 ] . (7)

Furthermore, for any η > 0 there are constants cηbias =
1√
2πσ

e
−η2

2σ2 and ξ̄η = Θ

(
e

−η2

2σ2 /η2
)

3 such that:

LC ≥ cηbias

∑
neuron zi

E
θ̃;x∼p

[∥∇zi(x)∥2 ]− ξ̄η −B · Cgrad · Cbias. (8)

Proof. For the upper bound, it is clear that we can write, assuming the conclusion of the prior theorem:

LC =
∑

neuron zi

E
θ̃;x∼p

[
∥∇zi(x)∥2 ρbzi (zi(x)) 1zi is good at x

]
≤

∑
neuron zi

E
θ̃;x∼p

[
∥∇zi(x)∥2 ρbzi (zi(x))

]
≤ Cbias

∑
neuron zi

E
θ̃;x∼p

[∥∇zi(x)∥2] .

We can take Cgrad = maxℓ∈[L] ∥WℓWℓ−1 · · ·W1∥op, which is clearly deterministic as it does not depend on the biases. To
show the lower bound, we have the following bounds. Assuming the Cgrad ≥ ∥∇zi(x)∥2 for all neurons zi, x ∈ Ω and
Cbias ≥ ρb and that on average B neurons are not good at x ∼ p:

B = E
x∼p

Ẽ
θ

[ ∑
zi neuron

1zi not good at x

]
.

3We use the standard Big Theta notation f(x) = Θ(g(x)) to signify that there exist c1, c2, x0 such that c1g(x) ≤ f(x) ≤ c2g(x) for
all x > x0.
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It is clear then that we can bound the local complexity as:

LC = E
x∼p,θ̃

 ∑
neuron zi

∥∇zi(x)∥ ρbzi (zi(x))−
∑

neuron zi not good at x

∥∇zi(x)∥ ρbzi (zi(x))

 (28)

≥
∑

neuron zi

E
x∼p,θ̃

[
∥∇zi(x)∥ ρbzi (zi(x))

]
−B · CgradCbias (29)

≥ cηbias

∑
neuron zi

E
x∼p,θ̃

[∥∇zi(x)∥]− ξ̄η −B · CgradCbias. (30)

Where for the last inequality we proceed as follows: Take neuron z with ρb being the density for a Gaussian with variance σ
centered at β. Then:

E
x,θ̃

[∥∇z(x)∥ρb(z(x))] ≥ E
x,θ̃

[∥∇z(x)∥ ρb(z(x))1|z(x)−b|≤η]

≥
[

inf
|r−b|≤η

{ρb(r)}
]
E
x,θ̃

[∥∇z(x)∥ 1|z(x)−b|≤η]

≥
[

inf
|r−b|≤η

{ρb(r)}
](

E
x,θ̃

[∥∇z(x)∥]− E
x,θ̃

[∥∇z(x)∥ 1|z(x)−b|>η]

)
.

Notice we can bound the second term here as follows, using Markov’s inequality:

E
x,θ̃

[∥∇z(x)∥ 1|z(x)−b|>η] ≤ CgradPx,θ̃(|z(x)− b| ≥ η)

≤ Cgrad
Ex,θ̃[|z(x)− b|2]

η2

≤ Cgrad
Ex,θ̃[z(x)

2] + Ex,θ̃[b
2]

η2
.

Now since the data distribution has compact support, we have that Ex,θ̃[z(x)
2] and Ex,θ̃[b

2] are uniformly bounded. This
gives us that,

E
x,θ̃

[∥∇z(x)∥ρb(z(x))] ≥ cηbias

(
E
x,θ̃

[∥∇z(x)∥]− ξ(η, σ, z)

)
,

where ξ(η, σ, z) = Θ( 1
η2 ), c

η
bias =

1√
2πσ

e
−η2

2σ2 . Now define

ξ̄(η, σ,N ) = cηbias

∑
z neuron

ξ(η, σ, z) = Θ

e
−η2

2σ2

η2

 .

Taking a sum over every neuron then gives that

E
x∼p,δ

[ ∑
neuron zi

[
∥∇zi(x)∥ ρbzi (zi(x))

]]
≥ cηbias E

x∼p,δ

[ ∑
neuron zi

|∇zi(x)∥

]
− ξ̄(η, σ,N ),

where ξ̄(η, σ,N ) = Θ( e
−η2

2σ

η2 ). We abbreviate this as ξ̄η in later results. Using this result in (30) completes the proof.

A.5. Proof of Theorem 5

We first recall from before that we define rankϵ(Jac(zl)) to be the number of singular values of Jac(zl) bigger than ϵ. We
define the approximate local rank to be:

LRϵ
l = E

x∼p
[rankϵ(Jxzl(x))] .
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Theorem 5. For any ϵ > 0, the local ranks across layers can be bounded in terms of the local complexity as follows:

1

n0 Cbias
LC ≤

L∑
l=1

√
C2

grad LR
ϵ
l +ϵ2nl. (11)

Moreover, in the same setting as in Corollary 3,

L∑
l=1

LRϵ
l ≤

1

cηbiasϵ
2

[
LC+ ξ̄η +B · Cgrad · Cbias

]
. (12)

Proof. Notice that we have immediately, for an n by n matrix A with rankϵ = m,

ϵ2m ≤
n∑

i=0

σi(A)2 ≤ ∥A∥2F =

n∑
i=0

σi(A)2 ≤ mσmax (A)2 + (n−m)ϵ ≤ mσmax (A)2 + nϵ. (31)

Notice also that we have that, using that
√
a+ b ≤

√
a+

√
b:

∥Jzl(x)∥F =

√ ∑
neuron zi∈layer l

∥∇zi(x)∥22 ≤
∑

neuron zi∈layer l

∥∇zi(x)∥.

So we may write that:

rankϵ(Jzl(x)) ≤
1

ϵ2

∑
neuron zi∈layer l

∥∇zi(x)∥2.

Summing this over all layers l ∈ [L] and taking expectation over the data distribution and θ̃ gives us:

L∑
l=1

LRϵ
l ≤

1

ϵ2
E

θ̃,x∼p

[ ∑
neuron zi

∥∇zi(x)∥2

]
.

Now recall that from Corollary 3 we have that:

LC ≥ cηbias

∑
neuron zi

E
θ̃;x∼p

[∥∇zi(x)∥2 ]− ξ̄η −B · Cgrad · Cbias.

Which is equivalent to:

E
θ̃,x∼p

[ ∑
neuron zi

[∥∇zi(x)∥2]

]
≤ 1

cηbias
[LC + ξ̄η +B · CgradCbias].

Which gives us, as desired:
L∑

l=1

LRϵ
l ≤

1

ϵ2cηbias
[LC + ξ̄η +B · CgradCbias].

Recall that Cgrad = maxℓ∈[L] ∥WℓWℓ−1 · · ·W1∥op. Now, for the other inequality we need first the following two sub-claims:

Claim 1:

E
x∼p;θ̃

∥Jxzl(x)∥F ≤
√

C2
gradLRϵ

l + ϵ2nl.
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Proof.

∥Jxzl(x)∥2F =

n0∑
i=1

σ2
i ≤ σ2

max(Jxzl(x)) rankϵ(Jxzl(x)) + ϵ2(nl − rankϵ(Jxzl(x)))

≤ σ2
max(Jxzl(x)) rankϵ(Jxzl(x)) + ϵ2nl

≤ C2
grad rankϵ(Jxzl(x)) + ϵ2nl.

Taking expectations with respect to x ∼ p and θ̃ gives us Ex∼p;θ̃ ∥Jxzl(x)∥2F ≤ CgradLRϵ
l + ϵ2nl. Now notice that Jenson’s

inequality gives us that (Ex∼p;θ̃ ∥Jxzl(x)∥F )2 ≤ Ex∼p;θ̃ ∥Jxzl(x)∥2F , which completes the proof after taking square roots
on both sides.

Claim 2:

E
x∼p;θ̃

∥Jxzl(x)∥F ≥ 1

n0

∑
zineuron in layer l

E
x∼p;θ̃

∥∇xzi(x)∥2.

Proof.

∥Jxzl(x)∥F ≥ ∥Jxzl(x)∥2

≥ 1
√
n0

∥Jxzl(x)∥∞

=
1

√
n0

∑
i∈[nl]

∥∇xzi(x)∥1

=
1

√
n0

∑
i∈[nl]

1
√
n0

∥∇xzi(x)∥2

=
1

n0

∑
i∈[nl]

∥∇xzi(x)∥2.

This completes the proof of the subclaim after taking expectations on both sides.

Now we may prove our bound. Recall that the Local Complexity satisfies:

LC ≤ Cbias

∑
neuron zi

E
x∼p;θ̃

[∥∇zi(x)∥].

So then we have that, using Claim (2),

1

n0 Cbias
LC ≤

∑
l∈[L]

E
x∼p;θ̃

∥Jxzl(x)∥F .

And then by using Claim (1),
1

n0 Cbias
LC ≤

∑
l∈[L]

√
C2

gradLRϵ
l + ϵ2nl.

Which concludes this proof.

A.6. Proof of Corollary 13

Recall that LRl = Ex∼p [rank(Jxzl(x))]. Now we can restate the corollary:
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Corollary 13. In the same setting as Theorem 5:

1

n0 Cbias
LC ≤ Cgrad

L∑
l=1

√
LRl. (32)

Proof. The first inequality follows from the first inequality in Theorem 5, as well as by application of the fact that
limϵ→0 LRϵ

l = LRl. Then notice that:

1

n0 Cbias
LC ≤

L∑
l=1

√
C2

gradLRϵ
l + ϵ2nl −−−→

ϵ→0
Cgrad

L∑
l=1

√
LRl.

A.7. Proof of Proposition 6

Proposition 6. Suppose our data distribution admits a density function p with support Ω. Consider a point x̄ in the interior
of Ω, with classification margin Nθ(x̄) > γ. For any ϵ > 0 with Bϵ(x̄) ∈ Ω, let cϵ = infx∈Bϵ(x̄) p(x). Then TV ≤ cϵγ
implies there are no adversarial examples in Bϵ(x̄).

Proof. Let ˜TV =
∫
Bϵ(x̄)

|N ′
θ(x)|dx, and recall our original definition that,

TV =

∫
Ω

ρ(x)|N ′
θ(x)|dx.

Then we can clearly see that we have the following bound:

cϵ ˜TV ≤ TV.

Now, via the contrapositive argument, suppose that we have x ∈ Bϵ(x̄) an adversarial example, then,

Nθ(x̄)−Nθ(x) > γ.

From here it is clear that ˜TV > γ. So in particular,

TV > cϵγ.

This completes the proof.

A.8. Proof of Theorem 7

Theorem 7. Let gl denote the rest of the network after the lth layer, so that Nθ = gl ◦ϕ(zl− bl). Let Cl denote the Lipschitz
constant of gl. Then with the same setting and notations as Theorem 2:

TV ·
Lcηbias

max1≤l≤L Cl
− ξ̄η −B · Cgrad · Cbias ≤ LC . (13)

Proof. Following the notational conventions in Appendix A.1, recall for any layer 1 ≤ l ≤ L, that our network is:

N (x) = gl ◦ hl(x). (33)

Where gl denotes the rest of the network after layer l. Expanding a layer yields:

N (x) = gl(ϕ(Wlhl−1(x)− bl)). (34)

Recall from Appendix A.1 that we write, where nl denotes the number of neurons at layer l.

Wlhl−1(x) =


...

zil (x)
...


i∈[nl]

.
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Computing gradients on (34), we can get that:

∇xN (x) =
∂gl
∂hl

∂hl

∂x

=

 |
· · · ∇xz

(l)
i (x) · · ·
|


i∈[nl]

∇hl
gl(hl(x)) ⊚


...

1{z(l)
i (x)≥bil}

...


i∈[nl]

,

Where we use ⊚ to denote the element-wise (Hadamard) product. Now let Cl denote the minimal Lipschitz constant for gl
in the image of the data support hl(Ω). Recall also the fact that ∥Av∥2 ≤ ∥A∥F ∥v∥2. Now we can write that:

E
x∼p

[∥∇xN (x)∥]

= E
x∼p


A︷ ︸︸ ︷

∥

 |
· · · ∇xz

(l)
i (x) · · ·
|


i∈[nl]

v︷ ︸︸ ︷
∇hl

gl(hl(x)) ⊚


...

1{z(l)
i (x)≥bil}

...


i∈[nl]

∥



≤ E
x∼p

∥∇hl
gl(hl(x)) ⊚


...

1{z(l)
i (x)≥bil}

...


i∈[nl]

∥ (
∑
i∈[nl]

∥∇xz
(l)
i (x)∥2) 1

2


≤ E

x∼p

∥∇hl
gl(hl(x))∥(

∑
i∈[nl]

∥∇xz
(l)
i (x)∥2) 1

2


≤ Cl E

x∼p

(∑
i∈[nl]

∥∇xz
(l)
i (x)∥2) 1

2


≤ Cl E

x∼p

∑
i∈[nl]

∥∇xz
(l)
i ∥

 .

Where in the last inequality we use that
√
a+ b ≤

√
a+

√
b. Now applying this inequality to each of the L total layers and

taking the sum, we get that:

L E
x∼p

[∥∇xN (x)∥] ≤
L∑

l=1

Cl E
x∼p

∑
i∈[nl]

∥∇xz
(l)
i (x)∥


≤ max

1≤l≤L
Cl E

x∼p

[ ∑
zi neuron

∥∇xzi(x)∥

]
.

Now take expectations over θ̃, and we can combine this with the bound from before in Corollary 3,

E
x∼p,θ̃

[ ∑
neuron zi

[∥∇zi(x)∥2]

]
≤ 1

cbias
[LC + +ξ̄η +B · CgradCbias].

Which then gives us:
L

max1≤l≤L Cl
E

x∼p,θ̃

[∥∇xN (x)∥] ≤ 1

cbias
[LC + ξ̄η +B · CgradCbias],

as desired.
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A.9. Proof of Proposition 8

The representation cost is defined as RΩ(f) = infθ: Nθ(Ω)=f(Ω) ∥θ∥F . We re-state our main proposition:

Proposition 8. In the same setting as Theorem 2, where nl is the maximum hidden layer dimension,

n0

Cbias
LC ≤ n

1−L
2

l L1−L
2 R(Nθ)

L. (14)

Proof. We begin by computing that:

Jzl(x) = WlDlWl−1Dl−1 · · ·D1W1.

With Wl denoting the l-th layer weight matrix and Dl being a diagonal matrix of 0 and 1 denoting the ReLU activation
pattern at the l−th layer, when evaluated at x. Now using a result from Soudry et al. (2018) and Jacot (2023a) we can get
that, for p = 2

L (∥ · ∥p denotes the Lp Schatten matrix norm):

∥Jzl(x)∥pp ≤ 1

L

(
∥WlDl∥2F + ∥Wl−1Dl−1∥2F · · · ∥D1W1∥

)
(35)

≤ 1

L

(
∥Wl∥2F + ∥Wl−1∥2F · · · ∥W1∥

)
(36)

≤ 1

L
∥θ∥2F . (37)

Now we recall the equivalence of the Lp Schatten matrix norm to the Frobenius norm. Notice this is the same as the
equivalence suffices to do this for the equivalent vectors of singular values for the respective norms. For any n× n matrices
A,B:

∥A∥F ≤ C∥B∥p.

Where C = n
1
2−

1
p = n

1−L
2 . Then we also have that:

n
L−1

2 ∥A∥F ≤ ∥B∥p =⇒ (n
L−1

2 ∥A∥F )
2
L ≤ ∥B∥pp.

Applying this to (37) gives us:

(n
L−1

2

l ∥Jzl(x)∥F )
2
L ≤ 1

L
∥θ∥2F =⇒ ∥Jzl(x)∥F ≤ n

1−L
2

l (
1

L
)

L
2 ∥θ∥LF .

Since this holds for all parameterizations of the function learned by N , we can get that:

∥Jzl(x)∥F ≤ n
1−L

2

l L
−L
2 R(N )L.

Apply this, summing over all layers to get:

L∑
l=1

∥Jzl(x)∥F ≤ n
1−L

2

l L1−L
2 R(N )L.

Now combine this bound with (A.5) and we get:

n0

Cbias
LC ≤ n

1−L
2

l L1−L
2 R(N )L.
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A.10. Proof of Proposition 14

Canonical results on training neural networks in the lazy/kernel regime show that the weights do not move far from their
initialization by the end of training (Chizat et al., 2019). The following proposition shows that if this holds, then the local
complexity will also not change much from the beginning to the end of training.
Proposition 14. Consider a 2-layer MLP of the form Nθ(x) = vTϕ(Wx − β) with parameters θ0 = (β(0),W (0), v(0))
at initialization and θt = (β(t),W (t), v(t)) at time t. Suppose also that ∥θ0 − θt∥2 ≤ ϵ. Denote by LC(θt) the local
complexity of parameters θt. If v ̸= 0, then, we have that there exists a constant C independent of ϵ such that,

|LC(θt)− LC(θ0)| ≤ Cϵ

Proof. First note that in the setting of this 2-layer network we can apply Theorem 2 and see that the local complexity is,

LC(θ0) =
1√
2πσ

n1∑
k=1

E
x∼p

[
∥w(0)

k ∥e−
(⟨w(0)

k
,x⟩−β

(0)
k

)2

2σ2

]
.

Where we denote that wk is the k-th row of W . Then notice that,

| 1√
2πσ

e−
(⟨w(0)

k
,x⟩−β

(0)
k

)2

2σ2 | ≤ 1√
2πσ

.

So then, we can compute that

|LC(θ0)− LC(θt)|

= | 1√
2πσ

n1∑
k=1

E
x∼p

[
∥w(0)

k ∥e−
(⟨w(0)

k
,x⟩−β

(0)
k

)2

2σ2

]
− 1√

2πσ

n1∑
k=1

E
x∼p

[
∥w(t)

k ∥e−
(⟨w(t)

k
,x⟩−β

(t)
k

)2

2σ2

]
|

≤ 1√
2πσ

|
n1∑
k=1

∥w(0)
k ∥ − ∥w(t)

k ∥|

≤ 1√
2πσ

n1∑
k=1

ϵ

≤ n1√
2πσ

ϵ.

A.11. Proof of Proposition 9

We first recall a theorem courtesy of Timor et al. (2023):
Theorem 15 (Timor et al., 2023). Let {(xi, yi)}ni=1 ⊆ Rn0 × {−1, 1} be a binary classification dataset, and assume
that there is i ∈ [n] with ∥xi∥ ≤ 1. Assume that there is a fully-connected neural network N of width m ≥ 2 and depth
k ≥ 2, such that for all i ∈ [n] we have yiN(xi) ≥ 1, and the weight matrices W1, . . . ,Wk of N satisfy ∥Wi∥F ≤ B
for some B > 0. Let Nθ be a fully-connected neural network of width m′ ≥ m and depth k′ > k parameterized by
θ. Let θ∗ = [W ∗

1 , . . . ,W
∗
L] be a global optimum of the above optimization problem (15). Namely, θ∗ parameterizes a

minimum-norm fully-connected network of width nl and depth L that labels the dataset correctly with margin 1. Then, we
have

1

L

L∑
i=1

∥W ∗
i ∥op

∥W ∗
i ∥F

≥ 1√
2
·

(√
2

B

) k
L

·
√

L

L+ 1
. (38)

Equivalently, we have the following upper bound on the harmonic mean of the ratios ∥W∗
i ∥F

∥W∗
i ∥op

:

L∑L
i=1

(
∥W∗

i ∥F

∥W∗
i ∥op

)−1 ≤
√
2 ·
(

B√
2

) k
L

·
√

L+ 1

L
. (39)
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We will leverage the result in this theorem, particularly the bound on the harmonic mean of the ratios ∥W∗
i ∥F

∥W∗
i ∥op

to prove the
following proposition.

Proposition 9. Let {(xi, yi)}ni=1 ⊆ Rn0 × {−1, 1} be a binary classification dataset, and assume that there is i ∈ [n] with
∥xi∥ ≤ 1. Assume that there is a fully-connected neural network N of width m ≥ 2 and depth k ≥ 2, such that for all
i ∈ [n] we have yiN (xi) ≥ 1, and the weight matrices W1, . . . ,Wk of N satisfy ∥Wi∥F ≤ B for some B > 0. Let Nθ

be a fully-connected neural network of width m′ ≥ m and depth k′ > k parameterized by θ. Let θ∗ = [W ∗
1 , . . . ,W

∗
L] be

a global optimum of the above optimization problem (15). Then, assuming the same setting as Theorem 2, we have the
following bound on the local complexity:

1

Lmaxl∈[L] ∥W ∗
i ∥op

 n0

Cbias n
1−L

2

l L1−L
2

LC

 1
L

− γ (16)

≤
√
2 ·
(

B√
2

) k
L

·
√

L+ 1

L
, (17)

where, γ = ∥W ∗
i ∥F

(√
1

∥W∗
l ∥op

−
√

1
∥W∗

i ∥op

)2
.

Proof. Following an intermediate result from Section A.9 gives us that, for K = n
1−L

2

l L1−L
2 :

n0

Cbias K
LC ≤ (

∑
i∈[k′]

∥W ∗
i ∥F )L =⇒ (

n0

Cbias K
LC)

1
L ≤

∑
i∈[k′]

∥W ∗
i ∥F .

Then we can see that we also would have:

1

Lmaxl∈[L] ∥W ∗
i ∥op

(
n0

Cbias K
LC)

1
L ≤ 1

L

∑
i∈[L]

∥W ∗
i ∥F

∥W ∗
i ∥op

.

Now via the bound controlling the difference between the arithmetic mean and the harmonic mean (Meyer, 1984), we can
get that:

1

L

∑
i∈[L]

∥W ∗
i ∥F

∥W ∗
i ∥op

− L∑L
i=1

(
∥W∗

i ∥F

∥W∗
i ∥op

)−1 ≤ (
√
αmax −

√
αmin)

2.

Where,

αmax = max
l∈[k′]

∥W ∗
l ∥F

∥W ∗
l ∥op

,

and

αmin = min
i∈[k′]

∥W ∗
i ∥F

∥W ∗
i ∥op

.

But notice that, by Timor et al. (2023, Lemma 15), we have that:

∥W ∗
l ∥F = ∥W ∗

i ∥F .

So then,

(
√
αmax −

√
αmin)

2 = ∥W ∗
i ∥F

(√
1

∥W ∗
l ∥op

−

√
1

∥W ∗
i ∥op

)2

= γ.

and we get as a consequence of the bound controlling the Harmonic Mean from the prior theorem:

1

Lmaxl∈[L] ∥W ∗
i ∥op

(
n0

Cbias K
LC)

1
L − γ ≤

√
2 ·
(

B√
2

) k
L

·
√

L+ 1

L
.
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A.12. Derivation of Corollary 10 (informal)

Corollary 10. [Informal] Suppose that ∥θ(t)∥2 = Θ
(
(log 1

λ )
1/L
)

holds. Then, in the “rich” phase of training the local
complexity is bounded:

n0

Cbiasn
1−L

2

l L1−L
2

LC ≤ Θ(log 1
λ ). (18)

Suppose that ∥θ(t)∥2 = Θ((log 1
λ )

1/L). Then recall by Proposition 6 we have that:

n0

Cbias
LC ≤ n

1−L
2

l L1−L
2 R(N )L

≤ n
1−L

2

l L1−L
2 ∥θ(t)∥L2

= n
1−L

2

l L1−L
2 Θ((log

1

λ
)1/L)L

= n
1−L

2

l L1−L
2 Θ(log

1

λ
).

B. More Information on Empirical Studies
B.1. On Estimation of the Local Complexity in Figure 1

The network in question is trained to exactly represent a 2D grayscale image of the Stanford Bunny (Turk & Levoy, 1994),
using the Mean Squared Error loss function and Adam optimizer with learning rate 1e− 4. The left hand figure is an exact
visualizations of the linear regions in this network computed using the implementation of Humayun et al. (2023a).

To understand how we compute the local complexity, let us first recall the key result from Theorem 2, from which we then
use the trivial upper bound on the indicator function:

LC =
∑

neuron zi

E
x,θ̃

[∥∇zi(x)∥2 ρbi(zi(x)) 1zi is good at x] ≤
∑

neuron zi

E
x,θ̃

[∥∇zi(x)∥2 ρbi(zi(x))] (40)

Using this we can also get the estimate of the local complexity density function f :

f(x) ≤
∑

neuron zi

Ẽ
θ

[∥∇zi(x)∥2 ρbi(zi(x))] (41)

We can now empirically estimate the right hand side of (41) by using computing finite samples of perturbations to the biases
and taking the empirical mean. In particular we use σ = 0.05 for Figure 1. We provide here an ablation on the choice of σ
in Figure 4. In Figure 5 we provide an example illustrating the effect of adding noise not only to the biases but also to the
weights.

Several of our bounds, in particular those derived from Corollary 3, rely on removing the term ρb from the summand when
computing the Local Complexity. We demonstrate in Figure 6, the effect of estimating the local complexity density function
as:

f̂(x) =
∑

zneuron

Ẽ
θ

[∥∇(x)∥2]. (42)

We show in Figure 6 what this density function looks like, and we can see that it still bears a strong qualitative resemblance
to the original structure of linear regions from Figure 1.
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Figure 4. Here we show the effects of estimating the local complexity density function f with varying levels of σ. We show σ = 0.025
(Left), σ = 0.05 (Middle), and σ = 0.1 (Right).

Figure 5. Here we plot the local complexity density function f comparing the effects of adding noise to just the biases (Left) vs adding the
same amount of noise to both the biases and the weights (Right). Here we used σ = 0.05. As we see, the effects are qualitatively similar
in both cases.

Figure 6. Effect of plotting f̂ as defined in (42). The setup is otherwise the same as that in Figure 1 and Figure 4.
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B.2. Details on Figure 2

We create a synthetic dataset by sampling from an isotropic Gaussian X , and a correlated isotropic Gaussian Y . The
cross-covariance matrix between X and Y is randomly generated. In these examples we use an input dimension of 100 and
an output dimension of 2. We train with the Adam optimizer with learning rate 1e− 4. We show that this effect is the same
across several training runs, each with a different cross-covariance matrix in Figure 7.

Figure 7. Here we run the same experiment as in Figure 2, 6 times, each with a different cross-covariance matrix. We demonstrate that
this effect is consistent by plotting standard deviation error bars on each collected data point. We find a Pearson’s correlation coefficient of
0.852 between the local complexity and the local rank at layer 2, and a Pearson’s correlation coefficient of 0.957 and 0.985 at layers 3
and 4 respectfully.

B.3. More Information on Estimation in Figure 3

Here we compute the local complexity as in Section B.1 by computing the gradients at each neuron ∇z(x) and computing a
mean over data points in the test dataset. Similarly, we estimate the total variation of our network by computing the mean of
∥∇N (x)∥ at points in the test dataset.

We note that we see most clearly the relationship between the total variation and the local complexity when training with
a high initialization scale. In Figure 3 we initialize our weights with a standard deviation twice that of the typical He
initialization scheme (He et al., 2015). This approach is commonly employed in the literature when investigating grokking
and the terminal phase of training (Fan et al., 2024; Lyu et al., 2024). Nevertheless, in Figure 8 we perform an ablation study
on the initialization scale. In both cases we can see an increase in the adversarial accuracy late in training corresponding to a
drop in the local complexity, but the correlation between the local complexity and the total variation seems to break down at
lower initialization scales. So, our theoretical works appear to not fully describe the dynamics in certain cases.

B.4. Remarks on Tightness of the Bounds

We observe in Figure 8 that the total variation occasionally fails to decrease alongside the local complexity, which raises
questions about the tightness of the bound in Theorem 7. While the exact relationship between total variation and local
complexity is complex, these empirical findings do not necessarily invalidate the bound. The bound as stated depends on the
term max1≤l≤L Cl, where Cl represents the Lipschitz constant of gl (the rest of the network following the l-th layer). To
empirically verify this bound’s validity, we need to compute or estimate this term. We propose the following crude approach
for estimating the Lipschitz constant term:

max
1≤l≤L

Cl ≤ max
1≤l≤L

∥WlWl+1 · · ·WL∥op.

The above inequality is tight if there is a linear regions for which all neurons are active. Using this as an estimate for
max1≤l≤L Cl, we can then compute an empirical estimate for the term:
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Figure 8. Here we demonstrate the results of training an MLP on a subset of the MNIST dataset with the standard He initialization (Top)
and 3x the regular He initialization. This model has the same architecture as that in Figure 3.

TV ·
Lcηbias

max1≤l≤L Cl
≈ TV ·

Lcηbias

max1≤l≤L ∥WlWl+1 · · ·WL∥op
. (43)

We visualize the relationship between this quantity and the Local Complexity in Figure 9. When comparing Equation (43)
with the local complexity, we find that the observed increases in total variation during late-stage training can be attributable
to larger Lipschitz constants Cl, rather than an inherent looseness in the bound. This observation suggests further intriguing
and unexpected behavior during the terminal phase of training that merits further investigation.

ON THE NUMBER OF NEURONS WHICH ARE NOT GOOD

Many of our lower bounds also involve a factor B, which we define to be the expected number of neurons which are not
good when evaluated over the data distribution. In particular, we will measure,

B = E
x∼p

[ ∑
neuron zi

1zi not good at x

]
.

For a fully connected network, a neuron would be not good at x only if there is a layer in the network for which every
neuron is off when evaluated at x. This means that this quantity would be quite small for networks of reasonable width, as
we can see in Figure 10.
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Figure 9. Here we train a network on MNIST with the He initialization scheme, 4 hidden layers each with dimension 200. We see a
spike in the Total Variation late in trainig (dotted line). On the left, can also see that the lower bound as estimated via equation (43) still
decreases along with the local complexity in the terminal phase of training. On the right, we show that this behavior is reproducible by
running the same experiment 8 times and computing a confidence interval of the term LC− TVLc

η
bias

max1≤l≤L Cl
We use a η = 1, σ = 1, to

estimate the constant terms, as we find that this choice of η maximizes the tightness of the lower bound from 7.

Figure 10. Here, we plot the empirically observed value of the number of neurons which are not good, B, for an MLP during training on
MNIST. Both networks have depth 4, and we can see that for the wider network B = 0 at all timesteps.
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C. Additional Figures
C.1. Clusters in Weight Vectors After Drop in Local Complexity

Here, in Figure 11, we demonstrate the emergence of structure in UMAP plots of weight vectors late in training. This
connects to the concept that, in the kernel regime, networks fit data points without substantially altering the structure of their
linear regions. However, after transitioning to the rich training regime, we observe more intricate clustering in the weight
vectors, providing evidence of feature learning.

Figure 11. Here we demonstrate qualitative changes in the parameters before and after the drop in local complexity. We consider here
a one hidden layer MLP trained on a subset of 1000 images of the MNIST dataset. The hidden layer has 5000 neurons. We plot a
low-dimensional UMAP visualizations of the weight vectors associated to each neuron in the hidden layer at 494 iterations (marked by
dashed line) and at 1, 000, 000 iterations.
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C.2. Local Rank on MNIST

In Figure 12 we demonstrate the dynamics of Local Rank when training with a subset of 1000 images of the MNIST dataset.
We note that the drop in the local rank approximately corresponds to the second drop in the local complexity, as well as the
increase in the adversarial robustness of the network.

Figure 12. Local Rank Analysis on the MNIST Dataset. In this figure we train an MLP on MNIST with 3 hidden layers of 200 neurons
each. We use a regular 1x initialization scale.

C.3. Local Complexity and Weight Decay

In Figure 13 we demonstrate a correlation between the weight decay parameter over several training runs, and the drop in
local complexity late in training, which relates to our results in Proposition 10.

Figure 13. Here we demonstrate a correlation between the weight decay parameter and the drop in local complexity late in training. On
the left, we note that this drop appears to come earlier for higher values of the weight decay parameter. On the right, we plot the bounding
quantity from (18) on the x-axis, and the local complexity at the end of training on the y-axis. We also plot a linear regression, and
observe an R2 = 0.6972. In these experiments, we consider a shallow 2 layer MLP, with a hidden-layer dimension of 1000. This network
is trained on a subset of MNIST with the Adam optimizer and learning rate 1e− 4.
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C.4. Local Complexity on Other Datasets

We illustrate in Figure 14 that the primary empirical observation of this paper, that local complexity decreases and robustness
to adversarial examples improves late in training, extends beyond our initial setting. Specifically, we show similar trends for
the CIFAR-10 (Krizhevsky & Hinton, 2009) and Imagenette (Howard, 2019) datasets. However, these additional results
are limited in scope due to the relatively poor performance of MLPs compared to CNNs on these tasks, coupled with the
challenges posed by the higher dimensionality of the input, which makes estimating local complexity computationally
demanding and memory-intensive.

(a) Training Dynamics of Local Complexity compared to
accuracy and adversarial performance on CIFAR-10.

(b) Training Dynamics of Local Complexity compared to
accuracy and adversarial performance on Imagenette.

Figure 14. Here, we can see some evidence that a drop in the local complexity and an increase in the adversarial robustness persists in
other datasets.
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