
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RECOGLAB: A FRAMEWORK TESTING RELATIONAL
REASONING & COGNITIVE HYPOTHESES ON LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

A fundamental part of human cognition is the ability to not only recall memories,
but to reason and manipulate information from them. In cognitive science and
psychology, this is termed relational reasoning or relational memory and a num-
ber of cognitive effects and biases have been observed and proposed. Some of
these effects include congruence, the symbolic distance effect and transitive infer-
ence. In addition, many of these phenomena have been observed in large language
models on various handcrafted reasoning benchmarks. While some of these have
been studied individually in prior benchmarks for reasoning with, none of these
have the flexibility to study all or even most of these hypotheses. In this work,
we create a fully customizable, automatically generated dataset which allows us
to study these effects in detail. We introduce four settings with multiple cognitive-
reasoning-inspired tasks targeting different skills and difficulties with parameters
of each of these being configurable to run probes on different abilities. With our
framework, we test and find many of these human cognitive effects are repeated
in LLMs and provide a number of interesting analyses. We believe our generative
framework will help accelerate the testing of various cognitive hypotheses and
provide an interesting alternative paradigm for measuring reasoning capabilities.

1 INTRODUCTION
While recent work on memory in large language models (LLMs) assumes that memory refers to the
recall of a specific piece of information from the past Li et al. (2024a); Levy et al. (2024), research
into human memory and reasoning has long shown memory to be much more complex. When
humans remember events, facts, places, etc., they don’t just recall disconnected pieces, they recall
the associations Cohen (1993); Eichenbaum (2004). Thus humans have the remarkable ability to
recall relationships (“relational memory”) and draw inferences across related memories (“relational
reasoning”).

Understanding and quantifying the relationship between human memory and reasoning has a long
history of inquiry in the cognitive sciences. Experiments in these fields query memory for rela-
tionships between different entities (e.g. “How is A related to B?”) and inferences about these
relationships (“Given A is related to B and B to C, how are A and C related?”). These studies allow
researchers to measure not just what is remembered, but how remembered information can inform
a reasoning process. Patterns of errors and timing in these experiments provide glimpses into the
underlying neural mechanisms that support the interaction of memory and reasoning. From this
literature, a number of interesting effects have been observed, including transitive inference, and
effects of presentation order, symbolic distance, and familiarity (Domjan, 2010; Moyer & Bayer,
1976; Koster et al., 2018) which have been studied individually in LLMs.

Prior work in evaluating LLMs on these kinds of relational reasoning problems have generally fallen
into one of two camps. Either the benchmark is specifically designed to study recall of one or a few
prior facts such as (Bai et al., 2024), or a specific cognitive science hypotheses has been tested on an
evaluation created for that purpose such as in (Domjan, 2010). In this work, we aim to provide an
evaluation framework that allows for the systematic evaluation of LLMs on relational memory and
investigation of different possible effects (many inspired from the cognitive science literature).

Toward that end, we introduce ReCogLab, a framework for generating synthetic evaluation data that
permits careful probing of the various aspects of relational reasoning over long contexts. Examples
from this dataset can be seen in Fig. 1. The key aspect of this dataset is that virtually every aspect of
the data can be controlled via a configuration file specifying parameters. For instance, in our Social
Networks dataset, we can specify the number of entities, in Comparison we can control the ordering
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Figure 1: ReCogLab Examples. We show examples and the reasoning structure for Comparison
(Sec.3.1) Social Networks (Sec.3.2), Syllogisms task (Sec.3.4) and JSON Families (Sec.3.3). These
tasks evaluate a variety of important reasoning capabilities such as transitive inference, working
memory capacity, and set reasoning. ReCogLab is capable of exploring. See Appendix C for more
full examples from each of these tasks.

of statements, and in syllogisms we can control if the underling logical premises (e.g. all dogs are
animals) are congruent, which is to say, true to the world. This level of control allows for the creation
of datasets with varying length and complexity, facilitating the investigation of cognitive phenomena
in long context language models. We present four tasks within ReCogLab to probe distinct aspects
of relational reasoning.

With ReCogLab in hand, we perform a number of probes, some drawn from the cognitive science
literature and some new, that allow us to probe many aspects of relational reasoning in large language
models. In particular, we show reasoning performance often depends systematically on features that
have been observed or hypothesized to affect reasoning performance in humans, like presentation
order (Domjan, 2010), congruency with prior experience (Koster et al., 2018), and the symbolic
distance between related entities (Moyer & Bayer, 1976). Our findings reveal intriguing parallels
between human cognitive patterns and LLM behavior, suggesting common statistical or mechanistic
factors constrain relational reasoning in both humans and machines.

In this paper we: (1) introduce ReCogLab, a new flexible dataset framework for cognitive science-
inspired probes of LLMs on relational memory (2) perform numerous experiments to illustrate the
flexibility and usefulness of our framework for this purpose (3) study several observed and hypoth-
esized relational reasoning phenomena reported from the cognitive science literature enabled by the
procedural generation of structured, text-based prompts (4) benchmark several LLM families on re-
lational reasoning (5) provide analysis and new insights into LLM reasoning, including places where
they fall short. We will release the ReCogLab framework and datasets used in this manuscript upon
publication as a useful tool for evaluating examining LLMs for relational reasoning.

2 BACKGROUND

Relational Memory and Reasoning in Cognitive Science. Relational memory and reasoning
have been studied by psychologists across a variety of domains (Behrens et al., 2018; Eichenbaum,
2004; Nelli et al., 2023; Kumaran & Maguire, 2005; Tolman, 1948; Stupple & Ball, 2008; Evans
et al., 1983). A good example of how these work together is “transitive inference” (Burt et al., 1911;
Piaget, 1957): subjects are given data with the form “A>B, B>C, C>D, D>E”, then queried about
relationships that they did not observe directly but can be inferred (e.g. B>D). Many experiments
vary different parameters of transitive inference to construct meaningful insights into cognitive bi-
ases. In this study, we explore different ways relational memory and reasoning interact in a language
model. We investigate the effect of features like presentation order (Domjan, 2010)(Sec. 4.1) and
symbolic distance (Moyer & Bayer, 1976) (Sec. 4.3) on 8 different language models. We also ex-
plore how these models’ relational reasoning abilities are impacted by sequential processing and
feature learning (Koster et al., 2018) through our congruency experiments in Sec. 4.2.

Other experiments have studied humans ability to reason about and sometimes navigate more com-
plex relational structures, such as trees, grids, or community graph structures (Mark et al., 2020;
Schapiro et al., 2013; Garvert et al., 2017; Lynn & Bassett, 2020). These experiments inspired our
more richly structured datasets in Sec. 3. Relevant work in psychology has also studied syllogistic
reasoning (Chater & Oaksford, 1999), and connections have been hypothesized that link syllogis-
tic reasoning with reasoning over transitive chains (Guyote & Sternberg, 1981). Indeed, a notable
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failure mode is that humans appear to simplify syllogisms to create easier-to-reason-about transitive
chains (Ceraso & Provitera, 1971), which informs our investigation in Sec. 4.3.

Evaluation of LLMs Early work on reasoning benchmarks for language models1 includes
bAbI (Weston et al., 2016), a QA-style synthetic benchmark requiring very simple language un-
derstanding and reasoning questions, and Knowledge Base Question Answer (KBQA) Berant et al.
(2013); Lopez et al. (2013), a system for evaluating multi-hop reasoning on knowledge graphs. Like
our work, KBQA is heavily inspired by using graphs to assess relational reasoning capabilities.

More recently, datasets such as BigTOM (Gandhi et al., 2023), ToMi (Le et al., 2019) and Rule-
Takers (Clark et al., 2020) have been developed requiring much more complex reasoning. Other
relevant work has investigated logic programming for logical deduction (Li et al., 2024c), multihop
QA (e.g. (Li et al., 2024b)), and knowledge graph reasoning (e.g. (Luo et al., 2023)).

Other related work includes long-context LLM evaluations (Levy et al., 2024; Bai et al., 2024;
Vodrahalli et al., 2024). Li et al. (2024a) in particular includes some of the aspects of relational
reasoning but without our dataset’s customizability. All of these works focus specifically on this
question of thoroughly examining the context length of language models. Our dataset is unique
in affording a joint inspection of context length in the context of relational reasoning, and affords
scaling complexity along other directions with customizabilty along multiple dimensions.

Comparison of LLMs to humans Substantial work has compared reasoning in LLMs to humans
(Hagendorff et al., 2024; Binz & Schulz, 2023), employing cognitive science and psychological
methodologies to explore the biases in LLMs Jones & Steinhardt (2022); Seals & Shalin (2023);
Webb et al. (2023); Berglund et al. (2023). Some of the cognitive effects that we study here have
been studied individually in some of these works such as: consistency of logical reasoning with
prior knowledge Lampinen et al. (2024) (Sec. 4.2), syllogistic reasoning Eisape et al. (2024) (see
Sec.4.1, 4.2), premise order in syllogisms Chen et al. (2024) (Sec. 4.1), and susceptibility to irrel-
evant information (an aspect of capacity experiments in Sec. 4.1). We similarly adopt experiments
from the cognitive science literature as a reference point for understanding LLM behaviors, but in
the context of relational memory and reasoning.

Sandbox Evaluation Toolkits We have proposed a framework for automatically generating new
templated datasets for relational reasoning problems. Other works have looked to increase the speed
of creating evaluations, for instance Dynabench Kiela et al. (2021) and later Dynatask Thrush et al.
(2022) which allow for rapid integration of models into dataset creation. However, this still requires
human annotation and thus would not be able to automatically change parameters of the dataset
instantaneously as our framework does. Cognitive scientists have long been interested in evaluating
LLMs as we do with humans Hernández-Orallo (2017) and environments such as animal-ai envi-
ronment Voudouris et al. (2022) have been created. However, this environment is a 3D embodied
environment, and while it also touches on memory, it does not touch on language or on relational
reasoning specifically.

3 RECOGLAB FRAMEWORK
We now describe in detail our framework for automatically generating many evaluations on rela-
tional reasoning with customizable properties and complexity.

Examples generated by ReCogLab come from one of four tasks: Comparison, Social Networks,
Syllogisms, JSON Families. We chose these tasks because they were able to be generated auto-
matically and they include a spectrum of problems in relational reasoning. Each of these tasks can
be characterized as reasoning about graph problems using language. See Figure 1 to see exemplars
from each dataset and the corresponding logical graphs associated with each. See Appendix. C for
additional full examples. Each example consists of context C which consists of multiple factual
statements that the model assumes to be true (e.g. “Miranda is related to Steve”). Each of these facts
denotes a relationship Rij between pairs of entities (Ei, Ej) (each of which is a person or object
or other noun in the relationship or can be an attribute). Next is the question Q, which relies on a
subset of the context C to answer, requiring integrating information across distinct facts to answer.
Finally, each example has a corresponding, non-ambigious answer or answers A.

1As well as other AI systems, see e.g. Cropper & Dumančić (2022)
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Task Sub-tasks Configurable Parameters

Comparison Larger-Smaller,
Older-Younger,
Heavier-Lighter, Consistency
Detection, Indeterminate
Conclusion

network type, num entities,
entity type, ordering,
congruence,
randomize relations,
do reverse comps

Social Networks Fastest Message,
Oldest/Youngest Generation

network type, num entities,
entity type, relation type,
randomize relations

JSON Families Family Size, Member Hobby,
Hobby Comparison, Age
Comparison, Size Comparison

num families, max members,
hop length

Syllogisms Set Membership entity type, num entities,
ordering

Table 1: ReCogLab Sub-tasks and configurable parameters. Please see Appendix A for more
details on how these sub-tasks and parameters are defined and implemented. Bold text indicates
sub-tasks and parameters used to support cognitive findings in our experiments.

Next, we emphasize that ReCogLab is not just a dataset, but a framework for automatically gen-
erating and configuring infinite datasets and dataset examples. To generate an example, you pass
into ReCogLab a random seed (to allow for reproducible generation), a split (train/val/test, which
determines which subset of all entities E is used), and a configuration file. The configuration file
specifies the task (and sub-task) along with the value to use for configurable parameters. See Tab. 1
for a full list. Some important parameters here are “num entities”, which determines the number
of relationships/facts in the context, used in Sec. 4.1, “ordering” which determines if facts are pre-
sented in order, also used in Sec. 4.1 and “congruence,” used in Sec. 4.2. Because we control the
data generating process by specifying parameters, we can produce datasets that evaluate specific
reasoning behaviors or hypotheses or vary levels of difficulty. Please see Sec. A.1 for more details
about how each task generates test examples mechanically.

We now describe each of our four main task types in greater detail.

3.1 COMPARISON
A comparison is a directed edge in an acyclic graph where vertices are entities and edges describe
a directional comparison between them. Inspired by transitive inference going back to (Burt et al.,
1911), we construct comparison problems using three attributes that exhibit transitivity: comparison
of age, size, or weight of objects.

For comparison reasoning problems, we target specific parameters to understand how language mod-
els behave when presented with similar problems in different forms such as: the comparison type,
the number of objects, the ordering of comparisons, and the attribute types of directional reasoning.

3.2 SOCIAL NETWORKS
Inspired by Kumaran & Maguire (2005), the next set of tasks we propose require reasoning about
Social Networks. Like comparisons, a social network can be algorithmically represented as a graph
problem where nodes represent people and edges represent a particular relationship like friendship.
Unlike with Comparisons, because friendship is (typically) a symmetric relationship, social net-
works are undirected graphs.

A social network is good for probing long-context relational reasoning for several reasons. First,
social networks can be arbitrarily complex. This makes it possible to generate very long chains
with complex structure. Secondly we introduce “flavor text” (see Appendix A) generation in ev-
ery example’s context. Finally one could consider combining other kinds of social network edges
like teacher-student (directed edge) or even enemies (undirected edge that has a different semantic
interpretation) to build even more complex reasoning probes.

3.3 JSON FAMILIES
The family dataset is a structured, JSON-formatted family data. Every family consists of a number
of members, and the context consists of a number of families. This dataset is generated by defining
a set of first names, last names, hobbies etc. Questions are asked per family and require compar-
ing two families. The sub-tasks in this dataset are: Family size (asking the size of one family),
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Figure 2: Effects of contextual premise order. We show the effect of transitive inference on an-
swering reasoning problems correctly. For Syllogism and Comparison, we construct three different
orders of the contextual premise. We find that processing information in some logically relevant
(inorder or reverse) order produces improvement. Surprisingly this effect is not observed for set rea-
soning in Syllogism. The different performance across different language models on Comparison
and Syllogism suggest that reasoning capabilities on different tasks may not be correlated.

family member hobby (checking if a family member has a specific hobby), family size comparison
(comparing family sizes of two families), family member age comparison (asking the relative age of
two members of two families), and family member hobby comparison (comparing hobbies of two
different families). See Appendix A for more details.

3.4 SYLLOGISMS
Previous work on syllogistic reasoning has shown interesting parallels between humans and lan-
guage models (Eisape et al., 2024). We extend prior work that has studied ordering and congruence
effects on humans and language models to include a capacity dimension. We construct chains of
propositions that transitively resolve to a single final conclusion and prompt the language model to
choose between all possible conclusions with the given subject and predicate.

3.5 DATASET CREATION
For each of these tasks, we create datasets with fixed seeds to guarantee consistency and repro-
ducibility. We generate sweeps of different configurations targeting evaluations of a specific cogni-
tive probe. We generate 50 validation and report on 1000 test examples. Here the important thing is
not the specific examples of the dataset, but the ability to tailor skill and difficulty levels to measure
cognitive abilities in different LLMs. We intend to release the code for generating our datasets used
in this manuscript as well as the custom configuration to empower others to investigate cognitive
effects in language models.

3.6 EVALUATION PROTOCOL
A core challenge in evaluating language models is the significant impact of prompting on their per-
formance. To ensure a fair comparison when measuring different language models, we propose
decoupling the prompt and parsing hyperparameters from the language model. We curated a library
of prompts and parsing strategies targeting ReCogLab. These libraries cover a wide range of tech-
niques from simply asking the question to role prompting. We use a small validation set to select the
best performing combination of a prompt and string parser. This allows us to probe a wide variety of
language models that is agnostic to a model’s preference for a particular prompting strategy. Please
see Sec. B for a list of all prompts and prompt strategies we validated.

4 EXPERIMENTS

Now that we’ve described the ReCogLab framework, we can demonstrate the flexibility of gener-
ation it provides when testing language model capabilities. In particular, we will score different
LLMs on their ability to perform relational reasoning tasks.

In this paper we look at transitive inference (Sec. 4.1), congruency (Sec. 4.2), the symbolic dis-
tance effect (Sec. 4.3), identifying logical inconsistencies (Sec. 4.4) and indeterminate reasoning
(Sec. 4.5). These experiments were all made with little additional effort using our flexible ReCogLab
framework by altering the configuration files. From our experiments, we observe that LLMs share
many of the reasoning patterns, biases, and limitations with human relational reasoning.
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(a) Capacity Social Network (b) Capacity Person Comparison

(c) JSON Family Hobby Comparison (d) Syllogisms

Figure 3: Problem complexity vs. Accuracy. We show the effect of adding complexity and context
in the form of increasing number of entities for each our tasks. We find in all cases that performance
drops, although this drop is less severe in more capable models such as GPT-4o and Gemini Pro

Language Models We evaluate several open-source and closed-sourced models on our suite of
cognitive benchmarks. In our results, we show Google’s open-source Gemma-2B, 9B, 27B family
in green. The open-source Mixtral models are shown in yellow/orange. Gemini Flash and Gemini
Pro (closed-source) are shown in blue. OpenAI’s GPT-4o (also closed source) is shown in red. All of
these language models are the instruction-tuned variants. Each specific probe involves validating on
50 examples before selecting the best prompt and parserfor test-time evaluation on 1000 examples.
We also plot a 95% confidence interval to give an idea of the confidence in the difference between
models and in the trendlines.

4.1 TRANSITIVE INFERENCE

Transitive inference ((Piaget, 1957)) is a quintessential example of relational reasoning (e.g. “if
A > B and B > C, then A > C”). This ability is intact even if this information is presented such
that the temporal order is different from the symbolic ordering (e.g. if “B > C and A > B”); how-
ever, a performance improvement has been reported for comparison judgments if the symbolic and
sequential order match (Domjan, 2010). Thus, we wanted to evaluate our models’ ability to reason
accurately about associations presented in context, and measure whether there was a dependence on
presentation order in their context across different domains.

In Fig. 2 we see this experiment for Comparison and Syllogisms. For Comparison, we can clearly
see across nearly all models randomizing the order causes noticeable degradation (Gemma 2B, 9B
and Mixtral 7B perform near or below chance of 0.5, guessing or giving invalid answers). Reversing
the presentation order also often negatively affects performance in many, but not all cases.

Interestingly in Syllogisms (chance performance is 0.25), we see that not all models do better when
entities are in order. In these cases, the model will often skip a full step-by-step of the problem
and say something along the lines of “We know there’s a chain from entity A to entity Z so ‘All
As are Zs’ is correct” even when there are statements within the chain like ‘Some X are Y’. These
error patterns are consistent with the observation that errors in human syllogistic reasoning seem to
derive from simplifying relationships to enable a more computationally lightweight transitive chain
(Ceraso & Provitera, 1971; Chater & Oaksford, 1999; Guyote & Sternberg, 1981). We speculate
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Figure 4: Congruent and Incongruent reasoning. We find that transitive inference is strongly
impacted by real-world priors. We construct Comparison problems with objects that are Congruent
and Incongruent with real world objects. We also generate a version which Random Name replaces
all comparison objects with randomly generated strings that contain no real world priors. Across the
different language models, we observe degradation in reasoning capabilities when presented with
logically consistent, but incongruent statements about the real world.

that consistent presentation order may bias the model toward these approximate solutions, although
more investigation is needed.

In Fig. 3, we further measure how this ability depends on complexity measures of the reasoning
problem: e.g. total length of context, the number of relations. These experiments test the capacity
of our LLMs on these datasets. Because these datasets are easily configurable, for each of our
four datasets, we scale difficulty and context length of these dataset in different ways to see how
each of our models responds. We find, perhaps unsurprisingly, that performance generally degrades
as the complexity of the problem increases across all models. The more capable closed-source
models (Gemini Flash, Gemini Pro, GPT-4o) perform the best. Interestingly, on JSON Family, the
performance of Gemini Pro seem to levels out rather than decreasing and GPT-4o only decreasing
slightly, suggesting that they are particularly good at needle-in-the haystack style questions, but
struggle along with the rest of the models on other datasets requiring more than two pieces of context.
These trends seem consistent even within confidence intervals, but more study is needed to fully
validate this effect and we hope that our framework enables further research into this area. We might
for instance want to separate out more clearly the effect of long contexts from problem complexity
by experimenting with “filler” text scaling (adding irrelevant text) versus making the graphs more
complex to further analyze these trends.

4.2 CONGRUENT AND INCONGRUENT
Despite only being trained on textual data, language models exhibit remarkable knowledge about
real world physical attributes of objects. This can be easily demonstrated when asking questions
like: Are fire trucks larger than teddy bears?. This prior knowledge is aligned with real facts about
the world and is essential for many applications of language models.

Motivated by the findings of Lampinen et al. (2024), who report that logical reasoning is more
accurate when logical premises are congruent with real-world facts for LLMs (as it is for humans),
we sought to explore this in the relational reasoning regime. Expanding on their paradigm, we
categorize premises based on their grounding in real-world knowledge. Congruent relationships are
those that are consistent with the real world (e.g “whales are larger than minnows”). Conversely,
incongruent relationships contradict our prior knowledge about the world (“minnows are larger than
whales”). Finally, we consider a third category of relationships involving contrived, nonsensical
relationships (“glarbs are larger than bojaks”) that have no meaningful semantics behind the terms.
Intuitively, congruent relationships are more likely to be consistent with the prior training of the
language model and may bias the answering of these questions.

First, we investigate the impact of congruence on language model performance, replicating the ob-
servation that congruence contributes positively to performance.

For the Comparison task, to extract real-world knowledge about objects, we curated a list of 540
objects and asked a language model to estimate their size in kilograms and meters. From this,
we construct comparison problems that are Congruent and Incongruent. We also generated a
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Figure 5: Symbolic Distance Effect We plot performance on 20-entity Comparison. For each
example, we compute the “symbolic distance” of the answer which is the minimum number of
statements one would need to traverse to verify an answer. For most models (the weaker Mixtral 7B
and Gemma 2B) we see a curve in which accuracy decreases with symbolic distance between 1 and
5, but then improves for symbolic distances above about 15.

Random-String version of the comparison problem which replaces all object names with a random
string of alphanumeric characters of length 5 for the contrived, nonsensical baseline.

We find that using Congruent statements outperforms similar comparison problems constructed
with Incongruent statements. This behavior is consistent across language models and relational
reasoning tasks. Some models even exhibit worse-than-chance (0.5) correctness on Incongruent
comparison problems. Random-String performance lands between the two extremes, suggesting a
positive relationship between reasoning competency and factual coherence. To further investigate
these early findings, future researchers can use our framework to add more types of tasks to see if
this result holds for multiple types of problems and vary other parameters (such as context length)
to see if requiring more context degrades model’s ability to reason counter to its congruence bias.

4.3 SYMBOLIC DISTANCE EFFECT
Symbolic Distance refers to the number of relational reasoning steps that join two entities in a se-
quential reasoning task (e.g., if A > B > C > D, the symbolic distance between A and D is 3). The
symbolic distance effect refers to the observation that more distant comparison judgments are, per-
haps surprisingly, easier for humans (except at distance 1, where observed pairs can be memorized)
(Moyer & Bayer, 1976). This effect is thought to rely on feature learning (Lippl et al., 2024), which
is hypothesized to require repeated exposures (Koster et al., 2018). Thus, we hypothesize that LLMs
will also show a symbolic distance effect.

In Figure 5, we report the effect of symbolic distance on performance for our models. We generate
Comparison examples of 20 entities and then sample comparison questions based on the symbolic
distance. For models that perform above chance (all except Gemma 2B and Mixtral 7B), there is
a clear U shape. This has some commonalities with the behavior of humans: humans show higher
performance for the shortest distance, followed by a sudden drop in performance, which gradually
rises as symbolic distance increases. LLMs similarly show elevated performance for the shortest
and longest symbolic distances, however both the drop for short distances and the rise for longer
distances are more gradual. Thus we see real similarities between the human and observed LLMs
distance effects for powerful models, but some differences as well.

4.4 IDENTIFYING INCONSISTENT PREMISES
One important capability of a reasoning system is identifying when a premise is logically incon-
sistent (Black et al., 1986; Johnson-Laird et al., 2004). A logically inconsistent example is a set
of statements which cannot all be true. This reasoning task is different from the previous struc-
tured reasoning tasks as identifying the set of inconsistent facts requires global reasoning capabili-
ties. Furthermore this question does not incorporate any specific entity name so there’s no prior on
which statements from the context are relevant; and there are no rules on organizing or processing
statements that trivialize this task. Therefore all statements must be equally considered before a
conclusion of logically consistent can be drawn.

We consider this as applied on comparison problems. Here, a logically consistent comparison graph
assumes no cycles exist. If A > B, B > C, then you cannot have C > A. This implies that all
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Figure 6: Confusion matrix for meta-reasoning. ReCogLab allows us to probe language models
for important meta-reasoning capabilities. The first row shows confusion matrices on classifying
consistent and inconsistent premises. We find later generations of models iterations can better iden-
tify statements that are inconsistent. We also find a similar trend when inferring whether a conclu-
sion is indeterminate. These are important meta-reasoning capabilities with critical implications for
designing human interaction and autonomous decision-making systems.

inconsistent graphs are comparison graphs that contain a cycle (i.e. the graph is no longer a DAG).
To create inconsistent examples, we start with a valid comparison DAG and randomly sample nodes
to add an edge that would induce a cycle.

We show the confusion matrix on predictions extracted from each LLM on the first row of Fig. 6.
The diagonal elements of the confusion matrix indicate that larger language models perform better
on detecting inconsistent statements. An additional interesting statistic to analyze is the type of
classification errors each model makes. This is represented by the off-diagonal elements and is
related a classifiers’ false positive rates (FPR).

Because our probes are zero-shot tasks, the models’ predictions are inherently uncalibrated. This
presents an opportunity to investigate each models’ implicit reasoning bias. For instance, the GPT-4o
predictions have a higher FPR for Inconsistent premises (16.3%, 17.5% vs 6% and 4.8%), implying
that GPT-4o have a preference for answering consistent absent any priors. Gemini Flash predictions
exhibits the opposite bias, with higher rates of False Positive for Consistent premises. Gemini Pro
performs the best at zero-shot statement consistency detection and has relatively balanced false
positive and false negative rates.

4.5 INDETERMINATE REASONING

Another important aspect of a reasoning is understanding when there’s insufficient information to
draw a conclusion. This relates to an ability often ascribed somewhat uniquely to humans: our
ability to characterize uncertainty (Courville et al., 2006). We refer to this capability as detecting
indeterminacy. This is important for several reasons. First, a logical system that fails to identify
an indeterminate premise may draw erroneous conclusions that are not supported by the evidence.
Second, recognizing when a conclusion cannot be drawn is important for improving decision making
and handling ambiguity. Therefore we create a probe targeting evaluation of each language model’s
robustness to this failure mode.

We start with comparison problems which contain a fixed label set of Yes or No. We modify the
comparison problems from a linear chain to a random tree generation while still asking questions
about two random nodes. Under a DAG tree, any two nodes may no longer have a path to each other.
This corresponds to an indeterminate conclusion – insufficient context was provided to reason about
the relationship between two objects. This results in the modified answer set consisting of three po-
tential answers (Yes, No, Unknown). For this particular evaluation, we provide specific instructions
to answer whether the context and question are indeterminate before asking a question. While this
experiment follows by combining cognitive science experiments about uncertainty estimation and
transitive inference, it has not to our knowledge been performed in the cognitive science literature.

We show results of this probe in the second row of confusion matrices in Fig. 6. Similar to the
previoAs probe, we examine the FPR to understand each LLMs’ implicit reasoning bias. Again, the
diagonals are correctly classified examples, and the off-diagonal elements are different FPR errors.
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For any determinate example we construct, determining if A > B is as difficult as determining if
B > A. However we see that there’s a significant performance gap across all language models
in correctly identifying determinate examples. In other words, presenting the same problem, but
flipping the comparison such that the answer is No, will cause the language model to prefer predict-
ing indeterminacy. One interpretation is that language models prefer to answer Yes. This is further
supported when examining the language models bias towards answering Yes on indeterminate exam-
ples that are incorrectly reasoned to be determinate. Of note, a similar “acquiescence bias” toward
answering Yes has been noted in humans in a variety of settings (Krosnick, 1999).

The immediate findings suggest that a self-consistency scheme could improve logical deductions and
reduce the implicit reasoning bias towards affirmative answers. Longer term, pursuing strategies
beyond instruction tuning to improve detection of indeterminate logical premises is important for
safety and human interactions.

5 DISCUSSION

We introduce ReCogLab, a flexibly generated dataset for quantitatively measuring relational mem-
ory and reasoning performance in LLMs. We demonstrate the utility of this dataset, conducting a
number of experiments to benchmark relational reasoning performance across different models and
problem complexities. Moreover, we recreate cognitive science experiments that characterize how
reasoning performance depends on features such as presentation order Domjan (2010), symbolic dis-
tance Moyer & Bayer (1976), congruency with prior experience Koster et al. (2018), and availability
of logical heuristics Ceraso & Provitera (1971). We also create a number of novel experiments that
measure how models recognize inconsistencies and indeterminacies. Ultimately, we hope that by
accurately measuring the cognitive capabilities of our language models, we can contribute a metric
for hill-climbing improvements in the field that are inspired by human cognition. Furthermore, we
hope that this work will inspire deeper, rigorous probes into reasoning capabilities of both humans
and artificial agents, and help provide insight into the success and failure modes of reasoning. 2

In the future, we plan to continue enriching ReCogLab with increasingly sophisticated probes of
relational memory and reasoning. One possible future direction is the addition of datasets with
similar underlying structure to study how invariant these effects are to the particular language or
form of the problem (e.g. different ways of expressing graph relationships for studying transitive
inference). Another set of directions is to further ablate and test different configurations within the
existing dataset or varying two parameters of interest together to study their interaction.

Many of the effects we observe in LLMs mirror effects observed in humans, suggesting commonal-
ities in the factors contributing to relational reasoning in LLMs and humans. While it is instructive
to compare and contrast LLM reasoning to that of humans, we should as always be careful about
drawing too many conclusions about the similarities between LLMs and human psychology (Shevlin
& Halina, 2019; Shanahan, 2022). Even when there are similarities, there is ambiguity about the
explanation: it may derive from similarities in the statistics of experienced data, task objectives,
architectures, or learning rules. Alternatively, it could be that two entirely different mechanisms are
responsible for the same effect.

This work not only provides a dataset for evaluation of relational memory and reasoning in LLMs,
it gives us a flexible framework for surgically probing specific effects. We believe this will provide
a contribution to the cognitive science literature as well. While many of our experiments copied
existing cognitive science experiments, our dataset also enabled us to easily generate novel experi-
ments that have a cognitive science connection but that have not yet been tested in humans (to our
knowledge). Our results provide a number of novel hypotheses for psychology: in particular, that
syllogistic reasoning performance is negatively impacted by presentation order matching the rela-
tional ordering (if “Some A’s are B’s” relations are present) (Sec 4.1), that the symbolic distance
effect is modulated by congruency (Sec. 4.3), that there is a bias toward incorrectly answering “yes”
on logical prompts when it is uncertain and reporting uncertainty when in fact it is unknown (Sec.
4.5). More generally, this dataset generator permits the development of procedurally generating
new text-based relational reasoning tasks, and rapidly piloting them on LLMs, which we hope will
provide a useful tool to the field.

2We will release code and datasets upon publication
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A FRAMEWORK DETAILS

We discuss further details about ReCogLab.

A.1 GENERAL OVERVIEW OF FRAMEWORK

Here we explicitly describe how the framework constructs training examples to support different
experimental hypotheses. We will make the entire framework codebase and dataset available to the
public.

Our framework works by:

1. Creating a config file for the dataset you want to create. This includes the task and sub-task
(see Table 1 in main paper and the longer task descriptions in Section A.2) and the task
parameters (see Section A.3).

2. The user passes in this config as well as the dataset split and the random seed to the dataset
generator class.

3. Based on which task is chosen, the dataset generator for the corresponding task generates
the underlying logic of the problem (e.g. for Social Networks it generates an undirected
graph) and generates the context C text, question Q and answer(s) A from templates. The
context is made up of a list of relationship Rij between pairs of entities (Ei, Ej) (each
of which is a person or object or other noun in the relationship or can be an attribute).
The templates then fill in the text to describe the relationship Rij (often sampling from a
number of possible templates) and sampling entities (Ei, Ej) to fill in. The generator also
enforces and uses all of the task parameters to do this generation. For details on each of
these constructions see the corresponding paragraph of Section A.5.

4. The final datpoint is then passed back and the generator continues to generate up until the
desired dataset size N .

5. For experiments which “sweep” parameters, the dataset generation of N examples is re-
peated, changing the value of the sweep parameter on each step to generate all CP param-
eter configurations.

A.2 TASK DESCRIPTION

• Comparison
– Older-Younger: Constructs comparisons on age between people.
– Larger-Smaller: Constructs comparisons on size. These can incorporate congru-

ent/incongruent knowledge priors.
– Heavier-Lighter: Constructs comparisons on weight. These can incorporate congru-

ent/incongruent knowledge priors
– Consistency Detection: Instead of asking a comparison question, asks whether the

statements are logically consistent.
– Indeterminate Conclusion: Generate a comparison tree and ask whether the statements

support drawing a conclusion.
• Social Network

– Fastest Message: Given the goal of passing a message from person A to person B with
the fewest hops, who should person B give a message to. Reduces to a logical breadth
first search.

– Oldest/Youngest Generation: Given a statement about a family, who is the oldest and
youngest generation? Similar to Older-Younger.

• Family JSON
– Family Size: Calculate how many members are in a specific family.
– Family Member Hobby: Given a hobby, check whether it is a hobby of a specific

family member.
– Family Size Comparison: Given two families, compare their size.
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– Hobby Comparison: Given two specific individuals in different family, describe over-
lapping hobbies.

– Age Comparison: Given two specific individuals in different family, compare age.
• Syllogism

– Set Membership: Given statements describing group membership between different
labels, determine how two labels’ members intersect.

A.3 TASK PARAMETERS

• network type: Whether to construct the task using a linear chain or a randomly generated
tree.

• num entities: The number of entities used when generating an experiment. We use this for
evaluating capacity performance.
• entity type: The type of entities we construct word problems out of. These consist of

names, objects, labels depending on the need of the task.
• congruence: If the task supports integrating real world priors to generate congruent or

incongruent statements.
• randomize relations: For a directional statement, whether to reverse the statement and re-

lation. A > B becomes B < A in the word problem.
• do reverse comps: To evaluate whether the order of the statement in the question matters.
• relation type: For social network, applies labels to the edge which include other kinds of

relationships.
• num families: Equivalent to num entities, measure of capacity for length (total number of

families).
• num family members: Equivalent to num entities, measure of capacity for width (max

members within a family).
• hop length: Distance between two families chosen. If not set, default is sampled randomly

between half the number of families to overall number of families.

A.4 COMMON TECHNICAL DETAILS

We use NetworkX Python library to construct randomly generated graphs. To seed deterministic
randomness, we use Jax’s PRNG Keys to ensure that each example is isolated from each other while
still being fully reproducible given the correct key.

Some of our experiments generate linear chain graphs. A chain graph is a sequence of nodes where
each node is connected to the next one in a linear sequence. This allows us to test for ordering effects
in the context because answering the question of a linear chain graph is equivalent to traversing the
statements sequentially. Other experiments generate more complex graphs like random trees.

We incorporate multiple stages of deterministic randomness, first at initialization to help randomly
configure parameters shared across all test examples, and next at a per-test example generation.

A.5 DOMAIN-SPECIFIC DETAILS

Comparison We use NetworkX to generate linear chain and random trees depending on the sub-
task.

Comparison sub-tasks consist of asking questions about a bunch of entities in three comparative
settings, Size, Age, and Weight. Consistency Detection and Indeterminate Conclusion use the Age
comparison but ask a modified question.

For evaluating the ordering effects, we use a linear chain graph shown in the contextual premise or-
dering experiments in 2. Here inorder and reverse corresponds to matching the toplogical sequential
order of the linear chain. Random simply randomizes the ordering. We also use linear chain for
Congruent and Incongruent reasoning as well as the Symbolic Distance probe as they simplify the
problem construction.
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For indeterminate reasoning and inconsistent detection, we use random trees. This is because creat-
ing an inconsistent premise requires making a self-loop which is trivial to identify in a linear chain.
It’s also impossible to construct unknown or infeasible questions with a linear chain because every
pair of object has a relationship.

Social Network We use NetworkX to generate linear chain graphs for evaluating capacity.

We evaluate on the sub-task of Fastest Message which is a specific question that asks who should
[Entity 1]pass a message to have it arrive to [Entity2]in the fewest hops.

To construct a Fastest Message problem, we generate premises about the nodes in the graph where
edges denote a friendship and a way for a message to be passed. We randomly pick two entities and
ask how to pass a message. Here the answer can be determined through breadth first search.

Oldest/Youngest sub-task reformulates the social network graph to a directed problem where nodes
indicate relationships between parent and child. The oldest/youngest generation asks which family
member is part of the oldest or youngest generation. We can solve and verify the answer using a
combination of common-ancestor graph algorithms. While we didn’t report benchmark performance
on this task, we note that oldest/youngest has several interesting, distinguishing properties from
other tasks presented in this paper. First it does not incorporate any entity names in the question
which might inform the language model how to search the context. It also requires processing every
bit of information before being able to verifiably prove the answer.

Syllogism We use custom-written logic to generate syllogisms with an arbitrary number of propo-
sitions. For a given number of propositions, we keep track of the current valid conclusion, and
enumerate all new propositions which, along with the current conclusion, generate a new valid con-
clusion. This is done in a depth-first way, and when we hit the desired number of propositions, we
yield the current chain.

We evaluate the model by showing it all of the propositions in the chain, as well as all syllogism
types with the valid conclusion’s subject and predicate, i.e. ”All A are Z,” ”No A are Z,” ”Some A
are Z,” and ”Some A are not Z.”

To study ordering effects, we sort the propositions by constructing a Hamiltonian path between the
proposition which contains the subject of the conclusion, and the proposition which contains the
predicate of the conclusion.

JSON Families For the JSON Families task, our framework produces structured, nested JSON
representations of multiple families. Each family is identified by a last name, address, and a set of
members. Each member is then identified by their name, age, and hobbies. Table 2 outlines the kind
of questions i.e. probes that can be be conducted on this dataset. The question types range from
simple fact retrieval (e.g., family size) to complex comparisons (e.g., relative age of members across
different families or shared hobbies). This structured data allows us to easily scale the number of
families as well as the members per family.

During the dataset generation process, we ensure that the entity in the question is uniquely identifi-
able (e.g. no two families share the same combination of name and address) and if there are multiple
possible answers, we check against all of them for determining correctness.

Sub-tasks for JSON Families

Question Type Number of entities Question Details
Family Size Single Family Finding the size of a given family in the context

Family Member Hobby Single Family Checking if a given hobby is a hobby of a specific member from a specific family

Family Size Comparison Multi Family Comparing size of two given families

Family Member Age Comparison Multi Family Comparing age of two members from two given families

Family Member Hobby Comparison Multi Family Comparing hobbies of two members from two given families

Table 2: Family Question Types
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A.6 ENTITY SOURCES

In addition to constructing the problem, we also provide a list of pre-defined entities to populate the
problem with. We prepare train-val-test splits on entity names. For names, we use a dataset of 258k
popular baby-names3. We use this for both Social Network and Comparison-Age.

For comparing objects, we collected a list of 540 commonly encountered physical objects like
“Firetruck” and “Shoebox.” We used Gemini-Pro to generate many such candidate objects with
mass and size that is consistent and easy to measure. We then asked Gemini-Pro to estimate their
size and weight to allow us to construct Congruent statements based on their estimated physical
properties.

For incongruent samples we simply reverse the congruent ordering.

We also use a random-string configuration for comparison to test the effect of prior knowledge on
congruent and incongruent relationships. Specifically we randomly generated alphanumeric ids of
length 5 to replace the name of each object in the comparison. This controls for the effect of prior
knowledge as entity names like 3Am4O and gj1Bx have no semantic priors in the language model.

For Syllogism we prompted an LLM to generate a diverse set of plural nouns. The entities are
randomly assigned when generating the syllogisms.

For JSON Families, the entities include family names (first, last names), address and details of every
member. These are randomly chosen from a set of predefined names, city names, states, postal codes
and hobbies. These lists were generated by prompting an LLM to provide a commonly used entities,
following which a random combination is chosen when identifying a family / a member.

A.7 MISC DETAILS

Rejection Heuristic Sampling Because ReCogLab is a data generating process, we do not have
precise control of the posterior distribution of examples. Some capabilities need to be evaluated
on rare-occurring events or configurations that are easy to verify but hard to generate. We can use
rejection sampling to help promote diversity of these hard-to-find events.

One example of how we use rejection heuristic sampling is to help generate a sufficient number of
examples of indeterminate and determinate examples. Another example is increasing the posterior
occurrence of high symbolic distance and rejecting low symbolic distance experiment examples
which occur more frequently.

We choose this approach of balancing test examples since it doesn’t require a specific implementa-
tion, as long as a process has a probability of generating an interesting configuration we can upsam-
ple it’s occurrence in the dataset. Additionally some notions of parameters share common meaning
but have wildly different implementation strategies. For instance symbolic distance is trivial to
calculate for a linear chain configuration, but impossible to control in a random tree. Rejection
sampling resolves this issue by allowing us to upsample rare examples without needing to explicitly
define how those rare labels generate.

Flavor Text Flavor text is text that adds depth or background to a character or relationship. This
embellishment of factual statements adds an additional layer of cognitive load. Instead of simply
presenting statements as facts, flavor text rewrites them to a statement that implies two entities’
relationship with each other. We generate a total of 83 flavor texts using Gemini-Pro and specific
instructions.

B PROMPT VALIDATION AND MODEL CAPABILITIES

As discussed in Section 3.6, while prompt strategies are an important line of research for exploring
language model capabilities, they introduce additional variance to our observations of a language
model’s true problem-solving capabilities. From a scientific point-of-view, this is problematic; op-
timizing prompts (even if they are 0-shot) for specific tasks may yield better hill-climbing results,

3Source: https://www.cs.princeton.edu/introcs/data/names.csv
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but they make it harder to transfer our understanding of a language model’s general capabilities to a
different task.

To mitigate this issue, we treat prompts and answer parsing as hyperparameters to fit on a validation
set first. Because ReCogLabis a generative framework, we can generate always generate validation
sets to find the best prompt strategy for each and every language model. This means that every
language model is given the opportunity to figuratively “play to their strength.”

In our experiments we only consider “0-turn” and “0-trained” prompt strategies to preserve the
generalization of our results. We also use several prompts that targeted specific sub-datasets or
tasks like Comparisons, Syllogism, and Feasibility because their setup required more explanations.
We show the prompts we tested below. [question] refers to both the contextual information and
task-specific question combined.

Common Prompts Templates used in all tasks.

• [question]
• [question]

Answer in only one word.
• [question]

Think through your answer then respond at the end with a newline and ‘Answer:’ with your
answer.

• [question]
Think through your answer then respond at the end with a newline and ‘Answer:’ with your
answer. Use only one word for the answer.

• [question]
Let’s think step-by-step

Social Network Prompts Templates

• You are a language model with advanced cognitive abilities. Your task is to understand
and reason about the following social scenario, much like a human would. Read the story
carefully and answer the questions that follow.
[question]

Comparison Prompts Templates

• [question]
Answer the above relational reasoning question with Yes or No. Use only one word for the
answer.

• You are a language model being probed for your reasoning abilities. Your task is to care-
fully think about the following information and answer the question.
[question]
Make sure to respond at the end with ‘Answer:’

• [question]
Answer the above relational reasoning question with Yes or No with a newline and ‘An-
swer:’ with your answer. Give your best guess if uncertain. Use only one word for the
answer.

• [question]
Answer the above relational reasoning question with only Yes or No with a newline and
‘Answer:’. Give your best guess if uncertain. Use only one word for the answer.

• [question]
Answer the above relational reasoning question with Yes, No, or Unknown. Use Unknown
if the question cannot be answer with the information given. Use only one word for the
answer.

We find that after validation, different models from the same family of model classes perform better
with different prompts.
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This framework of splitting prompts and model capabilities works for more complex patterns of
cognition like Chain-of-Thought and In-context learning. We also consider sentence parsing but
that has a much weaker impact on performance and is also significantly cheaper to test many of. We
will release the prompt and sentence parsing functions when releasing code.

C ADDITIONAL TEST EXAMPLES

Below we show additional examples generated from our framework for various tasks/sub-
tasks/configurations.

C.1 COMPARISON

C.1.1 COMPARISON - OBJECTS

Question:
Straightener is smaller than Sugar bowl
Paperweight is larger than Oyster
Folder is smaller than Gemstones
Shaving cream is larger than Sand dollar
Eye pin is smaller than Flower arrangement
Sand dollar is larger than Pliers
Oyster is larger than Lego
Sugar bowl is smaller than Watermelon
Drum is larger than Cello
Folder is larger than Flower arrangement
Pill is smaller than Pliers
Ceiling is smaller than Cello
Paperweight is smaller than Pill
Gemstones is smaller than Keyboard
Ceiling is larger than Audio interface
Straightener is larger than Shaving cream
Keyboard is smaller than Lego
Apple is smaller than Audio interface
Drum is smaller than Eye pin
Is Pill smaller than Oyster?

Answer(s):
No

Question:
Lego is larger than Leaf
Thermostat is larger than Stage
Thermostat is smaller than Trowel
Ribbon is smaller than Saxophone
Sculpture is larger than Saxophone
Cane is smaller than Coffee mug Playbill is smaller than Rake
Rake is smaller than Ribbon
Leaf is larger than Lamp
Banjo is larger than Bandage
Paperweight is smaller than Playbill
Gemstones is larger than Coffee mug
Stage is larger than Sinker
Banjo is smaller than Cane
Bandage is larger than Accordion
Trowel is smaller than Water bottle
Gemstones is smaller than Lamp
Sculpture is smaller than Sinker
Paperweight is larger than Lego
Is Ribbon smaller than Paperweight?
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Answer(s):
No

Question:
Trowel is smaller than Wire cutters
Birthday cake is smaller than CD
Mushroom is larger than Measuring cup
CD is smaller than Cap
Thesaurus is larger than Soda can
Measuring cup is larger than Lego
Leaf is larger than Guitar
Mushroom is smaller than Power strip
Extension cord is larger than Envelope
Wire cutters is smaller than Wood
Conditioner is smaller than Cup
Extension cord is smaller than Guitar
Power strip is smaller than Soda can
Envelope is larger than Cup
Trowel is larger than Tripod
Ashtray is smaller than Birthday cake
Leaf is smaller than Lego
Tripod is larger than Thesaurus
Conditioner is larger than Cap
Is Trowel larger than Birthday cake?
Answer(s):
Yes

C.1.2 COMPARISON - PEOPLE

Question:
Silver is younger than Trace
Madyson is older than Lorelai
Evertt is younger than Hilma
Rush is older than Petra
Eulah is younger than Eulalie
Petra is older than Orlena
Lorelai is older than Leta
Trace is younger than Vernetta
Cooper is older than Chrissie
Evertt is older than Eulalie
Nigel is younger than Orlena
Ceil is younger than Chrissie
Madyson is younger than Nigel
Hilma is younger than Khalid
Ceil is older than Betty
Silver is older than Rush
Khalid is younger than Leta
Allison is younger than Betty
Cooper is younger than Eulah
Is Nigel younger than Lorelai?

Answer(s):
No

Question:
Julius is older than Jalissa
Shemar is older than Raquel
Shemar is younger than Treyvon
Lyn is younger than Mae
Natasha is older than Mae
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Danyel is younger than Demario
Lonzo is younger than Lori
Lori is younger than Lyn
Jalissa is older than Garey
Cherrie is older than Carmen
Kaleigh is younger than Lonzo
Estefani is older than Demario
Raquel is older than Phoenix
Cherrie is younger than Danyel
Carmen is older than Ayana
Treyvon is younger than Vickey
Estefani is younger than Garey
Natasha is younger than Phoenix
Kaleigh is older than Julius
Question: Is Lyn younger than Kaleigh?
Answer(s):
No

Question:
Myah is younger than Ozzie
Antonetta is younger than Anya
Hettie is older than Elmore
Anya is younger than Arizona
Marely is older than Marcela
Elmore is older than Donn
Devonta is older than Darryl
Hettie is younger than Iver
Cedrick is older than Case
Ozzie is younger than Thomas
Blake is younger than Briana
Cedrick is younger than Darryl
Iver is younger than Marcela
Case is older than Briana
Myah is older than Mikeal
Abraham is younger than Antonetta
Devonta is younger than Donn
Mikeal is older than Marely
Blake is older than Arizona
Is Myah older than Antonetta?
Answer(s):
Yes

C.2 SOCIAL NETWORKS

Question:
Arjun is always honest with Marcelo, even when it’s hard.
When Arjun needs to talk, Vida is the first one they call.
Casandra is always impressed by Lorena’s knowledge and intelligence.
Vida is always willing to listen to Julianne’s problems.
Roselyn is like family to Ava.
Exie is always willing to listen to Casandra’s problems.
Lukas and Marcelo’s families often have dinner together.
Ava is always impressed by Casandra’s creativity and artistic talents.
Lorena and Vida enjoy discussing books and movies they’ve both seen.
Any two friends are able to pass along a message, which allows messages to move from one friend
to another. Thus, messages can be passed between two people through friends they have in common.
If Vida wants to get a message to Marcelo as quickly as possible, who should Vida give it to?
Answer(s):
Arjun
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Question:
Austin knows how to make Gunnar laugh, even on a bad day.
Barton and Marlana share inside jokes that only they understand.
Daisey always respects Creola’s opinions, even when they disagree.
Branden is always honest with Tierra, even when it’s hard.
Tierra can always count on Paola for a shoulder to cry on.
Marlana is always the first person Creola calls with good news.
Marvin and Gunnar have inside jokes that no one else understands.
Branden knows all of Barton’s favorite snacks and surprises them with them sometimes.
Marvin knows how to tease Barton without hurting their feelings.
Any two friends are able to pass along a message, which allows messages to move from one friend
to another. Thus, messages can be passed between two people through friends they have in common.
If Daisey wants to get a message to Tierra as quickly as possible, who should Daisey give it to?
Answer(s):
Creola

Question:
Daijah is always there to listen when Elmore needs to vent about work.
Elmore is always willing to listen to Charlee’s problems.
You can often find Anwar and Finn laughing and chatting away.
When Walker needs to talk, Alvin is the first one they call.
Charlee knows how to calm Anwar down when they’re stressed or anxious.
Minerva always knows how to cheer Elmore up.
Cathi and Anwar have a mutual respect for each other’s personal space and boundaries.
Walker and Charlee enjoy trying new hobbies and activities together.
Toma and Cathi have a deep and meaningful connection.
Any two friends are able to pass along a message, which allows messages to move from one friend
to another. Thus, messages can be passed between two people through friends they have in common.
If Cathi wants to get a message to Minerva as quickly as possible, who should Cathi give it to?
Answer(s):
Anwar

C.3 JSON FAMILIES

C.3.1 JSON FAMILIES - FAMILY SIZE

Question:
”Family Name”: ”Wilson”, ”Address”: ”544 Pine St, Palo Alto, CA 95841”, ”Members”: [
”Name”: ”Ava”, ”Age”: 13, ”Hobbies”: [ ”cycling”, ”music”, ”reading” ] , ”Name”: ”Grace”,
”Age”: 71, ”Hobbies”: [ ”running” ] , ”Name”: ”Bob”, ”Age”: 91, ”Hobbies”: [ ”writing”, ”paint-
ing”, ”gardening”, ”running”, ”knitting”, ”cooking” ] , ”Name”: ”Diego”, ”Age”: 93, ”Hobbies”:
[ ”music”, ”running”, ”dancing” ] ] ”Family Name”: ”Wilson”, ”Address”: ”695 Divisadero St,
Daly City, CA 70635”, ”Members”: [ ”Name”: ”Frank”, ”Age”: 45, ”Hobbies”: [ ”knitting”, ”cook-
ing”, ”cycling” ] , ”Name”: ”Diego”, ”Age”: 67, ”Hobbies”: [ ”reading”, ”gardening”, ”music”,
”writing”, ”dancing”, ”cooking”, ”traveling” ] , ”Name”: ”Bob”, ”Age”: 89, ”Hobbies”: [ ”music”,
”knitting”, ”gardening”, ”painting”, ”writing”, ”dancing” ] , ”Name”: ”Liam”, ”Age”: 96, ”Hob-
bies”: [ ”knitting”, ”painting” ] ] ”Family Name”: ”Rodriguez”, ”Address”: ”48 Lombard St, San
Mateo, CA 35388”, ”Members”: [ ”Name”: ”Jack”, ”Age”: 91, ”Hobbies”: [ ”music”, ”gardening”
] , ”Name”: ”Alice”, ”Age”: 41, ”Hobbies”: [ ”gardening”, ”writing”, ”running”, ”cycling”, ”read-
ing”, ”dancing”, ”music”, ”traveling”, ”painting” ] , ”Name”: ”Frank”, ”Age”: 100, ”Hobbies”: [
”writing”, ”gardening”, ”music” ] ] ”Family Name”: ”Brown”, ”Address”: ”959 Market St, San
Jose, CA 10946”, ”Members”: [ ”Name”: ”Bob”, ”Age”: 36, ”Hobbies”: [ ”running”, ”music”,
”painting”, ”reading”, ”knitting”, ”writing” ] , ”Name”: ”Bob”, ”Age”: 10, ”Hobbies”: [ ”paint-
ing”, ”traveling”, ”dancing” ] , ”Name”: ”Kai”, ”Age”: 88, ”Hobbies”: [ ”cooking”, ”writing” ]
] ”Family Name”: ”Wilson”, ”Address”: ”326 Lombard St, Daly City, CA 99979”, ”Members”:
[ ”Name”: ”Muhammad”, ”Age”: 63, ”Hobbies”: [ ”cycling”, ”knitting”, ”writing” ] , ”Name”:
”Emily”, ”Age”: 36, ”Hobbies”: [ ”writing”, ”traveling”, ”knitting”, ”reading”, ”running” ] ]
How many members are in the Brown family living on 959 Market St, San Jose, CA 10946? Answer
as a single number.
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Answer(s):
3

C.3.2 JSON FAMILIES - FAMILY MEMBER HOBBY

Question:
”Family Name”: ”Wilson”, ”Address”: ”544 Pine St, Palo Alto, CA 95841”, ”Members”: [
”Name”: ”Ava”, ”Age”: 13, ”Hobbies”: [ ”cycling”, ”music”, ”reading” ] , ”Name”: ”Grace”,
”Age”: 71, ”Hobbies”: [ ”running” ] , ”Name”: ”Bob”, ”Age”: 91, ”Hobbies”: [ ”writing”, ”paint-
ing”, ”gardening”, ”running”, ”knitting”, ”cooking” ] , ”Name”: ”Diego”, ”Age”: 93, ”Hobbies”:
[ ”music”, ”running”, ”dancing” ] ] ”Family Name”: ”Wilson”, ”Address”: ”695 Divisadero St,
Daly City, CA 70635”, ”Members”: [ ”Name”: ”Frank”, ”Age”: 45, ”Hobbies”: [ ”knitting”, ”cook-
ing”, ”cycling” ] , ”Name”: ”Diego”, ”Age”: 67, ”Hobbies”: [ ”reading”, ”gardening”, ”music”,
”writing”, ”dancing”, ”cooking”, ”traveling” ] , ”Name”: ”Bob”, ”Age”: 89, ”Hobbies”: [ ”music”,
”knitting”, ”gardening”, ”painting”, ”writing”, ”dancing” ] , ”Name”: ”Liam”, ”Age”: 96, ”Hob-
bies”: [ ”knitting”, ”painting” ] ] ”Family Name”: ”Rodriguez”, ”Address”: ”48 Lombard St, San
Mateo, CA 35388”, ”Members”: [ ”Name”: ”Jack”, ”Age”: 91, ”Hobbies”: [ ”music”, ”gardening”
] , ”Name”: ”Alice”, ”Age”: 41, ”Hobbies”: [ ”gardening”, ”writing”, ”running”, ”cycling”, ”read-
ing”, ”dancing”, ”music”, ”traveling”, ”painting” ] , ”Name”: ”Frank”, ”Age”: 100, ”Hobbies”: [
”writing”, ”gardening”, ”music” ] ] ”Family Name”: ”Brown”, ”Address”: ”959 Market St, San
Jose, CA 10946”, ”Members”: [ ”Name”: ”Bob”, ”Age”: 36, ”Hobbies”: [ ”running”, ”music”,
”painting”, ”reading”, ”knitting”, ”writing” ] , ”Name”: ”Bob”, ”Age”: 10, ”Hobbies”: [ ”paint-
ing”, ”traveling”, ”dancing” ] , ”Name”: ”Kai”, ”Age”: 88, ”Hobbies”: [ ”cooking”, ”writing” ]
] ”Family Name”: ”Wilson”, ”Address”: ”326 Lombard St, Daly City, CA 99979”, ”Members”:
[ ”Name”: ”Muhammad”, ”Age”: 63, ”Hobbies”: [ ”cycling”, ”knitting”, ”writing” ] , ”Name”:
”Emily”, ”Age”: 36, ”Hobbies”: [ ”writing”, ”traveling”, ”knitting”, ”reading”, ”running” ] ]
Is writing a hobby of Jack from the Rodriguez family living on 48 Lombard St, San Mateo, CA
35388? Answer with Yes or No. Answers: Answer(s):
No

C.3.3 JSON FAMILIES - FAMILY SIZE COMPARISON

Question:
”Family Name”: ”Wilson”, ”Address”: ”544 Pine St, Palo Alto, CA 95841”, ”Members”: [
”Name”: ”Ava”, ”Age”: 13, ”Hobbies”: [ ”cycling”, ”music”, ”reading” ] , ”Name”: ”Grace”,
”Age”: 71, ”Hobbies”: [ ”running” ] , ”Name”: ”Bob”, ”Age”: 91, ”Hobbies”: [ ”writing”, ”paint-
ing”, ”gardening”, ”running”, ”knitting”, ”cooking” ] , ”Name”: ”Diego”, ”Age”: 93, ”Hobbies”:
[ ”music”, ”running”, ”dancing” ] ] ”Family Name”: ”Wilson”, ”Address”: ”695 Divisadero St,
Daly City, CA 70635”, ”Members”: [ ”Name”: ”Frank”, ”Age”: 45, ”Hobbies”: [ ”knitting”, ”cook-
ing”, ”cycling” ] , ”Name”: ”Diego”, ”Age”: 67, ”Hobbies”: [ ”reading”, ”gardening”, ”music”,
”writing”, ”dancing”, ”cooking”, ”traveling” ] , ”Name”: ”Bob”, ”Age”: 89, ”Hobbies”: [ ”music”,
”knitting”, ”gardening”, ”painting”, ”writing”, ”dancing” ] , ”Name”: ”Liam”, ”Age”: 96, ”Hob-
bies”: [ ”knitting”, ”painting” ] ] ”Family Name”: ”Rodriguez”, ”Address”: ”48 Lombard St, San
Mateo, CA 35388”, ”Members”: [ ”Name”: ”Jack”, ”Age”: 91, ”Hobbies”: [ ”music”, ”gardening”
] , ”Name”: ”Alice”, ”Age”: 41, ”Hobbies”: [ ”gardening”, ”writing”, ”running”, ”cycling”, ”read-
ing”, ”dancing”, ”music”, ”traveling”, ”painting” ] , ”Name”: ”Frank”, ”Age”: 100, ”Hobbies”: [
”writing”, ”gardening”, ”music” ] ] ”Family Name”: ”Brown”, ”Address”: ”959 Market St, San
Jose, CA 10946”, ”Members”: [ ”Name”: ”Bob”, ”Age”: 36, ”Hobbies”: [ ”running”, ”music”,
”painting”, ”reading”, ”knitting”, ”writing” ] , ”Name”: ”Bob”, ”Age”: 10, ”Hobbies”: [ ”paint-
ing”, ”traveling”, ”dancing” ] , ”Name”: ”Kai”, ”Age”: 88, ”Hobbies”: [ ”cooking”, ”writing” ]
] ”Family Name”: ”Wilson”, ”Address”: ”326 Lombard St, Daly City, CA 99979”, ”Members”:
[ ”Name”: ”Muhammad”, ”Age”: 63, ”Hobbies”: [ ”cycling”, ”knitting”, ”writing” ] , ”Name”:
”Emily”, ”Age”: 36, ”Hobbies”: [ ”writing”, ”traveling”, ”knitting”, ”reading”, ”running” ] ]
Which family is larger, the Wilson family living on 326 Lombard St, Daly City, CA 99979 or the
Brown family living on 959 Market St, San Jose, CA 10946? Answer with the family name of the
larger family. Answer(s):
Brown
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C.3.4 JSON FAMILIES - FAMILY MEMBER AGE COMPARISON

Question:
”Family Name”: ”Wilson”, ”Address”: ”544 Pine St, Palo Alto, CA 95841”, ”Members”: [
”Name”: ”Ava”, ”Age”: 13, ”Hobbies”: [ ”cycling”, ”music”, ”reading” ] , ”Name”: ”Grace”,
”Age”: 71, ”Hobbies”: [ ”running” ] , ”Name”: ”Bob”, ”Age”: 91, ”Hobbies”: [ ”writing”, ”paint-
ing”, ”gardening”, ”running”, ”knitting”, ”cooking” ] , ”Name”: ”Diego”, ”Age”: 93, ”Hobbies”:
[ ”music”, ”running”, ”dancing” ] ] ”Family Name”: ”Wilson”, ”Address”: ”695 Divisadero St,
Daly City, CA 70635”, ”Members”: [ ”Name”: ”Frank”, ”Age”: 45, ”Hobbies”: [ ”knitting”, ”cook-
ing”, ”cycling” ] , ”Name”: ”Diego”, ”Age”: 67, ”Hobbies”: [ ”reading”, ”gardening”, ”music”,
”writing”, ”dancing”, ”cooking”, ”traveling” ] , ”Name”: ”Bob”, ”Age”: 89, ”Hobbies”: [ ”music”,
”knitting”, ”gardening”, ”painting”, ”writing”, ”dancing” ] , ”Name”: ”Liam”, ”Age”: 96, ”Hob-
bies”: [ ”knitting”, ”painting” ] ] ”Family Name”: ”Rodriguez”, ”Address”: ”48 Lombard St, San
Mateo, CA 35388”, ”Members”: [ ”Name”: ”Jack”, ”Age”: 91, ”Hobbies”: [ ”music”, ”gardening”
] , ”Name”: ”Alice”, ”Age”: 41, ”Hobbies”: [ ”gardening”, ”writing”, ”running”, ”cycling”, ”read-
ing”, ”dancing”, ”music”, ”traveling”, ”painting” ] , ”Name”: ”Frank”, ”Age”: 100, ”Hobbies”: [
”writing”, ”gardening”, ”music” ] ] ”Family Name”: ”Brown”, ”Address”: ”959 Market St, San
Jose, CA 10946”, ”Members”: [ ”Name”: ”Bob”, ”Age”: 36, ”Hobbies”: [ ”running”, ”music”,
”painting”, ”reading”, ”knitting”, ”writing” ] , ”Name”: ”Bob”, ”Age”: 10, ”Hobbies”: [ ”paint-
ing”, ”traveling”, ”dancing” ] , ”Name”: ”Kai”, ”Age”: 88, ”Hobbies”: [ ”cooking”, ”writing” ]
] ”Family Name”: ”Wilson”, ”Address”: ”326 Lombard St, Daly City, CA 99979”, ”Members”:
[ ”Name”: ”Muhammad”, ”Age”: 63, ”Hobbies”: [ ”cycling”, ”knitting”, ”writing” ] , ”Name”:
”Emily”, ”Age”: 36, ”Hobbies”: [ ”writing”, ”traveling”, ”knitting”, ”reading”, ”running” ] ]
Who is older: Muhammad from the Wilson family living on 326 Lombard St, Daly City, CA 99979
or Jack from the Rodriguez family living on 48 Lombard St, San Mateo, CA 35388? If both are the
same age, answer with the name that comes first alphabetically. Answer with the name.

Answer(s):
Jack

C.3.5 JSON FAMILIES - FAMILY MEMBER HOBBY COMPARISON

Question:
”Family Name”: ”Wilson”, ”Address”: ”544 Pine St, Palo Alto, CA 95841”, ”Members”: [
”Name”: ”Ava”, ”Age”: 13, ”Hobbies”: [ ”cycling”, ”music”, ”reading” ] , ”Name”: ”Grace”,
”Age”: 71, ”Hobbies”: [ ”running” ] , ”Name”: ”Bob”, ”Age”: 91, ”Hobbies”: [ ”writing”, ”paint-
ing”, ”gardening”, ”running”, ”knitting”, ”cooking” ] , ”Name”: ”Diego”, ”Age”: 93, ”Hobbies”:
[ ”music”, ”running”, ”dancing” ] ] ”Family Name”: ”Wilson”, ”Address”: ”695 Divisadero St,
Daly City, CA 70635”, ”Members”: [ ”Name”: ”Frank”, ”Age”: 45, ”Hobbies”: [ ”knitting”, ”cook-
ing”, ”cycling” ] , ”Name”: ”Diego”, ”Age”: 67, ”Hobbies”: [ ”reading”, ”gardening”, ”music”,
”writing”, ”dancing”, ”cooking”, ”traveling” ] , ”Name”: ”Bob”, ”Age”: 89, ”Hobbies”: [ ”music”,
”knitting”, ”gardening”, ”painting”, ”writing”, ”dancing” ] , ”Name”: ”Liam”, ”Age”: 96, ”Hob-
bies”: [ ”knitting”, ”painting” ] ] ”Family Name”: ”Rodriguez”, ”Address”: ”48 Lombard St, San
Mateo, CA 35388”, ”Members”: [ ”Name”: ”Jack”, ”Age”: 91, ”Hobbies”: [ ”music”, ”gardening”
] , ”Name”: ”Alice”, ”Age”: 41, ”Hobbies”: [ ”gardening”, ”writing”, ”running”, ”cycling”, ”read-
ing”, ”dancing”, ”music”, ”traveling”, ”painting” ] , ”Name”: ”Frank”, ”Age”: 100, ”Hobbies”: [
”writing”, ”gardening”, ”music” ] ] ”Family Name”: ”Brown”, ”Address”: ”959 Market St, San
Jose, CA 10946”, ”Members”: [ ”Name”: ”Bob”, ”Age”: 36, ”Hobbies”: [ ”running”, ”music”,
”painting”, ”reading”, ”knitting”, ”writing” ] , ”Name”: ”Bob”, ”Age”: 10, ”Hobbies”: [ ”paint-
ing”, ”traveling”, ”dancing” ] , ”Name”: ”Kai”, ”Age”: 88, ”Hobbies”: [ ”cooking”, ”writing” ]
] ”Family Name”: ”Wilson”, ”Address”: ”326 Lombard St, Daly City, CA 99979”, ”Members”:
[ ”Name”: ”Muhammad”, ”Age”: 63, ”Hobbies”: [ ”cycling”, ”knitting”, ”writing” ] , ”Name”:
”Emily”, ”Age”: 36, ”Hobbies”: [ ”writing”, ”traveling”, ”knitting”, ”reading”, ”running” ] ]
What hobbies do Muhammad from the Wilson family living on 326 Lombard St, Daly City, CA
99979 and Jack from the Rodriguez family living on 48 Lombard St, San Mateo, CA 35388 share?
List the hobbies in alphabetical order, separated by commas, or answer N/A if they share no hobbies.
Answer(s):
N/A
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C.4 SYLLOGISMS

Question:
All accounts are actions
No actions are actors
Which of the following is true?
All accounts are actors
No accounts are actors
Some accounts are actors
Some accounts are not actors
Answer(s):
No accounts are actors

Question:
No accounts are actions
All actors are accounts
Which of the following is true?
All actors are actions
No actors are actions
Some actors are actions
Some actors are not actions
Answer(s): No actors are actions

Question:
Some accounts are actions
No actors are accounts
Which of the following is true?
All actions are actors
No actions are actors
Some actions are actors
Some actions are not actors
Some actions are not actors
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