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Abstract

Inverse problems arise in a multitude of applications, where the goal is to recover
a clean signal from noisy and possibly (non)linear observations. The difficulty
of a reconstruction problem depends on multiple factors, such as the structure of
the ground truth signal, the severity of the degradation, the implicit bias of the
reconstruction model and the complex interactions between the above factors. This
results in natural sample-by-sample variation in the difficulty of a reconstruction
task, which is often overlooked by contemporary techniques, resulting in long
inference times, subpar performance and wasteful resource allocation. We propose
a novel method to estimate the degradation severity of noisy, degraded signals
in the latent space of an autoencoder. We show that the estimated severity has
strong correlation with the true corruption level and can give useful hints at the
difficulty of reconstruction problems on a sample-by-sample basis. Furthermore,
we propose a reconstruction method based on latent diffusion models that leverages
the predicted degradation severities to fine-tune the reverse diffusion sampling
trajectory and thus achieve sample-adaptive inference.

1 Introduction
Inverse problems arise in a multitude of computer vision [24, 23, 40], biomedical imaging [1, 37] and
scientific [12, 10] applications, where the goal is to recover a clean signal from noisy and degraded
observations. Data-driven supervised and unsupervised deep learning methods have established new
state-of-the-art in tackling most inverse problems (see an overview in [28]).

A key shortcoming of available techniques is their inherent inability to adapt their compute power
allocation to the difficulty of reconstructing a given corrupted sample. There is a natural sample-
by-sample variation in the difficulty of recovery due to multiple factors. First, variations in the
measurement process (e. g. more or less additive noise, different blur kernels) greatly impact the
difficulty of reconstruction. Second, a sample can be inherently difficult to reconstruct for the
particular model, if it is different from examples seen in the training set (out-of-distribution samples).
Third, the amount of information loss due to the interaction between the specific sample and the
applied degradation can vary vastly. Finally, the implicit bias of the model architecture towards
certain signal classes (e.g. smooth for convolutional architectures) can be a key factor in determining
the difficulty of a recovery task. Therefore, expending the same amount of compute to reconstruct all
examples is potentially wasteful, especially on datasets with varied corruption parameters.

To the best of our knowledge, sample-adaptive methods have not been studied extensively in the
literature. Unrolled networks [41, 38] map the iterations of popular optimizers to learnable submod-
ules, where deeper networks can be used to tackle more challenging reconstruction tasks. However,
network size is determined in training time and therefore these methods are unable to adapt on a
sample-by-sample basis. Deep Equilibrium Models [2, 11] can leverage networks of arbitrary depth
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Figure 1: We estimate the degradation severity of cor-
rupted images in the latent space and find the optimal
start time in the reverse diffusion process on a sample-
by-sample basis. Inference time is automatically scaled
by the difficulty of the reconstruction task at test time.

Figure 2: The optimal number of reverse
diffusion steps varies depending on the
severity of degradations. Fixing the num-
ber of steps results in over- or under-
diffusing some samples.

through the construction of fixed-point iterations. These methods can adapt their compute in test
time, however it is unclear how the optimal number of iterations correlates with degradation severity.

Diffusion models have established new state-of-the-art in synthesizing data of various modalities
[8, 27, 29, 31, 34, 13, 33, 14, 22], inverse problem solving and image restoration [15, 35, 36, 7, 6, 4,
5, 20, 18, 19, 9]. Diffusion-based sampling techniques generate the missing information destroyed
by the corruption step-by-step through a diffusion process that transforms pure noise into a target
distribution. Recent work [6] has shown that the sampling trajectory can be significantly shortened
by starting the reverse diffusion process from a good initialization, however even though sampling is
accelerated, the same number of function evaluations are required to reconstruct any sample.

More recently, latent domain diffusion, that is a diffusion process defined in the low-dimensional
latent space of a pre-trained autoencoder, has demonstrated great success in image synthesis [31] and
has been successfully applied to solving linear inverse problems [32] and in high-resolution image
restoration [26]. The latent space consists of compressed representations of relevant information in
data and thus provides a natural space to quantify the loss of information due to image corruptions,
which strongly correlates with the difficulty of the reconstruction task. In this work, we propose
a novel reconstruction framework (Figure 1), where the cost of inference is automatically scaled
based on the difficulty of the reconstruction task on a sample-by-sample basis. We call our method
Flash-Diffusion: Fast Latent Sample-Adaptive Reconstruction ScHeme.

2 Method
Severity encoding – The goal of inverse problem solving is to recover the clean signal x from a
corrupted observation y = A(x)+n. The degradation A and additive noise n fundamentally destroy
information in x. The amount of information loss, or the severity of the degradation, strongly depends
on the interaction between the signal structure and the specific degradation. For instance, applying a
blur kernel to an image with abundant high-frequency detail (textures, hair, background clutter etc.)
results in a more severe degradation compared to applying the same kernel to a smooth image with
few details. In other words, the difficulty of recovering the clean signal does not solely depend on the
degradation process itself, but also on the specific sample the degradation is applied to.

Quantifying the severity of a degradation is a challenging task in image domain. Consider the forward
model y = cx that simply rescales the clean signal. Recovery of x is trivial, however image similarity
metrics such as PSNR or NMSE may indicate arbitrarily large error. Now, consider corrupting the
clean signal with some additive Gaussian noise. Even though the image domain perturbation is
(potentially) small, information is fundamentally lost and perfect reconstruction is no longer possible.

Autoencoders [21, 30] learn a latent representation from data by first summarizing the input image
into a compressed latent vector z = E0(x) through an encoder. Then, the original image can be
recovered from the latent via the decoder x̂ = D0(z) such that x ≈ x̂. As the latent space of
autoencoders contains only the relevant information of data, it is a more natural space to quantify the
loss of information due to the degradation than the image domain.

In particular, assume that we have access to the latent representation of clean images z0 =
E0(x0), z0 ∈ Rd, for instance from a pre-trained autoencoder. We propose a severity encoder
Êθ that achieves two objectives simultaneously: (1) it can predict the latent representation of a clean
image, given a noisy and degraded observation and (2) it can quantify the error in its own latent
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1Figure 3: Left: given a ground truth image corrupted by varying amount of blur, σ̂ is an increasing
function of the blur amount. Right: Blur amount (t) vs. predicted degradation severity (σ̂). Outliers
indicate that the predicted degradation severity is not solely determined by the amount of blur. Red
dots indicate samples with a wide range of degradations, but similar predicted severities.

estimation. We denote Êθ(y) = (ẑ, σ̂) with ẑ ∈ Rd the estimate of z0 and σ̂ ∈ R the estimated
degradation severity to be specified shortly. We use the notation Êz(y) = ẑ and Êσ(y) = σ̂ for
the two conceptual components of our model, however in practice a single architecture is used to
represent Êθ. The first objective can be interpreted as image reconstruction in the latent space of the
autoencoder: for y = A(x) + n and z0 = E0(x), we have Êz(y) = ẑ ≈ z0. The second objective
captures the intuition that recovering z0 from y exactly may not be possible, and the prediction
error is proportional to the loss of information about x due to the corruption. Thus, even though the
predicted latent ẑ might be away from the true z0, the encoder quantifies the uncertainty in its own
prediction. More specifically, we make the assumption that the prediction error in latent space can be
modeled as zero-mean i.i.d. Gaussian. That is, e(y) = ẑ − z0 ∼ N (0, σ2

∗(y)I) and we interpret the
variance in prediction error σ2

∗ as the measure of degradation severity. We optimize the joint objective

Ex0∼q0(x0),y∼N (A(x0),σ2
yI)

[∥∥∥z0 − Êz(y)
∥∥∥2

+ λσ

∥∥∥σ̄2(y,z0)− Êσ(y)
∥∥∥2

]
:= Llat.rec. + λσLerr., (1)

with z0 = E0(x0) for a fixed, pre-trained encoder E0 and σ̄2(y, z0) = 1
d−1

∑d
i=1(e

(i) −
1
d

∑d
j=1 e

(j))2 is the sample variance of the prediction error estimating σ2
∗. Here λσ > 0 is a

hyperparameter that balances between reconstruction accuracy (Llat.rec.) and error prediction perfor-
mance (Lerr.). Training the severity encoder is fast, as one can fine-tune the pre-trained E0.

Sample-adaptive inference – Diffusion-based inverse problem solvers synthesize missing data that
has been destroyed by the degradation process through diffusion. As shown in Figure 2, depending
on the amount of missing information (easy vs. hard samples), the optimal number of diffusion steps
may greatly vary. We aim to automatically find this "sweet spot" on a sample-by-sample basis.

We find the time index istart in the latent diffusion process at which the signal-to-noise ratio (SNR)
matches the SNR predicted by the severity encoder. Assume that the latent diffusion process is
specified by the conditional distribution qi(zi|z0) ∼ N (aiz0, b

2
i I), where ai and bi are determined

by the specific sampling method. We also have ẑ ∼ N (z0, σ
2
∗(y)I), where we estimate σ2

∗ by Êσ(y).
Then, SNR matching gives us the starting index

istart(y) = arg min
i∈[1,2,..,N ]

∣∣∣∣∣a2ib2i − 1

Êσ(y)

∣∣∣∣∣
Thus, we start reverse diffusion from ẑ provided by the severity encoder and progressively denoise it
using a pre-trained LDM, where the length of the sampling trajectory is directly determined by the
predicted severity of the degraded example. Finally, we encourage data consistency through a latent
space variant of DPS [4] (see details in Appendix C), which we call LDPS.

3 Experiments
We perform experiments on CelebA-HQ (256×256) [16]. For comparisons with image domain score
models we test on FFHQ [17]. We investigate two degradations. Varying blur, fixed noise: we apply
Gaussian blur with kernel size of 61 and sample kernel standard deviation uniformly on [0, 3], where
0 corresponds to no blurring. Nonlinear blur, fixed noise: we deploy GOPRO motion blur [39]. This
is a nonlinear forward model due to the camera response function. We randomly sample nonlinear
blur kernels. We add Gaussian noise with standard deviation of 0.05 in both tasks.
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Gaussian Deblurring Non-linear Deblurring
Method PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓) PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓)
Flash-Diffusion (ours) 29.16 0.8191 0.2241 29.46 27.22 0.7705 0.2694 36.92
AE 29.43 0.8366 0.2668 58.47 27.15 0.7824 0.3351 73.81
SwinIR [25] 30.71 0.8598 0.2399 59.07 27.66 0.7964 0.3072 62.11
DPS 28.35 0.7806 0.2470 55.17 22.82 0.6247 0.3603 72.20
CCDF-DPS [6] 30.02 0.8365 0.2324 50.62 26.98 0.7445 0.2840 56.92
CCDF-L 29.55 0.8377 0.2346 49.06 27.25 0.7793 0.2833 55.85

Table 1: Experimental results on the FFHQ test split.
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Figure 4: Left and center: Average # of reverse diffusion steps in our algorithm vs. CCDF-L with
fixed number of steps. Right: Histogram of predicted # of reverse diffusion steps for our algorithm.

Comparison methods – We compare our method, with SwinIR [25], DPS [4], and CCDF [6] with
two variants: (1) CCDF-DPS: we replace the projection-based data consistency method with DPS to
facilitate nonlinear forward models and (2) CCDF-L: we deploy CCDF in latent space using the same
LDM as for our method and we replace the data consistency step with LDPS . For all CCDF-variants
we use the SwinIR reconstruction as initialization. We show results of decoding our severity encoder’s
latent estimate ẑ directly, denoted by AE (autoencoded). Further details are in Appendix D and E.

Severity encoding – First, we isolate the effect of degradation on σ̂ (Fig. 3, left). We fix the clean
image and apply increasing amount of Gaussian blur. We observe that σ̂ is an increasing function of
the blur amount applied to the image. This implies that the severity encoder learns to capture the
amount of information loss caused by the degradation.

Next, we investigate the relation between σ̂ and the corruption level (Fig. 3, right). We parameterize
the corruption level by t, and vary the blur kernel width linearly for t ∈ (0, 1). We observe that σ̂
strongly correlates with t. However, the existence of outliers suggests that factors other than the
corruption level may also contribute to the predicted severities. The bottom image is predicted to be
surprisingly easy, as other images of the same corruption level are typically assigned higher predicted
severities. This sample has a lack of fine details and textures and shares common features with
samples in the training set. On the other hand, the top image is considered surprisingly difficult, as it
contains unexpected features and high-frequency details that are uncommon in the dataset.

Sample-adaptive reconstruction – We observe that Flash-Diffusion consistently outperforms other
diffusion-based solvers in terms of LPIPS and FID (Table 1). SwinIR achieves higher PSNR and
SSIM as diffusion methods, however the reconstructions lack detail. This phenomenon is due to the
perception-distortion trade-off [3]: improving perceptual image quality is fundamentally at odds with
distortion metrics. Visual comparison of samples can be found in Appendix H.

Efficiency of the method – We compare Flash-Diffusion to CCDF-L across various (fixed) number
of reverse diffusion steps (Fig. 4). Our adaptive method achieves the best FID across any fixed
number of steps and it achieves near-optimal LPIPS with often 2× less average number of diffusion
steps. The predicted diffusion steps are spread around the mean and not closely concentrated, further
highlighting the adaptivity of Flash-Diffusion. Results on nonlinear blur can be found in Appendix F.

4 Conclusions
In this work, we highlight that the difficulty of solving an inverse problem may vary greatly on
a sample-by-sample basis, depending on the ground truth signal structure, the applied corruption,
the model, the training set and the complex interactions between these factors. We propose Flash-
Diffusion, a sample-adaptive method that predicts the degradation severity of corrupted signals, and
utilizes this estimate to automatically tune the compute allocated to reconstruct the sample. We
experimentally demonstrate that the proposed technique achieves performance on par with state-of-
the-art diffusion-based reconstruction methods, but with greatly improved compute efficiency.
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A Training loss details

As detailed in Section 2.1, we train the severity encoder on the joint objective

Lsev = Ex0∼q0(x0),y∼N (A(x0),σ2
yI)

[∥∥∥z0 − Êz(y)
∥∥∥2 + λσ

∥∥∥σ̄2(y, z0)− Êσ(y)
∥∥∥2] := Llat.rec. + λσLerr.,

where Llat.rec. encourages accurate reconstruction in the latent space, whereas Lerr. imposes penalty
on the latent error estimation. We empirically observe, that even small loss values of Llat.rec. (that is
fairly good latent reconstruction) may correspond to visible reconstruction error in image domain as
semantically less meaningful features are often not captured in the latent representation. Therefore,
we utilize an extra loss term that imposes image domain consistency with the ground truth image in
the form

Lim.rec. = Ex0∼q0(x0),y∼N (A(x0),σ2
yI)

[∥∥∥x0 −D0(Êz(y))
∥∥∥2] ,

resulting in the final combined loss

Lcombined = Llat.rec. + λσLerr. + λim.Lim.rec.,

with λim. ≥ 0 hyperparameter.

B Noise correction

Even though we assume that the prediction error in latent space is i.i.d. Gaussian in order to quantify
the estimation error by a single scalar, in practice the error often has some structure. This can pose a
challenge for the score model, as it has been trained to remove isotropic Gaussian noise. We observe
that it is beneficial to mix ẑ with some i.i.d. correction noise in order to suppress structure in the
prediction error. In particular, we initialize the reverse process by

zstart =
√
1− cσ̂2ẑ +

√
cσ̂2ε, ε ∼ N (0, I),

where c ≥ 0 is a tuning parameter.

C Maintaining consistency with measurements

Maintaining consistency with the measurements is non-trivial in the latent domain, as common
projection-based approaches are not applicable directly in latent space. We propose Latent Diffusion
Posterior Sampling (LDPS), a variant of diffusion posterior sampling [4] that guides the latent
diffusion process towards data consistency in the original data space. In particular, by applying Bayes’
rule the score of the posterior in latent space can be written as

∇zt
log qt(zt|y) = ∇zt

log qt(zt) +∇zt
log qt(y|zt).

The first term on the r.h.s. is simply the unconditional score that we already have access to as pre-
trained LDMs. As qt(y|zt) cannot be written in closed form, following DPS we use the approximation
∇zt log qt(y|zt) ≈ ∇zt log qt(y|ẑ0(zt)), where ẑ0(zt) = E [z0|zt] is the posterior mean of z0,
which is straightforward to estimate from the score model via Tweedie’s formula. This form is similar
to PSLD in [32], but without the "gluing" objective. As y ∼ N (A(D0(z0)), σ

2
yI), we approximate

the score of the likelihood as

∇zt log qt(y|zt) ≈ − 1

2σ2
y

∇zt ∥A(D0(ẑ0(zt)))− y∥2 . (2)

LDPS is a general approach to impose data consistency in the latent domain that works with noisy
and potentially nonlinear inverse problems.

D Training details

Here we provide additional details on the training setup and hyperparameters.

Dataset – We perform experiments on CelebA-HQ (256× 256) [16] where we match the training
and validation splits used to train LDMs in [31], and set aside 1k images from the validation split for
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testing. For comparisons involving image domain score models we test on FFHQ [17], as pre-trained
image-domain score models have been trained on the complete CelebA-HQ dataset, unlike LDMs.

Degradations – We investigate two degradations of diverging characteristics. Varying blur, fixed
noise: we apply Gaussian blur with kernel size of 61 and sample kernel standard deviation uniformly
on [0, 3], where 0 corresponds to no blurring. We add Gaussian noise to images in the [0, 1] range
with noise standard deviation of 0.05. Nonlinear blur, fixed noise: we deploy GOPRO motion blur
simulated by a neural network model from [39]. This is a nonlinear forward model due to the camera
response function. We randomly sample nonlinear blur kernels for each image and add Gaussian
noise with standard deviation 0.05.

Model architecture – In all experiments, we use an LDM model pre-trained on the CelebA-HQ
dataset out of the box. We fine-tune the severity encoder from the LDM’s pre-trained encoder. We
obtain the degradation severity estimate σ̂ ∈ R+ from the latent reconstruction ẑ ∈ Rd as

σ̂ =
1

d

d∑
i=1

[Conv(ẑ)2]i,

where Conv(·) is a learned 1× 1 convolution with d input and d output channels.

Training setup – We train severity encoders using Adam optimizer with batch size 28 and learning
rate 0.0001 for about 200k steps until the loss on the validation set converges. We use Quadro RTX
5000 and Titan GPUs.

Hyperparameters – We scale the reconstruction loss terms with their corresponding dimension (d
for Llat.rec. and n for Lim.rec.), which we find to be sufficient without tuning for λim.rec.. We tune
λσ via grid search on [0.1, 1, 10] on the varying Gaussian blur task and set to 10 for all experiments.

For latent diffusion posterior sampling, following [4] we scale the posterior score estimate with the
data consistency error as

∇zt log qt(zt|y) ≈ sθ(zt)− ηt∇zt ∥A(D0(ẑ0(zt)))− y∥2 ,
where

ηt =
η

∥A(D0(ẑ0(zt)))− y∥ ,

and η > 0 is a tuning parameter. We perform grid search over [0.5, 1.0, 1.5, 2.0] over a small subset
of the validation set (100 images) and find η = 1.5 to work the best for all tasks.

Similarly, we tune the noise correction parameter c on the same validation subset by grid search over
[0.5, 0.8, 1.0, 1.1, 1.2, 1.5] and find c = 1.2 for Gaussian blur and c = 1.1 for nonlinear blur to work
the best.

E Comparison method details

For all methods, we use the train and validation splits provided for CelebA and FFHQ in the GitHub
repo of "Taming Transformers" 1. For the test split, we subsample 1000 ids from the corresponding
validation ids file. Specific ids we used will be available when the codebase is released. We provide
the specifics for each comparison method next.

SwinIR: For both Gaussian blur and non-linear blur experiments, we train SwinIR using Adam
optimizer with batch size 28 for 100 epochs. We use learning rate 0.0002 for the first 90 epochs and
drop it by a factor of 10 for the remaining 10 epochs. We use Quadro RTX 5000 and Titan GPUs.

CCDF-DPS: We implement this method by modifying the official GitHub repo 2 of DPS [4].
Instead of projection based conditioning, we replace it with the DPS updates to handle noise in the
measurements and non-linear degradations. As the initial estimate, we use the output of SwinIR
model that we trained. We tune the data consistency step size ζ ′ and number of reverse diffusion steps
N ′ by doing 2D grid search over [0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 20.0]× [1, 10, 20, 50, 100, 200, 1000]
on the small subset of validation split of FFHQ dataset (100 images) based on LPIPS metric. For

1https://github.com/CompVis/taming-transformers/tree/master/data
2https://github.com/DPS2022/diffusion-posterior-sampling
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Figure 5: Comparison of adaptive reconstruction with fixed number of diffusion steps on the nonlinear
blur task. Left and center: We plot the average number of reverse diffusion steps performed by our
algorithm vs. CCDF-L with a fixed number of steps. Right: We plot the histogram of predicted
number of reverse diffusion steps for our algorithm.

Gaussian blur, we find the optimal hyperparameters to be (ζ ′, N ′) = (5.0, 20). For non-linear blur
optimal values are (ζ ′, N ′) = (3.0, 100).

CCDF-L: This method is the same as ours but with a fixed starting time and initial estimate provided
by SwinIR model we trained. We tune the data consistency step size η and the number of reverse
diffusion steps N ′ by doing grid search over [0.5, 1.0, 1.5, 2.0]×[20, 50, 100, 200] on the small subset
of validation split of FFHQ (100 images) based on LPIPS metric. For varying blur experiments,
we found the optimal value to be (η,N ′) = (1.0, 100). For non-linear blur, we found it to be
(η,N ′) = (1.5, 200).

DPS: This method can be seen as a special case of CCDF-DPS where number of reverse diffusion
steps is fixed to N ′ = 1000. From the same 2D grid search we performed for CCDF-DPS, we find
the optimal data consistency step size ζ ′ to be 5.0 for Gaussian blur, 0.5 for non-linear blur.

Autoencoded (AE): We use the latent at severity encoders output and decode it without reverse
diffusion to get the reconstruction.

F Further efficiency results

We provide further support for the efficiency of our proposed method in the nonlinear blur task in
Figure 5.

G Robustness against forward model mismatch

Our method relies on a severity encoder that has been trained on paired data of clean and degraded
images under a specific forward model. We simulate a mismatch between the severity encoder
fine-tuning operator and test-time operator in order to investigate the robustness of our technique with
respect to forward model perturbations. In particular, we run the following experiments to assess
the test-time shift: 1) we train the encoder on Gaussian blur and test on non-linear blur and 2) we
train the encoder on non-linear blur and test on Gaussian blur. The results on the FFHQ test set
are in Table 2. We observe minimal loss in performance when non-linear blur encoder is used for
reconstructing images corrupted by Gaussian blur. For the non-linear deblurring task, using Gaussian
blur encoder results in a more significant drop in the performance, while still providing acceptable
reconstructions. These results are expected, as Gaussian blur can be thought of as a special case of
the non-linear blur model we consider. Therefore even when the encoder is swapped, it can provide
meaningful mean and error estimation. However, the Gaussian blur encoder has never been trained
on images corrupted by non-linear blur. As such, the mean estimate is worse, resulting in a larger
performance drop. Note that we did not re-tune the hyper-parameters in these experiments and doing
so may potentially alleviate the loss in performance.
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Gaussian Deblurring Non-linear Deblurring
Method PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓) PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓)
Ours + Gaussian blur encoder 29.16 0.8191 0.2241 29.467 25.36 0.7238 0.3416 54.90
Ours + NL blur encoder 28.96 0.8129 0.2362 30.34 27.22 0.7705 0.2694 36.92

Table 2: Robustness experiments on the FFHQ test split.
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Figure 6: Visual comparison of FFHQ reconstructions under varying levels of Gaussian blur (top 2
rows) and nonlinear motion blur (bottom 2 rows), both with additive Gaussian noise (σ = 0.05).

H Visual comparison of reconstructions
We perform visual comparison of reconstructed samples in Figure 6. We observe that Flash-Diffusion
can reconstruct fine details, significantly improving upon the autoencoded reconstruction used to
initialize the reverse diffusion process. SwinIR produces reliable reconstructions, but with less
details compared to diffusion-based methods. Moreover, note that diffusion-based solvers with fixed
number of diffusion steps tend to under-diffuse (see 2nd row, lack of details) or over-diffuse (4th row,
high-frequency artifacts) leading to subpar reconstructions.

I Limitations
We identify the following limitations of our framework.

1. The assumption of i.i.d. Gaussian prediction error provides a simple way to estimate the
severity, however does not necessarily hold in practice. We believe that more realistic error
models can further improve our technique, which we leave for future work.

2. The proposed severity estimation method estimates a scalar value for the latent embedding.
One reason we choose to estimate a scalar value is to appeal to the intuition of a simple
severity measure. We also want to have a clear mapping between the error and the time
step to initiate the reverse diffusion. We believe that using a vector valued error estimate
which corresponds to having a diagonal covariance estimate would add more flexibility to
our method.

3. The proposed reconstruction method requires degraded-clean image pairs for fine-tuning the
severity encoder. Fine-tuning has to be performed separately for each degradation, thus the
method is less flexible than DPS and similar diffusion solvers. However, we argue that the
fine-tuning step has fairly low cost.

4. Latent diffusion posterior sampling has some additional compute cost compared to DPS due
to differentiating through the decoder. Maintaining data-consistency through only latent
space information would alleviate this issue. However, it is not clear how to do this for
arbitrary degredations, hence we leave it for future work.
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