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Abstract

The rapid development of large language mod-001
els (LLMs) has created an urgent need for iden-002
tifying machine-generated texts, and text wa-003
termarking technology has proven to be an ef-004
fective solution. However, current watermark-005
ing methods, while demonstrating strong de-006
tectability, significantly degrade text quality007
due to the introduction of unnatural tokens. The008
main reason lies in the fact that these methods009
ignore the importance of semantic information010
in the watermarking process. To address this011
issue, we note that the logit vector produced012
by LLMs encodes both semantic understand-013
ing of input texts and prediction confidence014
across different tokens. Therefore, we propose015
a novel Semantic Self-Guided Watermarking016
(SSGW) framework that leverages the LLM017
itself to generate a guidance logic vector that018
assists in watermarking while producing the019
original one concurrently. Subsequently, we de-020
sign a transform module to analyze these two021
vectors comprehensively and then transform022
them into adaptive watermark logits for differ-023
ent candidate tokens, thereby reducing the pos-024
sibility of selecting inappropriate tokens. Ex-025
perimental results confirm the effectiveness of026
our method in achieving superior performance027
in both watermark detectability and text quality028
preservation. The source code will be made029
publicly available upon acceptance.030

1 Introduction031

In recent years, the rapid advancement of large lan-032

guage models (LLMs) has ushered in a new era of033

natural language processing (Ouyang et al., 2022;034

Touvron et al., 2023b; OpenAI, 2023a). They can035

generate coherent and contextually relevant texts036

that often rival human-written content in terms of037

quality and fluency. However, this technological038

leap forward has also caused a multitude of ethical039

and moral concerns in various domains. Specif-040

ically, the misuse of LLM-generated essays can041

lead to academic dishonesty (Stokel-Walker, 2022),042

Figure 1: Current watermarking methods (represented
by KGW (Kirchenbauer et al., 2023)) often degrade
text quality by introducing unnatural tokens. In this
case, it is obvious that “cars”, “storm”, or even “&&”
are not suitable for contextual semantics. However,
KGW assigns these tokens the same watermark logit
as appropriate ones. In contrast, our SSGW method
(right) designs a semantic self-guided watermarking
framework to adaptively assign reasonable watermark
logits to different candidate tokens, effectively reducing
the possibility of inappropriate token replacement.

and the fabrication of fake news can even provoke 043

social panic (Augenstein et al., 2024). Therefore, 044

distinguishing text generated by LLMs from that 045

written by humans has become an essential task. 046

As a solution, the text watermarking technique 047

effectively alleviates these issues by embedding 048

hidden patterns into LLM-generated texts. These 049

patterns are invisible to humans but can be detected 050

by the corresponding algorithm. Kirchenbauer et al. 051
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(2023) design a watermarking algorithm (KGW)052

based on logits modification. This method parti-053

tions the vocabulary into a red list and a green list054

using a hash function depending on the preceding055

token at each generation step. Then, a positive056

constant (termed the watermark logit) is added to057

the logit value of green list tokens, increasing their058

probability of being sampled. As a result, a text059

will be considered watermarked by the detector if060

it contains more than a certain number of green list061

tokens. The design of KGW can easily improve062

the detectability of watermarks by increasing the063

constant value. However, this approach often sig-064

nificantly degrades the quality of the generated text065

due to the introduction of a large number of unnatu-066

ral tokens. As shown in Figure 1, the uniform logits067

modification strategy treats all tokens assigned to068

the green list as the same, while most of them are069

actually inappropriate.070

To mitigate this issue, some works attempt to op-071

timize the logits modification strategy instead of a072

positive constant used in KGW. Liu and Bu (2024)073

proposes an adaptive text watermarking method074

(ATW), which proportionally scales up the orig-075

inal logits instead of uniformly increasing. Wu076

et al. (2024) introduces a theoretically unbiased077

watermarking method (DIP) that discards tokens078

with probabilities below α and doubles those above079

1− α. However, these mathematical adjustments080

cannot guarantee a stable improvement in text qual-081

ity. In addition, Lee et al. (2023) proposes a se-082

lective watermarking strategy (SWEET) that only083

applies watermarks to tokens with entropy higher084

than a certain threshold. Although SWEET is effec-085

tive for low-entropy tasks such as code generation,086

this simple threshold-based strategy has little im-087

provement in most scenarios.088

Different from the aforementioned methods, our089

work emphasizes the importance of semantic infor-090

mation in the process of logits modification at each091

generation step. When modifying the logit value092

of a single green list token, both its semantic infor-093

mation and the semantics of its preceding text need094

to be taken into account. Therefore, we introduce095

a Semantic Self-Guided Watermarking (SSGW)096

method (Figure 1, right). Specifically, we set a dy-097

namically adjusted guidance window during text098

generation, and then the LLM itself is applied to099

the corresponding text. The obtained output, which100

we call the guidance logit vector, encodes both101

semantic understanding of the guidance window102

input and prediction confidence across different 103

candidate tokens. Furthermore, in order to embed 104

the semantic guidance message as a watermark, 105

we design an algorithm that transforms the guid- 106

ance logit vector into a watermark logit list, which 107

has the same length as the vocabulary. It is worth 108

mentioning that we extend the idea of SWEET and 109

adjust the transformation according to the entropy 110

of both the guidance logit vector and the original 111

one, further enhancing the adaptive ability of our 112

method. 113

Moreover, to comprehensively evaluate the qual- 114

ity of the generated text, we employ two key met- 115

rics in our experiment: perplexity (PPL) and se- 116

mantic similarity. PPL serves as an important indi- 117

cator of text coherence and fluency, while semantic 118

similarity measures the degree of semantic consis- 119

tency between the watermarked text and the un- 120

watermarked one. The experimental results demon- 121

strate that our SSGW method can significantly en- 122

hance the coherence and fluency of the generated 123

text while maintaining semantic consistency and 124

high detectability. Further analysis shows that there 125

is also a trade-off between perplexity and semantic 126

similarity in certain situations. 127

In summary, the contributions of our work are 128

summarized as follows: 129

• We propose an innovative method called 130

SSGW, which can make full use of semantic 131

information in the preceding text to assist in 132

watermarking through a self-guided approach. 133

• We design the Dynamic Guidance Window 134

Adjustment module and the Adaptive Water- 135

mark Logits Transformation module in order 136

to handle different watermarking situations 137

during text generation adaptively. 138

• Experimental results show that SSGW effec- 139

tively outperforms existing methods in both 140

detectability and text quality, especially text 141

coherence and fluency. 142

2 Related Work 143

The rapid advancement of LLMs has significantly 144

narrowed the distinction between human-written 145

and LLM-generated text, raising critical concerns 146

about content authenticity and attribution (Rad- 147

ford et al., 2019; Brown et al., 2020). This blur- 148

ring boundary has created an urgent need for reli- 149

able text authentication mechanisms, as traditional 150
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classification-based detection methods (Mitchell151

et al., 2023; OpenAI, 2023b) struggle to identify152

synthetic content accurately (Sadasivan et al., 2023;153

Chakraborty et al., 2023). In response, researchers154

have renewed interest in watermarking techniques155

adapted for modern AI systems.156

Text watermarking, the practice of embedding157

imperceptible identifiers in textual content, has his-158

torically served as a cornerstone of copyright pro-159

tection (Atallah et al., 2001). Conventional ap-160

proaches typically relied on lexical substitution161

or syntactic pattern manipulation (Topkara et al.,162

2005; Meral et al., 2009), which have evolved sig-163

nificantly in the era of LLMs.164

Recent breakthroughs have integrated water-165

marking directly into LLM generation processes,166

fully leveraging the advanced understanding of lan-167

guage semantics and contextual awareness inherent168

in LLMs. The most representative is the LLM169

watermarking technology based on logits modifi-170

cation proposed by Kirchenbauer et al. (2023). As171

a pioneer, although this method has demonstrated172

excellent watermark detectability, it still needs fur-173

ther optimization to be applied in the real world,174

especially in two key aspects: improving robust-175

ness against attacks and mitigating impact on text176

quality (Liu et al., 2024b).177

A number of works have been proposed to en-178

hance the robustness of watermarks. Based on179

KGW, Zhao et al. (2023) proves that a fixed parti-180

tion of red and green lists contributes to stronger181

robustness against various attacks. Moreover, some182

studies attempt to integrate semantic information183

into their watermarking algorithm (Ren et al., 2023;184

Liu et al., 2024a; He et al., 2024; Liu and Bu, 2024),185

considering that most watermark removal attacks186

tend to preserve the semantics of the original text.187

In addition, some works focus on improving the188

quality of watermarked texts. Hu et al. (2024)189

proposes a theoretically unbiased method using190

inverse sampling and reweighting technology to191

preserve the original text distribution. Similarly,192

Wu et al. (2024) extends this idea and proposes193

the α-reweight method with more general parame-194

ter settings. However, unbiased distribution does195

not imply lossless text quality, and these meth-196

ods have shown poor detection performance. Lee197

et al. (2023) employs a more practical strategy that198

selectively applies watermarks to tokens with en-199

tropy higher than the threshold since lower entropy200

means less suitable tokens. However, this strategy201

is almost no different from KGW in most scenarios. 202

Liu and Bu (2024) designs an adaptive watermark 203

temperature scaling module, allocating higher wa- 204

termark logits to tokens with higher probability. 205

The disadvantage of this multiplicative method lies 206

in that some tokens will be assigned excessively 207

high watermark logits compared to those unmod- 208

ified tokens. To address these shortcomings, our 209

work designs a framework that constructs auxiliary 210

guidance logit vectors to assist in adding water- 211

marks, emphasizing the importance of utilizing 212

semantic information. 213

3 Preliminaries 214

The watermark algorithm consists of a watermark 215

generator G and a watermark detector D. At each 216

generation step t, the watermark generator can in- 217

troduce subtle modifications to the logit vector l(t) 218

obtained by the given LLM M over the vocabulary 219

V based on the prompt x−m:0 and the preceding 220

generated text x1:t−1. Then, the LLM will sample 221

the next token based on the modified logit vector 222

after performing softmax. This procedure is pre- 223

sented in Eq. 1. 224

l(t) = M(x−m:0, x1:t−1)

xt ∼ softmax(G(l(t)))
(1) 225

As introduced in Kirchenbauer et al. (2023), we 226

employ a similar red-green list strategy in this pa- 227

per. Given the logit vector l(t), a predetermined 228

constant γ is used to partition the vocabulary into a 229

green list Gt of size γ|V | and a red list Rt of size 230

(1− γ)|V |, where |V | is the size of the vocabulary. 231

Then, we adjust the original logit vector with a wa- 232

termark logit list δ(t)|V |, using Eq.2. Specially, δ(t)|V | 233

is a constant list in KGW. 234

G(l(t)[k]) = l(t)[k] + δ
(t)
|V |[k], k ∈ Gt (2) 235

The method of calculating the red-green list 236

in the detection process is the same as during 237

the generation. Given a token sequence s = 238

{s1, s2, ..., sT }, let |s|G denote the number of 239

green list tokens in s. Our detection is carried 240

out through the one-sided z-test, specifically by cal- 241

culating the z-score using Eq.3. If the z-score is 242

higher than a given threshold, s will be considered 243

watermarked. 244

z =
|s|G − γT√
Tγ (1− γ)

(3) 245
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4 Method246

In this section, we will introduce our Semantic Self-247

Guided Watermarking (SSGW) method that simul-248

taneously improves both watermark detectability249

and text quality. This method operates through250

three key modules: (1) Guidance Logit Vector Gen-251

eration, (2) Adaptive Watermark Logits Transfor-252

mation, and (3) Dynamic Guidance Window Ad-253

justment.254

4.1 Guidance Logit Vector Generation255

The design of our Semantic Self-Guided Water-256

marking (SSGW) method is driven by two funda-257

mental observations. First, an effective watermark258

generator should analyze the semantic information259

of the preceding text to evaluate token substitutabil-260

ity at each generation step. This requirement stems261

from the fact that arbitrary token replacements dis-262

rupt the semantic coherence of the generated text.263

Second, the logit vector produced by LLMs inher-264

ently reflects both semantic understanding of the265

given input and relative preference scores for dif-266

ferent tokens in the vocabulary.267

Consequently, it is natural to take into account268

the scheme of constructing an auxiliary guidance269

logit vector l̂(t) different from the original l(t) dur-270

ing text generation and embedding this logit vector271

as a watermark. Specifically, if these two logit272

vectors have different prediction results, we pre-273

fer to use the result of l̂(t) as the next token by274

modifying l(t), achieving the effect of reducing275

semantic disturbance while altering the original276

selection of the LLM.277

Therefore, our SSGW method employs a strat-278

egy of setting a guidance window and then applying279

the LLM to the corresponding text. In this way, the280

obtained guidance logit vector can not only assist281

in selecting tokens that are suitable for contextual282

semantics but also have a stable difference in pre-283

diction results to enhance the watermark detectabil-284

ity. Specifically, the following computations will285

be performed at each generation step t:286

l(t) = M(x−m:0 ⊕ x1:t−1)

l̂(t) = M(xt−L:t−1)
(4)287

where l(t) incorporates the complete historical288

context from prompt x−m:0 to previously gener-289

ated tokens x1:t−1, while l̂(t) is obtained from the290

guidance window text xt−L:t−1 of length L. This291

architecture ensures that l̂(t) preserves semantic co- 292

herence while introducing controlled divergence. 293

4.2 Adaptive Watermark Logits 294

Transformation 295

After obtaining the guidance logit vector, our logits 296

modification strategy diverges from that of KGW. 297

Our approach adaptively biases different candidate 298

tokens in the vocabulary with varying watermark 299

logits based on their semantics. Algorithm 1 de- 300

scribes the procedure of Adaptive Watermark Log- 301

its Transformation (AWLT). 302

Algorithm 1 Adaptive Watermark Logits Transfor-
mation (AWLT)

Input: Original logit vector l(t), guidance logit
vector l̂(t), initial suppression coefficient λ0,
guidance watermark strength δgui, low entropy
threshold θ

1: Convert the input logit vectors into probability
distributions: p(t) = softmax

(
l(t)

)
, p̂(t) =

softmax
(
l̂(t)

)
2: Obtain the entropy and maximum index of

the original probability distribution: Hori =
H(p(t)), Iori = argmax

(
p(t)

)
3: Obtain the entropy and maximum index of

the guidance probability distribution: Hgui =
H(p̂(t)), Igui = argmax

(
p̂(t)

)
4: if Igui = Iori then
5: λ ⇐ λ0 · Sigmod

(
Hori +Hgui

)
6: p̂(t)[Igui] ⇐

p̂(t)[Igui]
λ

7: if continuous Hori +Hgui < θ then
8: update λ0 ⇐ λ0 + 1
9: end if

10: end if
11: δ

(t)
|V | = δgui · p̂(t)

p̂(t)[Igui]

Output: δ
(t)
|V |

The AWLT procedure begins by converting both 303

logit vectors into probability distributions p(t) and 304

p̂(t) through softmax normalization. We then an- 305

alyze their prediction behaviors through two key 306

metrics: 307

• Prediction consensus: The argmax function 308

is applied to both probability distributions to 309

obtain their maximum probability indices Iori 310

and Igui. The comparison result between them 311

shows whether both distributions agree on the 312

most probable token. 313

4



• Prediction uncertainty: Shannon Entropy314

(Shannon, 1948), which is defined as H =315

−
∑

pk log pk, measures the uncertainty of a316

discrete probability distribution. We denote317

Hori as the entropy of p(t) and Hgui as that of318

p̂(t).319

There are two possible outcomes for the compar-320

ison of prediction consensus, and we will handle321

them separately.322

Case 1: Divergent predictions (Igui ̸= Iori).323

When the guidance distribution suggests a differ-324

ent optimal token, we consider this a natural wa-325

termarking opportunity. The watermark logit list326

δ
(t)
|V | is calculated proportionally to the guidance327

distribution p̂(t), scaled by the watermark strength328

parameter δgui.329

Case 2: Consensus predictions (Igui = Iori).330

To improve the watermark detectability, we imple-331

ment an entropy-adaptive Maximum Probability332

Suppression (MPS) mechanism using the follow-333

ing equation.334

λ = λ0 · Sigmod
(
Hori +Hgui

)
(5)335

where λ0 is the predefined initial suppression co-336

efficient. We use the sum of both entropy Hsum =337

Hori+Hgui as a basis for the coefficient adjustment.338

A very low Hsum indicates that both p(t) and p̂(t)339

are concentrated on specific tokens. In this case,340

the watermark strength should be relatively weak,341

corresponding to our algorithm’s use of a smaller342

suppression coefficient. Conversely, when Hsum is343

higher, it suggests that the distributions perceive344

multiple reasonable choices, allowing for a stronger345

watermark.346

It is worth mentioning that if both p(t) and p̂(t)347

have extremely low entropy under a predefined en-348

tropy threshold θ at the same time and Igui = Iori,349

it indicates a failure of watermark injection at this350

time step. If this extreme situation continuously351

occurs during the watermarking process, we will352

employ the Dynamic Suppression Coefficient Up-353

date (DSCU) mechanism to increase λ0.354

We note that both Lee et al. (2023) and Liu and355

Bu (2024) discuss the use of entropy for water-356

marking in the text generation process. However,357

their strategy is limited to setting a threshold, treat-358

ing all tokens with entropy higher than the prede-359

fined threshold as the same. Their experimental360

results have proved the effectiveness of using en-361

tropy for watermarking. However, a more in-depth362

and reasonable approach should be adjusting the 363

watermark strength adaptively according to differ- 364

ent entropy scenarios, rather than a simple binary 365

classification. 366

4.3 Dynamic Guidance Window Adjustment 367

To further improve the generated text quality, we 368

design a dynamic guidance window adjustment 369

framework, as detailed in Algorithm 2. 370

Algorithm 2 Dynamic Guidance Window Adjust-
ment (DGWA)
Input: prompt x−m:0, initial window length L0,

starting similarity threshold α, initial water-
mark strength δini

1: Initialize Start = False, L = L0

2: for t = 1, 2, ... do
3: Apply LLM to the full input x−m:t−1 to

get a logit vector l(t).
4: Apply LLM to the window input xt−L:t−1

to get an guidance logit vector l̂(t).
5: Utilize l(t) and l̂(t) to obtain their cosine

similarity Cs = cossim

(
l(t), l̂(t)

)
6: if Start ̸= True then
7: if Cs > α then
8: δ

(t)
|V | ⇐ [δini]× V

9: else
10: δ

(t)
|V | = AWLT

(
l(t), l̂(t)

)
11: update L ⇐ L+ 1
12: update Start ⇐ True
13: end if
14: else
15: δ

(t)
|V | = AWLT

(
l(t), l̂(t)

)
16: update L ⇐ L+ 1
17: end if
18: if continuous Cs > β then
19: update L ⇐ L0

20: end if
21: end for

At the beginning of text generation, we use a 371

fixed window length L = L0 to determine the start- 372

ing point. At this stage, the guidance window text 373

xt−L:t−1 accounts for a high proportion of the full 374

input x−m:t−1, which can easily lead to a high 375

similarity between l(t) and l̂(t). To ensure enough 376

difference between these two logit vectors, we cal- 377

culate their cosine similarity Cs using the following 378

equation. 379
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Cs = cossim

(
l(t), l̂(t)

)
=

l(t) · l̂(t)∥∥l(t)∥∥×
∥∥∥l̂(t)∥∥∥ (6)380

Cosine similarity is a measure of the cosine of381

the angle between two non-zero vectors in multi-382

dimensional space. It assesses the degree of simi-383

larity between these vectors independently of their384

magnitude. In our method, only when Cs is less385

than the predefined threshold α will we begin to386

carry out continuous guidance. Otherwise, we will387

use the uniform logits modification strategy as in388

KGW temporarily.389

It is worth mentioning that the guidance logit390

vector will gradually move closer to the original391

one with the dynamic increase of L. Therefore,392

we design a Window Length Reset (WLR) mecha-393

nism to address scenarios where the cosine similar-394

ity between l(t) and l̂(t) continuously exceeds the395

threshold β.396

5 Experiments397

5.1 Experiment Settings398

Dataset and Prompt. We select two different399

datasets, C4 (Raffel et al., 2020) and Essays (Schuh-400

mann, 2023), to validate the effectiveness of our401

method. For the C4 dataset, we use the first three402

sentences of each text as a prompt to continue the403

news report generation. For the Essays dataset, we404

employ the instructions to guide LLMs in essay405

composition. For each dataset, we generate 500406

samples of 200 tokens using the LLMs and the407

corresponding prompts. We use the first 200 to-408

kens that follow the prompt in the C4 dataset and409

the reference answers from the Essays dataset as410

human-generated texts.411

Evaluation Metrics. Excellent watermark de-412

tectability requires algorithms to correctly identify413

watermarked text while not mistakenly recognizing414

human text as watermarked text. We report the415

true positive rate (TPR) at a fixed 0% FPR for each416

method. In terms of generated text quality, we use417

perplexity (PPL) as the main metric, which is calcu-418

lated using LLAMA2-13B (Touvron et al., 2023a).419

For further analysis, we compute the semantic sim-420

ilarity (SS) between the watermarked text and the421

un-watermarked one using a pre-trained sentence422

transformer (all-MiniLM-L12-v2).423

Baselines and Models. Our method is compared424

with four methods, including KGW (Kirchenbauer425

et al., 2023), SWEET (Lee et al., 2023), ATW (Liu 426

and Bu, 2024) and DIP (Wu et al., 2024). All ex- 427

periments are conducted on three different models: 428

OPT-6.7B (Zhang et al., 2022), GPT-J-6B (Wang 429

and Komatsuzaki, 2021), LLAMA2-7B (Touvron 430

et al., 2023a) using an 80GB A800 GPU. 431

Hyperparameters. For KGW and SWEET, we 432

set γ = 0.25 and δ = 2.0, respectively. The en- 433

tropy threshold in SWEET is set to 0.9. For ATW, 434

δ is set to 1.5. For DIP, we set α = 0.45. The 435

above parameters are derived from the officially 436

recommended default settings. It is worth mention- 437

ing that for a fair comparison, we set the prompt 438

to be invisible in SWEET during detection. In ad- 439

dition, we use multinomial sampling with a Top-k 440

of 50 and a Top-p of 1.0. For our method, the de- 441

fault hyperparameters are set as follows: L0 = 50, 442

α = 0.95, γ = 0.25. Before the starting point is 443

identified, we set δini the same as used in KGW. In 444

the process of AWLT, we set δgui = 3.0. 445

5.2 Main Results 446

Table 1 presents the performance of various meth- 447

ods on the specified model and dataset, with the 448

top-performing results for each metric bolded. Our 449

proposed SSGW method significantly improves the 450

detectability of watermarks and the quality of the 451

generated text compared to the baselines across 452

nearly all models and datasets. To further assess 453

the influence of different watermarking techniques 454

on the text quality, Figure 2 and Figure 3 illustrate 455

the distribution of perplexity and semantic similar- 456

ity compared to un-watermarked text, respectively. 457

Based on the experimental results, the following 458

will delve into a comparative analysis between our 459

method and various baselines. 460

Comparison with KGW and SWEET: Both 461

KGW and SWEET employ a fixed predefined δ 462

as the watermark strength. Although SWEET im- 463

proves upon KGW through entropy-based token 464

filtering, the experimental results indicate little im- 465

provement. In contrast, our method leverages se- 466

mantic information to adjust the watermark log- 467

its for different tokens dynamically. This adap- 468

tive mechanism not only enhances watermark de- 469

tectability but also achieves 30% lower perplexity 470

than KGW. In terms of semantic similarity, our 471

method matches the performance of KGW on the 472

C4 dataset and demonstrates superior results on the 473

Essays dataset. 474

Comparison with ATW: ATW employs temper- 475
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Model Dataset TPR@0% Perplexity

KGW SWEET ATW DIP Ours KGW SWEET ATW DIP Ours

OPT-6.7B C4 0.988 0.998 0.998 0.988 0.998 9.045 8.774 7.499 7.866 6.774
Essays 0.994 0.996 1.000 0.978 1.000 10.277 9.933 7.673 10.351 6.822

GPT-J-6B C4 0.998 0.996 1.000 0.992 1.000 11.336 10.906 8.343 9.313 7.404
Essays 0.996 0.988 1.000 0.992 1.000 10.915 10.599 8.026 9.581 6.364

LLama2-7B C4 0.994 1.000 1.000 0.980 0.996 8.270 7.901 10.513 7.329 5.798
Essays 0.988 0.992 1.000 0.964 1.000 9.014 8.559 8.776 7.459 5.434

Table 1: Main results of comparing different watermarking strategies across various datasets and models.

Figure 2: Comparison of text perplexity among human-
written text, un-watermarked text, and texts using var-
ious watermarking methods conducted on different
LLMs for C4 dataset.

ature scaling to amplify the original logits propor-476

tionally. Although this multiplicative approach con-477

tributes to filtering out inappropriate tokens, it also478

amplifies the impact of watermarked tokens, caus-479

ing significant interference to the original sampling480

process. Experimental results reveal that although481

ATW achieves detection performance comparable482

to that of our method, it causes catastrophic seman-483

tic distortion, as shown in Figure 6. In contrast, our484

solution addresses this imbalance through semantic485

guidance that simultaneously improves watermark486

detectability and text quality.487

Comparison with DIP: DIP proposed the α-488

reweight method, which is theoretically unbiased.489

However, this unbiased watermarking method re-490

quires sacrificing detectability, with DIP consis-491

tently exhibiting the lowest true positive rates492

across all model-dataset configurations. Further-493

more, this mathematical property of DIP cannot494

Figure 3: Comparison of semantic similarity between
un-watermarked text and texts using various watermark-
ing methods conducted on different LLMs and datasets.

guarantee a stable improvement in text quality, par- 495

ticularly evident in its performance on OPT-6.7B 496

for Essays. In contrast, our method maintains excel- 497

lent and stable performance on both detectability 498

and text quality. 499

5.3 Analysis of Performance Trade-offs 500

In many previous studies, PPL and semantic simi- 501

larity have been considered as alternative indicators 502

to measure text quality that can be chosen one over 503

the other. However, experiment results in this pa- 504

per show that there may be a trade-off between 505

them, especially for ATW. To further explore this 506

trade-off, we perform an in-depth analysis of our 507

method on the C4 and Essays datasets. As pre- 508

sented in Figure 4, an increase in δgui improves 509

the performance of perplexity, resulting in a cor- 510

responding decrease in semantic similarity. This 511

phenomenon arises because higher guidance wa- 512

termark strength tends to bias the LLM towards 513

selecting tokens consistent with the guidance win- 514

dow text, thereby ignoring important information 515

earlier. Consequently, watermarked texts gener- 516

ated with stronger guidance exhibit lower semantic 517

similarity to their un-watermarked counterparts. 518
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Figure 4: Performance trade-offs of OPT-6.7B on C4 and Essays at different guidance watermark strengths (δgui)
with δini fixed at 2.0.

Dataset Metric SSGW Removed Mechanisms

WLR DSCU MPS

C4
TPR@0% 0.998 0.998 0.996 0.962
PPL 6.774 6.759 7.224 7.750
SS 0.563 0.560 0.545 0.544

Essays
TPR@0% 1.000 0.994 0.990 0.966
PPL 6.822 6.703 7.260 8.329
SS 0.529 0.524 0.504 0.506

Table 2: Main results of the individual impact of differ-
ent mechanisms, conducted on OPT-6.7B.

5.4 Ablation Study519

In our approach, we implement three key mecha-520

nisms to maintain a stable difference between l(t)521

and l̂(t) during text generation: Window Length522

Reset (WLR), Dynamic Suppression Coefficient523

Update (DSCU), and Maximum Probability Sup-524

pression (MPS). To validate their effectiveness, we525

conduct a comprehensive ablation study by system-526

atically removing each of them. The experimental527

results, presented in Table 2, demonstrate that both528

the detectability and text quality of the three abla-529

tion versions exhibit a substantial decline compared530

to the full version.531

5.5 Robustness Against Attacks532

Considering that the watermarked text is often533

edited before detection, we evaluate the robust-534

ness of our method against two prevalent attack535

types: Copy-Paste Attack (Kirchenbauer et al.,536

2023) and Dipper Attack (Krishna et al., 2023).537

For the Copy-Paste attack, we randomly embed538

three watermarked text fragments with a length of539

20% inside a surrounding un-watermarked text. For540

Dataset Attack TPR@0% TPR@1% TPR@5%

KGW Ours KGW Ours KGW Ours

C4 CP 0.934 0.914 0.980 0.972 0.994 0.994
Dipper 0.274 0.348 0.504 0.572 0.730 0.760

Essays CP 0.970 0.930 0.988 0.990 0.996 0.998
Dipper 0.434 0.470 0.674 0.704 0.844 0.884

Table 3: Robustness performance against Copy-Paste
and Dipper paraphrase attacks.

the Dipper attack, we use the DIPPER paraphrase 541

model to rewrite the text with the lex diversity set 542

to 60. As shown in Table 3, we report TPR at vary- 543

ing FPR levels, specifically at 0%, 1%, and 5%. 544

Our method performs similarly to KGW under the 545

Copy-Paste attack and demonstrates superior detec- 546

tion accuracy under the Dipper attack, which can 547

be attributed to the fact that paraphrasing tends to 548

preserve semantic information. 549

6 Conclusion 550

In this work, we present a novel watermarking 551

method for LLMs called SSGW, which achieves 552

a simultaneous improvement of watermark de- 553

tectability and text quality through a semantic self- 554

guided approach. Experimental results demon- 555

strate that our method outperforms existing base- 556

lines across various models and datasets, espe- 557

cially on text coherence and fluency. Further- 558

more, a thorough analysis reveals that our approach 559

achieves better robustness performance against at- 560

tacks. These results underscore the effectiveness 561

and practicality of SSGW in addressing the chal- 562

lenges of watermarking in the era of LLMs. 563
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Limitations564

Our method mainly includes two limitations. First,565

the calculation to obtain a guidance logit vector566

at each time step during text generation signifi-567

cantly increases computational overhead, result-568

ing in nearly double the generation time. This569

makes our method less suitable for real-time ap-570

plications where efficiency is critical. Second, the571

experimental results in this paper show that there572

is a trade-off between PPL and semantic similar-573

ity in certain situations, highlighting the need for574

future investigations to further explore their inner575

relationship. Despite these limitations, we believe576

that our work contributes positively to the devel-577

opment of high-quality watermarking technology578

since merely improving watermark detectability is579

insufficient to address the multifaceted demands of580

practical applications.581

Ethics Statement582

Watermarking methods are designed to mitigate the583

abuse of large language models. However, if the584

specific watermarking mechanism is leaked, mali-585

cious users may use it to escape detection. There-586

fore, we recommend that all users avoid disclosing587

specific details to others when using the watermark-588

ing method, such as the hash key used in many589

methods.590
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