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Abstract
Transformers have had tremendous impact for sev-
eral sequence related tasks, largely due to their
ability to retrieve from any part of the sequence
via softmax based dot-product attention. This
mechanism plays a crucial role in Transformer’s
performance. We analyze the gradients backprop-
agated through the softmax operation in the atten-
tion mechanism and observe that these gradients
can often be small. This poor gradient signal
backpropagation can lead to inefficient learning
of parameters preceeding the attention operations.
To this end, we introduce a new attention mecha-
nism called LASER, which we analytically show
to admit a larger gradient signal. We show that
LASER attention can be implemented by making
small modifications to existing attention imple-
mentations. We conduct experiments on autore-
gressive large language models (LLMs) with upto
7.7 billion parameters with an average improve-
ment of upto 1.44% over standard attention on
downstream evaluations and 1.65% finetuning im-
provements. Additionally, LASER demonstrates
generalization performance improvement across
a variety of tasks (vision, text and speech):Vision
Transformer (ViT) on Imagenet, Conformer on
the Librispeech speech-to-text and BERT with 2.2
billion parameters.

1. Introduction
Transformer architectures (Vaswani et al., 2017) have gained
prominence over traditional models like LSTMs (Long-
Short-Term-Memory) (Hochreiter & Schmidhuber, 1997)
for various sequence-based tasks due to their ability to bet-
ter capture long-range dependencies (Gemini, 2024; Meta-
AI, 2024) without suffering from the vanishing gradient
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Figure 1. Backpropagating gradients through the softmax opera-
tion in the attention mechanism requires scaling with the Jacobian
of softmax. We show that this Jacobian scales with attention
probabilities/weights, which are typically small in large language
models (LLMs) with about 80% of the probabilties less than 10−3

and about 20% less than 10−7. We propose LASER attention
that involves conducting dot-product attention with an exp(·)-
transformed value matrix V , i.e., conducting attention on exp(V ).
We show that LASER admits a larger Jacobian, is easier to imple-
ment and does not require any change to the underlying attention
function, which may have a more nuanced implementation (e.g.,
FlashAttention (Dao et al., 2022)). In the image, exp(.) and log(.)
are element-wise operations.

problem (Glorot & Bengio, 2010; Bengio et al., 1994).
The attention mechanism plays a key role in Transform-
ers, where different weights or probabilities are assigned
to token representations in a sequence, indicating their rel-
ative importance, and these weights are computed via a
softmax function (Vaswani et al., 2017). The Transformer
architecture consists of multiple stacked layers comprising
attention mechanism, where each layer operates on the out-
put of the previous one, forming the Transformer encoder
or decoder. Learning within a neural network is performed
via gradient backpropagation, wherein gradients propagate
backward through the network layer by layer using the chain
rule (LeCun et al., 2002). During backpropagation, gradient
magnitudes tend to diminish, resulting in a weaker gradient
signal reaching the bottom layers and inefficient learning,
which is called as vanishing gradient problem (Glorot &
Bengio, 2010; Bengio et al., 1994). Residual connections
(He et al., 2016) are used in Transformers so that gradients
can bypass the layers via skip connections during back-
propagation to improve the gradient magnitude for bottom
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layers, reinforcing the idea that architectures capable of effi-
cient gradient backpropagation tend to offer better training
performance.

In this paper, we theoretically analyze the gradient back-
propagation in the attention mechanism of a Transformer
and identify a vanishing gradient issue. During backprop-
agation, the gradient can be scaled by a very small value
due to the softmax operation in the attention mechanism.
Based on this observation, we propose a modification to the
attention mechanism - LASER - LogArithm of Summed
Exponentials of Representations. LASER is equivalent to
conducting attention on exponentially transformed inputs
and admits a log-sum-exp structure. We analytically show
that gradients propagated via LASER attention are typically
large. Since exp(·) transformation in LASER can lead to
numerical overflow, we develop a novel implementation -
Log-Weighted-Sum-Exp trick, inspired from the Log-Sum-
Exp trick (Blanchard et al., 2019). This technique allows
LASER to scale to large models with upto 2.2 billion pa-
rameter models. We show that our implementation requires
small modifications, and doesn’t need any changes to the
underlying attention mechanism which might admit a more
nuanced implementation, for e.g., FlashAttention (Dao et al.,
2022).

We conduct thorough empirical verification across a variety
of Transformer models: Conformer (Gulati et al., 2020) for
Librispeech speech-to-text (Panayotov et al., 2015), Vision
Transformer(Dosovitskiy et al., 2021) for ImageNet classifi-
cation (Deng et al., 2009), decoder-only text Transformer
(Brown et al., 2020) on C4 dataset (Raffel et al., 2020) and
BERT ((Devlin et al., 2018)). We conduct experiments on
decoder-only autoregressive language models from 234 mil-
lion parameters to 7.7 billion parameter models, where we
demonstate improvements of up to 1.7% relative improve-
ment in test loss over standard attention. We conduct one-
shot evaluation on several downstream tasks and show that
LASER outperforms standard attention with upto 1.44% ac-
curacy improvement on average and 1.65% improvement on
average upon finetuning. On a 2.2 billion parameter BERT
(Devlin et al., 2018), LASER gives a relative improvement
of 0.93% on masked language modeling prediction error
rate. LASER also demonstrates 1.2% improvement in accu-
racy, and 0.2% improvement in validation word error rate in
the Conformer benchmark.

2. Related Work
The attention mechanism was used in Bahdanau et al. (2015)
to drastically improve machine translation performance
compared to encoder-decoder recurrent neural networks
(RNNs) (Cho, 2014). This was later adopted in Transform-
ers (Vaswani et al., 2017), which introduced self-attention
to improve the performance in machine translation even

further. Efficient attention mechanisms have been an ac-
tive area of research due to the quadratic computational
complexity in sequence length of Attention, which prevents
long-context language modeling. One notable contribution
is Linear Attention (Katharopoulos et al., 2020), which re-
duces the quadratic complexity of self-attention to linear
in sequence length by using kernel approximation of the
softmax operation. Similarly, the Performer (Choromanski
et al., 2021) develops an alternative kernel approximation
using random feature maps to achieve linear complexity.

A relevant work (Veličković et al., 2024) studies the impor-
tance of expressing sharp distributions in attention mech-
anisms of transformer-based large language models. This
helps with downstream tasks such as text retrieval. In con-
trast, our paper finds that sharp distributions in softmax lead
to gradient bottleneck during backpropagation and proposes
LASER to fix this issue. In large vision transformer (Doso-
vitskiy et al., 2021) pretraining, sharp softmax attention
distributions led to training instabilities in (Dehghani et al.,
2023), the authors propose QK-normalization, which applies
layer normalization to queries and keys before computing
attention weights. This equilibrates the norms of all the
queries and keys, leading to uniform distributions. In (Kim
et al., 2021), the authors identified that standard attention
mechanism is not ℓ2-Lipschitz and develop ℓ2 multi-head
attention, which uses ℓ2-divergence instead of dot-product
between key and query vectors. This formulation admits a
Lipschitz constant.

3. LASER Attention: LogArithm of Summed
Exponentials of Representations

We first formally introduce Transformers (Vaswani et al.,
2017) and the underlying softmax dot-product attention in
Section 3.1. In Section 3.2, we introduce LASER Attention
by first deriving the gradients of standard attention by mak-
ing observations on a simple case of sequence length 2, and
then generalizing to larger sequence lengths.

3.1. Transformers and Softmax Dot-Product Attention

Let X ∈ RN×d represent the input sequence with N tokens,
where the i-th row is a d-dimensional representation of the
i-th token. We describe the Transformer layer T : RN×d →
RN×d similar to (Katharopoulos et al., 2020) as follows:

T (X) = f(X + attn(X)WO), (1)

where f : RN×d → RN×d is usually implemented using
a 2-layer feed-forward neural network which acts on each
token representation independently and WO ∈ Rd×d is a
tunable parameter matrix. The attention function attn(.)
is the only operation in the Transformer which is applied
across the sequence axis. A single headed attention mecha-
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nism (Vaswani et al., 2017) can be described as follows:

Q = XWQ, K = XWK , V = XWV ,

Ã = QK⊤

attn(X) = softmax(Ã)V, (2)

where Q,K, V, attn(X) ∈ RN×d. The softmax (Bridle,
1990) operation is applied for each row ã of attention logits
Ã = QK⊤ separately:

(softmax(ã))i = exp(ãi)/

 N∑
j=1

exp(ãj)

 .

Layer normalizations (Ba et al., 2016) are usually applied
before or after f(.) and attn(.) (Xiong et al., 2020), but we
omit this for brevity. A Transformer is a composition of
multiple layers (1) — Tl(X), l ∈ {1, . . . , L} sandwiched
by the input embedding layer E : RN×V → RN×d and
output softmax layer S : RN×d → RN×V as follows:

Transformer(Z) = S ◦ TL ◦ · · · ◦ T1 ◦ E (Z) ∈ RN×V ,

where the inputs to the network Z ∈ RN×V . Thus
choosing a suboptimal attention function attn(.) can
affect every layer of the final Transformer(.). Let
ℓ(Transformer(Z), Y ) be the loss function used to learn
the parameters of the Transformer, where Y is the true label
information. Autoregressive language modeling (Radford
et al., 2018; Brown et al., 2020) involves using a causal
mask M , which is a lower triangular matrix, and is added
before the softmax operation as follows:

attn(X) = softmax(M +QK⊤)V,

Mij = 0 if i ≥ j else −∞

where ⊙ denotes element-wise multiplication. During train-
ing, the gradients ∂ℓ

∂WK
, ∂ℓ

∂WQ
, ∂ℓ

∂WV
are computed via back-

propagation in a layer-by-layer fashion from layer L to
layer 1 and are used to update the parameters. In the next
section, we analyze the gradient backpropagation through
attn(.) and propose LASER attention.

3.2. Gradient Analysis of Attention

For simplicity, we first let the sequence length N be 2 with
attention probabilities A = softmax(QK⊤) and attention
logits as Ã = QK⊤. Expanding the matrices A and Ã, we
get:

A =

(
a11 a12
a21 a22

)
= softmax

(
ã11 ã12
ã21 ã22

)
=

(
exp(ã11)

exp(ã11)+exp(ã12)
exp(ã12)

exp(ã11)+exp(ã12)
exp(ã21)

exp(ã21)+exp(ã22)
exp(ã22)

exp(ã21)+exp(ã22)

)

Dividing the numerators and denominators by exp(ãij)
gives:

A =

(
a11 a12
a21 a22

)
=

(
1

1+exp(ã12−ã11)
1

exp(ã11−ã12)+1
1

1+exp(ã22−ã21)
1

exp(ã21−ã22)+1

)

=

(
σ(ã11 − ã12) 1− σ(ã11 − ã12)
σ(ã21 − ã22) 1− σ(ã21 − ã22)

)
, (3)

where σ denotes the sigmoid operation σ(x) = 1/(1 +
exp(−x)). As in (2), we now multiply the attention prob-
abilities A with the value matrix V . For simplicity, let the
representation dimension d = 1, then the attention output
will be as follows:

Attention output: attn(X) =

(
o1
o2

)
= AV

=

(
σ(ã11 − ã12)v1 + (1− σ(ã11 − ã12))v2
σ(ã21 − ã22)v1 + (1− σ(ã21 − ã22))v2

)
, (4)

where V =

(
v1
v2

)
. We now find the gradient with respect

to Ã via the chain rule:

∂ℓ

∂Ã︸︷︷︸
backpropagated gradient

=
∂ℓ

∂ attn(X)
· ∂ attn(X)

∂Ã︸ ︷︷ ︸
Jacobian

.

Thus, small Jacobian magnitude can lead to small back-
propagated gradient. We now analyze an element of attn
Jacobian:

∂o1
∂ã11

= v1σ(ã11 − ã12)(1− σ(ã11 − ã12))

− v2σ(ã11 − ã12)(1− σ(ã11 − ã12))

= (v1 − v2)σ(ã11 − ã12)(1− σ(ã11 − ã12))︸ ︷︷ ︸
possible saturation

. (5)

The sigmoid function value, σ(ã11 − ã12) saturates to 1
when ã11 − ã12 becomes sufficiently large. Conversely,
when ã11 − ã12 is large and negative, the function value
saturates to 0. In both cases, saturation leads to vanishing
gradients, where the gradient becomes very small. This
phenomenon is a well-documented limitation of the sigmoid
function (LeCun et al., 2002).

We extend this observation to sequence length of size N as
follows:
Lemma 3.1 (Gradient saturation in softmax). Let a ∈ RN

be a row in attention weights/probabilities A and similarly
let ã be a row in attention logits Ã, then:

forward pass: a = softmax(ã),

backward pass:
∂ℓ

∂ã
= (diag(a)− aa⊤)

∂ℓ

∂a
,

softmax Jacobian:
∂aj
∂ãi

= aj(1{i = j} − ai),
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where diag(a) denotes the diagonal matrix with diagonal
elements a.

We give a proof of this lemma in Section A.2

Key Observation. During the pretraining of a 2.2
billion parameter autoregressive language model,
we observe in Figure 1 that about 80% of attention
probabilities are less than 10−3 and about 20% are
less than 10−7. From Lemma 3.1, it can be seen that
small attention probabilities aj , j ∈ {1, . . . , N}
can lead to small Jacobian values, giving diminished
backpropagated gradients.

To address this issue, we now introduce LASER Attention
which applies attention in exponential value space, exp(V ),
as follows:

exp(laser(X)) = softmax(QK⊤) exp(V )

=⇒ laser(X) = log(softmax(QK⊤) exp(V )) (6)
→ LASER Attention,

where log(.) and exp(.) are applied elementwise. Expand-
ing (6) for N = 2 and d = 1 as done for standard attention
(4) gives LASER output:

α1 = σ(ã11 − ã12), α2 = σ(ã21 − ã22)(
o1
o2

)
=

(
log(α1 exp(v1) + (1− α1) exp(v2))
log(α2 exp(v1) + (1− α2) exp(v2))

)
, (7)

Low gradient saturation. Computing an element in the
Jacobian ∂ laser(X)/∂Ã as done for standard attention in
(5) gives the equation for LASER Jacobian:

∂o1
∂ã11

=
(exp(v1)− exp(v2))α1(1− α1)

α1 exp(v1) + (1− α1) exp(v2)

=
(exp(v1)− exp(v2))α1(1− α1)

α1(exp(v1)− exp(v2)) + exp(v2)
.

We now consider a limiting case to simplify the above equa-
tion: if exp(v1) ≫ exp(v2),

∂o1
∂ã11

=
α1(1− α1)

α1 + exp(v2)/(exp(v1)− exp(v2))

≈ 1− α1 = (1− σ(ã11 − ã12))︸ ︷︷ ︸
low saturation

,

where the approximation is due to exp(v2)/(exp(v1) −
exp(v2) ≈ 0.

Relation between LASER Attention and max function.
From definitions (3) and (7), LASER output can be written

in a log-sum-exp form (Blanchard et al., 2019) as follows:

o1 = log(a11 exp(v1) + a12 exp(v2))

= log(exp(v1 + log(a11)) + exp(v2 + log(a12))) (8)

Log-exp-sum function can be thought of as a differentiable
approximation of max function:

Lemma 3.2 ((Boyd & Vandenberghe, 2004)). The func-
tion f(x1, . . . , xn) = log (ex1 + · · ·+ exn) is convex on
Rn. This function can be interpreted as a differentiable
approximation of the max function, since

max{x1, . . . , xn} ≤ f(x1, . . . , xn) ≤ max{x1, . . . , xn}
+ log n

for all x ∈ Rn. (The second inequality is tight when all
components of x are equal.)

Given that max(x1, . . . , xn) function is not differentiable at
points where two or more elements take the same value, log-
sum-exp can serve as a differentiable approximation. Using
Lemma 3.2, we can relate LASER (8) to max(·) operation
as follows:

max(v1 + log(a11), v2 + log(a12))

≤ o1 ≤ max(v1 + log(a11), v2 + log(a12)) + log(2)

3.3. LASER Implementation via
Log-Weighted-Sum-Exp Trick

In this section we explore implementing LASER and pro-
vide pseudocode. Given the log-sum-exp structure from
(8):

α1 = σ(ã11 − ã12),

o1 = log(α1 exp(v1) + (1− α1) exp(v2)),

one can notice that exp(.) operations can lead to overflow.
This problem has been recognized in (Blanchard et al.,
2019) and the “log-sum-exp trick” is used to avoid over-
flows. However, the log-sum-exp trick cannot be applied
directly as it would be difficult to implement without chang-
ing the underlying attention function. We propose a “log-
weighted-sum trick”, where we subtract the maximum value
m = max(v1, v2) from v1 and v2 and rewrite the above
equation as follows:

o1 = log((α1 exp(v1 −m)

+ (1− α1) exp(v2 −m)) · exp(m))

= log(α1 exp(v1 −m) + (1− α1) exp(v2 −m)) +m.

Now conducting exp(.) operation on v1−m and v2−m will
not lead to overflows. We can extend this to matrix-version
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(6) by conducting column-wise maximum of value matrix
V ∈ RN×d as follows:

mj = max
i∈{1,...,N}

Vij , j ∈ {1, . . . , d}

Define V̂ ∈ RN×d such that V̂ij = (Vij −mj).

The above operations helps us conduct exp(.) operation
without overflows. Then the final LASER attention opera-
tion would be as follows:

O = log(softmax(QK⊤) exp(V̂ ) diag(exp(m)))

Oij = (log(softmax(QK⊤) exp(V̂ )))ij +mj , (9)

where O ∈ RN×d. Here, m = (m1, . . . ,md) and diag(m)
is a diagonal matrix with elements of m as diagonals. Log-
weighted-sum-exp trick allows us to implement LASER
attention via merely modifying the inputs and outputs of
standard attention, without changing the underlying atten-
tion function. Additionally, we show in Section 4.1 that this
trick helps avoid overflows in large scale settings. The fol-
lowing JAX (Bradbury et al., 2018) code demonstrates that
LASER attention can be implemented by utilizing standard
attention functions.

JAX implementation of LASER
attention

# given key (B,N,H,S), value
(B,N,H,S), query (B,N,H,S)
# B - batch size, N - sequence
length
# H - number of attention heads, S
- size of the head
m = jnp.max(value, axis=1, keep
dims=True)
m = jax.lax.stop gradient(m) # stop
the gradients along m
exp value = jnp.exp(value - m) # shift
ing the values
f = standard attention # attention
implementation - FlashAttention,
etc.
attention out = f(key, query,
exp value)
out = jnp.log(attention out) + m #
adding back the max values

Algorithm 1 LASER Attention with Log-Weighted-Sum-
Exp Trick

1: Input: Values V ∈ RN×d, Queries Q ∈ RN×d, Keys
K ∈ RN×d

2: Output: LASER Attention output O ∈ RN×d

3: Compute the column-wise maximum for the value ma-
trix V :

mj = max
i∈{1,...,N}

Vij , j ∈ {1, . . . , d}

4: Subtract mj from the jth column of V :

// Shift values to avoid overflow in the following

V̂ ∈ RN×d such that V̂ij = (Vij −mj)

5: Apply attention with Queries Q, Keys K and Values
V with mj , j ∈ {1, . . . , d} added back to the output,
following (9)

O ∈ RN×d is such that:

(O)ij = (log(softmax(QK⊤) exp(V̂ )))ij +mj

6: Return O

4. Experimental Results
4.1. Autoregressive Language Modeling on C4

In this section, we compare the performance of LASER
Attention with standard attention mechanisms in the context
of an autoregressive language modeling task.

Dataset and Setup. We use the C4 dataset (Raffel et al.,
2020) for our experiments. The training is conducted using
a batch size of 1024 sequences, each sequence has 1024
tokens. The models are trained for 160,000 iterations, re-
sulting in the utilization of approximately 167.8 billion to-
kens. Throughout the training process, we monitor both the
training and test losses, and we observe a significant im-
provement in the test set performance when using LASER
Attention compared to the standard attention mechanism
(as illustrated in Figure 2). We use the AdamW optimizer
(Loshchilov & Hutter, 2017) paired with cosine learning
rate schedule (Loshchilov & Hutter, 2016) with linear learn-
ing rate warmup followed by decay to zero at the end of the
training.

Model Architecture. The base model architecture con-
sists of 301 million parameters of a decoder-only Trans-
former, which is distributed across 32 layers as defined in
(1). Each layer uses 8 attention heads, with each head hav-
ing a size of 128. The MLP block in this architecture, as
defined in (1), has a hidden dimension of 2048.
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Figure 2. Comparison of pretraining performance between LASER
and the standard attention mechanism on a 301M parameter autore-
gressive language model. The model consists of 32 layers, a 2048
hidden dimension, and a 1024 model dimension, trained on 168
billion tokens from the C4 dataset. LASER attention consistently
achieves lower training (top) and test (bottom) loss values.

In addition to this configuration, we also experiment with
a variant where the model retains 32 layers but increases
the MLP block hidden dimension to 4096. In this variant,
we increase the hidden dimension of the MLP block to shift
more parameters into the MLP block. This configuration
continues to show improvements in both the training and test
loss metrics, demonstrating that the effectiveness of LASER
Attention is maintained even when attention parameters are
reduced. The results of these experiments can be seen in
Table 1, where we also include ablation results showing
improvements even with a 16-layer setting.

Number of Layers Hidden Dimension LASER Standard Attention

16 4096 2.673 2.681
32 2048 2.595 2.641
32 4096 2.555 2.575

Table 1. Comparison of test loss between LASER and Standard
attention mechanisms across different distribution of parameters
between MLP block f(.) and attention attn(.) in (1), where we
notice upto 1.74% relative improvement in loss.

Ablation with optimizers. For the 301 million parameter
model, we noticed in Figure 3 that LASER had higher gra-

Figure 3. In this figure, we measure grad norm vs steps for an au-
toregressive language model with a 301 million parameters model
corresponding to Figure 2.

dient norm throughout training. An initial hypothesis was
that higher gradient norms might lead to more parameter
change, consequently reducing the loss more effectively.
To investigate this, we utilized the LAMB optimizer (You
et al., 2019), which normalizes and renormalizes updates
using the weight norm to ensure that the scale of updates
matches the scale of the weights, thus voiding the effect
of gradient/update norms on optimization. Interestingly,
even with LAMB’s normalization mechanism, we observed
a consistent improvement in training (Standard Attention:
2.749 vs LASER: 2.736) and test loss (Standard Attention:
2.758 vs LASER: 2.741), suggesting that the performance
gains were not solely driven by larger gradient magnitudes
but are intrinsic to the model’s architecture and the LASER
Attention mechanism.

Scaling to larger models. To demonstrate the scalability
of our approach, we conducted experiments on a 1.1 billion
and 2.2 billion parameter model. We note that without using
the log-weighted-sum-exp trick introduced in Section 3.3,
the 2.2 billion parameter model training fails due to numer-
ical overflow. In Table 2, we show that LASER attention
outperforms standard-attention in a 2.2 billion parameter
model with model dimension 2048 and hidden dimension
8192 with 32 layers and 8 attention heads (each of size
512). We also train a 1.1 billion model, which has a scaled
down hidden dimension (4096) and attention head size (256).
We show the training curves of both the models in Figure
5, Appendix A.3. In Figure 4, we used a power law fit
f(n) = anb to fit the final test loss values of LLM training
runs as a function of number of parameters. Additionally,
we conducted training analysis, by qualitatively measuring
stability of our training runs, sensitivity to bfloat16 training
in Appendix A.5.

Performance Analysis. We note that the 2.2B model with
standard attention takes 27.22 hours on TPU v5 (Cloud,
2023) to reach a least test loss value of 2.327, however,
LASER takes 24.88 hours (relative improvement of 9.4%).
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Figure 4. Scaling law: Power-law fit for test loss against number
of parameters. This plot uses 234M, 300M, 435M, 1.1B and 2.2B
parameter models’ final test losses after training on ∼ 167B tokens.
To reach a loss of 2.347, it takes 15.65% fewer parameters with
LASER attention.

Baselines Standard dot-product attention formulation in
(Vaswani et al., 2017) uses a temperature of

√
d. Lower

temperatures would be able to express sharper distributions.
Attention function with temperature hyperparameter can be
formalized as follows:

Standard+temp: softmax

(
QK⊤

τ
√
d

)
V,

LASER+temp: log

(
softmax

(
QK⊤

τ
√
d

)
exp(V )

)
,

where the temperature hyperparameter τ is tuned manually.
We now introduce per-dim temp operation, which scales
each dimension with its own trainable temperature value:

Standard+per-dim temp: softmax

(
QDK⊤
√
d

)
V,

D = diag(softplus(p)) = diag(log(1 + exp(p))) ∈ Rd×d,

where p is a d-dimensional trainable parameter and
diag(softplus(·)) returns a diagonal matrix with positive
diagonal entries to be scaled with queries. This technique is
implemented in large language modeling frameworks such
as PAX (Google, 2025) and AlgoPerf (Dahl et al., 2023), a
framework used to compare optimizers.

In large vision transformers (Dosovitskiy et al., 2021), the
norms of queries/keys can vary substantially across tokens
with sharp softmax distributions in standard attention model
training, leading to training instabilities. In (Dehghani et al.,
2023), the authors propose QK-Normalization which con-
ducts LayerNorm on queries and keys before computing
attention weights:

Standard+QK-Normalization:

softmax(LayerNorm(Q) LayerNorm(K)⊤/
√
d)V

Evaluation on downstream tasks. In Table 2, we men-
tion the performance of our 2.2 billion parameter model
on several downstream tasks. Where we evaluate on ARC
(Clark et al., 2018), BoolQ (Clark et al., 2019), CB (Wang
et al., 2019), COPA (Wang et al., 2019), HellaSwag (Zellers
et al., 2019), MultiRC (Khashabi et al., 2018), Open-
BookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020),
RACE (Lai et al., 2017), ReCoRD (Zhang et al., 2018),
RTE (Wang et al., 2019), StoryCloze (Mostafazadeh et al.,
2016), WiC (Pilehvar & Camacho-Collados, 2019), Wino-
grad (Levesque et al., 2012), Winogrande (Kocijan et al.,
2020), and WSC (Wang et al., 2019). We found that LASER
outperforms with upto 3.38% difference and 1% difference
on average in accuracy.

(a) Part 1
Dataset +per-dim temp LASER +per-dim temp Standard +temp

WSC 81.40 77.89 79.65 76.14 78.25
Winogrande 62.27 61.72 62.35 60.69 62.19
Winograd 81.68 78.75 80.22 80.95 79.85
WiC 52.04 47.02 51.10 47.34 47.18
StoryCloze 77.87 77.77 76.48 76.22 76.17
RTE 53.43 54.51 53.07 54.15 51.70
ReCoRD 85.29 85.05 85.10 84.82 84.89
RaceM 50.42 50.91 49.65 49.09 48.89

(b) Part 2
Dataset +per-dim temp LASER +per-dim temp Standard +temp

RaceH 37.88 37.94 37.65 37.62 37.04
PIQA 77.09 77.20 76.88 76.55 76.45
OpenBookQA 48.80 46.80 47.60 47.80 48.48
MultiRC 57.03 57.78 53.94 55.36 53.38
HellaSwag 66.58 66.70 65.42 65.53 65.84
COPA 82.00 87.00 80.00 82.00 85.00
CB 41.07 44.64 42.86 42.86 42.86
BoolQ 63.52 64.43 60.70 62.42 61.69

Table 2. Accuracies of one-shot evaluation of a 2.2 billion parame-
ter autoregressive language model trained via LASER and standard
attention. We found that LASER outperforms or performs the same
as standard attention by up to 3.4%. On average, LASER gives
an accuracy of 63.39% vs standard attention’s 62.34%. We also
include a temperature-tuned version of standard attention, which
gives an average accuracy of 62.49%. Additionally, we report
per-dimension temperature scaling for both LASER and standard
attention, achieving overall means of 63.52% and 62.56% respec-
tively.

Finetuning on SuperGLUE. To further evaluate LASER,
we fine-tuned the 2.2B parameter model on the SuperGLUE
dataset (Wang et al., 2019) for 10 epochs. These experi-
ments provide a more comprehensive view of how LASER
improves over standard attention beyond 1-shot downstream
evaluations. The results, presented in Table 3, show a 1.65%
average improvement in decoding accuracy for LASER over
standard attention.
Training and evaluation. All experiments are conducted
using the PAX framework (Google, 2023) built on JAX
(Bradbury et al., 2018), and executed on TPUv5 chips
(Cloud, 2023). We use 64 chips for 300 million param-
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Table 3. SuperGLUE fine-tuning results for the 2.2B parameter
model (decoding accuracy %). LASER shows a 1.65% average
improvement over Standard Attention.

Task LASER Standard

COPA 57.00 58.00
WiC 56.64 53.92
WSC 40.38 36.54
RTE 22.02 20.94

Average 44.01 42.35

eter model, 128 chips for 1.1 billion and 256 chips for 2.2
billion parameter model. Each training run takes upto 24
hours. We conducted hyperparameter search on 16-layer
model mentioned in Table 1 with 15 hyperparameters us-
ing search space mentioned in Table 9 and use the optimal
hyperparameter for larger models.

4.2. Masked Language Modeling via BERT

In the experiments so far, the focus was mainly on decoder-
only models, to diversify our evaluation we now shift to
encoder-only model- BERT (Devlin et al., 2018) trained
via masked language modeling (as opposed to next token
prediction in Section 4.1). We train a 2.2 billion parameter
BERT on MLPerf training data which uses wikipedia arti-
cles (MLCommons). We used model dimension of 2048,
hidden dimension - 8192, number of attention heads 16,
each of size 256. We get better error rate of masked lan-
guage model predictions - LASER - 0.2125 vs Standard
Attention - 0.2145 (0.93% relative improvement). One can
note that LASER shows more improvement in autoregres-
sive language modeling compared to BERT.

4.3. Vision Transformer (ViT) and Conformer -
Speech-to-Text

Vision Transformer (ViT) on Imagenet-1k. In this sec-
tion, we experiment with the Vision Transformer (ViT)
(Dosovitskiy et al., 2021) variant - S/16 on the Imagenet-
1k classification task (Deng et al., 2009) which is a part of
AlgoPerf benchmarks (Dahl et al., 2023) for optimizer com-
parisons. These benchmarks are identically implemented in
init2winit framework (Gilmer et al., 2023), build on JAX,
which we use for our experiments. A hyperparameter sweep
was conducted over 50 configurations on NAdamW (Dozat,
2016), focusing on the search space defined in Table 8. We
selected the best-performing hyperparameter configuration
based on validation performance for standard attention, ran
it for 5 different random seeds (for initialization) and report
the corresponding training runs in Table 4, where we show
that LASER attention provides a 1.15% absolute improve-
ment in error rate (25.32% → 24.17%), i.e., a ∼4% relative
improvement over standard attention.

Method Valid Error Test Error Train Error

Standard 0.2532 0.3749 0.1678
Standard + temp 0.2513 0.3742 0.1668
Standard + QK-normalization 0.2455 0.3644 0.1557
Standard + per-dim temp 0.2607 0.3821 0.1775

LASER 0.2417 0.3593 0.1527
LASER + temp 0.2427 0.3633 0.1538
LASER + QK-normalization 0.2372 0.3588 0.1427
LASER + per-dim temp 0.2475 0.3698 0.1573

Table 4. Error rates for ViT-S/16 on Imagenet. We bold the lowest
errors within Standard and LASER attention variants. LASER
maintains upto 1.15% improvement over standard attention vari-
ants.

Table 4 also highlights the consistent improvement of
LASER over standard attention across different configura-
tions. Temperature tuning does not introduce major changes
in performance for either attention mechanism, though lower
temperature values tend to degrade results due to sharper at-
tention probability distributions. Adding QK-normalization
substantially enhances performance, indicating its robust-
ness across attention mechanisms. On the otherhand, adding
per-dim temperature negatively impacts performance, likely
due to hyperparameter tuning being optimized without its
presence.

Conformer on Librispeech Speech-to-Text. We also
evaluate the performance of LASER attention on the Lib-
rispeech Speech-to-Text dataset (Panayotov et al., 2015)
using the Conformer model (Gulati et al., 2020). Similar
to the ViT experiments, we use the AlgoPerf benchmark
and perform a hyperparameter sweep across 50 configura-
tions to optimize standard attention. We pick the optimal
hyperparameters, run them for 5 different random seeds (for
initialization) and report the validation curves correspond-
ing to median in Table 5 where we demonstrate a reduction
in word error rate (WER) (0.0828 → 0.0808) when using
LASER attention.

Method Valid WER Test WER Train WER

Standard 0.083192 0.050876 0.032594
Standard + temp 0.08362 0.050398 0.032275
Standard + QK-Normalization 0.082865 0.049747 0.029574

LASER 0.082892 0.049786 0.030084
LASER + temp 0.082137 0.049384 0.032822
LASER + QK-Normalization 0.080837 0.049231 0.031283

Table 5. Word Error Rate (WER) results for Conformer model with
different attention mechanisms and modifications. We bold the
lowest WER values within Standard and LASER attention variants.
LASER shows upto 0.2% improvements on word error rates.

In Table 5, we found adding QK-Normalization enhances
performance for both LASER and standard attention. Tem-
perature tuning does not significantly impact standard atten-
tion but provides slight benefits to LASER . Since per-dim
temperature is built in Conformer model architecture (Dahl
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et al., 2023) we don’t conduct an ablation study on its effect.

Ablations in Large Language Modeling
In this section, we apply LASER and observe how it per-
forms under the following changes: a) increase the model
parameters to test the scalability of LASER b) using a Diff
Transformer (Ye et al., 2024).

Scalability of LASER

To test the scalability of LASER, we trained a model with
7.7B parameters for 44B tokens. Compared to the 2.2B
parameter model (which had model dimension 2048, hid-
den dimension 8192, 32 layers, and 8 attention heads each
of size 512), the 7.7B parameter model was scaled along
all dimensions: model dimension 3440, hidden dimension
11584, number of heads 16, and dimension per head 720.

The downstream task evaluation for the 7.7B parameter
models is presented in Table 6.

Table 6. Downstream task accuracies for 7.7B parameter models
trained on 44B tokens. LASER shows an average improvement of
1.44% over standard attention. More pronounced differences are
observed in tasks like BoolQ (+6%), CB (+1.78%), OpenbookQA
(+1.8%), and RTE (+3.61%).

Dataset LASER Standard

ArcE 52.48 52.69
BoolQ 62.45 56.48
CB 44.64 42.86
HellaSwag 57.16 56.02
MultiRC 56.00 55.59
OpenbookQA 45.40 43.60
RaceM 44.64 44.15
RTE 53.43 49.82
StoryCloze 71.78 71.51
WiC 47.34 47.34
Winogrande 58.41 57.77

Average 53.97 52.53

4.4. Ablation with Diff Transformer

The Differential Transformer (DiffTransformer) (Ye et al.,
2024) introduces a differential attention mechanism. This
mechanism calculates attention scores as the difference be-
tween two separate softmax attention maps to cancel noise
and promote sparse attention patterns (Ye et al., 2024). The
Diff Transformer attention mechanism is formulated as:

DiffAttn(X) = softmax
(
Q1K

T
1√

dk

)
V

− λsoftmax
(
Q2K

T
2√

dk

)
V

where Q1, Q2,K1,K2 ∈ RN×dk are projected query and
key vectors, V ∈ RN×dv is the projected value vector (in the

original DiffTransformer paper, dv = 2dk for the combined
V ), λ is a learnable scalar, and dk is the dimension of the
key/query vectors per head.

We propose a modification, LASER+DiffTransformer, by
equipping the softmax dot-product attention terms with
LASER modifications. The LASER attention mechanism
involves conducting attention on exponentially transformed
inputs, exp(V ), and takes the logarithm of the result. Ap-
plying this to DiffTransformer, we get:

DiffAttnLASER(X) = log

(
softmax

(
Q1K

T
1√

dk

)
exp(V )

)
− λ log

(
softmax

(
Q2K

T
2√

dk

)
exp(V )

)
This formulation aims to address potential backpropagation
challenges due to the softmax operations in both attention
maps of the DiffTransformer. We trained a 2.2B parameter
DiffTransformer with Model dim: 2048, Hidden dim: 8192,
Number of attention heads: 8, Head size: 512, and Number
of layers: 32. The models were trained on 24 billion tokens.
The results are shown in Table 7.

Table 7. Downstream task performance for 2.2B parameter Diff-
Transformer and DiffTransformer+LASER models, trained on 24
billion tokens. On average, Diff+LASER shows an improvement
of approximately 1% over DiffTransformer.

Dataset Diff+LASER DiffTransformer

ArcE 49.28 49.20
CB 42.85 41.07
HellaSwag 51.93 51.58
MultiRC 55.13 52.82
OpenbookQA 44.20 43.00
RaceM 42.40 40.73
RTE 52.34 50.90
StoryCloze 71.03 71.29
WiC 50.00 49.53
Winogrande 56.04 55.80

Average 51.52 50.59

5. Conclusion
We identified a bottleneck in the gradient backpropagation
of attention mechanism where the gradients are scaled by
small Jacobian values while passing through the softmax
operation. We alleviate this issue by transforming the in-
puts and outputs of attention mechanism, and show that this
leads to larger Jacobians in the limiting case. We demon-
strate the improvements in training performance over four
types of Transformers spanning different modalities (text,
speech and vision): (a) decoder-only (via Large Language
model) upto 2.2 billion parameters, (b) vision Transformers
on Imagenet, (c) Conformer on Librispeech speech-to-text
and (d) encoder-only (BERT) with 2.2 billion parameters,,
where we show significant and consistent improvements in
performance.
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A. Appendix
A.1. Hyperparameter search space

In Table 8 we outline the hyperparameter search space for all the benchmarks in Section 4.3.

Parameter Min Max Scaling/Feasible Points

learning rate 10−4 10−2 log
1− β1 10−2 0.15 log
β2 - - 0.9, 0.99, 0.999
warmup factor - - 0.05
weight decay 5× 10−3 1.0 log
label smoothing - - 0.1, 0.2
dropout rate - - 0.1

Table 8. Hyperparameter search space used in Section 4.3.

Parameter Value

learning rate [1e-1, 1e-2, 1e-3, 1e-4, 1e-5]
weight decay [1e-2, 1e-1, 1.0]
beta 1 0.9
beta 2 0.99
epsilon 1e-24
dropout rate 0.0

Table 9. Hyperparameter search space for language modeling experiments, Section 4.1

A.2. Proofs

Proof of Lemma 3.1. The softmax activation function is applied row-wise on the preactivations Ã; we can expand this
computation row-wise as follows:

A = softmax(Ã)

=⇒

a⊤1
...
a⊤s

 =

softmax(ã⊤1 )
...

softmax(ã⊤s )


=⇒ ai = softmax(ãi), i ∈ {1, . . . , N}

=

{
exp(ãi1)∑
k exp(ãik)

, . . . ,
exp(ãis)∑
k exp(ãik)

}
=⇒ aij =

exp(ãij)∑
k exp(ãik)

Taking gradient with respect to ãi in the last expression gives:

∂aij
∂ãil

= aij(1− aij) if l = j

= −aijail else

Putting everything together, the Jacobian of the transformation ai = softmax(ãi) can be written as follows:

∂aij
∂ãil

= (diag(ai)− aia
⊤
i )

∂ℓ

∂ãi
= (diag(ai)− aia

⊤
i )

∂ℓ

∂ai
(10)
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A.3. Training loss curves

(a) Train loss - 2.2 billion parameter model. (b) Test loss - 2.2 billion parameter model.

(c) Train loss - 1.1 billion parameter model. (d) Test loss - 1.1 billion parameter model.

Figure 5. Performance comparison for 2.2 billion and 1.1 billion parameter models. The 2.2 billion model has 32 layers, 8 attention heads
with head size 512, MLP hidden dimension 8192, and model dimension 2048. The 1.1 billion model has 32 layers, 8 attention heads
(head size 256), MLP hidden dimension 4096, and model dimension 1024. LASER demonstrates better train and test loss compared to
Standard Attention even in large-scale settings.

A.4. Fluctuations in downstream evaluations

(a) Part 1

Dataset LASER Standard

WSC 80.98±0.68 79.30±0.44
Winogrande 62.19±0.21 62.15±0.19
Winograd 82.27±0.37 80.29±0.27
WiC 51.44±0.66 51.29±0.55
StoryCloze 77.95±0.06 76.46±0.07
RTE 53.14±0.14 53.14±0.14
ReCoRD 85.24±0.04 85.06±0.05
RaceM 50.56±0.18 49.67±0.13

(b) Part 2

Dataset LASER Standard

RaceH 37.99±0.13 37.56±0.11
PIQA 77.20±0.12 76.74±0.12
OpenBookQA 49.08±0.20 47.56±0.15
MultiRC 57.16±0.18 53.99±0.16
HellaSwag 66.61±0.07 65.46±0.04
COPA 82.00±0.00 80.00±0.00
CB 40.00±0.87 43.93±0.87
BoolQ 63.39±0.18 60.45±0.38

Table 10. Here we add standard deviations of each number, computed on downstream evaluations of 5 checkpoints and note an average
for LASER to be 63.58±0.26 and an average for standard attention to be 62.69±0.23, noting a difference of 0.89.
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A.5. Training Analysis

Training instability. There can be spikes in training loss curves initially during large language model training. We notice
that despite these spikes training stabilizes and converges smoothly. However, training instability/spikes can be attributed to
poor model architecture and optimizer choices. We now ablate the choice of attention mechanism and understand its affect
on training stability. Figure 6 compares training stability of different models.

(a) 234M Parameters (b) 300M Parameters (c) 1.1B Parameters (d) 2.2B Parameters

Figure 6. Train loss vs. steps for LASER and standard attention across different parameter scales. Training stability for each attention
mechanism can be observed through the number of training spikes. Generally, models with LASER attention exhibit fewer training spikes
compared to models with standard attention, indicating greater stability in training for LASER attention across all parameter scales. The
figures focus on the initial part of the training as the remainder did not exhibit training instability.

Additionally, we ran pretraining of a 2.2B parameter language model presented in Section 4.1 with BF16 precision weights
and activations and compare LASER and Standard attention in Table 11.

Precision LASER Loss Standard Attention Loss

FP32 2.326 2.344
BF16 2.333 2.350

Table 11. Comparison of LASER and Standard Attention Losses for FP32 and BF16 precision on a 2.2B model.

We cached 4800 query, key, value matrices of size (1024, 8, 256) (headsize-256, heads-8, sequence length-1024) during
training, and computed the following numerical reconstruction relative errors of attention output in bfloat16: vanilla
LASER (0.0018, 0.0002), LASER+log-weighted-sum-exp-trick (0.0017,0.0001), Standard Attention (0.0016, 0.0001). This
experiment is conducted in a machine with 4 TPUv5 chips. We conducted the same experiment on 16 A100s and found the
following errors: vanilla LASER (0.002, 0.0003), LASER+log-weighted-sum-exp-trick (0.0019,0.0002), Standard Attention
(0.0018, 0.0002). While on an average, we found log-weighted-sum-exp-trick to help on both TPUv5 and A100s, we note
that this trick prevents overflows, which is crucial for stable training. Similar trick famously known as log-sum-exp is used
to prevent overflows due to exp(.) function in the softmax function and is adopted by both Pytorch and Jax in their softmax
implementations.

Understanding training instability. The enhanced training stability of the LASER attention mechanism can be formally
attributed to its direct solution for the gradient saturation problem inherent in standard attention models. The Jacobian of the
softmax function, which scales the gradients for the query and key projection matrices (WQ and WK), diminishes towards
zero when attention probabilities become sharp. This vanishing gradient signal create inconsistent updates to parameters,
leading to suboptimal learning and potential loss spikes. LASER circumvents this by reformulating the attention output as
log(softmax(QKT ) exp(V )) , a structure which admits with lower saturation properties.

This improved parameter learning grants LASER its stability, a behavior analogous to residual connections in deep networks.
The LASER output for a given token i, oi, can be expressed as a log-sum-exp function, which is a tight, differentiable
approximation of the max function. Here we bound o1:

max(v1 + log(a11), v2 + log(a12))

≤ o1 ≤ max(v1 + log(a11), v2 + log(a12)) + log(2).

In cases of strong self-attention, where the attention probability aii is high, the max function property ensures that the
output oi closely approximates its corresponding input value vi. By creating this effective ”pass-through” for the input
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signal during moments of high certainty, LASER functions as an inherent residual connection. We conjecture that this
property is the formal mechanism that underpins the empirically observed reduction in training loss spikes compared to
standard attention.
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