

000 001 JET-DIFF: JOINT-ENCODING TENSOR DIFFUSION 002 MODEL FOR ACCURATE DTI RECONSTRUCTION FROM 003 SPARSE DWIS 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Diffusion Tensor Imaging (DTI) is an advanced magnetic resonance imaging
014 (MRI) technique for characterizing white matter microstructure. Conventional
015 DTI protocols require multiple diffusion-weighted imaging (DWI) acquisitions
016 across numerous directions, resulting in long scan times, motion artifacts, pa-
017 tient discomfort, and reduced clinical utility. Current deep learning approaches
018 frequently yield diffusion tensors that are anatomically inconsistent or physically
019 implausible. We introduce Joint-Encoding Tensor Diffusion (JET-Diff), a frame-
020 work that synthesizes the full six-component diffusion tensor in 3D from a highly
021 undersampled DWI acquisition. Specifically, we propose a latent diffusion model
022 operating on a set of coupled latent tensors derived from sparse DWIs and dif-
023 fusion tensor components, which improves anatomical fidelity and encourages
024 physically consistent tensors. JET-Diff leverages a novel anatomical autoencoder
025 to disentangle structural information from tensor properties, yielding a compact
026 and expressive latent space optimized for generative performance. Experiments
027 on the Human Connectome Project (HCP) Young Adult dataset demonstrate that
028 JET-Diff improves reconstruction accuracy and produces geometrically consis-
029 tent diffusion tensors, as evidenced by SPD-aware validity metrics such as Log-
030 Euclidean and tractography-based distances.
031
032

1 INTRODUCTION

033 Diffusion Tensor Imaging (DTI) is a Magnetic Resonance Imaging (MRI) technique that quantifies
034 anisotropic water diffusion, enabling non-invasive characterization of white matter microstructure
035 (Basser et al., 1994; Le Bihan et al., 2001). It supports mapping of neural pathways and extraction
036 of clinically relevant biomarkers across neurological disorders (Behrens et al., 2007; Andica et al.,
037 2020). However, its clinical adoption is constrained by long acquisition times (Le Bihan et al., 2001).
038 High-quality tensor estimation often requires more than thirty Diffusion-Weighted Images (DWIs)
039 to adequately sample the diffusion signal (Mukherjee et al., 2008). This prolongs scans, which is a
040 source of patient discomfort and a strain on clinical resources, and increases susceptibility to motion
041 artifacts that degrade tensor accuracy (O’Donnell & Westin, 2011). Developing methods that can
042 learn empirical priors to reconstruct reliable tensors from a substantially reduced number of DWIs
043 could streamline routine scans, improving both efficiency and diagnostic accuracy.
044

045 Reconstructing the six independent components of the diffusion tensor from a sparse set of DWIs
046 is a severely ill-posed inverse problem (Lenglet et al., 2009). Traditional fitting methods like least-
047 squares are mathematically underdetermined and fail to produce reliable results. While deep gener-
048 ative models have emerged as a promising data-driven solution (Tian et al., 2020; Li et al., 2021;
049 Zhang et al., 2024), existing approaches suffer from critical limitations that compromise anatomical
050 fidelity and physical plausibility. Many models operate on a 2D, slice-by-slice basis, disregarding
051 volumetric continuity of neural structures and leading to anatomical inconsistencies in reconstructed
052 3D volumes. Others directly synthesize DTI-derived parameter maps, such as fractional anisotropy
053 (FA) or mean diffusivity (MD), but this bypasses reconstruction of the full diffusion tensor and does
not explicitly address the physical constraints of diffusion imaging, since scalar maps are secondary
quantities; moreover, anatomically plausible scalar maps may still correspond to geometrically in-
consistent tensors. Most critically for latent-based models, autoencoders often produce entangled la-

054 tent representations, forcing a single information bottleneck to capture both fine-grained anatomical
 055 detail and complex tensor characteristics, which induces an inherent trade-off between compression
 056 efficiency and reconstruction fidelity (Higgins et al., 2017; Chen et al.).

057 To overcome these limitations, we propose Joint-Encoding Tensor Diffusion (JET-Diff), a frame-
 058 work for high-fidelity DTI synthesis from sparse measurements. In this work, we specifically focus
 059 on the practically relevant setting of an extremely sparse and fixed acquisition, aiming to learn an
 060 empirical prior that captures consistent relationships between sparse DWIs and their associated
 061 tensor fields under this acquisition configuration. The core idea is a latent diffusion model operating on
 062 a set of coupled latent tensors that represent the input DWI and output DTI components as a single
 063 unified entity in latent space. By learning such a coupled latent field, JET-Diff captures anatomical
 064 and microstructural relationships between sparse DWIs and their associated diffusion tensors.

065 Our framework is implemented as a carefully designed latent-diffusion pipeline. First, we intro-
 066 duce an Anatomical Autoencoder based on the principle of information decoupling. By providing
 067 anatomical context directly to the decoder, the latent space is freed to primarily encode essential
 068 tensor characteristics, yielding a more efficient and expressive representation. Second, a latent dif-
 069 fusion model is trained within this high-fidelity latent space to generate the complete tensor field
 070 from sparse DWI latents. By operating volumetrically within a disentangled latent space and apply-
 071 ing diffusion over a coupled latent field, JET-Diff produces whole-brain diffusion tensor volumes
 072 that remain highly consistent with the input anatomy and exhibit improved symmetric positive def-
 073 infinite (SPD)-aware tensor metrics, demonstrating measurable gains over existing diffusion tensor
 074 reconstruction methods.

075 2 RELATED WORK AND BACKGROUND

076 2.1 DIFFUSION TENSOR MODEL

077 Diffusion Tensor Imaging (DTI) is a foundational MRI technique that quantifies the anisotropic dif-
 078 fusion of water molecules in biological tissues, particularly the brain’s white matter. The framework,
 079 introduced by Basser et al. (1994), models the diffusion process in each voxel using a 3×3 sym-
 080 metric positive semi-definite tensor, \mathbf{D} . This tensor linearly relates the measured diffusion-weighted
 081 signal to the applied diffusion-sensitizing gradients, as described by the Stejskal-Tanner equation
 082 (Stejskal & Tanner, 1965):

$$083 S(\mathbf{g}) = S_0 \exp(-b\mathbf{g}^T \mathbf{D}\mathbf{g}),$$

084 where S_0 is the non-diffusion-weighted signal intensity, b is the diffusion weighting factor, \mathbf{g} is the
 085 diffusion gradient direction vector, and \mathbf{D} is the diffusion tensor. This equation forms the physical
 086 basis for estimating the diffusion tensor from a series of diffusion-weighted measurements. Fur-
 087 ther details on the equation’s parameters, tensor estimation, and derived metrics are provided in
 088 Appendix A.

089 Beyond tensor-based representations, diffusion MRI also includes higher-order models such as fiber
 090 orientation distributions (fODFs) (Tournier et al., 2007), spherical deconvolution, and sparse orien-
 091 tation modeling (Canales-Rodríguez et al., 2019). These methods target multi-shell or high-angular-
 092 resolution regimes and are primarily designed to resolve complex fiber configurations (Karimi &
 093 Warfield, 2024). In contrast, the present work focuses on full-tensor reconstruction under an ex-
 094 tremely sparse single-shell acquisition, a setting for which high-order models are not typically ap-
 095 plicable.

096 2.2 DTI RECONSTRUCTION FROM SPARSE ACQUISITIONS

097 The problem of reconstructing a diffusion tensor from an insufficient number of Diffusion-Weighted
 098 Images (DWIs) is a classic, ill-posed inverse problem (Tuch, 2004). Early approaches relied on
 099 linear or weighted linear least-squares fitting, which are computationally simple but highly unsta-
 100 ble and sensitive to noise in low-signal regimes (Basser et al., 1994). Model-based approaches
 101 leveraged compressed sensing theory to exploit sparsity priors, with Knoll et al. (2015) introducing
 102 reconstruction that applied Total Variation constraints to preserve spatial coherence.

103 The advent of deep learning has substantially influenced DTI reconstruction. SuperDTI (Li et al.,
 104 2021) demonstrated that convolutional neural networks could directly map from sparse DWIs to

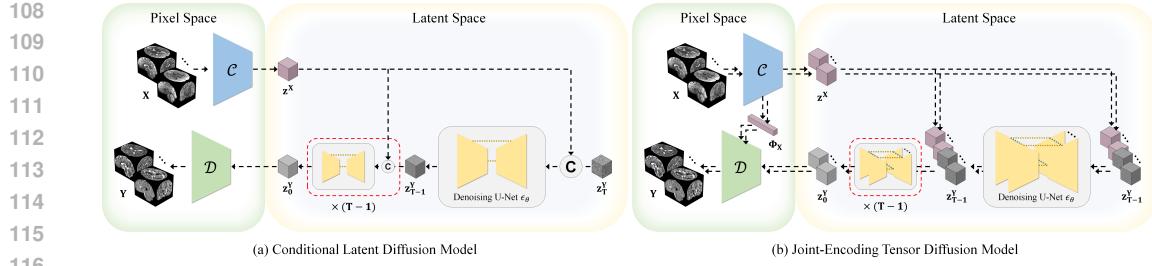


Figure 1: **Overview of the JET-Diff framework.** (a) A standard latent diffusion model applies the diffusion process to DTI latents $\{z_c^Y\}$, conditioned on DWI latents $\{z_c^X\}$ via concatenation. (b) JET-Diff applies the diffusion process to a coupled latent field that combines DWIs and DTIs, $\{z_c^X, z_c^Y\}$, enabling direct interactions between all components during denoising.

diffusion parameter maps, achieving strong reconstruction quality from as few as six gradient directions. FlexDTI (Wu et al., 2024) further incorporates gradient-direction flexibility, which is complementary to our fixed four-direction acquisition setting. However, most existing methods suffer from fundamental limitations: slice-wise processing ignores anatomical context, and direct synthesis of scalar maps independently can violate tensor-level consistency, as these metrics should derive from a single underlying tensor.

2.3 GENERATIVE DIFFUSION MODELS FOR MEDICAL IMAGING

Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) have emerged as state-of-the-art generative models, with significant recent applications in medical imaging. These models have proven effective for tasks such as accelerated MRI reconstruction (Chung & Ye, 2022) and high-resolution 3D volume synthesis (Wang et al., 2025).

Within the domain of diffusion MRI, recent efforts have applied generative frameworks to denoising and reconstruction. Several self-supervised methods leverage diffusion models to restore signal quality from noisy acquisitions (Xiang et al.; Wu et al.). More directly related to our task, Diff-DTI (Zhang et al., 2024) was the first to employ a diffusion model for rapid DTI reconstruction from sparse DWIs. Its approach conditions the generative process on sparse DWI features to synthesize DTI-derived scalar maps like fractional anisotropy (FA) and mean diffusivity (MD). While Diff-DTI achieves impressive results, its reliance on an explicit guidance mechanism to generate secondary parameter maps bypasses the synthesis of the fundamental diffusion tensor. In contrast, our approach operates on coupled DWI and tensor latents and directly synthesizes the full six-component tensor, from which physically interpretable parameter maps are then calculated.

3 METHOD: JOINT-ENCODING TENSOR DIFFUSION (JET-DIFF)

This section details the Joint-Encoding Tensor Diffusion (JET-Diff) framework. We introduce a variant of the Latent Diffusion Model (LDM) (Rombach et al., 2022) instantiated as a latent diffusion model operating on a set of coupled latent tensors encoding sparse DWI inputs and their corresponding DTI fields, thereby promoting anatomical and tensor-level consistency.

3.1 PROBLEM DEFINITION AND OVERVIEW

The primary objective is to reconstruct a complete diffusion tensor field from a minimal set of Diffusion-Weighted Images (DWIs), which is a severely ill-posed inverse problem. More specifically, let the input \mathbf{X} be the set of four DWI volumes, $\mathbf{X} = \{\mathbf{X}_c\}_{c=1}^4$, where each component $\mathbf{X}_c \in \mathbb{R}^{H \times W \times D}$ consists of one non-diffusion-weighted image ($b = 0$) and three DWI volumes. The desired output \mathbf{Y} is the set of six diffusion tensor component volumes, $\mathbf{Y} = \{\mathbf{Y}_c\}_{c=1}^6$, where each component $\mathbf{Y}_c \in \mathbb{R}^{H \times W \times D}$ represents one of the unique tensor elements ($D_{xx}, D_{yy}, D_{zz}, D_{xy}, D_{xz}, D_{yz}$).

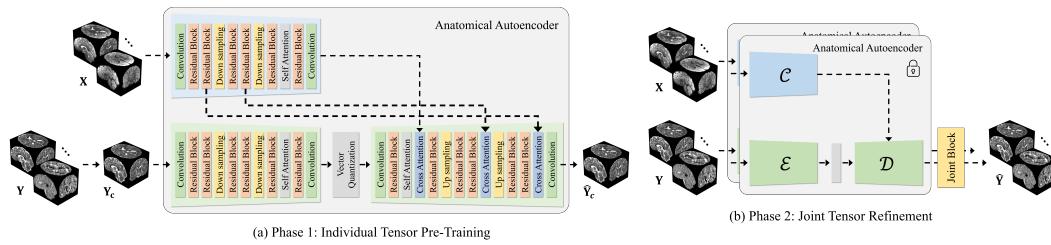


Figure 2: **Anatomical Autoencoder architecture and training.** (a) **Phase 1: Independent Pre-Training.** The encoder (E) and conditioner (C) respectively extract DTI latent codes and DWI anatomical features. The decoder (D) reconstructs the DTI (\hat{Y}) by fusing these via cross-attention. (b) **Phase 2: Joint Refinement.** With the main network frozen, a lightweight joint block is fine-tuned to promote cross-component consistency with negligible computational overhead.

Our proposed framework, JET-Diff, addresses this challenge with a latent-diffusion pipeline, illustrated in Figure 1. The first stage involves an Anatomical Autoencoder, composed of a tensor property encoder E and an anatomical conditioner C , and a DWI-aided decoder D . This stage learns a compact latent representation of the tensor field, while ensuring anatomical consistency by explicitly conditioning the synthesis process on DWI features. The second stage employs a latent diffusion model that generates the tensor within this latent space by operating on a coupled latent field of DWI and tensor components.

Because the diffusion tensor is a deterministic fit to the full DWI set under the Stejskal-Tanner model (Stejskal & Tanner, 1965), the reference tensor \hat{D} in this work is treated simply as a deterministic function of the measured signal. JET-Diff does not model the physical diffusion process; instead, it learns an empirical latent prior that captures consistent relationships between the sparse DWI subset and the corresponding fitted tensors. Thus, “joint” refers to the coupled latent representation of DWI and tensor components rather than a probabilistic joint model.

3.2 ANATOMICAL AUTOENCODER FOR HIGH-FIDELITY LATENT REPRESENTATION

The foundation of our generative framework is an autoencoder that maps high-dimensional tensor data into a compact latent space. The quality of this latent space is critical, as the performance of the subsequent diffusion model is bounded by the autoencoder’s fidelity (Higgins et al., 2017; Chen et al.). Standard autoencoders are ill-suited for this task because they force a single bottleneck to encode both the tensor’s physical properties and complex anatomical structure. This entangled representation is inefficient and prone to loss of fine details. Our Anatomical Autoencoder, depicted in Figure 2, addresses this limitation through a design centered on information decoupling. By implicitly separating anatomical context from tensor-specific information, the latent code is relieved from representing spatial structure and can focus on the intrinsic properties of the tensor field.

3.2.1 DWI-AIDED DECODER FOR INFORMATION DECOUPLING

A key feature of our autoencoder is the principle of disentangling the latent representation of the tensor’s properties (*what*) from its anatomical context (*where*). A conventional autoencoder must compress both into its latent code, creating a significant bottleneck that can lead to anatomical misalignment.

Our DWI-aided decoder, D , resolves this by decoupling these responsibilities. The encoder E learns a highly efficient latent code z^Y representing primarily the tensor’s intrinsic properties. The anatomical context is extracted by a conditioner C directly from the input DWI stack X as a feature pyramid $\Phi_X = \{\phi_X^l\}_{l=1}^L$. During decoding, the decoder fuses the compact latent code z^Y with these anatomical features Φ_X at each resolution level. This fusion is achieved using cross-attention blocks that employ multi-axis cross attention (Tu et al., 2022) to maintain linear computational complexity, a critical requirement for processing high resolution medical images. This design allows the latent space to achieve a higher compression ratio while enabling the decoder to produce a final output $\hat{Y} = D(z^Y, \Phi_X)$ with high fidelity.

216 3.2.2 JOINT REFINEMENT FOR TENSOR CONSISTENCY

218 While the DWI-aided decoder ensures high fidelity for individual tensor components, it does not ex-
 219 plicitly encourage the cross-component relationships required for a coherent tensor field. To address
 220 this, we introduce an efficient joint refinement phase within autoencoder pre-training, illustrated in
 221 Figure 2b. After the initial training, we freeze the weights of the conditioner \mathcal{C} , the encoder \mathcal{E} , and
 222 the majority of the decoder \mathcal{D} . We then insert a lightweight joint MLP block into the final layers of
 223 the decoder to promote interactions across the six tensor components. By fine-tuning only this joint
 224 block and the final convolution, thereby encouraging tensor-wide coherence with minimal additional
 225 computational overhead. Full architectural details are provided in Appendix C.

3.3 LATENT DIFFUSION OVER COUPLED DWI/DTI REPRESENTATIONS

Input DWIs and corresponding DTI components are coupled manifestations of the same diffusion process. Building on this principle, we introduce a generative framework operating on the latent representations (Figure 3).

Formally, let $\mathcal{Z}^{\mathbf{X}} = \{\mathbf{z}_c^{\mathbf{X}}\}_{c=1}^4$ denote the set of latent representations for the input DWI volumes, and let $\mathcal{Z}^{\mathbf{Y}} = \{\mathbf{z}_c^{\mathbf{Y}}\}_{c=1}^6$ denote the set for the target diffusion tensor components. We define the complete collection of latent variables as the union of these sets, $\mathcal{Z} = \mathcal{Z}^{\mathbf{X}} \cup \mathcal{Z}^{\mathbf{Y}}$. The forward diffusion process is defined for any individual latent component $\mathbf{z}_c \in \mathcal{Z}$. We gradually add Gaussian noise ϵ over T timesteps according to a fixed variance schedule β_t :

$$\mathbf{z}_{c,t} = \sqrt{\bar{\alpha}_t} \mathbf{z}_{c,0} + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon},$$

where $\mathbf{z}_{c,t}$ represents the noisy version of the component at timestep t , $\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$, and $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is the noise sampled from a standard normal distribution. The generative model ϵ_θ is trained to reverse this process. As detailed below, our training strategy proceeds in two stages: unconditional pre-training on individual components, followed by conditional fine-tuning on the coupled field.

3.3.1 TENSOR AND POSITIONAL CONDITIONING

To enable the shared U-Net backbone ϵ_θ to process diverse inputs ranging from scalar maps to directional gradient volumes, each latent input is augmented with explicit type and position information, conditioning module that generates a conditioning specific to the component (identifying the input as dings (Tancik et al., 2020). This combined representation being fed into the network, ensuring the spatial context of the input component.

3.3.2 UNCONDITIONAL PRE-TRAINING FOR LATENT PRIOR

To stabilize training and learn a robust prior over the anatomical manifold, we first pre-train ϵ_0 in an unconditional setting. In this phase, the network treats each latent volume independently. The tensor-aware attention blocks designed for cross-component interaction are deactivated, and the model focuses solely on learning the distribution of valid brain structures and tensor features.

Critically, we utilize both DWI latents (\mathcal{Z}^X) and DTI latents (\mathcal{Z}^Y) during this stage. By training on the full set \mathcal{Z} , the model learns a generalized representation of the diffusion MRI domain. The

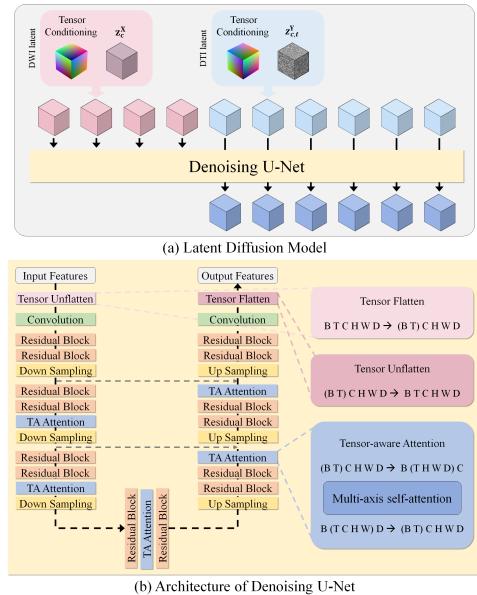


Figure 3: **Latent diffusion over coupled DWI/DTI representations.** (a) Both DWI ($\{\mathbf{z}_c^X\}$) and noisy DTI ($\{\mathbf{z}_{c,t}^Y\}$) latents are augmented with component-type and positional information. (b) The denoising U-Net architecture uses tensor-aware attention blocks to model interactions among all DWI and DTI latent components during denoising.

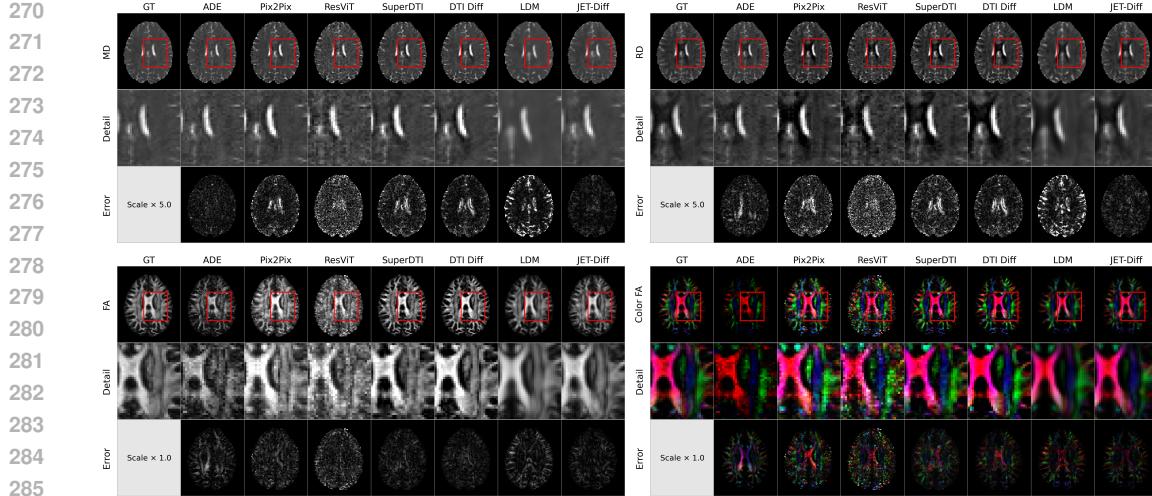


Figure 4: Qualitative comparison of DTI parameter maps (MD, RD, FA, and Color FA). JET-Diff generates reconstructions with improved anatomical fidelity and lower error. Magnified insets (red box) and error maps (scaled for visibility) highlight the detail recovered relative to the ground truth (GT) and competing methods.

objective is to predict the noise added to a single input component $\mathbf{z}_{c,t}$:

$$\mathcal{L}_{\text{pretrain}} = \mathbb{E}_{t, \mathbf{z}_{c,0}, \epsilon} \left[\sum_{\mathbf{z}_c \in \mathcal{Z}} \|\epsilon - \epsilon_{\theta}(\mathbf{z}_{c,t}, t)\|_2^2 \right].$$

Here, the model takes a single noisy component $\mathbf{z}_{c,t}$ as input and minimizes the reconstruction error across all available components in \mathcal{Z} . This allows the network to learn shared spatial features and local textures common to both DWI signals and tensor maps before modeling their complex joint dependencies.

3.3.3 CONDITIONAL FINE-TUNING FOR GUIDED SYNTHESIS

Following pre-training, we fine-tune the model for the target task: synthesizing the full set of DTI latents conditioned on the sparse DWI latents. In this stage, the tensor-aware attention blocks are activated, enabling the model to process the components as a coupled field. Unlike the pre-training phase, the input to the network is now the full set of noisy DTI latents $\{\mathbf{z}_{c,t}^Y\}_{c=1}^6$, and the model is explicitly conditioned on the clean DWI latents \mathcal{Z}^X . The objective function is updated to capture the joint distribution:

$$\mathcal{L}_{\text{cond}} = \mathbb{E}_{t, \mathbf{z}_0^Y, \epsilon} \left[\sum_{c=1}^6 \|\epsilon_c - \epsilon_{\theta, c}(\{\mathbf{z}_{c,t}^Y\}_{\text{all}}, t, \mathcal{Z}^X)\|_2^2 \right],$$

where $\{\mathbf{z}_{c,t}^Y\}_{\text{all}}$ denotes the set of all noisy tensor components at timestep t . In this formulation, tensor-aware attention allows all DWI and DTI latents to interact via a multi-axis attention mechanism. By solving this conditional denoising task, JET-Diff learns to reconstruct a geometrically consistent tensor field that faithfully reflects the anatomical information encoded in the sparse input DWIs.

4 EXPERIMENTS

4.1 SETUPS

4.1.1 DATA AND PREPROCESSING

All experiments are conducted on diffusion MRI data from the Human Connectome Project (HCP) Young Adult dataset (Van Essen et al., 2013). We utilize DWI volumes acquired at a b-value of

324
 325 Table 1: Quantitative comparison of DTI parameter map synthesis. Each entry reports mean and
 326 standard deviation (mean_{std}) for NMSE, PSNR, and SSIM across the test set. Best and second-best
 327 results are highlighted.

Model	MD			RD			FA			Color FA		
	NMSE	PSNR	SSIM									
ADE	0.09 _{0.27}	26.1 _{3.9}	0.97 _{0.01}	0.10 _{0.31}	27.5 _{3.7}	0.97 _{0.01}	0.30 _{0.02}	17.2 _{0.4}	0.79 _{0.02}	0.83 _{0.03}	21.4 _{0.6}	0.68 _{0.03}
CycleGAN	0.13 _{0.01}	20.0 _{1.0}	0.79 _{0.02}	0.17 _{0.01}	20.4 _{1.4}	0.78 _{0.03}	0.56 _{0.02}	14.4 _{0.3}	0.57 _{0.04}	1.16 _{0.04}	20.0 _{0.5}	0.60 _{0.03}
Pix2Pix	0.05 _{0.00}	24.1 _{1.1}	0.95 _{0.00}	0.06 _{0.00}	24.9 _{1.5}	0.95 _{0.00}	0.29 _{0.04}	17.3 _{0.6}	0.82 _{0.02}	1.10 _{0.16}	20.3 _{0.7}	0.72 _{0.02}
ResViT	0.07 _{0.01}	22.8 _{1.1}	0.90 _{0.01}	0.08 _{0.01}	23.6 _{1.5}	0.90 _{0.01}	0.47 _{0.06}	15.3 _{0.5}	0.73 _{0.02}	1.49 _{0.21}	18.9 _{0.6}	0.65 _{0.02}
SuperDTI	0.05 _{0.01}	24.0 _{1.0}	0.94 _{0.01}	0.06 _{0.01}	24.8 _{1.4}	0.94 _{0.01}	0.26 _{0.02}	17.8 _{0.4}	0.83 _{0.01}	0.94 _{0.07}	20.9 _{0.6}	0.72 _{0.02}
Diff-DTI	<u>0.05</u> _{0.01}	<u>24.3</u> _{1.0}	0.95 _{0.00}	<u>0.06</u> _{0.01}	25.1 _{1.3}	<u>0.95</u> _{0.00}	<u>0.21</u> _{0.02}	<u>18.7</u> _{0.4}	0.89 _{0.01}	<u>0.82</u> _{0.06}	<u>21.5</u> _{0.6}	0.85 _{0.01}
LDM	0.11 _{0.01}	20.9 _{1.1}	0.84 _{0.02}	0.13 _{0.01}	21.6 _{1.5}	0.84 _{0.01}	0.32 _{0.02}	16.9 _{0.5}	0.69 _{0.02}	0.71 _{0.04}	22.1 _{0.7}	0.71 _{0.03}
JET-Diff	0.03 _{0.01}	26.1 _{1.1}	<u>0.96</u> _{0.01}	0.04 _{0.01}	<u>26.6</u> _{1.4}	<u>0.95</u> _{0.01}	0.19 _{0.01}	19.1 _{0.5}	<u>0.83</u> _{0.02}	0.62 _{0.03}	<u>22.7</u> _{0.7}	<u>0.76</u> _{0.03}

336
 337 1000 s/mm² and preprocessed with the standard HCP pipelines (Glasser et al., 2013). Ground-truth
 338 diffusion tensors are computed for each subject via a linear least-squares fit on the full set of 90 DWI
 339 directions. All DWI volumes are resampled to 2 mm isotropic resolution. The input to our model
 340 is a sparse 4-volume stack: one non-diffusion-weighted (b=0) image and the three DWI volumes
 341 whose gradient vectors are most closely aligned with the principal x, y, and z axes. The output is
 342 the complete 6-component diffusion tensor field. The full dataset of 973 subjects is partitioned into
 343 training (681), validation (97), and test (195) sets. Further details on data preparation are available
 344 in Appendix B.

345 Although the HCP acquisition has higher intrinsic spatial and angular resolution than typical clinical
 346 protocols, the resampled 2 mm isotropic resolution and single-shell $b = 1000$ s/mm² configuration
 347 fall within the range of many clinical DTI protocols. All experimental claims in this work are
 348 explicitly restricted to this resampled, single-shell setting on healthy young adults.

349 4.1.2 IMPLEMENTATION DETAILS

351 All experiments were implemented in PyTorch (Paszke et al., 2019) and conducted on a single
 352 NVIDIA A6000 GPU. Training followed a three-stage latent-diffusion pipeline. First, the
 353 Anatomical Autoencoder is pre-trained to establish a high-fidelity latent space, including an internal
 354 lightweight joint refinement block that encourages consistency across tensor components. Second,
 355 the denoising U-Net is trained as an unconditional latent diffusion model to learn a prior over the
 356 latent manifold. Third, the diffusion model is fine-tuned conditionally to synthesize tensor latents
 357 from sparse DWI latents via the coupled latent field. Detailed architectures, loss functions, and
 358 stage-specific objectives are provided in Appendix C.

359 4.1.3 COMPETING METHODS

361 We benchmark JET-Diff against five methods: analytic diagonal estimation (ADE), a non-learning
 362 baseline that assumes a diagonal diffusion tensor by setting off-diagonal elements to zero, and four
 363 deep learning baselines: CycleGAN (Zhu et al., 2017), Pix2Pix (Isola et al., 2017), ResViT (Dalmaz
 364 et al., 2022), SuperDTI (Li et al., 2021), Diff-DTI (Zhang et al., 2024) and a vanilla conditional
 365 latent diffusion model (Rombach et al., 2022). To ensure a fair comparison, all learning-based
 366 baselines are implemented with 3D networks and trained volumetrically on the same data splits and
 367 with identical input, except for SuperDTI and Diff-DTI, which follow their original 2D slice-based
 368 protocols. Full descriptions are available in Appendix D.

369 4.2 MAIN RESULTS

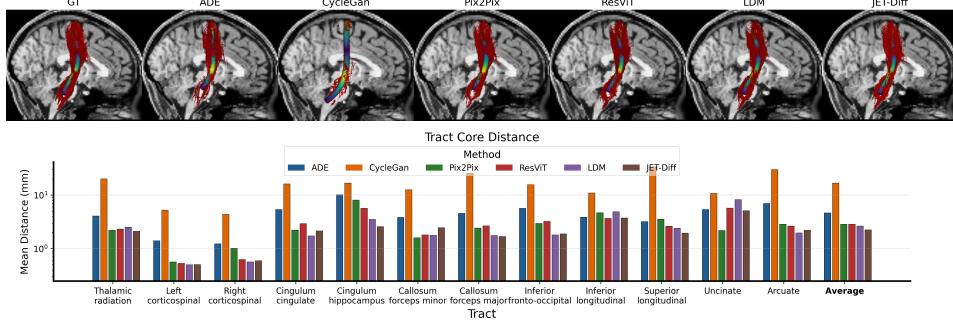
370 4.2.1 QUALITATIVE RESULTS

373 Figure 4 presents a qualitative comparison of the DTI parameter maps (MD, RD, FA, and Color
 374 FA) generated by JET-Diff and competing methods for a representative subject. Each row includes
 375 whole-slice views, magnified insets, and error maps relative to the ground truth. The classical
 376 approach (ADE) introduces substantial noise and structural distortions. CycleGAN fails to restore
 377 the image entirely, while Pix2Pix and ResViT produce very noisy reconstructions with limited
 anatomical fidelity. The standard latent diffusion baseline suppresses noise more effectively but

378

379 Table 2: Quantitative comparison of diffusion tensor components. Each entry reports the mean
 380 and standard deviation (mean_{std}) for PSNR, SSIM, and Log-Euclidean Metric (LEM) across the
 381 six independent tensor components (D_{ij}) on the test set. JET-Diff provides the most accurate and
 382 balanced reconstruction overall, with best and second-best scores highlighted.

Model	D_{xx}		D_{yy}		D_{zz}		D_{xy}		D_{xz}		D_{yz}		LEM
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	
ADE	29.63.0	0.96 _{0.01}	29.43.0	0.96 _{0.01}	29.63.1	0.96 _{0.01}	24.82.0	0.65 _{0.05}	24.42.3	0.65 _{0.05}	24.52.4	0.65 _{0.05}	0.51 _{0.03}
CycleGAN	25.50.7	0.81 _{0.02}	25.20.7	0.81 _{0.02}	25.40.7	0.81 _{0.02}	22.52.1	0.60 _{0.05}	21.92.3	0.59 _{0.05}	22.32.5	0.61 _{0.05}	0.93 _{0.04}
Pix2Pix	29.80.7	0.95 _{0.00}	29.50.7	0.95 _{0.00}	29.60.7	0.95 _{0.00}	24.82.1	0.73 _{0.04}	24.82.3	0.73 _{0.04}	26.92.6	0.81 _{0.03}	0.71 _{0.06}
ResViT	28.20.7	0.91 _{0.01}	28.10.7	0.91 _{0.01}	28.10.8	0.91 _{0.01}	23.82.1	0.67 _{0.04}	23.72.3	0.68 _{0.04}	25.02.5	0.72 _{0.04}	0.92 _{0.07}
SuperDTI	29.81.0	0.94 _{0.01}	29.91.0	0.94 _{0.01}	29.81.0	0.94 _{0.01}	22.32.0	0.63 _{0.04}	21.52.3	0.63 _{0.04}	21.22.5	0.60 _{0.04}	0.69 _{0.05}
Diff-DTI	30.41.5	0.95 _{0.01}	30.51.4	0.96 _{0.01}	30.61.4	0.96 _{0.01}	22.02.0	0.66 _{0.04}	21.42.3	0.66 _{0.04}	20.92.5	0.62 _{0.04}	0.64 _{0.06}
LDM	27.00.8	0.87 _{0.01}	26.70.8	0.80 _{0.01}	26.90.8	0.86 _{0.01}	27.62.0	0.79 _{0.03}	27.22.2	0.79 _{0.04}	27.22.4	0.78 _{0.04}	0.64 _{0.03}
JET-Diff	31.0 _{0.7}	0.95 _{0.01}	30.9 _{0.7}	0.95 _{0.01}	31.0 _{0.7}	0.95 _{0.01}	27.52.0	0.80 _{0.03}	27.12.2	0.79 _{0.04}	27.3 _{2.4}	0.80 _{0.04}	0.49 _{0.03}



403 Figure 5: Tractography comparison. (Top) 3D visualization of the right corticospinal tract (CST)
 404 shows that tracts from JET-Diff tensors most closely match the ground truth.
 405 (Bottom) The mean tract core distance (mm, log scale) across 12 major white matter bundles confirms that JET-Diff
 406 yields more geometrically accurate fiber tracking compared to competing methods.

407 oversmooths fine structures, erasing critical white matter details. In contrast, JET-Diff achieves re-
 408 constructions that closely resemble the ground truth, suppressing noise while maintaining sharp,
 409 coherent anatomy. The error maps highlight the improvement, particularly in regions of complex
 410 fiber geometry. Figure 7 in Appendix G shows the six tensor components. Competing methods
 411 exhibit noise and blurring, especially in the off-diagonal terms (D_{xy} , D_{xz} , D_{yz}), which are critical
 412 yet difficult to estimate. JET-Diff yields sharper and more coherent reconstructions across all tensor
 413 elements, providing the basis for more reliable parameter maps.

4.2.2 QUANTITATIVE RESULTS

417 We quantitatively evaluated all methods using NMSE, PSNR, and SSIM (Wang et al., 2004), with
 418 results summarized in Tables 1 and 2. Detailed statistical significance tests (paired t-tests) for these
 419 metrics are provided in Appendix G (Tables 4 and 5). Further details on the geometry-aware Log-
 420 Euclidean Metric (LEM) are found in Appendix E. Because diffusion tensors reside on the SPD
 421 manifold, voxel-wise metrics such as PSNR or SSIM provide only a partial view of tensor fidelity.
 422 We therefore interpret these scores in conjunction with the geometry-aware Log-Euclidean Metric
 423 (LEM) and tractography performance. JET-Diff achieves the strongest performance across derived
 424 parameter maps, particularly for Fractional Anisotropy (FA) and Color FA, which are highly sensi-
 425 tive to tensor orientation and microstructural detail.

426 The ADE baseline highlights important limitations of conventional metrics. It achieves relatively
 427 high PSNR and SSIM scores for MD, RD, and the diagonal tensor elements, but only because it
 428 ignores the off-diagonal components. By fitting the smoother diagonal terms that dominate mean
 429 intensity, ADE secures favourable scores yet produces a degenerate tensor solution. This failure
 430 is reflected in its poor FA accuracy and inability to capture anisotropy, showing how conventional
 431 metrics can mask fundamental errors. The latent diffusion baseline illustrates a different limitation.
 432 It attains slightly higher PSNR on some off-diagonal elements than JET-Diff, but this reflects local

432
 433 Table 3: Component-wise comparison of diffusion tensor reconstruction. The upper block reports
 434 autoencoder-only reconstruction, and the lower block reports full latent diffusion synthesis. Values
 435 are mean_{std} for PSNR. Bold marks the best score.

436 Model	437 Diffusion tensor component						438 DTI parameter map				
	439 D_{xx}	440 D_{yy}	441 D_{zz}	442 D_{xy}	443 D_{xz}	444 D_{yz}	LEM	445 MD	446 RD	447 FA	448 Color FA
<i>449 Autoencoder reconstruction</i>											
Ours	35.37 _{0.64}	35.29 _{0.68}	35.35 _{0.68}	33.54 _{1.86}	33.40 _{2.09}	33.80 _{2.25}	0.27 _{0.02}	33.09 _{0.75}	33.89 _{1.04}	22.27 _{0.58}	24.82 _{0.74}
No-Joint	35.31 _{0.64}	35.24 _{0.67}	35.29 _{0.67}	33.54 _{1.87}	33.41 _{2.09}	33.80 _{2.25}	0.27 _{0.02}	32.96 _{0.74}	33.77 _{1.03}	22.23 _{0.58}	24.79 _{0.73}
No-Anatomy	31.76 _{0.57}	31.68 _{0.60}	31.75 _{0.60}	31.07 _{1.92}	30.93 _{2.15}	31.38 _{2.33}	0.40 _{0.02}	27.11 _{0.92}	27.83 _{1.29}	18.93 _{0.59}	23.14 _{0.75}
<i>450 Latent diffusion synthesis</i>											
Ours	31.02 _{0.67}	30.83 _{0.71}	30.94 _{0.67}	27.46 _{1.97}	27.14 _{2.19}	27.32 _{2.37}	0.49 _{0.03}	26.08 _{1.07}	26.58 _{1.37}	19.12 _{0.47}	22.70 _{0.67}
No-Joint	30.98 _{0.68}	30.80 _{0.71}	30.91 _{0.68}	27.41 _{1.98}	27.09 _{2.20}	27.30 _{2.38}	0.49 _{0.03}	26.03 _{1.09}	26.53 _{1.40}	19.11 _{0.48}	22.70 _{0.67}
No-Pretrain	29.17 _{0.83}	28.95 _{0.86}	29.06 _{0.88}	25.88 _{2.01}	25.63 _{2.24}	25.88 _{2.39}	0.60 _{0.03}	24.38 _{1.30}	24.46 _{1.54}	17.80 _{0.36}	22.11 _{0.58}
Channel	26.87 _{0.66}	27.00 _{0.73}	26.79 _{0.70}	22.23 _{2.07}	21.94 _{2.27}	22.18 _{2.46}	0.89 _{0.03}	22.67 _{1.11}	22.44 _{1.45}	15.31 _{0.17}	20.44 _{0.43}

451 voxel-wise fits rather than tensor-level coherence. JET-Diff, in contrast, achieves high accuracy on
 452 the dominant diagonal components and the lowest LEM while remaining competitive on the off-
 453 diagonals. Its coupled latent modeling yields a balanced reconstruction across all tensor elements,
 454 resulting in parameter maps such as FA and Color FA that better reflect the underlying white matter
 455 structure.

456 4.2.3 TRACTOGRAPHY COMPARISONS

457 To evaluate the practical utility of the reconstructed tensors, we performed whole-brain probabilistic
 458 tractography (Garyfallidis et al., 2014; Girard et al., 2014). (See Appendix F for the definition of
 459 the tract core distance metric used for evaluation). This task provides a stringent validation, as it
 460 depends on the coherence of all six tensor components and is sensitive to errors in their orientation
 461 fields. Figure 5 shows that fiber bundles generated from JET-Diff closely follow the ground truth,
 462 outperforming all competing methods both qualitatively and quantitatively. Quantitatively, JET-Diff
 463 achieves the lowest tract core distance across major white matter bundles, indicating that the recon-
 464 structed tensors are well suited for fiber tracking. Tractography provides a sensitive downstream
 465 measure of tensor coherence, and we consider it a key indicator of whether the reconstructed tensor
 466 field preserves physically meaningful orientation information beyond voxel-wise error metrics.

467 4.3 ABLATION STUDIES

468 We conducted ablation experiments to examine the contribution of each major component in JET-
 469 Diff. Four variants were evaluated: (1) **No-Anatomy**, which removes DWI-based anatomical con-
 470 ditioning and forces the autoencoder to represent both structure and tensor content within a single
 471 latent code; (2) **No-Joint**, which disables the joint refinement block in the autoencoder; (3) **No-**
 472 **Pretrain**, which omits unconditional latent diffusion pre-training; (4) **Channel**, which removes
 473 coupled latent modeling and processes all latent channels independently. Quantitative results for
 474 both autoencoder-only reconstruction and full latent diffusion synthesis are summarized in Table 3,
 475 with corresponding statistical significance tests reported in Table 6 in Appendix G.

476 4.3.1 ABLATION ON ANATOMICAL AUTOENCODER COMPONENTS

477 Removing anatomical conditioning (No-Anatomy) results in the largest degradation among autoen-
 478 coder variants. While the full model achieves diagonal tensor PSNR values around 35.3–35.4 and a
 479 LEM of 0.27, No-Anatomy drops to approximately 31.7–31.8 with a higher LEM of 0.40. Param-
 480 eter maps follow a similar trend, with MD PSNR decreasing from 33.1 to 27.1 and FA from 22.3
 481 to 18.9. These reductions indicate that anatomical features supplied to the decoder are critical for
 482 disentangling spatial context from tensor-specific information.

483 Disabling the joint refinement block (No-Joint) produces more modest but consistent reductions.
 484 PSNR remains close to the full model (e.g., D_{xx} : 35.37→35.31), yet parameter maps show small
 485 declines (MD: 33.09→32.96, RD: 33.89→33.77). These results suggest that the joint refine-
 486 ment block improves subtle cross-component consistency without substantially altering voxel-wise re-
 487 construction.

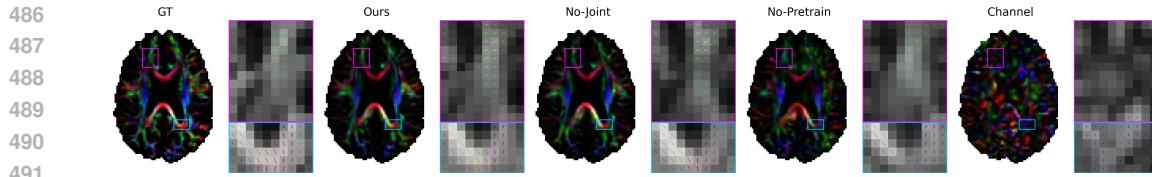


Figure 6: Ablation study on unconditional pre-training and coupled latent modeling. Results are shown for the full model, No-Pretrain, No-Joint, and Channel variants, alongside the ground truth. Removing pre-training or disrupting the coupled latent structure leads to noisier FA maps and less coherent principal eigenvector (V1) fields, as highlighted in the magnified insets.

4.3.2 ABLATION ON LATENT DIFFUSION COMPONENTS

The Channel variant—which removes coupled latent interactions—shows the strongest degradation during full diffusion synthesis. PSNR for off-diagonal components drops sharply (e.g., D_{xy} : 27.46→22.23), and LEM increases from 0.49 to 0.89. Parameter-map accuracy also falls (MD: 26.08→22.67; FA: 19.12→15.31). These results highlight the importance of modeling correlations across the six tensor components and the sparse DWI latents.

Skipping unconditional pre-training (No-Pretrain) also harms stability. Tensor PSNR decreases (e.g., D_{xx} : 31.02→29.17) and LEM rises from 0.49 to 0.60. Parameter maps similarly degrade (MD: 26.08→24.38). As shown in Figure 6, removing unconditional pre-training or disrupting the coupled latent structure produces noticeably noisier FA maps and less coherent principal eigenvector (V1) fields compared with the full model. The magnified insets further reveal loss of directional smoothness in the No-Pretrain and Channel variants, consistent with their higher LEM values in Table 3. This confirms that unconditional pre-training provides a stable initialization for the conditional denoising stage and improves overall geometric fidelity. Finally, we provide a detailed comparison of inference runtime and computational efficiency against baseline methods in Appendix H.

4.4 LIMITATIONS

This study has several limitations. All experiments are conducted on the HCP Young Adult dataset, which includes healthy young adults with uniform, high-quality acquisitions; thus, generalization to older individuals, patients with neurological conditions, or data acquired across different sites and scanners remains untested (Madden et al., 2012). In addition, our setting relies on single-shell $b = 1000 \text{ s/mm}^2$ data resampled to 2 mm isotropic resolution with a fixed, extremely sparse four-volume DWI input. While this configuration lies within the bounds of certain clinical protocols, it differs from higher-resolution, multi-shell, or high-angular-resolution regimes used for more complex diffusion models such as fODFs or spherical deconvolution (Jeurissen et al., 2014; Alexander et al., 2019; Tournier et al., 2007). Finally, the reference tensors are generated using a single tensor fitting algorithm, and evaluating robustness across alternative fitting methods and preprocessing pipelines is an important direction for future work (Jones & Cercignani, 2010).

5 CONCLUSION

In this work, we introduced JET-Diff, a latent diffusion framework for reconstructing diffusion tensors from critically undersampled DWI data. JET-Diff addresses key limitations of existing methods by improving anatomical coherence across volumes and better capturing the correlations required for a coherent tensor field. The framework combines an Anatomical Autoencoder, which separates anatomical context from tensor properties to form an efficient latent space, with a diffusion process that operates on a coupled latent field of sparse DWIs and tensor components. Because the model learns a latent prior, it remains compatible with standard tensor fitting procedures while enhancing tensor-level consistency. Extensive evaluations spanning tensor components, derived DTI parameters, geometry-aware metrics such as the Log-Euclidean Metric (LEM), and downstream tractography demonstrate that, in the studied single-shell, 4-direction setting, JET-Diff improves reconstruction fidelity over competing approaches.

540

REPRODUCIBILITY STATEMENT

541

542 Our proposed method is designed to be reproducible. For methodology and implementation details,
 543 readers are referred to our source code, which is available in the Supplementary Material.

544

545

REFERENCES

546

547

Daniel C Alexander, Tim B Dyrby, Markus Nilsson, and Hui Zhang. Imaging brain microstructure
 with diffusion mri: practicality and applications. *NMR in Biomedicine*, 32(4):e3841, 2019.

548

549

550

551

552

Christina Andica, Koji Kamagata, Taku Hatano, Yuya Saito, Kotaro Ogaki, Nobutaka Hattori, and
 Shigeki Aoki. Mr biomarkers of degenerative brain disorders derived from diffusion imaging.
Journal of Magnetic Resonance Imaging, 52(6):1620–1636, 2020.

553

554

555

Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A log-euclidean frame-
 work for statistics on diffeomorphisms. In *International Conference on Medical Image Computing
 and Computer-Assisted Intervention*, pp. 924–931. Springer, 2006.

556

557

558

Peter J Basser, James Mattiello, and Denis LeBihan. Mr diffusion tensor spectroscopy and imaging.
Biophysical journal, 66(1):259–267, 1994.

559

560

561

Timothy EJ Behrens, H Johansen Berg, Saad Jbabdi, Matthew FS Rushworth, and Mark W Wool-
 rich. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
neuroimage, 34(1):144–155, 2007.

562

563

564

565

Erick Jorge Canales-Rodríguez, Jon Haitz Legarreta, Marco Pizzolato, Gaëtan Rensonnet, Gabriel
 Girard, Jonathan Rafael-Patino, Muhamed Barakovic, David Romascano, Yasser Aleman-Gomez,
 Joaquim Radua, et al. Sparse wars: a survey and comparative study of spherical deconvolution
 algorithms for diffusion mri. *NeuroImage*, 184:140–160, 2019.

566

567

568

569

Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, and Song
 Han. Deep compression autoencoder for efficient high-resolution diffusion models. In *The Thir-
 teenth International Conference on Learning Representations*.

570

571

572

Hyungjin Chung and Jong Chul Ye. Score-based diffusion models for accelerated mri. *Medical
 image analysis*, 80:102479, 2022.

573

574

Onat Dalmaz, Mahmut Yurt, and Tolga Çukur. Resvit: Residual vision transformers for multimodal
 medical image synthesis. *IEEE Transactions on Medical Imaging*, 41(10):2598–2614, 2022.

575

576

577

Eleftherios Garyfallidis, Matthew Brett, Bagrat Amirbekian, Ariel Rokem, Stefan Van Der Walt,
 Maxime Descoteaux, Ian Nimmo-Smith, and Dipy Contributors. Dipy, a library for the analysis
 of diffusion mri data. *Frontiers in neuroinformatics*, 8:8, 2014.

578

579

580

Gabriel Girard, Kevin Whittingstall, Rachid Deriche, and Maxime Descoteaux. Towards quantitative
 connectivity analysis: reducing tractography biases. *Neuroimage*, 98:266–278, 2014.

581

582

583

584

Matthew F Glasser, Stamatios N Sotiroopoulos, J Anthony Wilson, Timothy S Coalson, Bruce Fischl,
 Jesper L Andersson, Junqian Xu, Saad Jbabdi, Matthew Webster, Jonathan R Polimeni, et al. The
 minimal preprocessing pipelines for the human connectome project. *Neuroimage*, 80:105–124,
 2013.

585

586

587

588

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 constrained variational framework. In *International conference on learning representations*, 2017.

589

590

591

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 neural information processing systems*, 33:6840–6851, 2020.

592

593

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
 conditional adversarial networks. In *Proceedings of the IEEE conference on computer vision and
 pattern recognition*, pp. 1125–1134, 2017.

594 Mark Jenkinson, Christian F Beckmann, Timothy EJ Behrens, Mark W Woolrich, and Stephen M
 595 Smith. *Fsl. Neuroimage*, 62(2):782–790, 2012.
 596

597 Ben Jeurissen, Jacques-Donald Tournier, Thijs Dhollander, Alan Connelly, and Jan Sijbers. Multi-
 598 tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion mri data.
 599 *NeuroImage*, 103:411–426, 2014.

600 Derek K Jones and Mara Cercignani. Twenty-five pitfalls in the analysis of diffusion mri data. *NMR*
 601 *in Biomedicine*, 23(7):803–820, 2010.
 602

603 Derek K Jones, Thomas R Knösche, and Robert Turner. White matter integrity, fiber count, and
 604 other fallacies: the do’s and don’ts of diffusion mri. *Neuroimage*, 73:239–254, 2013.
 605

606 Davood Karimi and Simon K Warfield. Diffusion mri with machine learning. *Imaging Neuroscience*,
 607 2:1–55, 2024.
 608

609 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 610 *arXiv:1412.6980*, 2014.
 611

612 Florian Knoll, José G Raya, Rafael O Halloran, Steven Baete, Eric Sigmund, Roland Bammer, To-
 613 bias Block, Ricardo Otazo, and Daniel K Sodickson. A model-based reconstruction for undersam-
 614 pled radial spin-echo dti with variational penalties on the diffusion tensor. *NMR in Biomedicine*,
 28(3):353–366, 2015.
 615

616 Denis Le Bihan, Jean-François Mangin, Cyril Poupon, Chris A Clark, Sabina Pappata, Nicolas
 617 Molko, and Hughes Chabriat. Diffusion tensor imaging: concepts and applications. *Journal*
 618 *of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic*
Resonance in Medicine, 13(4):534–546, 2001.
 619

620 Christophe Lenglet, Jennifer SW Campbell, Maxime Descoteaux, Gloria Haro, Peter Savadjiev,
 621 Demian Wassermann, Alfred Anwander, Rachid Deriche, G Bruce Pike, Guillermo Sapiro, et al.
 622 Mathematical methods for diffusion mri processing. *Neuroimage*, 45(1):S111–S122, 2009.
 623

624 Hongyu Li, Zifei Liang, Chaoyi Zhang, Ruiying Liu, Jing Li, Weihong Zhang, Dong Liang, Bowen
 625 Shen, Xiaoliang Zhang, Yulin Ge, et al. Superdti: Ultrafast dti and fiber tractography with deep
 626 learning. *Magnetic resonance in medicine*, 86(6):3334–3347, 2021.
 627

628 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 629 *arXiv:1711.05101*, 2017.
 630

631 David J Madden, Ilana J Bennett, Agnieszka Burzynska, Guy G Potter, Nan-kuei Chen, and Allen W
 632 Song. Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. *Biochimica*
et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(3):386–400, 2012.
 633

634 Partha Mukherjee, SW Chung, JI Berman, CP Hess, and RG Henry. Diffusion tensor mr imaging
 635 and fiber tractography: technical considerations. *American Journal of Neuroradiology*, 29(5):
 843–852, 2008.
 636

637 Lauren J O’Donnell and Carl-Fredrik Westin. An introduction to diffusion tensor image analysis.
638 Neurosurgery Clinics of North America, 22(2):185, 2011.
 639

640 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 641 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 642 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
 643

644 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 645 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 646 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 647

648 Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
 649 Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In *ACM SIGGRAPH*
 650 *2022 conference proceedings*, pp. 1–10, 2022a.

648 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
 649 Norouzi. Image super-resolution via iterative refinement. *IEEE transactions on pattern anal-
 650 ysis and machine intelligence*, 45(4):4713–4726, 2022b.
 651

652 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 653 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 654 ing*, pp. 2256–2265. pmlr, 2015.

655 Edward O Stejskal and John E Tanner. Spin diffusion measurements: spin echoes in the presence of
 656 a time-dependent field gradient. *The journal of chemical physics*, 42(1):288–292, 1965.
 657

658 Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
 659 Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
 660 high frequency functions in low dimensional domains. *Advances in neural information processing
 661 systems*, 33:7537–7547, 2020.

662 Qiyuan Tian, Berkin Bilgic, Qiuyun Fan, Congyu Liao, Chanon Ngamsombat, Yuxin Hu, Thomas
 663 Witzel, Kawin Setsompop, Jonathan R Polimeni, and Susie Y Huang. Deepdti: High-fidelity
 664 six-direction diffusion tensor imaging using deep learning. *NeuroImage*, 219:117017, 2020.

665 J-Donald Tournier, Fernando Calamante, and Alan Connelly. Robust determination of the fibre
 666 orientation distribution in diffusion mri: non-negativity constrained super-resolved spherical de-
 667 convolution. *Neuroimage*, 35(4):1459–1472, 2007.
 668

669 J-Donald Tournier, Robert Smith, David Raffelt, Rami Tabbara, Thijs Dhollander, Maximilian
 670 Pietsch, Daan Christiaens, Ben Jeurissen, Chun-Hung Yeh, and Alan Connelly. Mrtrix3: A fast,
 671 flexible and open software framework for medical image processing and visualisation. *Neuroim-
 672 age*, 202:116137, 2019.

673 Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
 674 Li. Maxvit: Multi-axis vision transformer. In *European conference on computer vision*, pp. 459–
 675 479. Springer, 2022.
 676

677 David S Tuch. Q-ball imaging. *Magnetic Resonance in Medicine: An Official Journal of the Inter-
 678 national Society for Magnetic Resonance in Medicine*, 52(6):1358–1372, 2004.

679 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 680 neural information processing systems*, 30, 2017.
 681

682 David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Yacoub,
 683 Kamil Ugurbil, Wu-Minn HCP Consortium, et al. The wu-minn human connectome project:
 684 an overview. *Neuroimage*, 80:62–79, 2013.

685 Haoshen Wang, Zhentao Liu, Kaicong Sun, Xiaodong Wang, Dinggang Shen, and Zhiming Cui.
 686 3d meddiffusion: A 3d medical latent diffusion model for controllable and high-quality medical
 687 image generation. *IEEE Transactions on Medical Imaging*, 2025.

688 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 689 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 690 612, 2004.
 691

692 Chenxu Wu, Qingpeng Kong, Zihang Jiang, and S Kevin Zhou. Self-supervised diffusion mri de-
 693 noising via iterative and stable refinement. In *The Thirteenth International Conference on Learn-
 694 ing Representations*.

695 Zejun Wu, Jiechao Wang, Zunquan Chen, Qinjin Yang, Zhen Xing, Dairong Cao, Jianfeng Bao,
 696 Taishan Kang, Jianzhong Lin, Shuhui Cai, et al. Flexdti: flexible diffusion gradient encoding
 697 scheme-based highly efficient diffusion tensor imaging using deep learning. *Physics in Medicine
 698 & Biology*, 69(11):115012, 2024.
 699

700 Tiange Xiang, Mahmut Yurt, Ali B Syed, Kawin Setsompop, and Akshay Chaudhari. Ddm 2:
 701 Self-supervised diffusion mri denoising with generative diffusion models. In *The Eleventh Inter-
 702 national Conference on Learning Representations*.

702 Lang Zhang, Jinling He, Wang Li, Dong Liang, and Yanjie Zhu. Diff-dti: Fast diffusion tensor
 703 imaging using a feature-enhanced joint diffusion model. *IEEE Journal of Biomedical and Health
 704 Informatics*, 2024.

705
 706 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
 707 using cycle-consistent adversarial networks. In *Proceedings of the IEEE international conference
 708 on computer vision*, pp. 2223–2232, 2017.

711 A DIFFUSION TENSOR MODEL DETAILS

713 A.1 THE STEJSKAL-TANNER EQUATION EXPLAINED

715 The Stejskal-Tanner equation provides the foundational model for DTI (Stejskal & Tanner, 1965).
 716 The terms are defined as follows:

- 718 • S_0 : The signal intensity measured in a non-diffusion-weighted acquisition (a B_0 image),
 719 where the diffusion-sensitizing gradients are turned off.
- 720 • $S(\mathbf{g})$: The signal intensity measured when a diffusion-sensitizing magnetic field gradient
 721 is applied along the direction of the unit vector \mathbf{g} .
- 722 • **b-value**: A scalar value that encapsulates the strength and duration of the diffusion gradi-
 723 ents. A higher b-value results in greater signal attenuation for diffusing water molecules.

726 A.2 TENSOR ESTIMATION AND CLINICAL CONTEXT

728 To solve for the six unknown components of the symmetric tensor \mathbf{D} , the Stejskal-Tanner equation
 729 must be sampled with at least six non-collinear gradient directions (\mathbf{g}). In clinical and research
 730 practice, many more directions (often 30 to 90 or more) are acquired to improve the accuracy and
 731 robustness of the tensor fit, especially in noisy data (Jones et al., 2013). This requirement leads to
 732 the primary clinical challenge of DTI: long acquisition times, which increase patient discomfort and
 733 sensitivity to motion artifacts.

735 A.3 TENSOR-DERIVED METRICS

736 The diffusion tensor \mathbf{D} is rarely interpreted directly. Instead, it is diagonalized to yield three eigen-
 737 values ($\lambda_1 \geq \lambda_2 \geq \lambda_3$) and their corresponding eigenvectors ($\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$). These represent the
 738 magnitude of diffusion in three orthogonal directions and the orientation of those directions, respec-
 739 tively. From these, crucial microstructural metrics are calculated (Basser et al., 1994):

- 741 • **Mean Diffusivity (MD)**: The average of the eigenvalues, $MD = (\lambda_1 + \lambda_2 + \lambda_3)/3$. It
 742 measures the overall magnitude of water diffusion in a voxel, independent of directionality.
- 744 • **Radial Diffusivity (RD)**: The average of the secondary and tertiary eigenvalues, $RD =$
 745 $(\lambda_2 + \lambda_3)/2$. This metric quantifies diffusion perpendicular to the principal fiber direction
 746 and is often cited as a marker for myelin integrity.
- 747 • **Fractional Anisotropy (FA)**: A normalized measure of the variance of the eigenvalues, in-
 748 dicating the degree to which diffusion is directional. An FA of 0 implies isotropic diffusion,
 749 while an FA close to 1 implies diffusion is highly restricted to a single direction.
- 750 • **Color Fractional Anisotropy (Color FA)**: To visualize the principal fiber orientation
 751 alongside anisotropy, the FA map is modulated by the principal eigenvector $\mathbf{v}_1 =$
 752 $[v_{1x}, v_{1y}, v_{1z}]$. The resulting RGB image assigns colors based on direction: Red for left-
 753 right ($|v_{1x}|$), Green for anterior-posterior ($|v_{1y}|$), and Blue for superior-inferior ($|v_{1z}|$),
 754 scaled by the FA value.

755 These metrics are essential for the quantitative analysis of white matter integrity.

756 **B DATA AND PREPROCESSING DETAILS**
757758 **Ground-Truth Tensor Generation:** The ground-truth DTI metrics for each subject were derived
759 from the complete diffusion dataset, which included 18 $b=0$ volumes and 90 DWI volumes at $b=1000$
760 s/mm^2 . Diffusion tensor fitting was performed using an ordinary linear least-squares method via the
761 `dtifit` function in FSL (Jenkinson et al., 2012), incorporating the provided gradient nonlinearity
762 correction files. This process yielded the full diffusion tensor, from which all ground-truth metrics,
763 including fractional anisotropy (FA) and mean diffusivity (MD), were calculated (Glasser et al.,
764 2013).765 **Undersampled Input Selection:** The 4-volume sparse input for our model was created by selecting
766 a specific subset of DWIs. For the $b=1000 \text{ s/mm}^2$ shell, we identified the three diffusion gradient
767 vectors most closely aligned with the standard Cartesian axes $([1, 0, 0], [0, 1, 0], \text{ and } [0, 0, 1])$ by
768 minimizing the Euclidean distance. The corresponding DWI volumes were extracted, and a single
769 $b=0 \text{ s/mm}^2$ volume was prepended to form the final 4-volume input stack, \mathcal{B} .
770771 **C IMPLEMENTATION DETAILS**
772773 **C.1 JET-DIFF TRAINING PIPELINE**
774775 Our proposed method, JET-Diff, is trained in a three-stage process designed to sequentially build
776 the model’s capabilities. The first stage establishes the high-fidelity latent space via the Anatomical
777 Autoencoder, while the final two stages train the latent diffusion model to operate within that
778 space. We use the Adam optimizer (Kingma & Ba, 2014) for the autoencoder stage and AdamW
779 (Loshchilov & Hutter, 2017) for the diffusion stages.780 **Stage 1: Anatomical Autoencoder Pre-training.** We first train the autoencoder to learn a high-
781 fidelity latent representation for each of the six tensor components independently. The encoder
782 compresses each component into a latent space with 6 embedding dimensions and a codebook of
783 1024 entries. The architecture uses a base of 64 channels, channel multipliers of $(1, 2, 4)$, and
784 two residual blocks per resolution level. This phase is trained using the Adam optimizer with a
785 learning rate of 1.0×10^{-5} and an effective batch size of 8. The objective consists of a voxel-wise
786 reconstruction loss and a vector-quantization commitment loss (Van Den Oord et al., 2017).787 **Stage 2: Decoupled Joint Refinement.** After pre-training, we freeze the autoencoder weights and
788 fine-tune a new joint decoder to enforce consistency across all six tensor components. All weights
789 are frozen except for a new joint fusion block and the final output convolution layers of the decoder.
790 Optimization uses the Adam optimizer with a learning rate of 1.0×10^{-4} and an effective batch size
791 of 16.792 **Stage 3: Unconditional Latent Diffusion Pre-training.** To provide a strong initialization for the
793 generative model, we pre-train the denoising U-Net to model the distribution of the latent tensors
794 in an unconditional setting. The backbone has 256 base channels, channel multipliers of $(1, 2, 4)$,
795 two residual blocks per scale, and self-attention at multiple resolutions. The diffusion process uses a
796 linear beta schedule (Ho et al., 2020) over 1000 steps. In this phase, the model is trained to denoise
797 the latent tensors without explicit conditioning, learning a robust prior over the latent manifold. The
798 model is trained with the AdamW optimizer with a learning rate of 1.0×10^{-6} and a batch size of 8.799 **Stage 4: Conditional Latent Diffusion Fine-tuning.** The model is then fine-tuned for the primary
800 conditional synthesis task, initialized from the checkpoint of the unconditional pre-training phase.
801 The forward diffusion process continues to apply Gaussian noise to the coupled latent field. The
802 denoising U-Net is now conditioned on the clean DWI latents, which are concatenated to the noisy
803 latent tensor and modulate the tensor-aware attention blocks. The model is trained to predict the
804 noise for all channels, guided by the DWI condition, using AdamW with a learning rate of 1.0×10^{-6}
805 and an effective batch size of 8.806 **C.2 JOINT MLP BLOCK ARCHITECTURE**
807808 The joint refinement block added at the end of the decoder operates voxel-wise across all six tensor
809 components. Its architecture is as follows:

- **Input dimension:** 1536 (= 256 channels \times 6 tensor components)
- **Hidden dimension:** 768 (GELU activation)
- **Output dimension:** 1536
- **Total parameters:** 2,361,600

This block contributes only a small fraction of the decoder’s total parameters and is designed to promote cross-component consistency with minimal overhead.

C.3 COMPARISON: COUPLED LATENT ATTENTION VS. STANDARD CROSS-ATTENTION

To clarify the distinction between the attention mechanism employed in our denoising U-Net and the standard Cross-Attention mechanism commonly used in latent diffusion models, we provide a detailed formulation comparison.

C.3.1 STANDARD CROSS-ATTENTION

In a standard conditional diffusion model, the generative backbone (U-Net) synthesizes the target \mathbf{z} conditioned on an input \mathbf{c} . The Cross-Attention mechanism facilitates this by attending to the condition \mathbf{c} using queries derived from the intermediate representation of the target \mathbf{z} . Formally:

$$\text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d}} \right) V \quad (1)$$

where $Q = W_Q \cdot \varphi(\mathbf{z}_t)$, $K = W_K \cdot \psi(\mathbf{c})$, and $V = W_V \cdot \psi(\mathbf{c})$. Here, the information flow is asymmetric and unidirectional ($\mathbf{c} \rightarrow \mathbf{z}$). Crucially, this mechanism treats the channels of \mathbf{z} independently in terms of the attention logic; it does not explicitly model the correlation between different output channels (e.g., tensor components) beyond what is captured by convolutional receptive fields.

C.3.2 COUPLED LATENT ATTENTION

In the context of DTI reconstruction, valid tensor synthesis requires strict coherence between the six tensor components (\mathbf{Y}_c). Standard cross-attention is insufficient because it does not explicitly enforce this inter-component consistency.

Our proposed framework addresses this by employing a **Coupled Latent Attention** mechanism that models the *joint distribution* of the input DWIs (\mathbf{X}) and output DTIs (\mathbf{Y}). We construct a unified sequence S that concatenates the tokens of both the conditioning DWI latents and the noisy DTI latents along the component dimension. This mechanism is implemented as a modified Self-Attention over this joint sequence:

$$Q, K, V = W_{Q,K,V} \cdot [\mathbf{z}_t^{\mathbf{Y}}; \mathbf{z}_t^{\mathbf{X}}] \quad (2)$$

This formulation introduces three key contributions:

1. **Symmetric Interaction:** Unlike cross-attention, our approach enables “all-to-all” communication. This allows specific DTI components to attend to other DTI components (e.g., D_{xy} attending to D_{xx} and D_{yy}), explicitly enforcing the physical constraints of the diffusion tensor via the attention map.
2. **Directional Geometry Awareness:** As described in Section 3.3.1, we incorporate learnable direction embeddings (\mathbf{E}_{dir}) directly into the attention calculation:

$$\text{Sim}(Q, K) = \frac{QK^T}{\sqrt{d}} + \mathbf{E}_{pos} + \mathbf{E}_{dir} \quad (3)$$

This explicitly informs the network of the geometric relationship between the signal gradients (in DWIs) and the tensor orientation components (in DTIs), a feature absent in standard spatial cross-attention.

864 C.4 TRAINING SCHEDULES FOR ABLATION VARIANTS
865866 For completeness, we report the exact number of training iterations used for each ablation model,
867 ensuring that performance differences are attributable to architectural factors rather than computa-
868 tional budget:869
870

- 871 • **JET-Diff (full model):** 75k steps (autoencoder pre-training) + 5k (joint refinement) + 25k
872 (unconditional diffusion) + 25k (conditional diffusion)
- 873 • **No-Anatomy:** 120k autoencoder-only steps
- 874 • **No-Pretrain:** 100k diffusion steps
- 875 • **Channel variant:** 20k diffusion steps

876877 D COMPETING METHODS DETAILS
878879 Unless otherwise noted, all learnable baselines are implemented as 3D networks and trained on full
880 3D volumes to ensure a rigorous comparison with our volumetric approach.881
882

- 883 • **ADE (Analytic Diagonal Estimation):** A non-learning baseline that assumes a diag-
884 onal diffusion tensor. The diagonal components (D_{xx} , D_{yy} , D_{zz}) are computed from the
885 log-linearized Stejskal-Tanner equation using the most aligned gradients. Off-diagonal el-
886 ements are strictly set to zero, and the tensor is projected onto the Symmetric Positive
887 Definite (SPD) manifold.
- 888 • **SuperDTI (Li et al., 2021):** Implemented using a 2D U-Net-style encoder-decoder CNN
889 with residual learning. Following the original protocol, the network is trained to learn
890 the non-linear mapping from uniformly sampled sparse DWI signals directly to FA, MD,
891 and the primary eigenvectors (or color maps) using an L_2 regression loss. We utilized the
892 architecture specified in the official paper, adapted for 2D based processing.
- 893 • **Diff-DTI (Zhang et al., 2024):** A conditional score-based diffusion model. The method
894 operates on 2D slices to directly synthesize DTI parametric maps (e.g., FA, MD, Color
895 FA) from a few conditional DWIs. The model uses a novel U-Net backbone enhanced
896 by a Feature Enhancement Fusion Mechanism (FEFM), which integrates a Transformer-
897 based auxiliary path to preserve fine structural details, and is trained with a score-matching
898 objective.
- 899 • **CycleGAN (Zhu et al., 2017):** The architecture consists of two 3D U-Net generators
900 and two 3D PatchGAN discriminators, trained with an adversarial loss and an L1 cycle-
901 consistency loss ($\lambda = 10$).
- 902 • **Pix2Pix (Isola et al., 2017):** The generator is a 3D U-Net, and the discriminator is a 3D
903 PatchGAN. The training objective is a sum of a vanilla GAN loss and an L1 reconstruction
904 loss ($\lambda_{L1} = 100$).
- 905 • **ResViT (Dalmaz et al., 2022):** A hybrid architecture combining a 3D ResNet-style back-
906 bone with interleaved Vision Transformer blocks to capture long-range dependencies,
907 trained with a composite L1 and adversarial loss.
- 908 • **LDM (Rombach et al., 2022):** A standard Latent Diffusion Model serves as a compara-
909 tive baseline. We employ a conventional latent autoencoder *identical to the No-Anatomy*
910 *ablation*, thereby reproducing the canonical LDM setup without DWI-aided decoding or
911 anatomical feature injection. The diffusion U-Net is conditioned solely through channel-
912 wise concatenation of the DWI latent and the noisy tensor latent, following the design
913 principles of SR3 (Saharia et al., 2022b) and Palette (Saharia et al., 2022a). This configura-
914 tion reflects the standard conditional LDM mechanism and stands in contrast to the coupled
915 latent field and tensor-aware joint-encoding used in JET-Diff.

916 D.1 RECONSTRUCTING DIFFUSION TENSORS FROM PARAMETER MAPS
917918 SuperDTI and Diff-DTI do not directly output the full diffusion tensor, but instead predict diffusion
919 parameter maps such as mean diffusivity (MD), radial diffusivity (RD), fractional anisotropy (FA),

918 and Color FA (RGB-encoded FA). To enable tensor-domain metrics and tractography, we reconstruct
 919 an approximate diffusion tensor $D \in \mathbb{R}^{3 \times 3}$ in each voxel from these quantities under a cylindrically
 920 symmetric model.

921 We assume a single-shell acquisition and impose

$$923 \quad \lambda_2 = \lambda_3 = \text{RD},$$

924 so that the tensor has one principal eigenvalue $\lambda_1 = \text{AD}$ (axial diffusivity) and two identical sec-
 925 ondary eigenvalues $\lambda_2 = \lambda_3 = \text{RD}$. Using the standard relation

$$926 \quad \text{MD} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3} = \frac{\text{AD} + 2 \text{RD}}{3},$$

928 we recover axial diffusivity as

$$929 \quad \text{AD} = 3 \text{MD} - 2 \text{RD}.$$

930 In practice, we clip negative values of AD to zero to avoid clearly unphysical eigenvalues.

931 The principal eigenvector $e_1 \in \mathbb{R}^3$ is estimated from the Color FA image. Let $\mathbf{c} = (c_x, c_y, c_z)$
 932 denote the RGB-FA vector at a voxel; we normalize it to obtain

$$934 \quad e_1 = \frac{\mathbf{c}}{\|\mathbf{c}\|_2 + \varepsilon},$$

936 with a small $\varepsilon > 0$ for numerical stability. To suppress unreliable orientations in nearly isotropic
 937 voxels, we set $e_1 = 0$ whenever $\text{FA} < 0.05$.

938 Under these assumptions, the reconstructed diffusion tensor is given by the rank-1 update

$$939 \quad D = \text{RD} I_3 + (\text{AD} - \text{RD}) e_1 e_1^\top,$$

941 where I_3 is the 3×3 identity matrix. Writing $e_1 = (e_x, e_y, e_z)$ and $\Delta = \text{AD} - \text{RD}$, the six
 942 independent components are

$$\begin{aligned} 943 \quad D_{xx} &= \text{RD} + \Delta e_x^2, \\ 944 \quad D_{yy} &= \text{RD} + \Delta e_y^2, \\ 945 \quad D_{zz} &= \text{RD} + \Delta e_z^2, \\ 946 \quad D_{xy} &= \Delta e_x e_y, \\ 947 \quad D_{xz} &= \Delta e_x e_z, \\ 948 \quad D_{yz} &= \Delta e_y e_z. \\ 949 \end{aligned}$$

950 We then store $(D_{xx}, D_{yy}, D_{zz}, D_{xy}, D_{xz}, D_{yz})$ as a 4D volume and use this reconstructed tensor
 951 field for all tensor-domain metrics (e.g., LEM) and tractography-based evaluations reported for Su-
 952 perDTI and Diff-DTI.

954 E DIFFUSION TENSOR METRICS AND MANIFOLD GEOMETRY

957 To provide a geometrically rigorous assessment of the reconstructed diffusion tensors, we employ
 958 the Log-Euclidean Metric (LEM) in addition to conventional image-based metrics (PSNR, SSIM).
 959 This addresses the fundamental limitation that the space of Diffusion Tensor Imaging (DTI) tensors
 960 does not conform to Euclidean geometry.

961 E.1 LIMITATION OF EUCLIDEAN METRICS

963 A diffusion tensor \mathbf{D} is represented by a 3×3 Symmetric Positive Definite (SPD) matrix. The space
 964 of all such matrices, \mathcal{S}_{++}^3 , forms a non-linear Riemannian manifold rather than a flat Euclidean
 965 space. Applying standard Euclidean metrics (e.g., L_2 norm, PSNR, SSIM) to the six unique tensor
 966 components treats them as a simple 6D vector. This approach ignores:

- 968 • Physical Plausibility: It does not enforce the positive definiteness of the tensor (i.e., non-
 969 negative eigenvalues), which is a core physical constraint of diffusion.
- 970 • Geodesic Distance: The resulting distance metric does not correspond to the shortest path
 971 (geodesic) between two tensors on the manifold, leading to potentially inaccurate assess-
 972 ment in regions of high anisotropy or complex fiber geometry.

972 E.2 LOG-EUCLIDEAN METRIC (LEM)
973974 The Log-Euclidean Metric (LEM) (Arsigny et al., 2006) provides an effective and computationally
975 tractable distance metric for SPD matrices. It utilizes the matrix logarithm (log) to map the curved
976 SPD manifold (\mathcal{S}_{++}^3) to a flat vector space (the space of symmetric matrices, \mathcal{S}^3), where standard
977 Euclidean operations become valid.978 The Log-Euclidean distance between two tensors, \mathbf{D}_1 and \mathbf{D}_2 , is defined as the Frobenius norm of
979 the difference between their matrix logarithms:
980

981
$$d_{LE}(\mathbf{D}_1, \mathbf{D}_2) = \|\log(\mathbf{D}_1) - \log(\mathbf{D}_2)\|_F$$

982 Here, $\log(\mathbf{D})$ is computed via eigendecomposition ($\mathbf{D} = \mathbf{V}\Lambda\mathbf{V}^T$, where Λ contains the eigenvalues
983 λ_i), such that $\log(\mathbf{D}) = \mathbf{V}\log(\Lambda)\mathbf{V}^T$. In our implementation, we ensure numerical stability by
984 clamping all eigenvalues to a minimum positive value before applying the logarithm. By minimizing
985 this metric, we enforce that the reconstructed tensor not only matches the ground truth in compo-
986 nent values but also adheres to the appropriate underlying tensor geometry, supporting physically
987 plausible downstream analyses like tractography.
988989 F TRACTOGRAPHY EVALUATION: TRACT CORE DISTANCE
990991 To assess how tensor reconstruction quality affects downstream fiber tracking (Section 4), we mea-
992 sure the geometric discrepancy between white matter bundles obtained from reconstructed tensors
993 and those from the reference tensors using a *tract core distance* (Garyfallidis et al., 2014; Girard
994 et al., 2014).995 For each subject, whole-brain probabilistic tractography is run on the reference and on each recon-
996 structed tensor field with identical MRtrix3 seeding and tracking parameters (Tournier et al., 2019).
997 Major bundles (e.g., corticospinal tract, cingulum, corpus callosum segments) are segmented from
998 the whole-brain tractograms using TractSeg-derived bundle masks. For each bundle, we build a
999 smooth 3D *core* trajectory that summarizes its geometry: all streamlines are resampled to a fixed
1000 number of points in world coordinates, and a low-degree polynomial is fitted to the cross-sectional
1001 centroid positions along the main bundle direction. This yields a core trajectory for the ground-truth
1002 tensors, γ^{GT} , and for each reconstruction, γ^{rec} .1003 The tract core distance for a bundle is defined as the average nearest-point distance from the recon-
1004 structed core to the reference core:
1005

1006
$$d_{core}(\gamma^{GT}, \gamma^{rec}) = \frac{1}{M} \sum_{m=1}^M \min_{1 \leq k \leq K} \|\gamma^{GT}(k) - \gamma^{rec}(m)\|_2,$$

1007

1008 where $\{\gamma^{GT}(k)\}_{k=1}^K$ and $\{\gamma^{rec}(m)\}_{m=1}^M$ are the sampled points along the two core trajectories in
1009 physical space (mm). For 2 mm isotropic data we treat sub-voxel discrepancies as negligible by
1010 thresholding very small distances. Lower values of d_{core} indicate that the reconstructed tensor yields
1011 a bundle whose central trajectory closely matches that of the ground truth.
10121013 G ADDITIONAL QUANTITATIVE RESULTS
10141015 This section contains supplementary quantitative results, including qualitative visualizations of the
1016 tensor components (Figure 7), detailed statistical significance tests (Tables 4, 5, 6), and inference
1017 runtime comparisons (Table 8).
10181019 H INFERENCE RUNTIME ANALYSIS
10201021 Table 8 summarizes the end-to-end inference time for a full 2 mm whole-brain volume on a single
1022 NVIDIA A6000. JET-Diff incurs additional computational cost relative to a LDM due to coupled
1023 latent attention and tensor-aware refinement, while achieving markedly higher tensor consistency.
1024 Importantly, JET-Diff remains substantially faster than 2D slice-based diffusion models such as
1025 Diff-DTI, which require processing each slice independently and accumulate significant overhead.

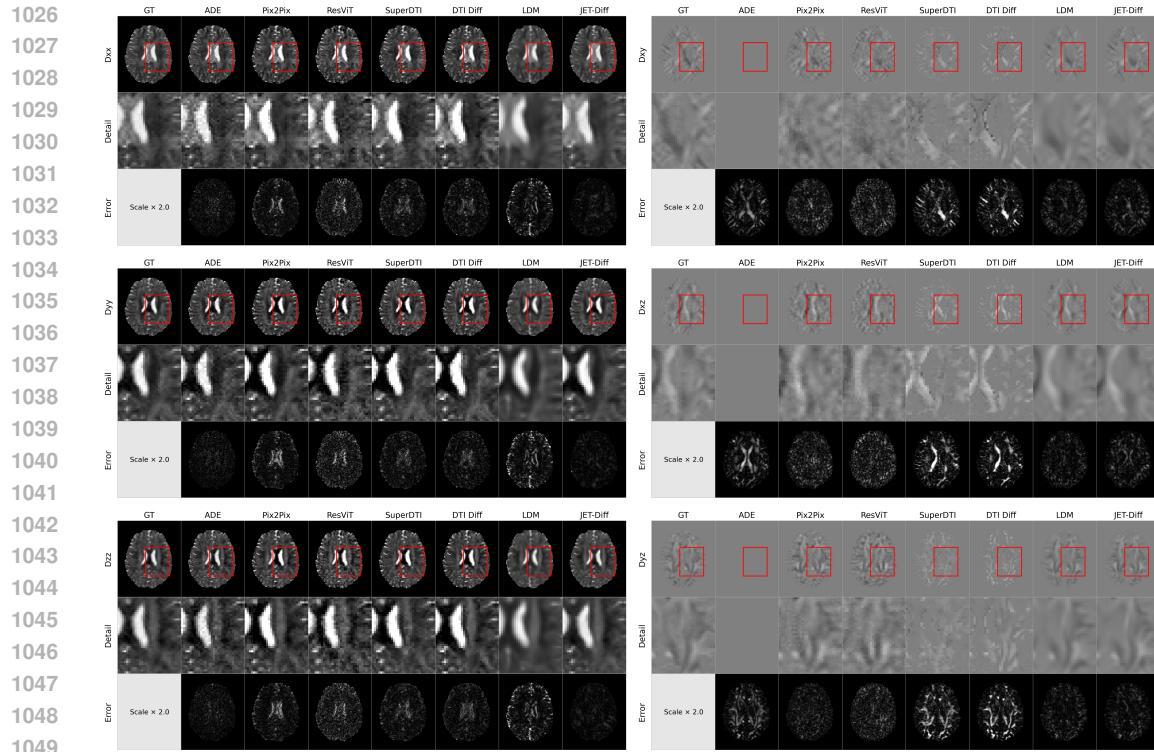


Figure 7: Qualitative comparison of diffusion tensor components. Visualization of the six individual tensor components for the same subject shown in Figure 4. JET-Diff provides a faithful reconstruction across all components, with reduced noise and artifacts, particularly in the off-diagonal elements.

Table 4: Paired t-test results (JET-Diff vs baselines) for each **Metric** (MD, FA, RD) under each **Measure** (NMSE, PSNR, SSIM). Legend: *** $p < 10^{-3}$, ** $p < 10^{-2}$, * $p < 0.05$, (n.s.) $p \geq 0.05$.

Metric	Measure	ADE	CycleGAN	Pix2Pix	ResViT	Diff-DTI	SuperDTI	LDM
MD	NMSE	0.005**	***	***	***	***	***	***
FA	NMSE	***	***	***	***	***	***	***
RD	NMSE	0.016*	***	***	***	***	***	***
MD	PSNR	0.842 (n.s.)	***	***	***	***	***	***
FA	PSNR	***	***	***	***	***	***	***
RD	PSNR	0.008**	***	***	***	***	***	***
MD	SSIM	***	***	***	***	***	***	***
FA	SSIM	***	***	***	***	***	0.792 (n.s.)	***
RD	SSIM	***	***	***	***	***	***	***

I USE OF AI TOOLS IN MANUSCRIPT PREPARATION

The authors utilized Google’s Gemini Pro to improve the grammar and readability of this manuscript. All content generated by this tool was critically reviewed, fact-checked, and substantially revised by the authors to ensure accuracy and originality. The final responsibility for the content of this paper rests solely with the authors.

1080

1081
1082 Table 5: Paired t-test results (JET-Diff vs baselines) for **Metric = LEM or Component**, under
1083 **Measure = PSNR, SSIM**. Legend: *** $p < 10^{-3}$, ** $p < 10^{-2}$, * $p < 0.05$, (n.s.) $p \geq 0.05$.

Metric	Component / Measure	ADE	CycleGAN	Pix2Pix	ResViT	Diff-DTI	SuperDTI	LDM
LEM	-	***	***	***	***	***	***	***
PSNR	Dxx	***	***	***	***	***	***	***
PSNR	Dxy	***	***	***	***	***	***	***
PSNR	Dxz	***	***	***	***	***	***	***
PSNR	Dyy	***	***	***	***	***	***	***
PSNR	Dyz	***	***	***	***	***	***	***
PSNR	Dzz	***	***	***	***	***	***	***
SSIM	Dxx	***	***	***	0.006**	***	***	***
SSIM	Dxy	***	***	***	***	***	0.021*	***
SSIM	Dxz	***	***	***	***	***	***	***
SSIM	Dyy	***	***	***	***	***	***	***
SSIM	Dyz	***	***	***	***	***	***	***
SSIM	Dzz	***	***	***	***	***	***	***

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

Table 6: Paired t-test results for ablation study (Ours vs ablated variants), organized by **Metric** (LEM, MD-PSNR, FA-PSNR, RD-PSNR, Component PSNR). Legend: *** $p < 10^{-3}$, ** $p < 10^{-2}$, * $p < 0.05$, (n.s.) $p \geq 0.05$.

Stage	Metric / Component	No-Joint	No-Anatomy	Channel	No-Pretrain
	LEM	***	***	-	-
	MD-PSNR	***	**	-	-
	FA-PSNR	***	***	-	-
	RD-PSNR	***	***	-	-
Autoencoder reconstruction	Dxx	***	***	-	-
	Dxy	0.183 (n.s.)	***	-	-
	Dxz	0.003**	***	-	-
	Dyy	***	***	-	-
	Dyz	0.861 (n.s.)	***	-	-
	Dzz	***	***	-	-
Latent diffusion synthesis	LEM	***	-	***	***
	MD-PSNR	0.012*	-	***	***
	FA-PSNR	0.119 (n.s.)	-	***	***
	RD-PSNR	0.007**	-	***	***
	Dxx	0.003**	-	***	***
	Dxy	***	-	***	***
	Dxz	***	-	***	***
	Dyy	0.036*	-	***	***
	Dyz	0.144 (n.s.)	-	***	***
	Dzz	0.031*	-	***	***

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

Table 7: Inference runtime on a single NVIDIA A6000 (48GB). JET-Diff is slower than vanilla LDM due to coupled latent attention and tensor-aware refinement, yet remains substantially faster than score-based methods.

Model	Inference Time (s)
SuperDTI	10.93
LDM	23.58
JET-Diff (Ours)	122.96
Diff-DTI	593.22

1121

1122

1123

1124

1125

1126

1127

1128

1129

Table 8: Inference runtime on a single NVIDIA A6000 (48GB). JET-Diff is slower than vanilla LDM due to coupled latent attention and tensor-aware refinement, yet remains substantially faster than score-based methods.

Model	Inference Time (s)
SuperDTI	10.93
LDM	23.58
JET-Diff (Ours)	122.96
Diff-DTI	593.22