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ABSTRACT

Diffusion Tensor Imaging (DTI) is an advanced Magnetic resonance imaging
(MRI) technique for characterizing white matter microstructure. Conventional
DTI protocols require multiple diffusion-weighted imaging (DWI) acquisitions
across numerous directions, resulting in long scan times, motion artifacts, pa-
tient discomfort, and reduced clinical utility. Current deep learning approaches
frequently yield diffusion tensors that are anatomically inconsistent or physically
implausible. We introduce Joint-Encoding Tensor Diffusion (JET-Diff), a frame-
work that synthesizes the full six-component diffusion tensor in 3D. Specifically,
we propose a Multi-Tensor Latent Diffusion (MTLD) model that learns a shared
latent distribution between DWIs and DTIs, enforcing both anatomical fidelity
and physical plausibility. MTLD leverages a novel anatomical autoencoder to
disentangle structural information from tensor properties, yielding a compact and
expressive latent space optimized for generative performance. Experiments con-
ducted on the Human Connectome Project (HCP) dataset demonstrate that JET-
Diff significantly improves reconstruction accuracy and generates diffusion ten-
sors that support more reliable downstream tractography.

1 INTRODUCTION

Diffusion Tensor Imaging (DTI) is a Magnetic Resonance Imaging (MRI) technique that quantifies
anisotropic water diffusion, enabling non-invasive characterization of white matter microstructure
(Basser et al., [1994; [Le Bihan et al., 2001). It supports mapping of neural pathways and extraction
of clinically relevant biomarkers across neurological disorders (Behrens et al., 2007; |Andica et al.,
2020). However, its clinical adoption is constrained by long acquisition times (Le Bihan et al.,[2001).
High-quality tensor estimation often requires more than thirty Diffusion-Weighted Images (DWIs)
to adequately sample the diffusion signal (Mukherjee et al., 2008). This prolongs scans, which is a
source of patient discomfort and a strain on clinical resources, and increases susceptibility to motion
artifacts that degrade tensor accuracy (O’Donnell & Westin, [2011)). Developing methods that can
learn this prior to reconstruct reliable tensors from a substantially reduced number of DWIs could
streamline millions of routine scans performed annually, improving both efficiency and diagnostic
accuracy.

Reconstructing the six independent components of the diffusion tensor from a sparse set of DWIs
is a severely ill-posed inverse problem (Lenglet et al., 2009). Traditional fitting methods like least-
squares are mathematically underdetermined and fail to produce reliable results. While deep gen-
erative models have emerged as a promising data-driven solution (Tian et al.| 2020} L1 et al.| 2021}
Zhang et al.| 2024)), existing approaches suffer from critical limitations that compromise anatomical
fidelity and physical plausibility. Many models operate on a 2D, slice-by-slice basis, disregarding
volumetric continuity of neural structures and leading to anatomical inconsistencies in reconstructed
3D volumes. Others directly synthesize DTI-derived parameter maps, such as fractional anisotropy
(FA) or mean diffusivity (MD), but this bypasses reconstruction of the full diffusion tensor and fails
to enforce the physical constraints of diffusion imaging, since scalar maps are secondary quantities.
Most critically for latent-based models, autoencoders often produce entangled latent representations,
forcing a single information bottleneck to capture both fine-grained anatomical detail and complex
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tensor characteristics, which induces an inherent trade-off between compression efficiency and re-
construction fidelity (Higgins et al.,|2017; |Chen et al.).

To overcome these limitations, we propose Joint-Encoding Tensor Diffusion (JET-Diff), a novel
framework for high-fidelity, physically plausible DTI synthesis from sparse measurements. Our
core contribution is a Multi-Tensor Latent Diffusion (MTLD) strategy that models the input DWI
and output DTI components as a single, unified entity. By learning the joint distribution of a multi-
component latent tensor, JET-Diff captures the intrinsic physical and statistical relationships between
anatomy and microstructure, leading to a more robust and coherent synthesis.

Our framework is implemented as a carefully designed two-stage, fully 3D architecture. First, we
introduce an Anatomical Autoencoder based on the principle of information decoupling. By pro-
viding anatomical context directly to the decoder, the latent space is freed to exclusively encode
essential tensor characteristics, yielding a more efficient and expressive representation. Second, our
conditional MTLD model is trained within this high-fidelity latent space to generate the complete
tensor. By operating volumetrically and modeling the joint distribution from a disentangled la-
tent space, JET-Diff produces high-resolution, physically plausible DTI volumes that remain highly
consistent with the input anatomy, demonstrating substantial improvements over existing diffusion
tensor reconstruction methods.

2 RELATED WORK AND BACKGROUND

2.1 DIFFUSION TENSOR MODEL

Diffusion Tensor Imaging (DTI) is a foundational MRI technique that quantifies the anisotropic dif-
fusion of water molecules in biological tissues, particularly the brain’s white matter. The framework,
introduced by [Basser et al.| (1994), models the diffusion process in each voxel using a 3 X 3 sym-
metric positive semi-definite tensor, D. This tensor linearly relates the measured diffusion-weighted
signal to the applied diffusion-sensitizing gradients, as described by the Stejskal-Tanner equation
(Stejskal & Tanner, [1963):

S(g) = So exp(—bg" Dg)
This equation forms the physical basis for estimating the diffusion tensor from a series of diffusion-

weighted measurements. Further details on the equation’s parameters, tensor estimation, and derived
metrics are provided in the appendix A.

2.2 DTI RECONSTRUCTION FROM SPARSE ACQUISITIONS

The problem of reconstructing a diffusion tensor from an insufficient number of Diffusion-Weighted
Images (DWIs) is a classic, ill-posed inverse problem (Tuchl 2004). Early approaches relied on
linear or weighted linear least-squares fitting, which are computationally simple but highly unsta-
ble and sensitive to noise in low-signal regimes (Basser et al., [1994). Model-based approaches
leveraged compressed sensing theory to exploit sparsity priors, with |Knoll et al.| (2015)) introducing
reconstruction that applied Total Variation constraints to preserve spatial coherence.

The advent of deep learning revolutionized DTI reconstruction. SuperDTI (Li et al., [2021)) demon-
strated that convolutional neural networks could directly map from sparse DWIs to diffusion pa-
rameter maps, achieving remarkable reconstruction quality from as few as six gradient directions.
FlexDTI (Wu et al., 2024) advanced this by introducing dynamic convolution kernels to embed
gradient direction information, enabling reconstruction from flexible gradient schemes. However,
most existing methods suffer from fundamental limitations: slice-wise processing ignores anatom-
ical context, and direct synthesis of scalar maps independently can violate physical consistency, as
these metrics should derive from a single underlying tensor.

2.3  GENERATIVE DIFFUSION MODELS FOR MEDICAL IMAGING

Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., [2020)
have emerged as state-of-the-art generative models, with significant recent applications in medical
imaging. These models have proven effective for tasks such as accelerated MRI reconstruction
(Chung & Ye, |2022) and high-resolution 3D volume synthesis (Wang et al.| 2025)).



Under review as a conference paper at ICLR 2026

Pixel Space Latent Space Pixel Space Latent Space
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Figure 1: Overview of the JET-Diff framework. (a) A standard Latent Diffusion Model applies
the diffusion process to DTI latents {zY }, conditioned on DWT latents {zX} via concatenation. (b)
Our proposed JET-Diff performs joint modeling by applying the diffusion process to the combined
latents of both DWTs and DTIs, {zX,zY }.

Within the domain of diffusion MRI, recent efforts have applied generative frameworks to denoising
and reconstruction. Several self-supervised methods leverage diffusion models to restore signal
quality from noisy acquisitions (Xiang et al.; 'Wu et al.). More directly related to our task, Diff-DTI
(Zhang et al., |2024) was the first to employ a diffusion model for rapid DTT reconstruction from
sparse DWIs. Its approach conditions the generative process on sparse DWI features to synthesize
DTI-derived scalar maps like fractional anisotropy (FA) and mean diffusivity (MD). While Diff-DTI
achieves impressive results, its reliance on an explicit guidance mechanism to generate secondary
parameter maps bypasses the synthesis of the fundamental diffusion tensor. In contrast, our approach
learns the joint latent distribution of the input DWIs and the full six-component tensor, enabling the
direct synthesis of the tensor components from which physically-consistent parameter maps are then
calculated, all without the need for explicit guidance.

3 METHOD: JOINT-ENCODING TENSOR DIFFUSION (JET-DIFF)

This section details the Joint-Encoding Tensor Diffusion (JET-Diff) framework. We introduce a
variant of the Latent Diffusion Model (LDM) (Rombach et al.,[2022)) that learns the joint distribution
of sparse DWI inputs and their corresponding DTI fields, thereby promoting anatomical and physical
plausibility.

3.1 PROBLEM DEFINITION AND OVERVIEW

The primary objective is to reconstruct a complete diffusion tensor field from a minimal set
of Diffusion-Weighted Images (DWIs), which is a severely ill-posed inverse problem. More
specifically, the input X be the set of four DWI volumes, X = {X.}4_,, where each compo-
nent X, € RIXWXD congists of one non-diffusion-weighted image (b = 0) and three DWI
volumes. The desired output Y is the set of six diffusion tensor component volumes, Y =
{Y}8_,, where each component Y. € R¥*W>D represents one of the unique tensor elements

(DmanyvazzvDmnyrczaDyz)-

Our proposed framework, JET-Diff, addresses this challenge with a two-stage approach, illustrated
in Figure 1| The first stage involves an Anatomical Autoencoder, composed of a tensor property
encoder £, an anatomical conditioner C, and a DWI-aided decoder D. This stage learns a compact
latent representation of the tensor field, ensuring anatomical consistency by explicitly conditioning
the synthesis process on DWI features. The second stage employs a Multi-Tensor Latent Diffusion
Model (MTLD), a conditional diffusion model that generates the tensor within this latent space.
Its key characteristic is the modeling of the joint distribution of the input DWIs and output DTI
components.

3.2 ANATOMICAL AUTOENCODER FOR HIGH-FIDELITY LATENT REPRESENTATION

The foundation of our generative framework is an autoencoder that maps high-dimensional tensor
data into a compact latent space. The quality of this latent space is critical, as the performance
of the subsequent diffusion model is bounded by the autoencoder’s fidelity (Higgins et al., 2017}
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Figure 2: Anatomical Autoencoder architecture and training. (a) Phase 1: Independent Pre-
Training. The encoder (£) and conditioner (C) respectively extract DTI latent codes and DWI
anatomical features. The decoder (D) reconstructs the DTI (Y) by fusing these via cross-attention.
(b) Phase 2: Joint Refinement. With the main network frozen, a lightweight Joint Block is fine-
tuned to model inter-correlations among all six tensor components.

Chen et al.). Standard autoencoders are ill-suited for this task because they force a single bottleneck
to encode both the tensor’s physical properties and complex anatomical structure. This entangled
representation is inefficient and prone to loss of fine details. Our Anatomical Autoencoder, depicted
in Figure 2] addresses this limitation through a design centered on information decoupling.

3.2.1 DWI-AIDED DECODER FOR INFORMATION DECOUPLING

A key feature of our autoencoder is the principle of disentangling the latent representation of the
tensor’s properties (what) from its anatomical context (where). A conventional autoencoder must
compress both into its latent code, creating a significant bottleneck that can lead to anatomical
misalignment.

Our DWI-Aided Decoder, D, resolves this by decoupling these responsibilities. The encoder £
learns a highly efficient latent code z¥ representing only the tensor’s intrinsic properties. The
anatomical context is extracted by a conditioner C directly from the input DWI stack X as a fea-
ture pyramid $x = {(blx}lL:l. During decoding, the decoder fuses the compact latent code z¥ with
these anatomical features ®x at each resolution level. This fusion is achieved using cross attention
blocks that employ a multi-axis cross attention (Tu et al.| [2022) to maintain linear computational
complexity, a critical requirement for processing high resolution medical images. This design al-
lows the latent space to achieve a higher compression ratio while enabling the decoder to produce
a final output Y = D(zY, ®x) with superior fidelity. This high-quality autoencoder is the key to
enabling our high-performance latent diffusion model.

3.2.2 DECOUPLED JOINT REFINEMENT FOR TENSOR CONSISTENCY

While the DWI-aided decoder ensures high fidelity for individual tensor components, it does not
explicitly enforce the physical cross-correlations required for a valid tensor field. To address this,
we introduce a highly efficient decoupled joint refinement phase, illustrated in Figure Zb. After
the initial training, we freeze the weights of the conditioner C, the encoder £, and the majority of
the decoder D. We then insert a lightweight Joint MLP block, composed of two fully connected
layers, into the final layers of the decoder. This block operates concurrently on the feature maps
for all tensor components just before the final output convolution, allowing it to explicitly model
their inter-relationships. By fine-tuning only this joint block and the final convolution, we enforce
tensor-wide consistency with minimal computational overhead. The result is a single, coherent, and
physically plausible diffusion tensor.

3.3 MULTI-TENSOR LATENT DIFFUSION (MTLD)

Input DWIs and corresponding DTI components are coupled manifestations of the same diffusion
process. Building on this principle, we introduce the core generative component of our framework:
the Multi-Tensor Latent Diffusion (MTLD) model (Figure [3). Operating within the high-fidelity
latent space established earlier, the MTLD models their joint distribution by enabling direct inter-
action between the latent representations of all DWI and DTI components throughout the denoising
process.
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The MTLD operates on the set of latent tensors, {zX,zY }. This set is comprised of the individual
latent representations for each component volume in the input set X and the target set Y, which are
obtained using their respective frozen encoders. The forward diffusion process is applied indepen-
dently to each latent tensor, gradually adding Gaussian noise over 7" timesteps (Ho et al.|, [2020):

Zet = VQiZeo + V1 — qu€c, for each component c.

Here, z. . is the noisy version of the c-th latent tensor component, and &; denotes the predefined
noise schedule. Collectively, the set of all noisy DTI latent components at timestep ¢ is denoted as
{zzt}. The reverse process is learned by our proposed Joint-Encoding Tensor U-Net (JET U-Net),
€9, which is trained to predict and remove the noise from all components simultaneously.

3.3.1 TENSOR AND POSITIONAL CONDITIONING

To enable the JET U-Net €y to distinguish between
the different tensor components (B, D, etc.) and
leverage their spatial relationships, each input latent
is first augmented with explicit type and position in-
formation. As shown in Figure [3p, we employ a

DTI latent

DWI latent

E 2 I (R I |

Tensor Conditioning module for this purpose. This Joint-Encoding Tensor U-Net
module generates a conditioning representation by PP P rgf r* (\*
merging learnable tensor-specific embeddings and sy

(a) Multi-Tensor Latent Diffusion Model

Fourier positional embeddings (Tancik et al., 2020).
This combined representation is then concatenated
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(b) Architecture of Joint-Encoding Tensor U-Net

3.3.3 CONDITIONAL
FINE-TUNING FOR GUIDED SYNTHESIS

After pre-training, we fine-tune the model for its primary task of generating the DTI latents ({zY })
conditioned on the DWI latents ({zz(}). In this stage, the JET (Joint-Encoding Tensor) Attention
blocks are activated within the JET U-Net, €g. These blocks perform computationally efficient
multi-axis self-attention (Tu et al.l 2022)), enabling the network to capture non-local correlations
between DWI anatomy and DTI microstructure. The model receives the noisy latents {z. ,} and is
guided by the clean DWI latents {zX} through the JET attention mechanism.

The objective remains to predict the noise for all channels, but now with the added guidance from
the joint modeling:

Econd = ]Et,{zc,o},e Z Hec - EG,C({Zc,t}v ta {ZZ;(})H%

By explicitly modeling the interactions between all latent variables, our MTLD robustly learns to
generate DTI components that are not only statistically likely but also anatomically consistent with
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Figure 4: Qualitative comparison of DTI parameter maps (MD, RD, FA, and Color FA). For a rep-
resentative subject, JET-Diff generates reconstructions with superior anatomical fidelity and lower
error. Magnified insets (red box) and error maps (scaled for visibility) highlight the improved detail
relative to the ground truth (GT) and competing methods.

the conditioning DWI volumes. At inference, the generated DTT latents, {ZZ}, are passed to the
decoder D to synthesize the final tensor field Y.

4 EXPERIMENTS

4.1 SETUPS

4.1.1 DATA AND PREPROCESSING

All experiments are conducted on diffusion MRI data from the Human Connectome Project (HCP)
Young Adult dataset (Van Essen et al., 2013), utilizing DWI volumes acquired at a b-value of 1000
s/mm? and preprocessed with the standard HCP pipelines. Ground-truth diffusion tensors are com-
puted for each subject via a linear least-squares fit on the full set of 90 DWI directions. All DWI
volumes are resampled to 2mm isotropic resolution. The input to our model is a sparse 4-volume
stack: one non-diffusion-weighted (b=0) image and the three DWI volumes whose gradient vectors
are most closely aligned with the principal x, y, and z axes. The output is the complete 6-component
diffusion tensor field. The full dataset of 973 subjects is partitioned into training (681), validation
(97), and test (195) sets. Further details on data preparation are available in Appendix B.

4.1.2 IMPLEMENTATION DETAILS

All experiments were implemented in PyTorch (Paszke et al.l [2019) and conducted on a single
NVIDIA A6000 GPU. Training followed a four-stage pipeline designed to first establish a high-
fidelity latent space and then train the generative model within it. The first two stages focus on the
Anatomical Autoencoder: (1) independent pre-training of each tensor component and (2) a decou-
pled joint refinement to enforce inter-component correlations. The subsequent two stages train the
Multi-Tensor Latent Diffusion model: (3) unconditional pre-training to learn a prior over the latent
manifold and (4) conditional fine-tuning for guided synthesis from sparse DWI latents. Detailed
architectures, loss functions, and stage-specific objectives are provided in Appendix C.

4.1.3 COMPETING METHODS

We benchmark JET-Diff against five methods: analytic diagonal estimation (ADE), a non-learning
baseline that assumes a diagonal diffusion tensor by setting off-diagonal elements to zero, and four
deep learning baselines: CycleGAN (Zhu et al.,[2017), Pix2Pix (Isola et al.}, 2017, ResViT (Dalmaz
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Table 1: Quantitative comparison of DTI parameter map reconstruction. Mean NMSE, PSNR, and
SSIM across the test set. JET-Diff consistently outperforms other methods, particularly on FA and
Color FA metrics, which are crucial for white matter analysis.

MD RD FA Color FA
Model NMSE PSNR SSIM NMSE PSNR SSIM NMSE PSNR SSIM NMSE PSNR SSIM
ADE 0.086 26.15 0.969 0.096 27.45 0.970 0.295 17.23 0.787 0.828 21.43 0.681
CycleGAN 0.142 19.76 0.781 0.182 20.23 0.770 0.590 14.23 0.576 1.237 19.69 0.594
Pix2Pix 0.087 21.90 0.930 0.103 22.71 0.931 0.425 15.72 0.790 1.372 19.29 0.694
ResViT 0.101 21.26 0.885 0.119 22.08 0.888 0.643 13.89 0.701 1.832 18.03 0.622
LDM 0.109 20.90 0.836 0.132 21.64 0.842 0.322 16.86 0.689 0.710 22.10 0.707
JET-Diff 0.033 26.08 0.956 0.043 26.58 0.952 0.192 19.12 0.828 0.618 22.70 0.763

Table 2: Quantitative comparison of diffusion tensor components. Mean PSNR and SSIM for the
six independent tensor components (D;;) across the test set. JET-Diff achieves the most accurate
and balanced reconstruction across all components.

Dyy Dyy D.. Dmy Dy Dyz
Model PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
ADE 29.59 0.961 29.39 0.960 29.57 0.960 24.82 0.654 24.36 0.653 24.49 0.648

CycleGAN 25.14 0.798 24.88 0.797 25.11 0.800 21.92 0.588 21.24 0.584 21.76 0.598
Pix2Pix 2793 0934 2753 0933 27.72 0933 24.18 0.715 24.13 0.717 26.06 0.794
ResViT 26.85 0.895 26.68 0.897 26.77 0.895 23.17 0.657 23.06 0.666 2421 0.713
LDM 26.95 0.867 26.72 0.864 26.85 0.865 27.56 0.795 27.22 0.789 27.17 0.785
JET-Diff 31.04 0.953 30.85 0952 30.96 0.953 27.46 0.796 27.14 0.792 27.32 0.796

et al.,|2022)), and a vanilla conditional LDM (Rombach et al., 2022)). To ensure a fair comparison,
all learning-based baselines are implemented with 3D networks and trained volumetrically on the
same data splits and with identical input. Full descriptions are available in Appendix D.

4.2 MAIN RESULTS

4.2.1 QUALITATIVE RESULTS

Figure [ presents a qualitative comparison of the DTI parameter maps (MD, RD, FA, and Color
FA) generated by JET-Diff and competing methods for a representative subject. Each row includes
whole-slice views, magnified insets, and error maps relative to the ground truth. The classical ap-
proach (ADE) introduces substantial noise and structural distortions. CycleGAN fails to restore the
image entirely, while Pix2Pix and ResViT produce very noisy reconstructions with poor anatomi-
cal fidelity. The standard LDM suppresses noise more effectively but oversmooths fine structures,
erasing critical white matter details. In contrast, JET-Diff achieves reconstructions that closely re-
semble the ground truth, effectively suppressing noise while maintaining sharp, coherent anatomy.
The error maps confirm this fidelity, highlighting JET-Diff s ability to recover high-quality DTI pa-
rameters from undersampled data. Figure /| shows the six tensor components. Competing methods
exhibit noise and blurring, especially in the off-diagonal terms (D, D, D, ), which are critical
yet difficult to estimate. JET-Diff yields sharper and more coherent reconstructions across all tensor
elements, providing the basis for more reliable parameter maps.

4.2.2 QUANTITATIVE RESULTS

We quantitatively evaluated all methods using NMSE, PSNR, and SSIM (Wang et al., 2004), with
results summarized in Tables [T]and 2] JET-Diff achieves the strongest performance across derived
parameter maps, particularly for Fractional Anisotropy (FA) and Color FA, which are highly sensi-
tive to tensor orientation and microstructural detail.

The ADE baseline highlights important limitations of conventional metrics. It achieves deceptively
high PSNR and SSIM scores for MD, RD, and the diagonal tensor elements, but only because it
ignores the off-diagonal components. By fitting the smoother diagonal terms that dominate mean
intensity, ADE secures favorable scores yet produces a degenerate tensor solution. This failure is
reflected in its poor FA accuracy and inability to capture anisotropy, showing how conventional
metrics can mask fundamental errors. The vanilla LDM baseline illustrates a different limitation.
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Figure 5: Tractography comparison. (Top) 3D visualization of the right corticospinal tract (CST)
shows that tracts from JET-Diff tensors most closely match the ground truth. (Bottom) The mean
tract core distance (mm, log scale) across 12 major white matter bundles confirms that JET-Diff
yields the most geometrically accurate fiber tracking among competing methods.

It attains slightly higher PSNR on some off-diagonal elements than JET-Diff, but this reflects local
voxel-wise fits rather than tensor-level coherence. JET-Diff, in contrast, achieves high accuracy
on the dominant diagonal components while remaining competitive on the off-diagonals. Its joint-
encoding mechanism produces a balanced reconstruction across all tensor elements, yielding more
reliable parameter maps such as FA and Color FA that better reflect the underlying white matter
structure.

4.2.3 TRACTOGRAPHY COMPARISONS

To evaluate the practical utility of the reconstructed tensors, we performed whole-brain probabilistic
tractography (Garyfallidis et all 2014} [Girard et al., 2014). This task provides a stringent valida-
tion, as it depends on the coherence of all six tensor components and is highly sensitive to errors
in their orientation fields. Figure [5] shows that fiber bundles generated from JET-Diff closely fol-
low the ground truth, outperforming all competing methods both qualitatively and quantitatively.
Quantitatively, JET-Diff achieves the lowest tract core distance across major white matter bundles,
confirming its ability to produce tensors that reliably guide fiber tracking. Notably, while vanilla
LDM achieves slightly higher PSNR on certain off-diagonal components, it performs worse in trac-
tography, highlighting the limitation of voxel-wise metrics. ADE fails completely in this task despite
favorable scores on simpler metrics, underscoring the need to assess DTI reconstruction with down-
stream analyses that reflect functional anatomical utility.

4.3 ABLATION STUDIES

To validate our key architectural design choices, we conducted ablation studies focused on the
foundational components of our framework: the autoencoder design and the diffusion model’s pre-
training strategy.

4.3.1 CONTRIBUTION OF THE DWI-AIDED DECODER

To evaluate the contribution of conditioning on DWI features, we compared our Anatomical Au-
toencoder against a Standard Autoencoder baseline that reconstructs tensor components solely from
the latent code. As shown in Table[3] the baseline performs markedly worse across all metrics and
parameter maps. This confirms that forcing the latent code to represent both anatomical structure
and diffusion content leads to representational entanglement and weak reconstructions. In contrast,
by decoupling anatomy from the latent space and injecting multi-scale DWI features through the
decoder, our architecture learns a more expressive and efficient representation, yielding consistently
superior reconstructions.

4.3.2 IMPACT OF THE JOINT DECODER FOR TENSOR CONSISTENCY

We investigated the role of our decoupled refinement phase by comparing the full Anatomical Au-
toencoder to an ablated version without this step. As shown in Table[3] the differences in map-level
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Table 3: Ablation study of the autoencoder architecture. Performance on key DTI parameter maps
for the full Anatomical Autoencoder, the model without joint refinement, and a standard autoencoder
baseline that is not conditioned on DWI volumes.

MD RD FA Color FA

Model NMSE PSNR SSIM NMSE PSNR SSIM NMSE PSNR SSIM NMSE PSNR SSIM

Anatomical Autoencoder
(Ours)

Anatomical Autoencoder
(w/o Joint Refinement)
Standard Autoencoder
(Baseline)

0.0067 33.09 0.988 0.0079 33.89 0989 0.0931 22.27 0904 0.3797 24.82 0.860
0.0069 3296 0.988 0.0081 33.77 0.989 0.0939 2223 0.903 0.3826 24.79 0.859

0.0260 27.11 0950 0.0316 27.83 0955 0.2005 18.93 0.792 0.5595 23.14 0.780

metrics are modest, but our full model achieves a slight and consistent improvement across all pa-
rameters. This aligns with the design of the refinement block: its purpose is not to markedly boost
voxel-wise accuracy, but to model the cross-channel correlations that stabilize the tensor as a whole.
Enforcing these correlations reduces the frequency of invalid tensors and ensures a more coherent
tensor field, benefits that are most evident in downstream applications such as tractography.

4.3.3 IMPACT OF UNCONDITIONAL LATENT DIFFUSION PRE-TRAINING

} JET-Diff .
JET-Diff (w/o pretrain)

Our MTLD framework begins with
an unconditional pre-training stage
to initialize the network on the joint
DTI-DWI manifold before condi-
tional fine-tuning. To assess its im-
pact, we trained an ablated model en-
tirely from scratch, skipping this ini-
tialization. As shown in Figure[6] the Figure 6: Ablation study on unconditional pre-training.
absence of pre-training leads to nois-  Comparison of the full JET-Diff model against a version
ier and less coherent reconstructions.  trained without the pre-training stage. The absence of pre-
The magnified insets reveal disrupted  training results in noisier Color FA maps and less coherent

and less smooth V1 orientation fields, principal eigenvector (V1) fields, as highlighted in the mag-
indicating weaker anatomical consis- pified insets.

tency. These results confirm that pre-
training equips the model with a stable latent representation, providing a critical foundation for the
conditional stage and yielding higher-fidelity tensor reconstructions.

5 CONCLUSION

In this work, we introduced JET-Diff, a latent diffusion framework for reconstructing high-quality
diffusion tensors from critically undersampled DWI data. JET-Diff addresses key limitations of
existing methods by improving anatomical coherence across volumes and capturing the correlations
required for a valid tensor field. The core contribution is the Multi-Tensor Latent Diffusion (MTLD)
strategy, which models the joint distribution of DWI and DTI latents within a unified generative
process. This capability is enabled by the DWI-aided Anatomical Autoencoder, which separates
anatomical context from tensor properties to form an efficient latent space. Extensive evaluations
spanning tensor components, derived DTI parameters, and downstream tractography demonstrate
that JET-Diff consistently improves reconstruction fidelity over competing approaches.

REPRODUCIBILITY STATEMENT
Our proposed method is fully reproducible. For methodology and implementation details, readers

are referred to our source code, which is available in the Supplementary Material.
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A DIFFUSION TENSOR MODEL DETAILS

A.1 THE STEJSKAL-TANNER EQUATION EXPLAINED

The Stejskal-Tanner equation provides the foundational model for DTI (Stejskal & Tanner; |1965).
The terms are defined as follows:

* Sp: The signal intensity measured in a non-diffusion-weighted acquisition (a By image),
where the diffusion-sensitizing gradients are turned off.

* S(g): The signal intensity measured when a diffusion-sensitizing magnetic field gradient
is applied along the direction of the unit vector g.

* b-value: A scalar value that encapsulates the strength and duration of the diffusion gradi-
ents. A higher b-value results in greater signal attenuation for diffusing water molecules.

A.2 TENSOR ESTIMATION AND CLINICAL CONTEXT

To solve for the six unknown components of the symmetric tensor D, the Stejskal-Tanner equation
must be sampled with at least six non-collinear gradient directions (g). In clinical and research
practice, many more directions (often 30 to 90 or more) are acquired to improve the accuracy and
robustness of the tensor fit, especially in noisy data (Jones et al., 2013). This requirement leads to
the primary clinical challenge of DTI: long acquisition times, which increase patient discomfort and
sensitivity to motion artifacts.

A.3 TENSOR-DERIVED METRICS

The diffusion tensor D is rarely interpreted directly. Instead, it is diagonalized to yield three eigen-
values (A1, A2, A\3) and their corresponding eigenvectors. These represent the magnitude of diffusion
in three orthogonal directions and the orientation of those directions, respectively. From these, cru-
cial microstructural metrics are calculated (Basser et al., [1994):

* Mean Diffusivity (MD): The average of the eigenvalues, M D = (A1 + A2 + A3)/3. It
measures the overall magnitude of water diffusion in a voxel.

* Fractional Anisotropy (FA): A normalized measure of the variance of the eigenvalues, in-
dicating the degree to which diffusion is directional. An FA of 0 implies isotropic diffusion,
while an FA close to 1 implies diffusion is restricted to a single direction.

These metrics are essential for the quantitative analysis of white matter integrity.

12
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B IMAGE PROCESSING DETAILS

Ground-Truth Tensor Generation: The ground-truth DTI metrics for each subject were derived
from the complete diffusion dataset, which included 18 b=0 volumes and 90 DWI volumes at b=1000
s/mm?. Diffusion tensor fitting was performed using an ordinary linear least-squares method via the
dtifit function in FSL (Jenkinson et al.,|2012), incorporating the provided gradient nonlinearity
correction files. This process yielded the full diffusion tensor, from which all ground-truth metrics,
including fractional anisotropy (FA) and mean diffusivity (MD), were calculated.

Undersampled Input Selection: The 4-volume sparse input for our model was created by selecting
a specific subset of DWIs. For the b=1000 s/mm? shell, we identified the three diffusion gradient
vectors most closely aligned with the standard Cartesian axes ([1, 0, 0], [0, 1, 0], and [0, O, 1]) by
minimizing the Euclidean distance. The corresponding DWI volumes were extracted, and a single
b=0 s/mm? volume was prepended to form the final 4-volume input stack, B.

C JET-DIFF: IMPLEMENTATION DETAILS

Our proposed method, JET-Diff, is trained in a four-stage process designed to sequentially build the
model’s capabilities. The first two stages establish the high-fidelity latent space via the Anatomical
Autoencoder, while the final two stages train the Multi-Tensor Latent Diffusion model to operate
within that space. We use the Adam optimizer (Kingma & Bal 2014) for the autoencoder stages and
AdamW (Loshchilov & Hutter, 2017) for the diffusion model stages.

Stage 1: Anatomical Autoencoder Pre-training. We first train our autoencoder to learn a high-
fidelity latent representation for each of the six tensor components independently. The encoder
compresses each component into a latent space with 6 embedding dimensions and a codebook of
1024 entries. The architecture uses a base of 64 channels, channel multipliers of (1, 2, 4), and
contains two residual blocks per resolution level. This stage is trained using the Adam optimizer
with a learning rate of 1.0 x 1075 and an effective batch size of 8. The objective function consists
of a pixel-wise reconstruction loss and a vector-quantization commitment loss (Van Den Oord et al.,
2017).

Stage 2: Decoupled Joint Refinement. After pre-training, we freeze the autoencoder weights and
fine-tune a new joint decoder to enforce consistency across all six tensor components. All weights
are frozen except for a new joint fusion block and the final output convolution layers of the decoder.
Optimization uses the Adam optimizer with a learning rate of 1.0 x 10~* and an effective batch size
of 16. The training objective is a pixel-wise reconstruction loss combined with an adversarial loss
to ensure the physical plausibility of the full tensor field.

Stage 3: Unconditional Latent Diffusion Pre-training. To provide a strong initialization for the
generative model, we first pre-train the JET U-Net to model the joint distribution of the entire 10-
channel latent space (z = [Zp, Zensor]) in an unconditional setting. The U-Net backbone has 256
base channels, channel multipliers of (1, 2, 4), two residual blocks per scale, and self-attention at
multiple resolutions. The diffusion process uses a linear beta schedule (Ho et al., |2020) over 1000
steps. In this phase, the model is trained to denoise all 10 channels simultaneously, learning a robust
prior over the latent manifold. The model is trained with the AdamW optimizer with a learning rate
of 1.0 x 10~ and a batch size of 8.

Stage 4: Conditional Latent Diffusion Fine-tuning. The model is then fine-tuned for the primary
conditional synthesis task, initialized from the checkpoint of the unconditional pre-training phase.
The forward diffusion process continues to apply Gaussian noise to the entire 10-channel latent
tensor. The JET U-Net is now conditioned on the clean DWI latents (z ), which are concatenated
to the noisy latent tensor (z;) as input. The model is trained to predict the noise for all 10 channels,
guided by the clean DWI condition. This stage is trained using the AdamW optimizer with a learning
rate of 1.0 x 1076 and an effective batch size of 8.
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D COMPETING METHODS: IMPLEMENTATION DETAILS

Unless otherwise noted, all learnable baselines are implemented as 3D networks and trained on full
3D volumes. All methods use the same data splits, input/output formats, and evaluation protocols
for a fair comparison.

ADE (Analytic Diagonal Estimation): A non-learning baseline that assumes a diagonal
diffusion tensor by setting off-diagonal elements to zero. The diagonal components (D,
Dy, D) are computed from the log-linearized Stejskal-Tanner equation. Specifically, the
Apparent Diffusion Coefficient (ADC) derived from each of the three DWIs is assigned to
the diagonal element corresponding to the most aligned canonical axis. The final tensor is
projected onto the Symmetric Positive Definite (SPD) manifold to ensure physically valid,

non-negative eigenvalues.

CycleGAN (Zhu et al., 2017): The architecture consists of two 3D U-Net (Ronneberger
et al., [2015) generators and two 3D PatchGAN discriminators, trained with an adversarial
loss and an L1 cycle-consistency loss (A = 10).

Pix2Pix (Isola et al., 2017): The generator is a 3D U-Net, and the discriminator is a 3D
PatchGAN. The training objective is a sum of a vanilla GAN loss and an L1 reconstruction
loss (Ap1 = 100).

ResViT (Dalmaz et al.,2022): A hybrid architecture combining a 3D ResNet-style back-
bone with interleaved Vision Transformer blocks, trained with a composite L1 and adver-
sarial loss.

Latent Diffusion (vanilla conditional LDM) (Rombach et al., 2022): We reuse our
frozen Anatomical Autoencoder. The diffusion U-Net is conditioned on the latents of DWI
volumes via channel-wise concatenation. Unlike our proposed JET-Diff, this baseline ap-
plies a selective denoising strategy, where noise is applied only to the tensor latents, not the
full multi-tensor latent.

E USE OF AI TOOLS IN MANUSCRIPT PREPARATION

The authors utilized Google’s Gemini Pro to improve the grammar and readability of this
manuscript. All content generated by this tool was critically reviewed, fact-checked, and substan-
tially revised by the authors to ensure accuracy and originality. The final responsibility for the
content of this paper rests solely with the authors.
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Figure 7: Qualitative comparison of diffusion tensor components. Visualization of the six individ-
ual tensor components for the same subject shown in Figure 4} JET-Diff provides a more faithful
reconstruction across all components, with significantly reduced noise and artifacts, particularly in
the off-diagonal elements (Dyy, Dy, Dy.).
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