OSCAR: ONLINE SOFT COMPRESSION FOR RAG

Anonymous authors

Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating external knowledge, leading to improved accuracy and relevance. However, scaling RAG pipelines remains computationally expensive as context length grows. To address this, hard compression methods prune the retrieved text on-the-fly, achieving only modest compression ratios, whereas soft compression methods rely on costly offline LLM-based compression to obtain higher rates. In this paper, we introduce OSCAR, a novel query-dependent online soft compression method for RAG. OSCAR bridges the gap between online hard and offline soft compression methods, bringing the best of both: OSCAR dynamically compresses retrieved documents into a representation optimized for the query at hand, leading to efficient and accurate downstream answer generation. Our experiments demonstrate state-of-the-art performance with a 2–5× speed-up in inference and minimal, if any, accuracy loss, for LLMs ranging from 1B to 24B parameters.

1 Introduction

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020; Guu et al., 2020; Borgeaud et al., 2022) has become pivotal for solving a wide range of natural language processing challenges. RAG enhances Large Language Models (LLMs) by leveraging retrieved documents from curated datasets, enabling more accurate, well-grounded, and up-to-date responses. However, one major issue when scaling up RAG pipelines is the high computational cost.

To improve efficiency, a natural idea consists in replacing the retrieved documents with a more compact representation. A straightforward option is to perform *hard* compression on the text itself to form a summarized or pruned version as in Xu et al. (2023); Kenton & Toutanova (2019); Wang et al. (2023). These methods are LLM-agnostic and robust, but their compression rates are modest ($\simeq \times 2$), limiting overall efficiency gains. Most hard compression methods operate in an online, query-aware fashion, dy-

Figure 1: OSCAR models enable faster end-toend inference with retrieval as well as improved accuracy compared to hard compression methods.

namically compressing the documents to maximize utility for the task.

Another option is *soft* compression which maps retrieved texts to a continuous embedding space. Typically, texts are mapped to a K/V cache (Qin et al., 2024) or to an embedding which can be fed into the transformer by bypassing its embedding layer (Chevalier et al., 2023; Ge et al., 2023; Hofstätter et al., 2023; Louis et al., 2025; Rau et al., 2024b). These approaches achieve higher compression ($\simeq \times 16$), but at the cost of substantial performance degradation, and they fall short of empirical and theoretical efficiency bounds (Kuratov et al.,

2025). In fact, we note that none of the existing soft compression methods use the query at compression time: all of them rely on heavy, LLM-sized forward passes performed offline, as doing it online would not lead to overall efficiency improvements.

Both hard and soft compression thus have complementary strengths: hard methods are online and query-aware but limited in compression rate, while soft methods promise higher rates but suffer from quality loss are not usable online. Ideally, one would combine the advantages of both—high compression with query-dependent online operation. However, designing a fast enough compression operator remains an open challenge: existing methods either sacrifice efficiency, accuracy or fail to scale to dynamic RAG scenarios. Developing an efficient online compression strategy would also facilitate dynamic RAG scenarios in which retrieved content originates from the open web or from large-scale corpora in a plug-and-play manner.

In this paper, we show how to build an efficient compression model to obtain large efficiency improvements in RAG pipelines. The obtained OSCAR models—for Online Soft Compression for RAG—are the first soft-compression query-dependent methods for RAG. We obtain 2-5x faster end-to-end inference on a variety of LLMs ranging from 1B to 24B parameters¹. Crucially, the obtained models suffer from little to no accuracy loss on a variety of in-domain and out-of-domain RAG benchmarks. Lastly, we notice, as discussed by Chirkova et al. (2025), that the compression operation can be exploited to simultaneously re-rank the initial pool of retrieved documents. Since re-ranking is an integral part of efficient RAG pipelines (Rau et al., 2024a), this enables us to obtain the compression representation of the documents for free.

2 RELATED WORKS

Long context optimizations for RAG RAG scaling problems relate to the long-context (in)abilities of LLMs which is an active area of research. K/V caching techniques enable faster long context handling by diminishing the number of operations in self-attention (Devoto et al., 2024; Kwon et al., 2023; Li et al., 2024). FINCH (Corallo & Papotti, 2024) is more specifically designed for RAG: the retrieved content is chunked and only a small portion of the keys and values is kept in cache for each chunk for the subsequent attention computations – but compression rates remain limited. TurboRAG and block-attention RAG (Sun et al., 2024; Lu et al., 2024) propose to modify the attention causal mask to compute attention independently on each retrieved documents, while the query still attends to each previous token in the context.

Hard compression methods aim at shortening the retrieved documents by summarization or pruning. Most of them have limited compression rates due to the nature of text but are agnostic to the LLM used for generation. Provence (Chirkova et al., 2025) proposes to fine-tune a DeBERTa (He et al., 2021) model to prune retrieved contexts. It is fast, prunes the context in a query-dependent fashion and allows the simultaneous reranking of the retrieved documents—making pruning essentially free in a standard RAG pipeline. Extractive RECOMP (Xu et al., 2023) prunes contexts based on sentences embeddings. Abstractive RECOMP summarizes input contexts using an autoregressive LLM: the efficiency improvement is less clear than Provence since generating the summary is an expensive operation. Other methods include FILCO (Wang et al., 2023) or COMPACT (Yoon et al., 2024), which also generate pruned contexts autoregressively.

Soft compression methods aim at compressing retrieved documents into vector representations, often to be used as input embeddings or K/V cache to the LLM used for generation. These methods generally achieve higher compression rates but require a training specific to the LLM used for generation. xRAG (Cheng et al., 2024) proposes to use retrieval embeddings as precomputed compressed representations, and trains an adapter MLP to map these embeddings into inputs for the LLM – performances remain however limited. COCOM (Rau et al., 2024b), building on (Chevalier et al., 2023; Ge et al., 2023), proposes an end-to-end training

¹Open-source models will be released upon publication.

Figure 2: OSCAR overview.

pipeline where both the compression LLM and the generation LLM are fine-tuned using a large QA dataset. PISCO (Louis et al., 2025) is an extension of COCOM trained by sentence-level distillation from a teacher LLM: it allows to compress contexts by a factor of 16× with very limited performance drops. All these approaches process documents independently from the query – attempting to compress all the information of the retrieved documents into the (compressed) vector representation. FiD-light (Hofstätter et al., 2023) proposes a form of query-dependent soft compression by using an encoder-decoder LLM, where the encoder is fed in parallel with the input query and each retrieved document. FiD-light decoder then takes only the first 50 hidden states for each document and thus has a very limited compression rate.

None of these methods can be used online and reach large compression rates. In fact, soft compression is merely succeeding with large compressors, and thus is really challenging with low-latency. OSCAR addresses this issue by using appropriate compressor backbone and training, as well as by computing query-dependent embeddings, which favor the task at hand.

3 METHOD

Figure 2 provides an overview of OSCAR. At inference, after retrieval, a *compressor* LLM maps each document-query pair to a few embedding tokens and a *generator* LLM generates an answer to the query based on the and a RAG prompt. Provided the compression rate is high and the compression operation efficient, there can be efficiency gains compared to the no-compression RAG pipeline. We now give details about every component of OSCAR as well as the training procedure.

Compression The compression procedure is shown within Figure 2 (right). Contrary to Ge et al. (2023); Rau et al. (2024b); Louis et al. (2025), the document compression operation is conditioned on the query. In details, the query q, the i-th retrieved document d_i , a set of learnable memory tokens [MEM j] $_{j=1...l}$ are fed forward to a compressor LLM $\mathcal C$. We collect the last layer hidden states corresponding to each of these tokens to form the query-dependent embedding representations $(c_i^1,\ldots,c_i^l):=\mathbf{c}_i=\mathcal C(q,d_i)$ of the document. [MEM j] $_j$ tokens play a similar role as the [CLS] BERT token: it is a task-specific token prompting the storage within the corresponding hidden states.

Generation The embedding representations c of each document, as well as the query q, are fed within a RAG prompt (given in Figure 11) to a *generator* LLM which generates the answer. Since each document is replaced by l embeddings, generation is much faster compared to the original text.

Compressor architecture All prior work on compression for RAG (Louis et al., 2025; Cheng et al., 2024; Rau et al., 2024b) use a compressor architecture identical to the generator LLM. In this setup, the hidden state representations of the compressor are easily adapted to the generator hidden space, making the whole pipeline easier to learn and deploy. But running the compression at inference time would negate any subsequent generation time gains, making these methods inherently offline. OSCAR however is intended to operate in an online fashion with no possibility to pre-compute document compressions. Therefore, the compression needs to be fast. To do so, we propose two different architectures for the compressor backbone:

- *OSCAR-N-Layers*: we construct headless transformers using the first *N* layers of the pretrained backbone (same architecture as the generator). As shown in §4.1, OSCAR-*N*-Layers models require no pre-training to align hidden representations with the generator LLM. Efficiency is controlled by the choice of *N*. We typically set *N* to 1/4-1/3 the total number of layers.
- *OSCAR-llama*: we use a smaller LLM, primarily llama-1B², as our compressor. We apply two dense layers with ReLU non-linearity to the compressor last layer hidden space to align with the generator embedding space. Learning this mapping, which a crucial contribution of OSCAR, requires some pretraining (see Appendix Table 8) on top of the QA fine-tuning. Thus, following Rau et al. (2024b), we pretrain the compressor/generator LLM on auto-encoding and text-continuation tasks. Pretraining details are provided in Appendix H.

Training objective The end-to-end OSCAR RAG pipeline should produce results as close as possible to its no-compression version. Therefore, we use a sequence-level distillation objective as in Louis et al. (2025): given a training set of questions and a collection of documents, we perform the retrieval stage and generate teacher labels from the standard no-compression RAG pipeline. These labels are then used as supervised-fine-tuning targets for the end-to-end OSCAR pipeline, as shown on Figure 2 (right). Overall, denoting a_1, \ldots, a_r the answer generated by the teacher LLM from the documents and query, then the training objective on the compressor $\mathcal C$ and generator $\mathcal G$ is:

$$\mathcal{L}(\mathcal{C}, \mathcal{G}) = -\sum_{i=1}^{r} \log \mathcal{G}(a_i \mid q, \mathbf{c_1}, \dots, \mathbf{c_k}, \mathbf{a_{< i}}), \text{ where } \mathbf{c_i} = (c_i^s)_{s=1,\dots,l} = \mathcal{C}(q, d_i), i = 1, \dots, k$$
 (1)

where *k* denotes the total number of documents used for generation. The loss is back-propagated both through the generator LLM and the compressor LLM at each step. Overall, OSCAR training does not require any ground truth labels. Initial experiments with the teacher choice and use of distillation objective gives identical conclusions to Louis et al. (2025): distillation is paramount and Mistral-7B labels offer good supervision. For simplicity, we use Mistral-7B as the teacher for all OSCAR models, whichever backbone they are based on. In practice, we save the retrieval results as well as teacher generations once on the training set so that OSCAR training is a simple supervised-fine-tuning between questions—augmented with document embeddings within the RAG prompt— and teacher answers. The subsequent OSCAR model training is fast: between 1 and 5 gpu-days for 1B-24B generator backbones.

Simultaneous reranking Building on insights from Chirkova et al. (2025), query-dependent online context compression closely resembles document reranking. Rerankers, such as cross-encoders (Nogueira & Cho, 2019), refine the ranking from the initial retrieval step. Unlike retrieval models, which encode queries and documents independently, rerankers contextualize documents with respect to queries, yielding more

²meta-llama/Llama-3.2-1B-Instruct

informative representations. Since rerankers are already part of strong RAG pipelines Rau et al. (2024a), using a single forward-pass for both compression and reranking makes compression essentially free—so long as compression is no more expensive than typical rerankers.

We therefore add a reranking token [RR] to the compressor LLM prompt (Figure 2, right) and an additional dense layer which maps this token's hidden state to a predicted relevance score r_i . We train this added layer with a point-wise distillation objective from a reference reranker: we add $\lambda \sum_{i=1}^k (r_i - r_i')^2$ to equation 1, where λ balances generation and reranking and r_i' are scores from a reference reranker. While many training strategies exist (Hofstätter et al., 2021; Formal et al., 2022; Lin et al., 2021; Schlatt et al., 2024), simple point-wise distillation proved effective for OSCAR models.

4 EXPERIMENTS

Data Our training dataset comprises questions from Louis et al. (2025) along with 500k queries extracted from MS MARCO (Nguyen et al., 2016), resulting in a total of 893k queries³. The document collection used for training is Wikipedia-KILT (Petroni et al., 2020), preprocessed into chunks of 128 tokens. Such chunking is typical in RAG pipelines (Rau et al., 2024a) and not a limitation as increasing the number of retrieved chunks still enables to extract long sequences of informative content. For each query, we retrieve the top-k chunks using SPLADE-v3 (Formal et al., 2021; Lassance et al., 2024) and subsequently rerank them with a DeBERTa-v3 (He et al., 2021)-based reranker (a robust RAG setting as shown by Rau et al. (2024a)). We employ sentence-level distillation from Mistral-7B⁴, as recommended by Louis et al. (2025).

Training details During training, the number k of retrieved documents is set to 5. We empirically found that this value provides sufficient context for models to generalize to a larger number of documents at inference time while keeping training costs low. Each document is then compressed into l embedding vectors, where l is fixed for each OSCAR model. Specifically, OSCAR models with a compression rate of 16 use 8 memory embeddings per document – given 128-sized input documents. All generators LLMs are trained with LoRA Hu et al. (2021) adapters. For OSCAR-N-Layers models, we experiment with N=5,8,10. OSCAR-llama relies on Llama-3.2-1B et al. (2024). All compressors are trained with full-fine tuning – which was consistently more effective than LoRA adapters. For joint training (§4.3), early experiments suggested that $\lambda=0.05$ usually offers the best compromise (in terms of compression quality and reranking effectiveness) on the validation set – and we use this default value for all further corresponding experiments. Additional hyper-parameters are given in Appendix G.

Baselines and Backbones We compare OSCAR to Provence and Recomp models Chirkova et al. (2025); Xu et al. (2023) as they are the state-of-the-art hard compression models for RAG. We also run evaluations of PISCO models, a state-of-the-art offline soft compression model. Finally we provide a no-retrieval baseline as well as the performances of the no-compression RAG pipelines. Unlike most hard compression methods, OSCAR models are backbone-specific and need to be retrained for every different generation LLM. To show how stable OSCAR training is, we produce models for Mistral-7B-Instruct, Qwen2-7B-Instruct, Mistral-24B⁵ and Llama-1B. We keep identical parameters/data/configurations for all backbones. Training times range between 1 to 4 GPU-days from 1B to 24B backbones.

For most of the experiments, we train OSCAR models without reranking ability. In §4.1, we provide evaluation metrics for OSCAR when compared to competitive approaches. In §4.2 we run ablations to identify the critical components of OSCAR. In §4.3, we show results of OSCAR models with reranking ability.

³We will release the queries as well as the distillation labels upon publication

⁴huggingface/mistralai/Mistral-7B-Instruct-v0.2

⁵mistralai/Mistral-Small-24B-Instruct-2501

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

Backbone	C	Accuracy							Tera-Floating point operations			
Dackbolle	Compressor	ASQA	HotpotQA	NQ	TriviaQA	POPQA	BIOASQ	Average	Inference	Compression	Total	
	No RAG	0.51	0.34	0.46	0.79	0.29	0.40	0.47	-	-	-	
	No compression	0.75	0.51	0.68	0.92	0.70	0.51	0.68	20.33	0.	20.33	
	RECOMP	0.73	0.49	0.67	0.92	0.67	0.53	0.67	7.29	0.84	8.13 (2.5×)	
Mistral-7B	Provence	0.76	0.49	0.69	0.92	0.69	0.54	0.68	7.63	1.80	9.43 (2.2×)	
	PISCO	0.71	0.48	0.65	0.90	0.64	0.49	0.65	3.49	offline	$3.49 (5.8 \times)^a$	
	OSCAR-llama	0.74	0.53	0.68	0.92	0.68	0.52	0.68	3.49	2.66	6.15 (3.3×)	
	OSCAR-5-Layers	0.73	0.50	0.66	0.91	0.66	0.50	0.66	3.49	3.04	6.53 (3.1×)	
	OSCAR-8-Layers	0.74	0.53	0.67	0.92	0.68	0.52	0.68	3.49	4.87	8.36 (2.4 ×)	
Llama-1B	No compression	0.61	0.35	0.54	0.82	0.59	0.40	0.55	2.85	0.	2.85	
Liailia-1D	OSCAR-5-Layers ^b	0.64	0.43	0.59	0.86	0.59	0.46	0.60	0.50	0.88	1.38 (2.1 ×)	
	No compression	0.70	0.51	0.64	0.90	0.64	0.53	0.65	18.94	0.	18.94	
Qwen-7B	OSCAR-8-Layers	0.72	0.50	0.64	0.91	0.67	0.51	0.66	3.17	5.07	8.25 (2.3×)	
	OSCAR-llama	0.72	0.51	0.66	0.91	0.68	0.52	0.67	3.17	2.65	5.83 (3.2 ×)	
Mistral-24B	No compression	0.74	0.54	0.68	0.92	0.70	0.53	0.68	64.29	0.	64.29	
wiistral-24D	OSCAR–llama	0.75	0.54	0.70	0.93	0.70	0.53	0.69	10.72	2.65	13.37 (4.8 ×)	

Table 1: Accuracy and efficiency for OSCAR models and baselines based on various backbones. OSCAR models are more effective and as accurate than their backbones with no compression. OSCAR models are also more efficient than the two hard compression baselines Provence and Recomp.

Evaluation After training, we evaluate all models on multiple datasets: Natural Questions Kwiatkowski et al. (2019), TriviaQA Joshi et al. (2017), HotpotQA Yang et al. (2018), ASQA Stelmakh et al. (2022), PopQA Mallen et al. (2022), and BIOASQ-12B Krithara et al. (2023). For each query, we retrieve documents from either KILT or PUBMED – a collection unseen during training. We measure three different evaluation metrics to ascertain the quality of OSCAR models:

- (i) **accuracy**: for some question, accuracy is 1 if the (normalized) label is included in the (normalized) generated answer, where normalization is described in Appendix I.
- (ii) LLM evaluation: we prompt an LLM to determine whether the predicted answer corresponds to the ground truth answer. This evaluation metric is robust to semantically-equivalent reformulation of the answer and better correlated to human judgements Kamalloo et al. (2023). Details in Appendix E
- (iii) pairwise-comparison using gpt-4o: given generated answers from two models, we prompt gpt-4o to determine which answer is best, or if they are equivalent. Pairwise evaluation is a good complement to pointwise Zheng et al. (2023). Details in Appendix F.

Altogether, these metrics enable thorough evaluation and comparisons. OSCAR models have seen 5 retrieved documents per query at training time, but we evaluate them – and all other models – in a setting with 10 documents to verify generalization to larger contexts.

Computational efficiency To evaluate computational efficiency, we sum the number of floating-point operations required for compression and for answer generation. For consistency, we perform this calculation on a standardized input query of 128 tokens, concatenated with 10 documents of 128 tokens each or their compressed embeddings. Measurements are obtained using torch profiler. Further details, including computation times and peak memory usage, are provided in Appendix D.

^aPISCO is intended to be used offline and given for comparison.

^bWe do not train an OSCAR-llama with llama-3.2-1B backbone as it would not increase global efficiency.

Figure 4: LLM evaluation scores of each Mistral-7B-backboned models, in relation with the total number of floating point operations required at inference. OSCAR models are faster and more effective on most datasets. OSCAR-llama in particular offers the best alternative. For PISCO, we include in the FLOPs the compression cost, as if it was used online.

4.1 Main results

 Table 1 shows the accuracy results for all backbones, as well as efficiency measures. First, the no-RAG baseline has very low performance, indicating that these datasets are appropriate for RAG evaluations: the models cannot rely on memorization. Second, OSCAR models are faster than hard compression baselines while preserving the accuracy of the no-compression models. Using OSCAR models in-place of the underlying backbones enables a 2.2-4.8x inference speed-up. Among OSCAR variants, OSCAR-llama is generally the strongest and fastest, though it requires pretraining (see 4.2). Most interestingly, OSCAR-llama model for Mistral-24B enables a 5× decrease in computational complexity while improving the overall results. In fact, OSCAR efficiency improvements are proportional to the backbone size, and hence particularly advantageous for larger language models.

For OSCAR-*N*-Layers models, performance improves with more layers but at the cost of efficiency. Beyond 10 layers, accuracy plateaus while efficiency worsens (details in Appendix C).

	OSCAR wins	Tie	Mistral-7B wins
POPQA	26.5%	55.3%	18.2%
ASQA	33.1%	37.1%	29.7%
HotpotQA	37.7%	37.0%	25.3%
TriviaQA	23.3%	58.7%	18.0%
NQ	30.8%	36.8%	32.4%
BioASQ	25.4%	43.1%	31.5%
	OSCAR wins	Tie	Provence wins
POPQA	34.0%	51.1%	14.9%
ASQA	40.0%	31.2%	28.8%
HotpotQA	45.1%	30.5%	24.4%
TriviaQA	35.8%	49.2%	15.0%
NQ	37.1%	33.5%	29.4%
BioASQ	24.0%	43.5%	32.4%
	OSCAR wins	Tie	PISCO wins
POPQA	34.2%	52.8%	6 13.0%
ASQA	38.2%	33.6%	28.2%
HotpotQA	40.6%	35.8%	23.6%
TriviaQA	25.7%	57.3%	17.0%
NQ	35.7%	39.4%	24.9%
BioASQ	29.9%	42.6%	27.6%

Figure 3: **GPT-4 pairwise comparisons.** OSCAR-llama, while faster, is on par with no compression baseline, Provence and PISCO.

Figure 4 shows LLM evaluation results for Mistral-7B models. These confirm the conclusions based on the accuracy metric. In fact, OSCAR models tend to be favorably appreciated by this LLM-evaluation. We

329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	

	Model	compr rate	ASQA	HotpotQA	NQ	TriviaQA	POPQA	$Avg(\Delta)$
Compression rate 16	OSCAR-llama	x16	0.82	0.64	0.81	0.91	0.65	0.77
	query-independent	x16	0.81	0.60	0.78	0.89	0.57	0.73 (-0.04)
	no compressor pretraining	x16	0.78	0.56	0.75	0.89	0.51	0.70 (-0.07)
Compression rate 128	OSCAR-llama	x128	0.81	0.61	0.79	0.90	0.63	0.75 (-0.02)
	query-independent	x128	0.81	0.57	0.75	0.89	0.51	0.71 (-0.06)
Other compressor architectures	DeBERTa-v3	x16	0.80	0.61	0.77	0.90	0.57	0.73 (-0.04)
	Modern-bert-base	x16	0.80	0.62	0.77	0.90	0.60	0.74 (-0.03)
	Modern-bert-large	x16	0.83	0.63	0.80	0.91	0.64	0.76 (-0.01)
BM25 retrieval pipeline	No compression	-	0.57	0.56	0.57	0.81	0.37	0.58
	OSCAR-llama	x16	0.57	0.52	0.56	0.80	0.37	0.56 (-0.02)

Table 2: **Ablation study** on compression rate, pretraining, compressor architectures and retrieval pipeline. The last column reports averages across the five QA tasks, and the difference compared to OSCAR-llama (x16). We report point-wise LLM evaluation.

hypothesize that since the retrieval is embedding-based rather than text-based for OSCAR, then reformulation of the answer into a semantically-equivalent answer is more likely to occur and to comparatively penalize the accuracy measure. Detailed results for all backbones are given on Table 3.

Finally, Figure 3 provides the results of pairwise comparisons of OSCAR-llama, Mistral-7B, PISCO and Provence. These confirm that OSCAR, while faster, is on par with its uncompressed baseline and slightly better on average than Provence. **Overall, OSCAR models offer an efficient alternative to regular RAG pipelines, with a x**2-5 **speed-up but little to no loss in accuracy.**

4.2 ABLATIONS

We run ablations to understand the effect of the components of OSCAR, with results shown on Table 2. All ablations use a Mistral-7B backbone.

Query-dependence and compression rate. First, Table 2 shows that accuracy losses with x128 compression are limited, with only 2% decrease on average. Second, we show that not using the query at compression leads to strong performance degradation, even more pronounced for large compression rate (-6%). Thus, OSCAR did succeed in using the query to optimize the compressed representation. Furthermore, in Appendix J, we look into the content of the compressed embeddings, to assess that they do indeed depend on the query. Figure 13 uses a needle-in-a-haystack test gkamradt (2024) to show that cosine similarity between compressed embeddings and text tokens is highest near the needle, indicating strong query dependence. Second, Figure 14 examines OSCAR embeddings via logit attributions nostalgebraist (2020), revealing that they align closely in vocabulary space with context relevant to the query.

Other compressor architectures Results shown in §4.1 relied on Llama-1B as the compressor LLM. To obtain further efficiency gains, we tested using smaller compressors: modern-bert, modern-bert-large (Warner et al., 2024) and DeBERTa-v3 (He et al., 2021). Table 2 shows results after pretraining and fine-tuning with different compressors. Llama-1B performs the best. Modern-bert-large may offer an interesting alternative for low-latency applications.

Robustness to retrieval changes. In all training and test experiments so far, all documents were retrieved using SPLADE-v3 and reranked with a DeBERTa-v3-based reranker – a robust RAG setup Rau et al. (2024a). Yet it still prompts the question of how OSCAR models perform when retrieval quality declines. In particular,

 the behavior of hard compression methods is clearly identifiable on noisy documents – and shown to be correctly handled by Provence Chirkova et al. (2025) or Recomp Xu et al. (2023). It is more of an open question for soft compression models like OSCAR. To investigate this, we run evaluation experiments using BM25 Robertson et al. (1996) only (no reranking) and report results on Table 2. Essentially, the performance drops of OSCAR models with respect to Mistral-7B are similar – indicating that OSCAR models are able to handle noisy documents. Detailed results for all datasets are found in Appendix B.

Long context abilities of OSCAR models. Since OSCAR models are trained with 5 retrieved documents, we investigate whether they remain able to extract and use information from a larger number of documents. Figure 5 shows the results when increasing the number of retrieved documents to up to 50 (which makes uncompressed contexts around 7k tokens) on ASQA. Note that as the number of documents increase, because of the quadratic cost of the attention, the larger compression rate of OSCAR models make them comparatively faster. With 50 documents, we measure $5 \times$ less FLOPs for OSCAR than Mistral-7B.

Figure 5: LLM evaluations with increasing number of retrieved documents: OSCAR models are as robust as their no-compression baselines.

4.3 ADDING RERANKING CAPABILITY

Having demonstrated that OSCAR models function effectively as standalone compressors, we also train OSCAR models capable of both document compression and rerank-

ing. In a RAG pipeline incorporating reranking, the computational cost of compression becomes virtually negligible, as a single forward pass produces both compressed representations and reranking scores.

The results in Table 4 in the appendix show the performance of such jointly trained models under two evaluation settings: standalone, which corresponds to the previous setting (DeBERTa-v3 reranker), and e2e which corresponds to compressing documents reranked by the OSCAR model itself. Essentially, we observe no drop in performance between standalone and e2e settings, indicating that OSCAR effectively learns to rerank documents. This finding is further supported by OSCAR's performance on the BEIR benchmark Thakur et al. (2021) where its reranking capabilities are nearly on par with the strong teacher model. Detailed BEIR results for individual datasets are provided in Appendix (Table 5). To match the teacher's performance on BEIR, OSCAR requires an increased model depth to 16 layers. However, this model is less efficient, and its actual e2e performance (evaluated via LLM-based metrics or accuracy) remains unchanged.

5 CONCLUSION

In this paper, we introduce OSCAR, the first online soft compression methods for RAG. The key challenge is designing an efficient compression technique for an online setting, which we address with two variants: one using a small compressor model and another leveraging the generator's early layers. We compare OSCAR against hard compression methods (RECOMP, Provence) and soft ones (PISCO), showing that query-dependent compression is more effective than query-independent approaches. OSCAR also outperforms or matches hard pruning methods while being more efficient, proving the potential of soft compression. Additionally, we extend OSCAR with reranking, thereby reducing compression costs by factorization in the RAG pipeline. Our ablations analyze different backbones, weak retriever performance, behavior with large number of retrieved documents and further validate the design and performance of OSCAR models.

REFERENCES

- Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Improving language models by retrieving from trillions of tokens. In *International conference on machine learning*, pp. 2206–2240. PMLR, 2022.
- Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-Qing Chen, Furu Wei, Huishuai Zhang, and Dongyan Zhao. xrag: Extreme context compression for retrieval-augmented generation with one token. *arXiv* preprint arXiv:2405.13792, 2024.
- Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to compress contexts. *arXiv preprint arXiv:2305.14788*, 2023.
- Nadezhda Chirkova, Thibault Formal, Vassilina Nikoulina, and Stéphane Clinchant. Provence: efficient and robust context pruning for retrieval-augmented generation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=TDy5Ih78b4.
- Giulio Corallo and Paolo Papotti. Finch: Prompt-guided key-value cache compression for large language models. *Transactions of the Association for Computational Linguistics*, 12:1517–1532, 2024.
- Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l_2 normbased strategy for kv cache compression. *arXiv* preprint arXiv:2406.11430, 2024.
- Grattafiori et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.
- Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Splade: Sparse lexical and expansion model for first stage ranking. In *Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2288–2292, 2021.
- Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant. From distillation to hard negative sampling: Making sparse neural ir models more effective. In *Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '22, pp. 2353–2359, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495.3531857. URL https://doi.org/10.1145/3477495.3531857.
- Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for context compression in a large language model. *arXiv preprint arXiv:2307.06945*, 2023.
- gkamradt. Needle in a haystack pressure testing llms, 2024. URL https://github.com/gkamradt/LLMTest_NeedleInAHaystack.
- Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented language model pre-training. In *International conference on machine learning*, pp. 3929–3938. PMLR, 2020.
- Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style pre-training with gradient-disentangled embedding sharing, 2021.
- Sebastian Hofstätter, Jiecao Chen, Karthik Raman, and Hamed Zamani. Fid-light: Efficient and effective retrieval-augmented text generation. In *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1437–1447, 2023.
- Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and Allan Hanbury. Improving efficient neural ranking models with cross-architecture knowledge distillation, 2021. URL https://arxiv.org/abs/2010.02666.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

 Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and Davood Rafiei. Evaluating open-domain question answering in the era of large language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5591–5606, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.307. URL https://aclanthology.org/2023.acl-long.307/.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of naacL-HLT*, volume 1. Minneapolis, Minnesota, 2019.

Anastasia Krithara, Anastasios Nentidis, Konstantinos Bougiatiotis, and Georgios Paliouras. Bioasq-qa: A manually curated corpus for biomedical question answering. *Scientific Data*, 10(1):170, 2023.

Yuri Kuratov, Mikhail Arkhipov, Aydar Bulatov, and Mikhail Burtsev. Cramming 1568 tokens into a single vector and back again: Exploring the limits of embedding space capacity. *arXiv preprint arXiv:2502.13063*, 2025.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:453–466, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, pp. 611–626, 2023.

Carlos Lassance, Hervé Déjean, Thibault Formal, and Stéphane Clinchant. Splade-v3: New baselines for splade. *arXiv preprint arXiv:2403.06789*, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33:9459–9474, 2020.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache management. arXiv preprint arXiv:2412.19442, 2024.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. In-batch negatives for knowledge distillation with tightly-coupled teachers for dense retrieval. In Anna Rogers, Iacer Calixto, Ivan Vulić, Naomi Saphra, Nora Kassner, Oana-Maria Camburu, Trapit Bansal, and Vered Shwartz (eds.), *Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)*, pp. 163–173, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.repl4nlp-1.17. URL https://aclanthology.org/2021.repl4nlp-1.17/.

Maxime Louis, Hervé Déjean, and Stéphane Clinchant. Pisco: Pretty simple compression for retrieval-augmented generation. *arXiv preprint arXiv:2501.16075*, 2025.

Songshuo Lu, Hua Wang, Yutian Rong, Zhi Chen, and Yaohua Tang. Turborag: Accelerating retrievalaugmented generation with precomputed kv caches for chunked text. *arXiv preprint arXiv:2410.07590*, 2024.

- Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi. When not to trust language models: Investigating effectiveness of parametric and non-parametric memories. *arXiv* preprint arXiv:2212.10511, 2022.
- Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng. Ms marco: A human-generated machine reading comprehension dataset. 2016.
- Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint arXiv:1901.04085, 2019
- nostalgebraist. Interpreting GPT: The logit lens. LessWrong, jan 2020. URL https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.
- Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, et al. Kilt: a benchmark for knowledge intensive language tasks. *arXiv preprint arXiv:2009.02252*, 2020.
- G Qin, C Rosset, E Chau, N Rao, and B Van_Durme. Dodo: Dynamic contextual compression for decoder-only lms. Proceedings of the 62nd Annual Meeting of the Association for Computational ..., 2024.
- David Rau, Hervé Déjean, Nadezhda Chirkova, Thibault Formal, Shuai Wang, Vassilina Nikoulina, and Stéphane Clinchant. Bergen: A benchmarking library for retrieval-augmented generation. *arXiv* preprint *arXiv*:2407.01102, 2024a.
- David Rau, Shuai Wang, Hervé Déjean, and Stéphane Clinchant. Context embeddings for efficient answer generation in rag. *arXiv preprint arXiv:2407.09252*, 2024b.
- Stephen E Robertson, Steve Walker, MM Beaulieu, Mike Gatford, and Alison Payne. Okapi at trec-4. *Nist Special Publication Sp*, pp. 73–96, 1996.
- Ferdinand Schlatt, Maik Fröbe, Harrisen Scells, Shengyao Zhuang, Bevan Koopman, Guido Zuccon, Benno Stein, Martin Potthast, and Matthias Hagen. A systematic investigation of distilling large language models into cross-encoders for passage re-ranking, 2024. URL https://arxiv.org/abs/2405.07920.
- Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-Wei Chang. Asqa: Factoid questions meet long-form answers. *arXiv preprint arXiv:2204.06092*, 2022.
- East Sun, Yan Wang, and Lan Tian. Block-attention for efficient rag. arXiv preprint arXiv:2409.15355, 2024.
- Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A heterogeneous benchmark for zero-shot evaluation of information retrieval models. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL https://openreview.net/forum?id=wCu6T5xFjeJ.
- Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan Parvez, and Graham Neubig. Learning to filter context for retrieval-augmented generation. *arXiv* preprint arXiv:2311.08377, 2023.
- Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, better, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context finetuning and inference. *arXiv preprint arXiv:2412.13663*, 2024.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented lms with compression and selective augmentation. arXiv preprint arXiv:2310.04408, 2023. Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv preprint arXiv:1809.09600, 2018. Chanwoong Yoon, Taewhoo Lee, Hyeon Hwang, Minbyul Jeong, and Jaewoo Kang. Compact: Compressing retrieved documents actively for question answering. arXiv preprint arXiv:2407.09014, 2024. Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

Figure 6: LLM evaluation of Qwen2-7B-backboned models, in relation with the total number of floating point operations required at inference. OSCAR-llama model is the fastest and best compression model.

ADDITIONAL RESULTS

OSCAR WITH QWEN2-7B A.1

We showed in Figure 4 the efficiency/performance plots for Mistral-7B backbone, including comparison with Provence, Recomp and the uncompressed backbone. We provide in Figure 6 the same results but for Qwen2-7B. OSCAR-llama models remains the best compression model, both in terms of efficiency and LLM evaluation score. In particular, OSCAR-llama score is on average 4 points above Provence and 6 points above RECOMP.

DETAILED LLM EVALUATION RESULTS

In Section 4.1, we provided LLM evaluation results for Mistral-7B models. On Table 3 shows all LLMevaluation results. In Section 4.1, we provided pareto plot efficiency/LLM evaluation for Mistral-7B Backbone. We provide on Figure 7 the corresponding efficiency/accuracy pareto plot. Conclusions are mostly identical to the main results

A.3 FULL RESULTS ON THE BEIR DATASET

We report in Table 5 the detailed BEIR results on individual datasets.

Figure 7: **Accuracy scores of each Mistral-7B-backboned models**, in relation with the total number of floating point operations required at inference. OSCAR models are faster and better on most datasets.

B DETAILED EFFECTS OF BM25 RETRIEVAL

In section 4.2, we provided averaged effect across datasets of the change of retrieval/reranking pipeline. We provide in Figure 8 results for individual datasets. These results show that performance is preserved across all datasets, although it is likely that retrieval for Bioasq is noisier.

C INFLUENCE OF NUMBER OF COMPRESSOR LAYERS

In Section 3, we proposed constructing a transformer by utilizing the initial layers of the backbone to develop an efficient compressor that operates without requiring pretraining. Since the inference cost scales with the number of retained layers, it is important to examine the impact of reducing the number of layers used for compression. This analysis is presented in Figure 9, where the performance appears to plateau around 4-5 layers for Mistral-7B. Notably, increasing the number of layers beyond 10 does not seem to justify the additional computational cost.

D MORE ABOUT EFFICIENCY

D.1 SETUP TO MEASURE EFFICIENCY

In Section 4.1, we measured efficiency of models based on the total number of floating-point operations as it is the primary indicator of the computational complexity. To generate these measures, we generate fake inputs of standardized size (a query/prompt of 128 tokens associated with 10 128-token documents)

Backbone	Compressor	ASQA	HotpotQA	NQ	TriviaQA	POPQA	BIOASQ	Average
	No compression	0.82	0.62	0.80	0.90	0.61	0.82	0.76
	RECOMP	0.83	0.61	0.78	0.89	0.58	0.83	0.75
M* 4 1.7D	Provence	0.82	0.60	0.80	0.89	0.58	0.85	0.76
Mistral-7B	PISCO	0.81	0.60	0.78	0.89	0.57	0.79	0.74
	OSCAR-llama	0.82	0.64	0.81	0.91	0.65	0.81	0.77
	OSCAR-5-Layers	0.82	0.62	0.79	0.90	0.63	0.77	0.76
	OSCAR-8-Layers	0.82	0.64	0.80	0.91	0.64	0.79	0.77
Llama-1B	No compression	0.69	0.48	0.66	0.81	0.52	0.76	0.65
Liama-1D	OSCAR-5-Layers ^a	0.71	0.53	0.70	0.85	0.55	0.72	0.68
	No compression	0.80	0.67	0.78	0.91	0.65	0.84	0.78
Qwen-7B	OSCAR-8-Layers	0.81	0.61	0.78	0.90	0.64	0.80	0.76
	OSCAR-llama	0.82	0.62	0.79	0.90	0.65	0.81	0.76
Mistral-24B	No compression	0.82	0.71	0.80	0.92	0.70	0.85	0.80
wiistrai-24D	OSCAR–llama	0.82	0.65	0.82	0.92	0.67	0.84	0.79

Table 3: LLM evaluation and efficiency for OSCAR models and baselines based on various backbones. OSCAR models are more effective and faster than their backbones with no compression. OSCAR models are also more efficient than the two hard compression baselines Provence and Recomp.

^aWe do not train an OSCAR-llama with llama-32-1B backbone as it would not increase global efficiency.

Model	Setting	LLM evaluation score							
Model	Setting	ASQA	HotpotQA	NQ	TriviaQA	POPQA	BIOASQ	Average	BEIR
OSCAR-llama	standalone e2e	0.83 0.81	0.64 0.63	0.80 0.79		0.66 0.66	0.80 0.80	0.77 0.77	52.8
OSCAR-8-Layers	standalone e2e	0.82 0.81	0.64 0.63	0.81 0.79	0.91 0.90	0.64 0.64	0.79 0.78	0.77 0.76	52.5
OSCAR-10-Layers	standalone e2e	0.82 0.81	0.64 0.65	0.81 0.82	0.91 0.91	0.64 0.66	0.80 0.78	0.77 0.77	54.3

Table 4: LLM evaluation and reranking performance on the BEIR benchmark (mean nDCG@10 on the 13 BEIR datasets). We report results for three efficient OSCAR models on two RAG settings (with a Mistral-7B decoder). The reranking performance of the teacher (based on DeBERTa-v3) is 55.4. Note that the performance on the standalone setting might slightly differ from previous Tables as these models are trained with a different loss (joint training).

and do compression and the generation of a 32 token answer⁶ from an input of size computed from the compression rate of each method (e.g., for OSCAR with compression rates 16, the input to the generator is of size $128 + 10\frac{128}{16}$). To compute FLOP we set the batch size to 1 and use torch.profiler. We provide additional measures regarding inference time and peak GPU memory in each case. We set the batch size at 256 (32 for the larger Mistral-24B) to compute the inference time (simulating a busy service) and the

⁶The analysis for generated answers of 128 or 256 tokens leads to similar conclusions

Corpus	DeBERTa-v3	OSCAR-llama	OSCAR-8-Layers	OSCAR-10-Layers	OSCAR-16-Layers
TREC-COVID	88.3	83.1	81.4	84.4	86.1
NFCorpus	37.5	34.2	34.5	36.5	36.9
NQ	66.7	63.3	61.3	64.1	67.2
HotpotQA	74.5	72.9	72.2	73.5	74.3
FiQA-2018	47.8	42.7	40.8	44.3	47.5
ArguAna	29.8	29.5	32.5	32.4	34.0
Touché-2020	33.5	29.3	31.6	31.9	31.3
Quora	84.8	86.0	86.0	87.5	87.9
DBPedia	48.9	47.5	46.5	48.2	49.2
SCIDOCS	19.2	17.2	17.6	18.6	19.3
FEVER	86.6	83.6	83.1	84.1	83.9
Climate-FEVER	27.4	25.9	24.2	25.3	26.3
SciFact	75.8	71.2	71.2	75.2	75.5
average	55.4	52.8	52.5	54.3	55.3

Table 5: nDCG@10 on the 13 open BEIR datasets. DeBERTa-v3 is the reranker teacher used to train OSCAR models.

Backbone	Commun		Inf	erence time (1		
Баскоопе	Compre Architecture	Parameters	Inference Compression		Total	Peak memory (Gb) [‡]
	No compression	-	141.6	0.	141.6	24.3
Mistral 7B	OSCAR-5L	1.2B	33.0	18.0	51.0 (2.3 ×)	16.2
	OSCAR-8L	1.91B	33.0	28.8	61.8 (2.2×)	16.2
	OSCAR-llama	1.1B	33.0	17.1	50.1 (2.8 ×)	16.2
Llama 3.2 1B	No compression	-	30.2	0.	30.2	8.6
Liailia 5.2 1b	OSCAR-5L		8.3	5	13.3 (2.3 ×)	4.3
	No compression	-	109	0.	109	30.2
Qwen-2-7B	OSCAR-5L	1.7B	25.6	15.2	40.8 (2.7 ×)	23.3
-	OSCAR-llama	1.1B	25.6	17.1	42.7 (2.6 ×)	23.3
M:-41 24D	No compression	-	383.2	0.	383.2	69.2
Mistral-24B	OSCAR–llama	1.1B	67.9	17.1	85.0 (4.5 ×)	51.9

Table 6: **Inference time and memory for each model**. Computed with 128-token queries and 10 128-token retrieved documents. † computed with batch size 256 (32 for Mistral-24B) but brought down to individual query cost ‡for a batch of size 32.

peak GPU memory. In all cases we use hugging face implementation of the models. For memory usage and inference time, we average the results over 10 runs.

Results are shown in Table 6. Gains observed in terms of floating-point operations mostly translate to computational time (as can be expected for sufficiently large batch sizes). OSCAR models enable to save about 50-75% of memory across the various backbones. In practice, this larger batch sizes to be used and hence further latency improvements.

Figure 8: Effect of retrieval on OSCAR models, per dataset, compared to their uncompressed backbone.

E LLM EVALUATION

Our primary evaluation metric follows the LLM-based assessment proposed in Rau et al. (2024a). This approach utilizes the SOLAR-107B model⁷ prompted to determine the correctness of a predicted answer by comparing it against both the given question and a reference answer. This metric can be viewed as an enhanced version of traditional accuracy, as it remains more robust to surface-level variations that do not alter the underlying semantic content. The prompt used is given in Figure 10.

F PROMPTS

The prompt we use for generation is given on Figure 11. The prompt for GPT pairwise comparison is given on Figure 12

⁷huggingface/upstage/SOLAR-10.7B-Instruct-v1.0

Figure 9: Average accuracy on general domain datasets for OSCAR models where the compressor has a variable number of layers. Performances increase with the number of layers but plateau above 8-10 layers for both Qwen2-7B and Mistral-7B backbones.

Figure 10: LLM Evaluation Prompt

system: "You are an evaluation tool. Answer with one of 1: Correct, 0.5: Partially correct, 0: wrong. user: "Here is a question, a golden answer, and an AI-generated answer. Can you judge whether the AI-generated answer is correct according to the question and golden answer? Simply answer with one of 1: correct, 0.5: partially correct, 0: wrong. Question: {question}. Golden answer: {answer}. Generated answer: {prediction}."

OSCAR TRAINING HYPERPARAMETERS

We provide in this section details enabling the replication of OSCAR training results. Note that all OSCAR models for all backbones (from llama-1B all the way to mistral-24B) were trained using this configuration. Our training code relies on HuggingFace trainer and an adaptation of the public Bergen library Rau et al. (2024a).

Note that OSCAR-N-layer models are directly trained by fine-tuning on the distillation data described in Section 4: they do not need pretraining. This is a similar effect as in Louis et al. (2025). On the contrary, OSCAR-llama models need a pretraining described in Appendix H.

Hyper-parameter search to build OSCAR models We took hyperparameters from Louis et al. (2025) and only conducted a small grid search over 8 values to tune the learning rate required on the compressor, as we

Figure 11: Main Prompt

system: You are a helpful assistant. Your task is to extract relevant information from provided documents and to answer questions as briefly as possible.

user: Background:

 $\{doc_1\}SEP\{doc_2\}...SEP\{doc_k\}$

Question: {question}

Figure 12: Gpt-4o Pairwise Comparison Prompt

system: "You are a helpful assistant that ranks models by the quality of their answers. Please act as an impartial judge. Do not allow the length of the responses to influence your evaluation. Be as objective as possible."

user: "Here is a question, a ground truth answer, an AI-generated answer 1, and an AI-generated answer 2. Which answer is the most correct one? Simply answer 1 if the first is better, 2 if the second is better, and 3 if it's a tie.

Question: {question}.

Ground truth answer: {ref answer}.

Answer 1: {answer₁}. Answer 2: {answer₂}."

Hyperparameter	Value
Batch Size	128
LR generator	1×10^{-4}
LR llama compressor	1×10^{-4}
LR N-layers compressor	$5 \times 10^{-5} a$
LR scheduler	linear
Optimizer	AdamW
Epochs	1
Max Tokens Teacher Generation	128
LoRA Layers (r)	all-linear
LoRA Rank (r)	16
LoRA Dropout	0.1
LoRA Alpha	32
Llama compressor hidden dim	8096
Weight Decay	0.1
Warmup Ratio	0.05
Max Gradient Norm	1.0
Documents max tokens	128

Table 7: Fine-tuning Hyper-parameters.

noticed performances were underwhelming with identical learning rates on compressor and generator. The total computation time to train an OSCAR model around Mistral-7B is around 50 hours on a single high-end GPU.

H OSCAR-LLAMA PRETRAINING

OSCAR models using llama-1B as compressor models without any pretraining failed to reach satisfying performances (see Table 8). We attribute this effect to the need of building a map between the compressor hidden space and the decoder hidden space. To achieve this, we use the same pretraining as proposed in Rau et al. (2024b), with identical hyperparameters and a pretraining dataset consisting of chunks preprocessed

[&]quot;Initial results with identical learning rates between the LoRA-trained decoder and fully fine-tuned N-layers compressor gave poor results: learning rates need to be differentiated between compressor and decoder in this case.

Model	ASQA	HotpotQA	NQ	TriviaQA	POPQA
OSCAR-llama	0.82	0.64	0.81	0.91	0.65
+ without pretraining	0.78	0.56	0.75	0.89	0.51

Table 8: Ablation on the pretraining for OSCAR-llama model.

from fineweb⁸. Note that experiments show that as long as some form of extended pretraining is done which requires the decoder to use embeddings produced by the compressor, the ensuing OSCAR-llama models are strong. Therefore, the exact recipe of the pretraining is not crucial for replicating our work.

I STRING NORMALIZATION FOR METRIC COMPUTATION

To measure accuracy, F1 score or recall between a ground truth label and a prediction, we check that the normalized label is included in the normalized prediction. When multiple labels are possible, we take maximum values across the available labels. Normalization consists in:

- Converting the string to lowercase
- · Removing punctuation
- Removing articles: "a", "an", "the"
- Standardizing word splits by replacing multiple spaces and line returns with a single space

J RELATION BETWEEN EMBEDDINGS AND QUERY

While OSCAR offers greater computational efficiency and accuracy, it lacks the interpretability of hard compression methods. In this section, we offer a glimpse into the content of the compressed embeddings, to assess that they do indeed depend on the query. First, Figure 13 uses a needle-in-a-haystack test gkamradt (2024) to show that cosine similarity between compressed embeddings and text tokens is highest near the needle, indicating strong query dependence. Second, Figure 14 examines OSCAR embeddings via logit attributions nostalgebraist (2020), revealing that they align closely in vocabulary space with context relevant to the query.

⁸huggingface./datasets/HuggingFaceFW/fineweb

Figure 13: Cosine similarity between document embeddings and document individual tokens, on a needle-in-a-haystack test. The document embeddings are more similar to the area around the needle, indicating that the compression focuses on query-related elements.

Figure 14: Logits attributions on OSCAR embeddings. Attributed tokens predominantly correspond to an area of the context relevant to the query.

Cover, Se

thereby, reflected, any

attributions