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ABSTRACT

Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by
integrating external knowledge, leading to improved accuracy and relevance. However,
scaling RAG pipelines remains computationally expensive as context length grows. To
address this, hard compression methods prune the retrieved text on-the-fly, achieving
only modest compression ratios, whereas soft compression methods rely on costly offline
LLM-based compression to obtain higher rates. In this paper, we introduce OSCAR, a
novel query-dependent online soft compression method for RAG. OSCAR bridges the
gap between online hard and offline soft compression methods, bringing the best of both:
OSCAR dynamically compresses retrieved documents into a representation optimized for
the query at hand, leading to efficient and accurate downstream answer generation. Our
experiments demonstrate state-of-the-art performance with a 2–5× speed-up in inference
and minimal, if any, accuracy loss, for LLMs ranging from 1B to 24B parameters.

1 INTRODUCTION
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Figure 1: OSCAR models enable faster end-to-
end inference with retrieval as well as improved
accuracy compared to hard compression methods.

Retrieval-Augmented Generation (RAG) (Lewis et al.,
2020; Guu et al., 2020; Borgeaud et al., 2022) has be-
come pivotal for solving a wide range of natural language
processing challenges. RAG enhances Large Language
Models (LLMs) by leveraging retrieved documents from
curated datasets, enabling more accurate, well-grounded,
and up-to-date responses. However, one major issue when
scaling up RAG pipelines is the high computational cost.

To improve efficiency, a natural idea consists in replacing
the retrieved documents with a more compact represen-
tation. A straightforward option is to perform hard com-
pression on the text itself to form a summarized or pruned
version as in Xu et al. (2023); Kenton & Toutanova (2019);
Wang et al. (2023). These methods are LLM-agnostic and
robust, but their compression rates are modest (≃ ×2),
limiting overall efficiency gains. Most hard compression
methods operate in an online, query-aware fashion, dy-
namically compressing the documents to maximize utility for the task.

Another option is soft compression which maps retrieved texts to a continuous embedding space. Typically,
texts are mapped to a K/V cache (Qin et al., 2024) or to an embedding which can be fed into the transformer
by bypassing its embedding layer (Chevalier et al., 2023; Ge et al., 2023; Hofstätter et al., 2023; Louis et al.,
2025; Rau et al., 2024b). These approaches achieve higher compression (≃ ×16), but at the cost of substantial
performance degradation, and they fall short of empirical and theoretical efficiency bounds (Kuratov et al.,
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2025). In fact, we note that none of the existing soft compression methods use the query at compression time:
all of them rely on heavy, LLM-sized forward passes performed offline, as doing it online would not lead to
overall efficiency improvements.

Both hard and soft compression thus have complementary strengths: hard methods are online and query-aware
but limited in compression rate, while soft methods promise higher rates but suffer from quality loss are not
usable online. Ideally, one would combine the advantages of both—high compression with query-dependent
online operation. However, designing a fast enough compression operator remains an open challenge: existing
methods either sacrifice efficiency, accuracy or fail to scale to dynamic RAG scenarios. Developing an
efficient online compression strategy would also facilitate dynamic RAG scenarios in which retrieved content
originates from the open web or from large-scale corpora in a plug-and-play manner.

In this paper, we show how to build an efficient compression model to obtain large efficiency improvements
in RAG pipelines. The obtained OSCAR models—for Online Soft Compression for RAG—are the first
soft-compression query-dependent methods for RAG. We obtain 2-5x faster end-to-end inference on a
variety of LLMs ranging from 1B to 24B parameters1. Crucially, the obtained models suffer from little
to no accuracy loss on a variety of in-domain and out-of-domain RAG benchmarks. Lastly, we notice,
as discussed by Chirkova et al. (2025), that the compression operation can be exploited to simultaneously
re-rank the initial pool of retrieved documents. Since re-ranking is an integral part of efficient RAG pipelines
(Rau et al., 2024a), this enables us to obtain the compression representation of the documents for free.

2 RELATED WORKS

Long context optimizations for RAG RAG scaling problems relate to the long-context (in)abilities of
LLMs which is an active area of research. K/V caching techniques enable faster long context handling by
diminishing the number of operations in self-attention (Devoto et al., 2024; Kwon et al., 2023; Li et al., 2024).
FINCH (Corallo & Papotti, 2024) is more specifically designed for RAG: the retrieved content is chunked
and only a small portion of the keys and values is kept in cache for each chunk for the subsequent attention
computations – but compression rates remain limited. TurboRAG and block-attention RAG (Sun et al., 2024;
Lu et al., 2024) propose to modify the attention causal mask to compute attention independently on each
retrieved documents, while the query still attends to each previous token in the context.

Hard compression methods aim at shortening the retrieved documents by summarization or pruning.
Most of them have limited compression rates due to the nature of text but are agnostic to the LLM used
for generation. Provence (Chirkova et al., 2025) proposes to fine-tune a DeBERTa (He et al., 2021) model
to prune retrieved contexts. It is fast, prunes the context in a query-dependent fashion and allows the
simultaneous reranking of the retrieved documents—making pruning essentially free in a standard RAG
pipeline. Extractive RECOMP (Xu et al., 2023) prunes contexts based on sentences embeddings. Abstractive
RECOMP summarizes input contexts using an autoregressive LLM: the efficiency improvement is less clear
than Provence since generating the summary is an expensive operation. Other methods include FILCO (Wang
et al., 2023) or COMPACT (Yoon et al., 2024), which also generate pruned contexts autoregressively.

Soft compression methods aim at compressing retrieved documents into vector representations, often to be
used as input embeddings or K/V cache to the LLM used for generation. These methods generally achieve
higher compression rates but require a training specific to the LLM used for generation. xRAG (Cheng et al.,
2024) proposes to use retrieval embeddings as precomputed compressed representations, and trains an adapter
MLP to map these embeddings into inputs for the LLM – performances remain however limited. COCOM
(Rau et al., 2024b), building on (Chevalier et al., 2023; Ge et al., 2023), proposes an end-to-end training

1Open-source models will be released upon publication.
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Figure 2: OSCAR overview.

pipeline where both the compression LLM and the generation LLM are fine-tuned using a large QA dataset.
PISCO (Louis et al., 2025) is an extension of COCOM trained by sentence-level distillation from a teacher
LLM: it allows to compress contexts by a factor of 16× with very limited performance drops. All these
approaches process documents independently from the query – attempting to compress all the information
of the retrieved documents into the (compressed) vector representation. FiD-light (Hofstätter et al., 2023)
proposes a form of query-dependent soft compression by using an encoder-decoder LLM, where the encoder
is fed in parallel with the input query and each retrieved document. FiD-light decoder then takes only the first
50 hidden states for each document and thus has a very limited compression rate.

None of these methods can be used online and reach large compression rates. In fact, soft compression is
merely succeeding with large compressors, and thus is really challenging with low-latency. OSCAR addresses
this issue by using appropriate compressor backbone and training, as well as by computing query-dependent
embeddings, which favor the task at hand.

3 METHOD

Figure 2 provides an overview of OSCAR. At inference, after retrieval, a compressor LLM maps each
document-query pair to a few embedding tokens and a generator LLM generates an answer to the query based
on the and a RAG prompt. Provided the compression rate is high and the compression operation efficient,
there can be efficiency gains compared to the no-compression RAG pipeline. We now give details about every
component of OSCAR as well as the training procedure.

Compression The compression procedure is shown within Figure 2 (right). Contrary to Ge et al. (2023);
Rau et al. (2024b); Louis et al. (2025), the document compression operation is conditioned on the query.
In details, the query q, the i-th retrieved document di, a set of learnable memory tokens [MEM j]j=1...l are
fed forward to a compressor LLM C. We collect the last layer hidden states corresponding to each of these
tokens to form the query-dependent embedding representations (c1i , . . . , c

l
i) := ci = C(q, di) of the document.

[MEM j]j tokens play a similar role as the [CLS] BERT token: it is a task-specific token prompting the
storage within the corresponding hidden states.

3
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Generation The embedding representations c of each document, as well as the query q, are fed within a
RAG prompt (given in Figure 11) to a generator LLM which generates the answer. Since each document is
replaced by l embeddings, generation is much faster compared to the original text.

Compressor architecture All prior work on compression for RAG (Louis et al., 2025; Cheng et al., 2024;
Rau et al., 2024b) use a compressor architecture identical to the generator LLM. In this setup, the hidden state
representations of the compressor are easily adapted to the generator hidden space, making the whole pipeline
easier to learn and deploy. But running the compression at inference time would negate any subsequent
generation time gains, making these methods inherently offline. OSCAR however is intended to operate in an
online fashion with no possibility to pre-compute document compressions. Therefore, the compression needs
to be fast. To do so, we propose two different architectures for the compressor backbone:

• OSCAR-N-Layers: we construct headless transformers using the first N layers of the pretrained
backbone (same architecture as the generator). As shown in §4.1, OSCAR-N -Layers models require
no pre-training to align hidden representations with the generator LLM. Efficiency is controlled by
the choice of N . We typically set N to 1/4-1/3 the total number of layers.

• OSCAR-llama: we use a smaller LLM, primarily llama-1B2, as our compressor. We apply two dense
layers with ReLU non-linearity to the compressor last layer hidden space to align with the generator
embedding space. Learning this mapping, which a crucial contribution of OSCAR, requires some
pretraining (see Appendix Table 8) on top of the QA fine-tuning. Thus, following Rau et al. (2024b),
we pretrain the compressor/generator LLM on auto-encoding and text-continuation tasks. Pretraining
details are provided in Appendix H.

Training objective The end-to-end OSCAR RAG pipeline should produce results as close as possible
to its no-compression version. Therefore, we use a sequence-level distillation objective as in Louis et al.
(2025): given a training set of questions and a collection of documents, we perform the retrieval stage and
generate teacher labels from the standard no-compression RAG pipeline. These labels are then used as
supervised-fine-tuning targets for the end-to-end OSCAR pipeline, as shown on Figure 2 (right). Overall,
denoting a1, . . . , ar the answer generated by the teacher LLM from the documents and query, then the training
objective on the compressor C and generator G is:

L(C,G) = −
r∑

i=1

log G(ai | q, c1, . . . , ck,a<i), where ci = (csi )s=1,...,l = C(q, di), i = 1, . . . , k (1)

where k denotes the total number of documents used for generation. The loss is back-propagated both through
the generator LLM and the compressor LLM at each step. Overall, OSCAR training does not require any
ground truth labels. Initial experiments with the teacher choice and use of distillation objective gives identical
conclusions to Louis et al. (2025): distillation is paramount and Mistral-7B labels offer good supervision. For
simplicity, we use Mistral-7B as the teacher for all OSCAR models, whichever backbone they are based on.
In practice, we save the retrieval results as well as teacher generations once on the training set so that OSCAR
training is a simple supervised-fine-tuning between questions—augmented with document embeddings within
the RAG prompt– and teacher answers. The subsequent OSCAR model training is fast: between 1 and 5
gpu-days for 1B-24B generator backbones.

Simultaneous reranking Building on insights from Chirkova et al. (2025), query-dependent online context
compression closely resembles document reranking. Rerankers, such as cross-encoders (Nogueira & Cho,
2019), refine the ranking from the initial retrieval step. Unlike retrieval models, which encode queries
and documents independently, rerankers contextualize documents with respect to queries, yielding more

2meta-llama/Llama-3.2-1B-Instruct
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informative representations. Since rerankers are already part of strong RAG pipelines Rau et al. (2024a),
using a single forward-pass for both compression and reranking makes compression essentially free—so long
as compression is no more expensive than typical rerankers.

We therefore add a reranking token [RR] to the compressor LLM prompt (Figure 2, right) and an additional
dense layer which maps this token’s hidden state to a predicted relevance score ri. We train this added layer
with a point-wise distillation objective from a reference reranker: we add λ

∑k
i=1(ri − r′i)

2 to equation 1,
where λ balances generation and reranking and r′i are scores from a reference reranker. While many training
strategies exist (Hofstätter et al., 2021; Formal et al., 2022; Lin et al., 2021; Schlatt et al., 2024), simple
point-wise distillation proved effective for OSCAR models.

4 EXPERIMENTS

Data Our training dataset comprises questions from Louis et al. (2025) along with 500k queries extracted
from MS MARCO (Nguyen et al., 2016), resulting in a total of 893k queries3. The document collection used
for training is Wikipedia-KILT (Petroni et al., 2020), preprocessed into chunks of 128 tokens. Such chunking
is typical in RAG pipelines (Rau et al., 2024a) and not a limitation as increasing the number of retrieved
chunks still enables to extract long sequences of informative content. For each query, we retrieve the top-k
chunks using SPLADE-v3 (Formal et al., 2021; Lassance et al., 2024) and subsequently rerank them with a
DeBERTa-v3 (He et al., 2021)-based reranker (a robust RAG setting as shown by Rau et al. (2024a)). We
employ sentence-level distillation from Mistral-7B4, as recommended by Louis et al. (2025).

Training details During training, the number k of retrieved documents is set to 5. We empirically found
that this value provides sufficient context for models to generalize to a larger number of documents at
inference time while keeping training costs low. Each document is then compressed into l embedding vectors,
where l is fixed for each OSCAR model. Specifically, OSCAR models with a compression rate of 16 use
8 memory embeddings per document – given 128-sized input documents. All generators LLMs are trained
with LoRA Hu et al. (2021) adapters. For OSCAR-N -Layers models, we experiment with N = 5, 8, 10.
OSCAR-llama relies on Llama-3.2-1B et al. (2024). All compressors are trained with full-fine tuning –
which was consistently more effective than LoRA adapters. For joint training (§4.3), early experiments
suggested that λ = 0.05 usually offers the best compromise (in terms of compression quality and reranking
effectiveness) on the validation set – and we use this default value for all further corresponding experiments.
Additional hyper-parameters are given in Appendix G.

Baselines and Backbones We compare OSCAR to Provence and Recomp models Chirkova et al. (2025);
Xu et al. (2023) as they are the state-of-the-art hard compression models for RAG. We also run evaluations of
PISCO models, a state-of-the-art offline soft compression model. Finally we provide a no-retrieval baseline
as well as the performances of the no-compression RAG pipelines. Unlike most hard compression methods,
OSCAR models are backbone-specific and need to be retrained for every different generation LLM. To show
how stable OSCAR training is, we produce models for Mistral-7B-Instruct, Qwen2-7B-Instruct, Mistral-24B5

and Llama-1B. We keep identical parameters/data/configurations for all backbones. Training times range
between 1 to 4 GPU-days from 1B to 24B backbones.

For most of the experiments, we train OSCAR models without reranking ability. In §4.1, we provide
evaluation metrics for OSCAR when compared to competitive approaches. In §4.2 we run ablations to identify
the critical components of OSCAR. In §4.3, we show results of OSCAR models with reranking ability.

3We will release the queries as well as the distillation labels upon publication
4huggingface/mistralai/Mistral-7B-Instruct-v0.2
5mistralai/Mistral-Small-24B-Instruct-2501
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Backbone Compressor
Accuracy︷ ︸︸ ︷ Tera-Floating point operations︷ ︸︸ ︷

ASQA HotpotQA NQ TriviaQA POPQA BIOASQ Average Inference Compression Total

Mistral-7B

No RAG 0.51 0.34 0.46 0.79 0.29 0.40 0.47 - - -
No compression 0.75 0.51 0.68 0.92 0.70 0.51 0.68 20.33 0. 20.33

RECOMP 0.73 0.49 0.67 0.92 0.67 0.53 0.67 7.29 0.84 8.13 (2.5×)
Provence 0.76 0.49 0.69 0.92 0.69 0.54 0.68 7.63 1.80 9.43 (2.2×)
PISCO 0.71 0.48 0.65 0.90 0.64 0.49 0.65 3.49 offline 3.49 (5.8×)a

OSCAR-llama 0.74 0.53 0.68 0.92 0.68 0.52 0.68 3.49 2.66 6.15 (3.3×)
OSCAR-5-Layers 0.73 0.50 0.66 0.91 0.66 0.50 0.66 3.49 3.04 6.53 (3.1×)
OSCAR-8-Layers 0.74 0.53 0.67 0.92 0.68 0.52 0.68 3.49 4.87 8.36 (2.4×)

Llama-1B No compression 0.61 0.35 0.54 0.82 0.59 0.40 0.55 2.85 0. 2.85
OSCAR-5-Layersb 0.64 0.43 0.59 0.86 0.59 0.46 0.60 0.50 0.88 1.38 (2.1×)

Qwen-7B
No compression 0.70 0.51 0.64 0.90 0.64 0.53 0.65 18.94 0. 18.94

OSCAR-8-Layers 0.72 0.50 0.64 0.91 0.67 0.51 0.66 3.17 5.07 8.25 (2.3×)
OSCAR-llama 0.72 0.51 0.66 0.91 0.68 0.52 0.67 3.17 2.65 5.83 (3.2×)

Mistral-24B No compression 0.74 0.54 0.68 0.92 0.70 0.53 0.68 64.29 0. 64.29
OSCAR–llama 0.75 0.54 0.70 0.93 0.70 0.53 0.69 10.72 2.65 13.37 (4.8×)

Table 1: Accuracy and efficiency for OSCAR models and baselines based on various backbones. OSCAR
models are more effective and as accurate than their backbones with no compression. OSCAR models are
also more efficient than the two hard compression baselines Provence and Recomp.

aPISCO is intended to be used offline and given for comparison.
bWe do not train an OSCAR-llama with llama-3.2-1B backbone as it would not increase global efficiency.

Evaluation After training, we evaluate all models on multiple datasets: Natural Questions Kwiatkowski
et al. (2019), TriviaQA Joshi et al. (2017), HotpotQA Yang et al. (2018), ASQA Stelmakh et al. (2022),
PopQA Mallen et al. (2022), and BIOASQ-12B Krithara et al. (2023). For each query, we retrieve documents
from either KILT or PUBMED – a collection unseen during training. We measure three different evaluation
metrics to ascertain the quality of OSCAR models:

(i) accuracy: for some question, accuracy is 1 if the (normalized) label is included in the (normalized)
generated answer, where normalization is described in Appendix I.

(ii) LLM evaluation: we prompt an LLM to determine whether the predicted answer corresponds to the
ground truth answer. This evaluation metric is robust to semantically-equivalent reformulation of the
answer and better correlated to human judgements Kamalloo et al. (2023). Details in Appendix E

(iii) pairwise-comparison using gpt-4o: given generated answers from two models, we prompt gpt-4o to
determine which answer is best, or if they are equivalent. Pairwise evaluation is a good complement
to pointwise Zheng et al. (2023). Details in Appendix F.

Altogether, these metrics enable thorough evaluation and comparisons. OSCAR models have seen 5 retrieved
documents per query at training time, but we evaluate them – and all other models – in a setting with 10
documents to verify generalization to larger contexts.

Computational efficiency To evaluate computational efficiency, we sum the number of floating-point
operations required for compression and for answer generation. For consistency, we perform this calculation
on a standardized input query of 128 tokens, concatenated with 10 documents of 128 tokens each or their
compressed embeddings. Measurements are obtained using torch.profiler. Further details, including
computation times and peak memory usage, are provided in Appendix D.
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Figure 4: LLM evaluation scores of each Mistral-7B-backboned models, in relation with the total
number of floating point operations required at inference. OSCAR models are faster and more effective
on most datasets. OSCAR-llama in particular offers the best alternative. For PISCO, we include in the FLOPs
the compression cost, as if it was used online.

4.1 MAIN RESULTS

OSCAR wins  Mistral-7B winsTie

BioASQ 25.4% 43.1% 31.5%
NQ 30.8% 36.8% 32.4%

TriviaQA 23.3% 58.7% 18.0%
HotpotQA 37.7% 37.0% 25.3%

ASQA 33.1% 37.1% 29.7%
POPQA 26.5% 55.3% 18.2%

OSCAR wins Provence winsTie

BioASQ 24.0% 43.5% 32.4%
NQ 37.1% 33.5% 29.4%

TriviaQA 35.8% 49.2% 15.0%
HotpotQA 45.1% 30.5% 24.4%

ASQA 40.0% 31.2% 28.8%
POPQA 34.0% 51.1% 14.9%

OSCAR wins PISCO winsTie

BioASQ 29.9% 42.6% 27.6%
NQ 35.7% 39.4% 24.9%

TriviaQA 25.7% 57.3% 17.0%
HotpotQA 40.6% 35.8% 23.6%

ASQA 38.2% 33.6% 28.2%
POPQA 34.2% 52.8% 13.0%

Figure 3: GPT-4 pairwise comparisons.
OSCAR-llama, while faster, is on par with no
compression baseline, Provence and PISCO.

Table 1 shows the accuracy results for all backbones, as
well as efficiency measures. First, the no-RAG baseline
has very low performance, indicating that these datasets
are appropriate for RAG evaluations: the models can-
not rely on memorization. Second, OSCAR models are
faster than hard compression baselines while preserv-
ing the accuracy of the no-compression models. Using
OSCAR models in-place of the underlying backbones en-
ables a 2.2-4.8x inference speed-up. Among OSCAR vari-
ants, OSCAR-llama is generally the strongest and fastest,
though it requires pretraining (see 4.2). Most interestingly,
OSCAR-llama model for Mistral-24B enables a 5× de-
crease in computational complexity while improving
the overall results. In fact, OSCAR efficiency improve-
ments are proportional to the backbone size, and hence
particularly advantageous for larger language models.

For OSCAR-N -Layers models, performance improves
with more layers but at the cost of efficiency. Beyond 10
layers, accuracy plateaus while efficiency worsens (details
in Appendix C).

Figure 4 shows LLM evaluation results for Mistral-7B models. These confirm the conclusions based on
the accuracy metric. In fact, OSCAR models tend to be favorably appreciated by this LLM-evaluation. We

7
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Model compr rate ASQA HotpotQA NQ TriviaQA POPQA Avg (∆)

Compression OSCAR-llama x16 0.82 0.64 0.81 0.91 0.65 0.77
rate 16 query-independent x16 0.81 0.60 0.78 0.89 0.57 0.73 (-0.04)

no compressor pretraining x16 0.78 0.56 0.75 0.89 0.51 0.70 (-0.07)

Compression OSCAR-llama x128 0.81 0.61 0.79 0.90 0.63 0.75 (-0.02)
rate 128 query-independent x128 0.81 0.57 0.75 0.89 0.51 0.71 (-0.06)

Other DeBERTa-v3 x16 0.80 0.61 0.77 0.90 0.57 0.73 (-0.04)
compressor Modern-bert-base x16 0.80 0.62 0.77 0.90 0.60 0.74 (-0.03)

architectures Modern-bert-large x16 0.83 0.63 0.80 0.91 0.64 0.76 (-0.01)

BM25 retrieval No compression - 0.57 0.56 0.57 0.81 0.37 0.58
pipeline OSCAR-llama x16 0.57 0.52 0.56 0.80 0.37 0.56 (-0.02)

Table 2: Ablation study on compression rate, pretraining, compressor architectures and retrieval pipeline.
The last column reports averages across the five QA tasks, and the difference compared to OSCAR-llama
(x16). We report point-wise LLM evaluation.

hypothesize that since the retrieval is embedding-based rather than text-based for OSCAR, then reformulation
of the answer into a semantically-equivalent answer is more likely to occur and to comparatively penalize the
accuracy measure. Detailed results for all backbones are given on Table 3.

Finally, Figure 3 provides the results of pairwise comparisons of OSCAR-llama, Mistral-7B, PISCO and
Provence. These confirm that OSCAR, while faster, is on par with its uncompressed baseline and slightly
better on average than Provence. Overall, OSCAR models offer an efficient alternative to regular RAG
pipelines, with a x2-5 speed-up but little to no loss in accuracy.

4.2 ABLATIONS

We run ablations to understand the effect of the components of OSCAR, with results shown on Table 2. All
ablations use a Mistral-7B backbone.

Query-dependence and compression rate. First, Table 2 shows that accuracy losses with x128 compression
are limited, with only 2% decrease on average. Second, we show that not using the query at compression
leads to strong performance degradation, even more pronounced for large compression rate (-6%). Thus,
OSCAR did succeed in using the query to optimize the compressed representation. Furthermore, in Appendix
J, we look into the content of the compressed embeddings, to assess that they do indeed depend on the query.
Figure 13 uses a needle-in-a-haystack test gkamradt (2024) to show that cosine similarity between compressed
embeddings and text tokens is highest near the needle, indicating strong query dependence. Second, Figure
14 examines OSCAR embeddings via logit attributions nostalgebraist (2020), revealing that they align closely
in vocabulary space with context relevant to the query.

Other compressor architectures Results shown in §4.1 relied on Llama-1B as the compressor LLM. To
obtain further efficiency gains, we tested using smaller compressors: modern-bert, modern-bert-large (Warner
et al., 2024) and DeBERTa-v3 (He et al., 2021). Table 2 shows results after pretraining and fine-tuning with
different compressors. Llama-1B performs the best. Modern-bert-large may offer an interesting alternative
for low-latency applications.

Robustness to retrieval changes. In all training and test experiments so far, all documents were retrieved
using SPLADE-v3 and reranked with a DeBERTa-v3-based reranker – a robust RAG setup Rau et al. (2024a).
Yet it still prompts the question of how OSCAR models perform when retrieval quality declines. In particular,
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the behavior of hard compression methods is clearly identifiable on noisy documents – and shown to be
correctly handled by Provence Chirkova et al. (2025) or Recomp Xu et al. (2023). It is more of an open
question for soft compression models like OSCAR. To investigate this, we run evaluation experiments using
BM25 Robertson et al. (1996) only (no reranking) and report results on Table 2. Essentially, the performance
drops of OSCAR models with respect to Mistral-7B are similar – indicating that OSCAR models are able to
handle noisy documents. Detailed results for all datasets are found in Appendix B.

Figure 5: LLM evaluations with increasing num-
ber of retrieved documents: OSCAR models are
as robust as their no-compression baselines.

Long context abilities of OSCAR models. Since OS-
CAR models are trained with 5 retrieved documents, we
investigate whether they remain able to extract and use
information from a larger number of documents. Figure 5
shows the results when increasing the number of retrieved
documents to up to 50 (which makes uncompressed con-
texts around 7k tokens) on ASQA. Note that as the number
of documents increase, because of the quadratic cost of
the attention, the larger compression rate of OSCAR mod-
els make them comparatively faster. With 50 documents,
we measure 5× less FLOPs for OSCAR than Mistral-7B.

4.3 ADDING RERANKING CAPABILITY

Having demonstrated that OSCAR models function effec-
tively as standalone compressors, we also train OSCAR
models capable of both document compression and rerank-
ing. In a RAG pipeline incorporating reranking, the computational cost of compression becomes virtually
negligible, as a single forward pass produces both compressed representations and reranking scores.

The results in Table 4 in the appendix show the performance of such jointly trained models under two
evaluation settings: standalone, which corresponds to the previous setting (DeBERTa-v3 reranker), and
e2e which corresponds to compressing documents reranked by the OSCAR model itself. Essentially, we
observe no drop in performance between standalone and e2e settings, indicating that OSCAR effectively
learns to rerank documents. This finding is further supported by OSCAR’s performance on the BEIR
benchmark Thakur et al. (2021) where its reranking capabilities are nearly on par with the strong teacher
model. Detailed BEIR results for individual datasets are provided in Appendix (Table 5). To match the
teacher’s performance on BEIR, OSCAR requires an increased model depth to 16 layers. However, this
model is less efficient, and its actual e2e performance (evaluated via LLM-based metrics or accuracy) remains
unchanged.

5 CONCLUSION

In this paper, we introduce OSCAR, the first online soft compression methods for RAG. The key challenge
is designing an efficient compression technique for an online setting, which we address with two variants:
one using a small compressor model and another leveraging the generator’s early layers. We compare
OSCAR against hard compression methods (RECOMP, Provence) and soft ones (PISCO), showing that query-
dependent compression is more effective than query-independent approaches. OSCAR also outperforms
or matches hard pruning methods while being more efficient, proving the potential of soft compression.
Additionally, we extend OSCAR with reranking, thereby reducing compression costs by factorization in the
RAG pipeline. Our ablations analyze different backbones, weak retriever performance, behavior with large
number of retrieved documents and further validate the design and performance of OSCAR models.
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Figure 6: LLM evaluation of Qwen2-7B-backboned models, in relation with the total number of floating
point operations required at inference. OSCAR-llama model is the fastest and best compression model.

A ADDITIONAL RESULTS

A.1 OSCAR WITH QWEN2-7B

We showed in Figure 4 the efficiency/performance plots for Mistral-7B backbone, including comparison
with Provence, Recomp and the uncompressed backbone. We provide in Figure 6 the same results but for
Qwen2-7B. OSCAR-llama models remains the best compression model, both in terms of efficiency and LLM
evaluation score. In particular, OSCAR-llama score is on average 4 points above Provence and 6 points above
RECOMP.

A.2 DETAILED LLM EVALUATION RESULTS

In Section 4.1, we provided LLM evaluation results for Mistral-7B models. On Table 3 shows all LLM-
evaluation results. In Section 4.1, we provided pareto plot efficiency/LLM evaluation for Mistral-7B Backbone.
We provide on Figure 7 the corresponding efficiency/accuracy pareto plot. Conclusions are mostly identical
to the main results

A.3 FULL RESULTS ON THE BEIR DATASET

We report in Table 5 the detailed BEIR results on individual datasets.
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Figure 7: Accuracy scores of each Mistral-7B-backboned models, in relation with the total number of
floating point operations required at inference. OSCAR models are faster and better on most datasets.

B DETAILED EFFECTS OF BM25 RETRIEVAL

In section 4.2, we provided averaged effect across datasets of the change of retrieval/reranking pipeline. We
provide in Figure 8 results for individual datasets. These results show that performance is preserved across all
datasets, although it is likely that retrieval for Bioasq is noisier.

C INFLUENCE OF NUMBER OF COMPRESSOR LAYERS

In Section 3, we proposed constructing a transformer by utilizing the initial layers of the backbone to develop
an efficient compressor that operates without requiring pretraining. Since the inference cost scales with
the number of retained layers, it is important to examine the impact of reducing the number of layers used
for compression. This analysis is presented in Figure 9, where the performance appears to plateau around
4-5 layers for Mistral-7B. Notably, increasing the number of layers beyond 10 does not seem to justify the
additional computational cost.

D MORE ABOUT EFFICIENCY

D.1 SETUP TO MEASURE EFFICIENCY

In Section 4.1, we measured efficiency of models based on the total number of floating-point operations
as it is the primary indicator of the computational complexity. To generate these measures, we generate
fake inputs of standardized size (a query/prompt of 128 tokens associated with 10 128-token documents)
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Backbone Compressor ASQA HotpotQA NQ TriviaQA POPQA BIOASQ Average

Mistral-7B

No compression 0.82 0.62 0.80 0.90 0.61 0.82 0.76

RECOMP 0.83 0.61 0.78 0.89 0.58 0.83 0.75
Provence 0.82 0.60 0.80 0.89 0.58 0.85 0.76
PISCO 0.81 0.60 0.78 0.89 0.57 0.79 0.74

OSCAR-llama 0.82 0.64 0.81 0.91 0.65 0.81 0.77
OSCAR-5-Layers 0.82 0.62 0.79 0.90 0.63 0.77 0.76
OSCAR-8-Layers 0.82 0.64 0.80 0.91 0.64 0.79 0.77

Llama-1B No compression 0.69 0.48 0.66 0.81 0.52 0.76 0.65
OSCAR-5-Layersa 0.71 0.53 0.70 0.85 0.55 0.72 0.68

Qwen-7B
No compression 0.80 0.67 0.78 0.91 0.65 0.84 0.78

OSCAR-8-Layers 0.81 0.61 0.78 0.90 0.64 0.80 0.76
OSCAR-llama 0.82 0.62 0.79 0.90 0.65 0.81 0.76

Mistral-24B No compression 0.82 0.71 0.80 0.92 0.70 0.85 0.80
OSCAR–llama 0.82 0.65 0.82 0.92 0.67 0.84 0.79

Table 3: LLM evaluation and efficiency for OSCAR models and baselines based on various backbones.
OSCAR models are more effective and faster than their backbones with no compression. OSCAR models are
also more efficient than the two hard compression baselines Provence and Recomp.

aWe do not train an OSCAR-llama with llama-32-1B backbone as it would not increase global efficiency.

Model Setting
LLM evaluation score︷ ︸︸ ︷ BEIR

ASQA HotpotQA NQ TriviaQA POPQA BIOASQ Average

OSCAR-llama standalone 0.83 0.64 0.80 0.91 0.66 0.80 0.77 52.8e2e 0.81 0.63 0.79 0.91 0.66 0.80 0.77

OSCAR-8-Layers standalone 0.82 0.64 0.81 0.91 0.64 0.79 0.77 52.5e2e 0.81 0.63 0.79 0.90 0.64 0.78 0.76

OSCAR-10-Layers standalone 0.82 0.64 0.81 0.91 0.64 0.80 0.77 54.3e2e 0.81 0.65 0.82 0.91 0.66 0.78 0.77

Table 4: LLM evaluation and reranking performance on the BEIR benchmark (mean
nDCG@10 on the 13 BEIR datasets). We report results for three efficient OSCAR models
on two RAG settings (with a Mistral-7B decoder). The reranking performance of the teacher
(based on DeBERTa-v3) is 55.4. Note that the performance on the standalone setting might slightly
differ from previous Tables as these models are trained with a different loss (joint training).

and do compression and the generation of a 32 token answer6 from an input of size computed from the
compression rate of each method (e.g., for OSCAR with compression rates 16, the input to the generator is
of size 128 + 10 128

16 ). To compute FLOP we set the batch size to 1 and use torch.profiler. We provide
additional measures regarding inference time and peak GPU memory in each case. We set the batch size
at 256 (32 for the larger Mistral-24B) to compute the inference time (simulating a busy service) and the

6The analysis for generated answers of 128 or 256 tokens leads to similar conclusions

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Corpus DeBERTa-v3 OSCAR-llama OSCAR-8-Layers OSCAR-10-Layers OSCAR-16-Layers

TREC-COVID 88.3 83.1 81.4 84.4 86.1
NFCorpus 37.5 34.2 34.5 36.5 36.9
NQ 66.7 63.3 61.3 64.1 67.2
HotpotQA 74.5 72.9 72.2 73.5 74.3
FiQA-2018 47.8 42.7 40.8 44.3 47.5
ArguAna 29.8 29.5 32.5 32.4 34.0
Touché-2020 33.5 29.3 31.6 31.9 31.3
Quora 84.8 86.0 86.0 87.5 87.9
DBPedia 48.9 47.5 46.5 48.2 49.2
SCIDOCS 19.2 17.2 17.6 18.6 19.3
FEVER 86.6 83.6 83.1 84.1 83.9
Climate-FEVER 27.4 25.9 24.2 25.3 26.3
SciFact 75.8 71.2 71.2 75.2 75.5

average 55.4 52.8 52.5 54.3 55.3

Table 5: nDCG@10 on the 13 open BEIR datasets. DeBERTa-v3 is the reranker teacher used to train
OSCAR models.

Backbone Compressor
Inference time (ms)†︷ ︸︸ ︷

Architecture Parameters Inference Compression Total Peak memory (Gb)‡

Mistral 7B

No compression - 141.6 0. 141.6 24.3
OSCAR-5L 1.2B 33.0 18.0 51.0 (2.3×) 16.2
OSCAR-8L 1.91B 33.0 28.8 61.8 (2.2×) 16.2
OSCAR-llama 1.1B 33.0 17.1 50.1 (2.8×) 16.2

Llama 3.2 1B No compression - 30.2 0. 30.2 8.6
OSCAR-5L 8.3 5 13.3 (2.3×) 4.3

Qwen-2-7B
No compression - 109 0. 109 30.2
OSCAR-5L 1.7B 25.6 15.2 40.8 (2.7×) 23.3
OSCAR-llama 1.1B 25.6 17.1 42.7 (2.6×) 23.3

Mistral-24B No compression - 383.2 0. 383.2 69.2
OSCAR–llama 1.1B 67.9 17.1 85.0 (4.5×) 51.9

Table 6: Inference time and memory for each model. Computed with 128-token queries and 10 128-token
retrieved documents. † computed with batch size 256 (32 for Mistral-24B) but brought down to individual
query cost ‡for a batch of size 32.

peak GPU memory. In all cases we use hugging face implementation of the models. For memory usage and
inference time, we average the results over 10 runs.

Results are shown in Table 6. Gains observed in terms of floating-point operations mostly translate to
computational time (as can be expected for sufficiently large batch sizes). OSCAR models enable to save
about 50-75% of memory across the various backbones. In practice, this larger batch sizes to be used and
hence further latency improvements.
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Figure 8: Effect of retrieval on OSCAR models, per dataset, compared to their uncompressed backbone.

E LLM EVALUATION

Our primary evaluation metric follows the LLM-based assessment proposed in Rau et al. (2024a). This
approach utilizes the SOLAR-107B model7 prompted to determine the correctness of a predicted answer
by comparing it against both the given question and a reference answer. This metric can be viewed as an
enhanced version of traditional accuracy, as it remains more robust to surface-level variations that do not alter
the underlying semantic content. The prompt used is given in Figure 10.

F PROMPTS

The prompt we use for generation is given on Figure 11. The prompt for GPT pairwise comparison is given
on Figure 12

7huggingface/upstage/SOLAR-10.7B-Instruct-v1.0
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Figure 9: Average accuracy on general domain datasets for OSCAR models where the compressor has a
variable number of layers. Performances increase with the number of layers but plateau above 8-10 layers for
both Qwen2-7B and Mistral-7B backbones.

Figure 10: LLM Evaluation Prompt

system: "You are an evaluation tool. Answer with one of 1: Correct, 0.5: Partially correct, 0: wrong.
user: "Here is a question, a golden answer, and an AI-generated answer. Can you judge whether the
AI-generated answer is correct according to the question and golden answer? Simply answer with
one of 1: correct, 0.5: partially correct, 0: wrong. Question: {question}. Golden answer: {answer}.
Generated answer: {prediction}."

G OSCAR TRAINING HYPERPARAMETERS

We provide in this section details enabling the replication of OSCAR training results. Note that all OSCAR
models for all backbones (from llama-1B all the way to mistral-24B) were trained using this configuration.
Our training code relies on HuggingFace trainer and an adaptation of the public Bergen library Rau et al.
(2024a).

Note that OSCAR-N-layer models are directly trained by fine-tuning on the distillation data described in
Section 4: they do not need pretraining. This is a similar effect as in Louis et al. (2025). On the contrary,
OSCAR-llama models need a pretraining described in Appendix H.

Hyper-parameter search to build OSCAR models We took hyperparameters from Louis et al. (2025) and
only conducted a small grid search over 8 values to tune the learning rate required on the compressor, as we

Figure 11: Main Prompt

system: You are a helpful assistant. Your task is to extract relevant information from provided documents
and to answer questions as briefly as possible.
user: Background:
{doc1}SEP{doc2} . . .SEP{dock}
Question: {question}
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Figure 12: Gpt-4o Pairwise Comparison Prompt

system: "You are a helpful assistant that ranks models by the quality of their answers. Please act as an
impartial judge. Do not allow the length of the responses to influence your evaluation. Be as objective
as possible."
user: "Here is a question, a ground truth answer, an AI-generated answer 1, and an AI-generated answer
2. Which answer is the most correct one? Simply answer 1 if the first is better, 2 if the second is better,
and 3 if it’s a tie.
Question: {question}.
Ground truth answer: {ref answer}.
Answer 1: {answer1}.
Answer 2: {answer2}."

Hyperparameter Value
Batch Size 128
LR generator 1× 10−4

LR llama compressor 1× 10−4

LR N-layers compressor 5× 10−5 a

LR scheduler linear
Optimizer AdamW
Epochs 1
Max Tokens Teacher Generation 128
LoRA Layers (r) all-linear
LoRA Rank (r) 16
LoRA Dropout 0.1
LoRA Alpha 32
Llama compressor hidden dim 8096
Weight Decay 0.1
Warmup Ratio 0.05
Max Gradient Norm 1.0
Documents max tokens 128

Table 7: Fine-tuning Hyper-parameters.

aInitial results with identical learning rates between the LoRA-trained decoder and fully fine-tuned N-layers compressor
gave poor results: learning rates need to be differentiated between compressor and decoder in this case.

noticed performances were underwhelming with identical learning rates on compressor and generator. The
total computation time to train an OSCAR model around Mistral-7B is around 50 hours on a single high-end
GPU.

H OSCAR-LLAMA PRETRAINING

OSCAR models using llama-1B as compressor models without any pretraining failed to reach satisfying
performances (see Table 8). We attribute this effect to the need of building a map between the compressor
hidden space and the decoder hidden space. To achieve this, we use the same pretraining as proposed in Rau
et al. (2024b), with identical hyperparameters and a pretraining dataset consisting of chunks preprocessed
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Model ASQA HotpotQA NQ TriviaQA POPQA

OSCAR-llama 0.82 0.64 0.81 0.91 0.65
+ without pretraining 0.78 0.56 0.75 0.89 0.51

Table 8: Ablation on the pretraining for OSCAR-llama model.

from fineweb8. Note that experiments show that as long as some form of extended pretraining is done which
requires the decoder to use embeddings produced by the compressor, the ensuing OSCAR-llama models are
strong. Therefore, the exact recipe of the pretraining is not crucial for replicating our work.

I STRING NORMALIZATION FOR METRIC COMPUTATION

To measure accuracy, F1 score or recall between a ground truth label and a prediction, we check that the
normalized label is included in the normalized prediction. When multiple labels are possible, we take
maximum values across the available labels. Normalization consists in:

• Converting the string to lowercase
• Removing punctuation
• Removing articles: “a”, “an”, “the”
• Standardizing word splits by replacing multiple spaces and line returns with a single space

J RELATION BETWEEN EMBEDDINGS AND QUERY

While OSCAR offers greater computational efficiency and accuracy, it lacks the interpretability of hard
compression methods. In this section, we offer a glimpse into the content of the compressed embeddings, to
assess that they do indeed depend on the query. First, Figure 13 uses a needle-in-a-haystack test gkamradt
(2024) to show that cosine similarity between compressed embeddings and text tokens is highest near the
needle, indicating strong query dependence. Second, Figure 14 examines OSCAR embeddings via logit
attributions nostalgebraist (2020), revealing that they align closely in vocabulary space with context relevant
to the query.

8huggingface./datasets/HuggingFaceFW/fineweb
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Figure 13: Cosine similarity between document
embeddings and document individual tokens, on
a needle-in-a-haystack test. The document embed-
dings are more similar to the area around the needle,
indicating that the compression focuses on query-
related elements.

Cats have excellent night vision and can see at one sixth the light level required 
for human vision. This is partly the result of cat eyes having a tapetum 
lucidum, which reflects any light that passes through the retina back into the 
eye, thereby increasing the eye's sensitivity to dim light. Snakes are elongated, 
limbless reptiles of the suborder Serpentes. Like all other squamates, snakes 
are ectothermic, amniote vertebrates covered in overlapping scales.

What allows cats to see in 
light levels six times dimmer 
than what humans require?

What type of body 
covering do snakes have?

dim, <MEM0>, any, cat, eye, 
back, reflect, tap, sensitivity, 

thereby, reflected, any

el, lim, covered, Lim, Sub, 
overl, am, sub, of, cats, 

Cover, Se

Query

Embedding  
logits 

 attributions

Context

Figure 14: Logits attributions on OSCAR embed-
dings. Attributed tokens predominantly correspond
to an area of the context relevant to the query.

22


	Introduction
	Related Works
	Method
	Experiments
	Main results
	Ablations
	Adding reranking capability

	Conclusion
	Additional results
	OSCAR with Qwen2-7B
	Detailed LLM evaluation results
	Full results on the BEIR dataset

	Detailed effects of BM25 retrieval
	Influence of number of compressor layers
	More about efficiency
	Setup to measure efficiency

	LLM evaluation
	Prompts
	OSCAR training hyperparameters
	OSCAR-llama pretraining
	String Normalization for metric computation
	Relation between embeddings and query

