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Abstract

Modern chip design is complex, and there is a crucial need for early-stage prediction
of key design-quality metrics like timing and routing congestion directly from
Verilog code (a commonly used programming language for hardware design).
It is especially important yet complex to predict individual lines of code that
cause timing violations or downstream routing congestion. Prior works have
tried approaches like converting Verilog into an intermediate graph representation
and using LLM embeddings alongside other features to predict module-level
quality, but did not consider line-level quality prediction. We propose VeriLoC,
the first method that predicts design quality directly from Verilog at both the
line- and module-level. To this end, VeriLoC leverages recent Verilog code-
generation LLMs to extract local line-level and module-level embeddings, and
trains downstream classifiers/regressors on concatenations of these embeddings.
VeriLoC achieves high F1-scores of 0.86–0.95 for line-level congestion and timing
prediction, and reduces the mean average percentage error from 14%− 18% for
SOTA methods down to only 4%. We believe that VeriLoC embeddings and
insights from our work will also be of value for other predictive and optimization
tasks for complex hardware design.

1 Introduction

Modern chip design is highly complex. It begins with devising a description of the chip’s behavior
in a hardware description language (HDL) like Verilog.2 This is followed by a series of automated
steps, including synthesis (where RTL code is converted into a circuit of Boolean logic and its gate
implementation), placement (which arranges gates on the chip canvas), and routing (which connects
gates using metal wires). This process transforms the RTL code into a manufacturable chip layout.

Key metrics for design quality, like area, timing, power, routing congestion, etc., can only be verified
from final layouts, but obtaining these layouts can take hours or days as synthesis, placement, routing,
and other steps in the design flow are extremely complex and time-consuming. Designers often
iterate multiple times till specifications and quality targets are met; these iterations can take anywhere
from weeks to months, impacting time-to-market. Timing and routing congestion, in particular, are
difficult to manage and are frequently the main impediment to design closure [1–5].

∗Both authors contributed equally to this research.
2HDL codes are commonly also referred to as register-transfer level (RTL) descriptions. We use RTL or

Verilog interchangeably from here on.
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Figure 1: Conventional flow vs proposed for an exemplary AES design. ➊ The RTL code is converted
into a synthesized netlist, e.g., represented by an AIG. ➋ The netlist is converted into a layout, with
congestion arising in green areas (bounded in red). ➌ Congestion information is annotated and traced
back to the RTL. With VeriLoC, we directly predict congestion and timing for the RTL at run-time,
bypassing the time-consuming conventional steps.

To address this issue, a body of recent work has proposed early-stage prediction of design quality from
RTL code, typically via intermediate representations of RTL like and-inverter graphs (AIGs)3 [6–10].
However, intermediate representations might lose rich semantic information available in the RTL
code in compact form. For example, a 64-bit multiplier is a single line of Verilog, but corresponds to
hundreds or thousands of gates in an AIG, where information must then be reverse engineered by
the ML model. Recent work has leveraged large language model (LLM) based encodings of Verilog
modules for accurate module-level power, performance, and area (PPA) prediction [11, 12].

Aside from early-stage module-level predictions, designers can greatly from identifying individual
lines of code (LoC) responsible for inducing timing violations or routing congestion. While electronic
design automation (EDA) tools like RTL Architect [13] provide the capability of back-annotating the
lines of code from a final layout (Step 3 in Fig. 1), these too are complex and time-consuming. Here,
we pose a new research question that has not been addressed in literature: can we predict design
quality, specifically, timing and routing congestion, from RTL code at the module and the individual
line-of-code level?

A key challenge in addressing this question is how to obtain informative RTL embeddings—here,
we leverage the recent emergence of LLMs trained specifically for Verilog code generation like
CL-Verilog 13B [14]. Although CL-Verilog is a decoder-only model, recent studies [15, 16] have
demonstrated that internal activations from these models can yield effective embeddings. Using
penultimate layer outputs from CL-Verilog as embeddings, we propose VeriLoC, a novel architecture
for line-level classification of Verilog code. To the best of our knowledge, the LoC-level prediction
problem has not been addressed in literature before.

The key idea in the proposed VeriLoC architecture (Figure 2) is to concatenate embeddings of each
line-of-code in a Verilog module with an embedding of the entire module, thus obtaining both a
local and global context. In practice, we find that additionally concatenating embeddings from up to
two neighboring lines further improves performance. VeriLoC then trains a supervised classifier (or
regressor) on ground-truth data from Synopsys RTL Architect [17] on the OpenABCD dataset [18],

3An AIG is a Boolean circuit, which consists only of the so-called universal set of AND and NOT gates, and
is at the same time functionally identical to the RTL.
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using models like XGBoost [19] and LightGBM [20] tailored for scarce and imbalanced data. Our
contributions are as follows:

• We propose and evaluate VeriLoC, a novel LLM-based architecture for early-stage predic-
tion of hardware design quality directly from RTL code, both at the individual lines of code
and entire modules. Prior work only performs module-level predictions and converts RTL to
an intermediate representation, thereby losing rich semantic information.

• We identify the importance of capturing both the local context, i.e., neighboring lines of
code, and global context, i.e., the entire Verilog module, in enabling line-level timing
and congestion predictions. VeriLoC’s architecture concatenates both local and global
embeddings before the final classification step.

• VeriLoC achieves F1-scores of 0.86 in line-level congestion prediction, 0.95 in line-level
timing prediction, and also outperforms state-of-art in module-level timing prediction,
reducing the mean average percentage error from 18% and 14% to only 4%.

• We demonstrate the usefulness of LLMs specialized for RTL code generation to also generate
powerful RTL code embeddings that can be used for challenging downstream prediction
tasks, specifically, timing and routing congestion prediction.

Overall, VeriLoC4 establishes an entirely new approach for early-stage prediction from RTL code,
which might be of value not only to other prediction tasks, but also for code and design optimization.

2 Background and Related Work

We discuss relevant background on hardware design and contrast VeriLoC with related work on
predicting design quality and on LLM-based prediction of code quality.

2.1 Hardware Design: Quality Metrics and Prediction

2.1.1 Routing Congestion

What is Routing Congestion? Routing is one of the most complex and time-consuming steps in
hardware design. Routing entails interconnecting logic gates with wires after the gates are placed
on the chip canvas. Modern chips have tens of different routing layers, where any two wires that
need to cross without connecting electrically can be routed above another, akin to a flyover in a
traffic network. Almost every problem related to routing is known to be intractable [21]. Thus, like
most processes in EDA, routing is heavily reliant on heuristic optimization, which cannot guarantee
best quality in one go. In this context, managing routing congestion—or congestion for short—is
important. This arises when multiple wires pass through the same small area of a chip, such that, in
the worst case, the number of routing layers is insufficient to route all wires correctly, i.e., without
at least two wires crossing paths. When this happens, the entire design might need to be undergo
placement again, or might even necessitate an RTL rewrite.

Predicting Routing Congestion. Traditional methods commonly integrate actual routing pro-
cesses [22–25] or analytical models that estimate congestion [26–29]. However, routing-based
methods are plagued by considerable runtime cost while analytical-based approaches suffer from rel-
atively low accuracy. To address these challenges, more recent works have employed ML techniques.
For example, [30] utilize convolutional neural networks (CNNs) to predict the overall routability of
placement solutions. In a follow-up work, [31] employ deep neural networks (DNNs) to achieve better
performance for congestion prediction and guide toward less-congested placement. Furthermore,
[32–37] all use graph neural networks (GNNs) using synthesized and/or placed netlists as inputs,
which require running time-consuming synthesis and placement tools, respectively.

2.1.2 Timing

What is Timing? Timing is a critical aspect of chip design and determines the fastest frequency at
which the chip can operate. Timing is affected by every process in the design cycle, but the most
critical impact is within the RTL stage, as this dictates the architecture and data flow of the IC.
Roughly, timing refers to the time it takes for data to propagate from a circuit’s input to its output;

4https://github.com/ML4EDA/VeriLoC.git
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thus, the longest sequence of gates from the input to the output is referred to as the critical path. Often,
timing is measured by worst negative slack (WNS), i.e., the difference/slack between the desired
critical-path delay and the actual critical-path delay. The goal for designers is to push WNS above
zero, i.e., to keep delays within the desired budget.

Timing Prediction. Prior works predict timing by employing various ML techniques at various
design stages. Closest to our work, [1–4] predict timing for entire modules at the RTL stage, but
use either AIGs or other intermediate representations. Of these, [4, 1] are the current state-of-the-
art methods. VeriLoC demonstrates substantial accuracy improvements compared to both. Other
methods propose timing prediction at later stages in the design, including after synthesis [5] and after
placement [38, 39]. All of these methods are focused on module-level timing prediction; VeriLoC is
the first method to provide line-of-code level predictions of WNS.

2.2 LLMs for Code Generation and Quality Prediction

2.2.1 LLMs for Software Code Quality

LLMs have demonstrated significant potential for coding, with applications spanning bug detection,
program synthesis, and performance optimization [40]. Models like CodeBERT, GraphCodeBERT,
and CodeT5 effectively capture syntactic and semantic nuances in high-level programming languages,
making them invaluable for tasks like code summarization, translation, and repair [41, 42]. The
aforementioned LLMs excel at these generative tasks. Bug detection can be viewed as a line-level
prediction task, and has been addressed via pattern matching using static analysis [43], enhanced
with LLMs [44], or by using LLMs for test generation and fuzzing [45]. In most instances, given
the massive amounts of open-source software and vulnerability datasets, these methods can leverage
LLMs with careful prompt tuning, retrieval, and agentic frameworks. Indeed, state-of-art approaches
like LLMSAN [46] utilize few-shot chain-of-thought prompting to extract structured data-flow paths
for bug detection, but do not make any architectural modifications. Unfortunately, data is scarce in
hardware, and concepts like routing congestion are barely mentioned. As we show later, prompting
methods fail completely for line-level congestion and timing estimation.

2.2.2 LLMs for Hardware

While LLMs originally targeted software code, recent work has extended their use to hardware
description languages such as Verilog. Generative Verilog models (e.g., VeriGen [47], CLVerilog [14],
RTLCoder [48] and Others [49–52]) achieve impressive synthesis quality but do not provide down-
stream quality-of-results (QoR) metrics. Building on this trend, RTLRewriter applies LLM-guided
rewriting for optimization [53], and RTLFixer employs LLM-driven debugging to correct syntax
errors at scale [54]. Beyond generative tasks, LLMs have begun to assist QoR estimation for rapid
design-space exploration. For PPA estimation, multimodal techniques—including CircuitFusion and
VeriDistill hardware code with structural or graph-based embeddings to predict power, performance,
and area [12, 11]. However, these methods operate at module or graph granularity, leaving line-level
semantics unexplored. To the best of our knowledge, VeriLoC is the first ever line-level QoR predic-
tor using a hardware-specialized LLM, enabling prediction of timing and congestion metrics directly
at the statement level in Verilog code.

3 Methodology

Overview. VeriLoC builds on the premise that LLMs customized for RTL/Verilog code generation
that have recently begun to emerge can be also be used as embeddings that capture the semantics
of RTL code and used for downstream prediction tasks. VeriLoC is the first to demonstrate this
property in the hardware context. We illustrate our methodology in Fig. 2. Our approach relies
on embeddings generated by CL-Verilog [14], a variant of LLaMA-2 fine-tuned on Verilog code,
extracted from its penultimate layer activations. We use these embeddings hierarchically, offering
semantic representations at both the module- (Sec. 3.1) and line-level (Sec. 3.2), potentially with
more context from neighboring lines (Sec. 3.2). These embeddings are projected to a lower dimension
(Sec. 3.3), concatenated and a final classification/regression head outputs line- and module-level
predictions (Sec. 3.5).
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  input  wire [   0:0] reset
);
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  input  wire [  15:0] in0,
  input  wire [  15:0] in1,
  output reg  [   0:0] out,
  input  wire [   0:0] reset
);

  always @ (*) begin
    out = (in0 < in1);
  end

endmodule

Classifier
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Figure 2: The architecture of VeriLoC for line-level timing and congestion prediction from RTL.
Module-level prediction uses module embedding. The context window is set to p = 5 in this example.

3.1 Module-Level Embeddings

Modules in RTL designs are represented as sequences of lines of Verilog: M = {l1, l2, . . . , ln}, where
li is the i-th line of code in the module. To capture the global semantics of the module, the complete
module is passed through CL-Verilog, which generates hidden states H = {h1, h2, . . . , hn}, where
hi ∈ Rk is the latent vector for the i-th token of CL-Verilog’s tokenizer, and k is the dimensionality
of the model’s hidden state. Module embeddings e(M) are computed as the pooled dot products of
the hidden states and attention mask, normalized by sum of the attention mask:

e(M) =

∑n
i=1(hi ·mi)∑n

i=1 mi
.

where mi ∈ {0, 1} is the attention mask that ensures only valid tokens contribute to the embedding,
and the dot product hi ·mi highlights the importance of each hidden state relative to the mask. The
resulting module embedding e(M) ∈ Rk provides a condensed global representation of the module,
enabling the detection of macro-level patterns such as resource utilization and timing violations.

3.2 Line-Level Embeddings

To capture localized semantics of Verilog and their impact on design quality, embeddings are also
generated for individual lines of code. Each line li is passed independently through CL-Verilog,
producing a hidden state hi. Similar to module embeddings, the line embedding e(li) is computed
using the attention-weighted pooling mechanism:

e(li) =

∑n
i=1(hi ·mi)∑n

i=1 mi
.

These embeddings e(li) ∈ Rk focus on the specific performance characteristics of each line, such as
whether it contributes to congestion or WNS.
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3.3 Dimensionality Reduction

After extracting module-level and line-level embeddings, dimensionality reduction is applied to ensure
computational efficiency and improve downstream task performance. The combined embedding
xi = [e(li); e(M)] undergoes dimensionality reduction as follows.5 An encoder-decoder framework
is trained to reconstruct the original concatenated embedding xi from its reduced representation. The
encoder maps the high-dimensional input xi to a lower-dimensional space Rd: zi = Encoder(xi),
while the decoder reconstructs xi from zi: Φ(xi) = Decoder(Encoder(xi)). The framework is
optimized to minimize the reconstruction loss: L = ∥xi − Φ(xi)∥2. Once training is complete,
only the encoder is retained for dimensionality reduction. In short, the encoder provides compact
embeddings zi and serves as a pre-trained initialization for downstream classification and regression.
3.4 Contextual Feature Augmentation

Contextual feature augmentation enhances the representation of a target line by integrat-
ing dependencies from surrounding lines. It captures sequential patterns and inter-line re-
lationships, which are essential for analyzing RTL code. The embeddings of a target line
li are concatenated with those of its neighboring lines within a context window p. For
any li, the augmented embedding is: zaug(li) = [zi−p; . . . ; zi; . . . ; zi+p], where zi is the
reduced embedding and [·] denotes vector concatenation. This approach introduces lo-
cal dependencies, enabling the classifier to capture the sequential nature of RTL designs.

always @(posedge clk) begin

  if(N22) begin

    ram[126] <= io_enq_bits[62];

  end 

end

    always @(posedge clk) begin

      if(N22) begin

         maybe_full <= N17;

      end 

    end

No Congestion Congestion

Figure 3: Effect of neighbor embeddings in context-aware
congestion and timing detection.

As shown in Fig. 3 (left), the
statement always @(posedge clk)
begin is not flagged, but in Fig. 3
(right), with maybe_full <= N17;
introduced, the same line always
@(posedge clk) begin becomes
congestion-causing. This shows
context-aware analysis can enhance
detection by considering dependen-
cies between neighbouring lines.

3.5 Classification and Regression
Heads

The concatenated embeddings feed into a classification head for line-level classification of code that
cause congestion and timing issues, and a regression head for WNS prediction. We compare three
classification/regression heads: (1) Feedforward Neural Networks (FNNs), a single-layer and fully
connected neural network that replaces CL-Verilog’s original classification head, but with a single
classification (or regression) output; (2) XGBoost, a gradient-boosted tree [19]; (3) LightGBM, a
lightweight gradient-boosting framework optimized for speed and performance [55]. XGBoost and
LightGBM are used because of their demonstrated performance on imbalanced datasets [56]. This is
essential for our work as only a small number of lines of code cause congestion or timing issues.

Although our primary focus is LoC-level prediction, we also use VeriLoC to estimate module-level
WNS. Specifically, we we first estimate WNS at the line level and then select the worst (smallest) value
across all lines. This line-wise granular prediction strategy allows the model to capture granular WNS
estimates, and improves upon state-of-art module-level WNS predictors that use only module-level
embeddings or features. This formulation, to the best of our knowledge, is unique to VeriLoC.

4 Empirical Evaluation

4.1 Experimental Setting

Dataset. We use the popular OpenABCD [18] RTL/Verilog code dataset for our experiments, using
various Verilog modules from all projects in the dataset. We employed an 80/20 random split of the
dataset to obtain training vs. test data. Dataset characteristics are shown in Table 1.

5Implementation and training is detailed in Appendix B.
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To generate labels for timing and congestion, we use RTL Architect from Synopsys [13], transforming
all designs to their physical layout, using the open-source Nangate 45nm standard-cell library. We
ran all our designs with an aggressive timing constraint of 0.25 ns, because Synopsys RTL-A only
reports WNS when a timing constraints are actually violated.

Table 1: Characteristics of OpenABCD and extracted Verilog.
Designs have between 300–30K LOC.

Design # of # of Lines Design # of # of LinesModules Modules

aes 2 301 coyote 114 176279
ariane 39 214930 dynamic_node 9 796
black_parrot 88 62948 ethmac 10 1168
bp_be_top 38 13289 jpeg 5 669
bp_fe_top 15 7363 microwatt 31 26033
bp_multi_top 89 32959 swerv_wrapper 57 16496
bp_quad 252 293281 vanilla5 39 11577

Hyperparameter Setting. For con-
gestion and timing detection, we
employed XGBoost [19], Light-
GBM [20], and an FNN, each tuned
to handle class imbalance and opti-
mize predictive performance. XG-
Boost was configured with default hy-
perparameters: scale_pos_weight
set as the ratio of the majority
to minority class to mitigate im-

balance, max_depth=30, learning_rate=0.05 and n_estimators=500. LightGBM
used is_unbalance=True for automatic class weight adjustment, and default settings of
num_leaves=100, learning_rate=0.05, and feature_fraction=0.8. The regression head
followed a similar training procedure using the ‘XGBRegressor’ with a squared error loss. The FNN
consisted of a single sigmoid neuron trained with binary cross-entropy (BCE) loss and was optimized
using Adam with a learning rate of 1e−4.

Metrics. For congestion and timing classification tasks, we use the F1-score, precision, and recall to
measure the balance between sensitivity and specificity. For the regression task of WNS prediction,
we employ R² and mean absolute percentage error (MAPE), providing insights for goodness-of-fit
and prediction error relative to the target.

Hardware. CL-Verilog feature extraction was performed on a single NVidia H100, and downstream
classifiers (XGBoost and LightGBM) were trained/evaluated on a CPU machine with 32GB RAM
and 8 CPU cores. The FNN model was trained/evaluated using an NVidia RTX 8000 GPU.

4.2 Line-level Classification Results

We begin by discussing VeriLoC’s performance on line-level classification for both congestion and
timing prediction. Table 2 tabulates our results for three different classification heads, as well as
different context lengths (p = {1, 3, 5}).

Congestion Detection. As shown in Table 2, the highest F1-score for congestion detection is
0.86, achieved by the LightGBM classifier with a context length of 5. This result underscores the
importance of contextual information in accurately identifying congestion-causing lines.

Table 2: Performance of VeriLoC on line-level
congestion and timing detection. Best results are
highlighted in blue.

Congestion Timing
Classifier Context

Length P R F1 P R F1

FNN
0 0.38 0.74 0.50 0.67 0.88 0.76
3 0.41 0.77 0.54 0.71 0.89 0.80
5 0.86 0.70 0.77 0.76 0.92 0.83

XGB
0 0.38 0.74 0.50 0.76 0.92 0.83
3 0.42 0.78 0.55 0.91 0.93 0.92
5 0.94 0.78 0.85 0.94 0.94 0.94

LGBM
0 0.38 0.78 0.51 0.82 0.91 0.83
3 0.41 0.76 0.53 0.93 0.92 0.92
5 0.94 0.79 0.86 0.96 0.94 0.95

Timing Detection. The highest F1-score of 0.95
is obtained using the XGBoost and LightGBM
classifiers with a context length of 5, similar to
the best performing model for congestion de-
tection. Interestingly, timing prediction results
are less sensitive to local context compared to
congestion prediction. We achieve F1-scores of
0.83 for timing prediction even without local
context (p = 0).

These results reinforce prior observations about
the advantage of XGBoost and LightGBM over
deep networks in handling imbalanced datasets
and irregular feature distributions [56], albeit
these results were in the context of tabular data.
XGBoost and LightGBM improve F1-scores
from 0.77 to 0.86 for congestion prediction and 0.83 to 0.95 for timing prediction.

As shown in Table 2, they consistently outperform FNNs in both congestion and timing detection,
particularly with a larger context of 5. The highest F1-scores for congestion detection (0.86) and
timing detection (0.95) were achieved by these models, reinforcing their robustness in handling
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Figure 4: Scatter plots of actual vs. predicted line-level WNS using VeriLoC for three Verilog
projects. In most instances, the predictions follow the actual WNS closely.

imbalanced datasets. The computational efficiency of XGBoost and its robustness in optimizing for
minority class representation contributed to its superior performance compared to FNNs.

4.3 Timing Prediction and Comaprisons with SoTA

Table 3: Line-level prediction of WNS using VeriLoC. Mod-
ule level prediction obtained from line-level ones.

Design R² MAPE Design R² MAPE

aes 0.97 0.03 coyote 0.99 0.03
ariane 0.96 0.06 dynamic_node 0.76 0.18
black_parrot 0.99 0.01 ethmac 0.96 0.05
bp_be_top 0.76 0.27 jpeg 0.99 0.07
bp_fe_top 0.99 0.02 microwatt 0.93 0.21
bp_multi_top 0.99 0.02 swerv_wrapper 0.94 0.08
bp_quad 0.98 0.02 vanilla5 0.99 0.02

Table 3 reports VeriLoC’s perfor-
mance for predicting WNS at the line-
level. Across all designs, VeriLoC’s
achieves high R2 and low MAPE
across all designs but two. The accu-
racy of our WNS predictions are also
evident Figure 4, where we compare
actual vs. predicted WNS for all lines
in three benchmarks.

We now compare VeriLoC’s module-
level WNS prediction against state-of-

art approaches. Recall that VeriLoC’s module-level WNS predictions are obtained by first predicting
WNS of each line in the code and then picking the smallest WNS, while other methods only use entire
module-level features. Table 4 compares VeriLoC with MasterRTL [4] and RTL-Timer [1], SoTA
methods that use handcrafted features derived from RTL. Across designs, VeriLoC outperforms prior
art, with higher R² values (always >0.90) and much lower MAPE (always <0.10).

Table 4: VeriLoC vs. SOTA on module-level WNS (timing)
prediction. VeriLoC substantially improves R² and MAPE.
Best results are in blue.

MasterRTL RTL-Timer VeriLoC
Design R² MAPE R² MAPE R² MAPE
aes 0.67 0.26 0.76 0.23 0.97 0.08
ariane 0.71 0.15 0.79 0.11 0.93 0.07
black_parrot 0.75 0.10 0.83 0.07 0.99 0.02
bp_be_top 0.76 0.12 0.87 0.08 0.98 0.08
bp_fe_top 0.80 0.09 0.88 0.05 0.98 0.04
bp_multi_top 0.61 0.16 0.67 0.13 0.99 0.02
bp_quad 0.69 0.14 0.78 0.10 0.94 0.06
coyote 0.74 0.15 0.83 0.12 0.99 0.03
dynamic_node 0.73 0.20 0.80 0.16 0.99 0.06
ethmac 0.77 0.24 0.83 0.21 0.99 0.03
jpeg 0.82 0.29 0.90 0.26 0.98 0.04
microwatt 0.81 0.20 0.80 0.16 0.99 0.02
swerv_wrapper 0.69 0.27 0.76 0.24 0.95 0.07
vanilla5 0.68 0.19 0.74 0.16 0.98 0.07

Table 5 compares VeriLoC with
three additional baselines on module-
level WNS: GNN-based predictors
from synthesized netlists [10],
VeriDistill [11] that uses LLM-based
RTL embeddings with GNN-based
synthesized look-up-table (LUT)
embeddings, and as an ablation,
VeriLoC-mod, a version of VeriLoC
(VeriLoC-mod) that only uses
module-level but no line-level em-
beddings. VeriLoC achieves the best
performance, notably improving upon
VeriLoC-mod, demonstrating the
value of line-level embeddings even
for module-level timing prediction.
VeriDistill is second on MAPE, but
performs poorly on R2.

Direct comparisons of VeriLoC with
CircuitFusion [12] method, a very recent, state-of-art, module-level multimodal PPA predictor, are
challenging because they use a different dataset. Still, when comparing the respective improvements
upon RTL-Timer, we see that CircuitFusion reports an increase in R² from 0.81 → 0.83 and a
reduction in MAPE from 16% → 11%, whereas VeriLoC demonstrates larger relative gains, with R²
increasing from 0.86 → 0.94, and MAPE reducing from 12% → 6%. We caution against reading more
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Table 5: Comparison with SOTA methods for timing prediction on the OpenABCD benchmark.
VeriLoC-mod uses only module embeddings but no line embeddings.

Metric GNN [10] MasterRTL [4] RTL-Timer [1] VeriDistill [11] VeriLoC-Mod VeriLoC

R2 0.69 0.74 0.86 0.728 0.91 0.94
MAPE 0.17 0.15 0.12 0.076 0.08 0.06

into these comparisons because they are on different datasets, and also emphasize that VeriLoC’s
primary goal of LoC-level predictions is different from CircuitFusion’s.

4.4 Discussion

We now comment on some interesting properties of VeriLoC, avenues for future improvement, and
alternate baselines.

Runtime Comparisons. We compare the runtime efficiency of VeriLoC over Synopsys RTL
Architect [13] (our synthesis and PnR tool)—using CL-Verilog-13B as its base, VeriLoC achieves
14× average speedup and a median speedup of 61×. To explore the potential for even greater runtime
improvement, we trained a 7B CL-Verilog model using the training procedure described in [14]. The
7B model has a 22× on average and 113× median speedup with a modest tradeoff in F1 score of 0.93
for timing and 0.84 for congestion. Thus, while the focus of VeriLoC is on accurate line-level PPA
prediction, smaller models like the 7B variant or Mixture-of-Experts (MoE) based architectures can
be adopted to further prioritize inference speed without significant degradation in predictive accuracy.

Impact of Verilog Code Length on Accuracy. To assess the effect of Verilog file length on model
performance, we conducted a stratified analysis by splitting test samples based on the number of
lines per file. We observed a negligible degradation in performance for longer inputs. Specifically,
the congestion F1-score dropped slightly from 0.862 for files with fewer than 2000 lines to 0.855 for
files with more than 2000 lines. Similarly, the timing F1-score decreased from 0.953 to 0.946, and
the Mean Absolute Percentage Error (MAPE) increased from 5% to 6.5%. These results indicate
that the model exhibits strong robustness to variations in input length, with only minor performance
degradation observed on longer files.

Can Black-Box LLMs Predict Hardware Design Quality? As we have noted before, much of the
work in the software community on line-level bug detection uses prompt engineering with pre-trained
models. These strategies have been successful because of the abundance of training data in the
software world. However, hardware data is scarce, especially so for complex concepts like routing
congestion. Thus, we hypothesize that prompting strategies are unlikely to work in the hardware
context for line-level detection of congestion and timing issues. To test this hypothesis, we picked 10
Verilog files from our test dataset and asked ChatGPT-4o [57] to identify lines of code that would
cause timing or congestion issues. ChatGPT was unable to identify lines responsible for congestion
in any of our trials. For timing, ChatGPT identified a line of code correctly in one instance, but also
had a large number of false positives. Examples of chat responses are given in Appendix D (Fig. 6–9).

5 Conclusion

This paper presents a novel LLM-driven framework, VeriLoC, which provides real-time feedback to
hardware designers for the impact of their RTL code on crucial design-quality metrics, timing and
congestion. By leveraging embedding from LLMs, VeriLoC bridges the gap between RTL coding
and downstream performance evaluation, enabling designers to make informed decisions early in the
design process. Results demonstrate VeriLoC’s capability in predicting design metrics at RTL stage,
both for individual lines of code and at the module level.

Limitations. Despite its strong performance, VeriLoC has several important limitations. First, it
currently operates on leaf modules drawn from the Open-ABCD benchmark and has not been adapted
to large-scale industrial designs with inter-module dependencies. Extensive validation on diverse,
industry-grade RTL corpora will establish robustness and generalization, but is hindered by open
access to such data.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Comprehensive details of the experimental setup, including hyperparameters
and dataset specifications, are provided in the results section. Additionally, the code has
been made publicly available through an open-source release.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code required to reproduce the results has been open-sourced and is
accessible at: https://github.com/ML4EDA/VeriLoC.git.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and testing details—including data splits, hyperparameters, their
selection criteria, optimizer type, and related configurations—are thoroughly discussed in
the ‘Experimental Setting‘ subsection.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to cost considerations we don’t do multiple bootstrap runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The necessary information regarding computational resources is provided in
the Results section. This includes details on the type of compute infrastructure used, memory
specifications, and execution time for the experiments, ensuring that the experiments can be
reproduced reliably.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in the paper adheres to the NeurIPS Code of Ethics
in all respects. It ensures transparency, reproducibility, and responsible use of data and
models, with no ethical concerns related to data collection, experimental design, or potential
downstream harm.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: The work is for Quality of Results prediction for chip design

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks arise for this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Section 4.1. For the Synopsys Tool, we have a valid license to use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

18



• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: See https://github.com/ML4EDA/VeriLoC.git

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use a domain-adapted LLM fine-tuned on Verilog to generate embedding,
see Section 3.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A IC Design

The design of modern ICs with billions of transistors and ever-more complex technology nodes
is highly demanding. Thus, sophisticated tooling is essential in this domain known as electronic
design automation (EDA). EDA tools are build upon strong notions of abstractions and hierarchical
procedures. Next, we outline the industry-standard approach for these procedures. More details
relevant for this work are also discussed in subsections in here.

System Specification, Architectural Design. Objectives and requirements for functionality, perfor-
mance, and physical implementation are formulated. Modeling languages like SystemC can be used
for a formalized approach.

Behavioral and Logic Design. The specification and architecture description are transformed into a
behavioral model which describes inputs, outputs, timing behavior, etc. for the whole system. Toward
that end, specific hardware description languages (HDLs) like Verilog are utilized. The abstraction
level for this process is also often referred to as register-transfer level (RTL). To limit design time and
efforts, third-party components, so-called IP modules, can be integrated at this stage.

Logic Synthesis. The behavioral model is transformed into a low-level circuit description, the gate-
level netlist (GLN). This step requires a technology library for mapping from a generic circuit to the
technology-specific circuit that is to be manufactured in the end.

Physical Design. The GLN is transformed into an actual physical layout of gates, memories, in-
terconnects, etc. Given the high complexity of this stage, it is typically further divided into the
following tasks: partitioning and/or floorplanning, power and ground delivery, placement, clock
delivery, routing, and timing closure.

Verification and Signoff. The physical layout must be verified against various design and manufactur-
ing rules, to ensure correct functionality and electrical behaviour. Once all rules are met, the design
can be signed-off and taped-out, i.e., send out for fabrication, packaging, and testing.

Practical Challenge. Despite the general success of this compartmentalized approach, a key
challenge remains: going through the full EDA stack end-to-end takes considerable time and efforts,
in the range of months even for large teams. This challenge is know as the “productivity gap” and is
expected to stay, especially for ever-more advanced technology nodes [58]. In an effort for best design
quality, engineers often need to reiterate many times over key processes like placement and routing.
Due to the very nature of the hierarchical tooling, the individual processes are often lacking detailed
insights from prior stages and, more concerning, reasonable estimates for their impact on processes
further down in the pipeline. In other words, there is a strong need to integrate well-informed quality
assessment into early stages of the EDA pipeline—this reiterates the main motivation of this work at
hand.

B Encoder-Decoder Architecture for Dimensionality Reduction

This model is designed to effectively compress high-dimensional embeddings into a compact latent
space while preserving their semantic content. Below, we analyze its structure and key features:

B.1 Network Architecture

The encoder-decoder network consists of fully connected layers with batch normalization, dropout,
and non-linear activation functions. The detailed architecture is shown in Table 6.

B.2 Regularization Techniques

To ensure robust learning and prevent overfitting, the following techniques are incorporated:

• Dropout: Applied with a 30% probability at multiple layers to prevent co-adaptation of
neurons.

• Batch Normalization: Normalizes activations at each layer to stabilize training and improve
convergence.

• LeakyReLU: Chosen over standard ReLU to avoid dead neurons and ensure a small gradient
for negative values.
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Table 6: Detailed architecture of the encoder-decoder network.
Layer Type Number of Units Activation Function Additional Features

Encoder
Fully Connected 4096 LeakyReLU (α = 0.01) BatchNorm, Dropout (30%)
Fully Connected 1024 LeakyReLU (α = 0.01) BatchNorm, Dropout (30%)
Fully Connected Latent Dim (d) LeakyReLU (α = 0.01) BatchNorm

Decoder
Fully Connected 1024 LeakyReLU (α = 0.01) BatchNorm, Dropout (30%)
Fully Connected 4096 LeakyReLU (α = 0.01) BatchNorm, Dropout (30%)
Fully Connected Input Dim - -

B.3 Optimization Strategy

The model is trained using the AdamW optimizer, which combines adaptive learning rates with weight
decay regularization. Additional details include:

• Learning Rate: Set to a small value (10−4) to ensure gradual convergence.
• Reconstruction Loss: The mean squared error (MSE) between the input embeddings and

their reconstructed versions is minimized.
• Weight Initialization: All linear layers are initialized using Xavier Uniform Initial-
ization to ensure balanced gradients at the start of training.

B.4 Training Procedure

The model is trained over 200 epochs using mini-batch gradient descent, with the following consider-
ations:

• Batch Size: A batch size of 128 is chosen to balance memory efficiency and gradient
stability.

• Orthogonality Regularization: Although not implemented in this iteration, orthogonality
constraints on the encoder weights can further enhance disentanglement in the latent space.

• Validation: Validation loss on a separate test dataset is monitored to ensure the model
generalizes to unseen data.

B.5 Usage in Downstream Tasks

The trained encoder produces latent embeddings that serve as input features for classification and
regression tasks. These embeddings are compact, noise-robust, and retain essential semantic informa-
tion from the original input.

B.6 Justification for Using the Last Hidden Layer in VeriLoC

Although VeriLoC focuses on line-level quality prediction, we first conducted a complementary
ablation study on module-level embeddings to evaluate the predictive quality of hidden states extracted
from different layers of the CL-Verilog model. As shown in Table 7, we observed that embeddings
derived from the last decoder layer consistently achieved the highest accuracy across all quality-
of-result (QoR) metrics—yielding the best R2 scores and the lowest MAPE for both timing and
congestion prediction. These results suggest that the final layer best captures high-level semantic and
structural information necessary for downstream design-quality tasks.

Based on this empirical evidence, VeriLoC exclusively uses the last hidden layer to extract both
line-level and module-level embeddings. This design choice ensures that the model benefits from the
richest representation available, without introducing ambiguity or requiring additional architectural
tuning to select among intermediate layers. Furthermore, the consistently superior performance of the
final layer justifies avoiding ensemble or multi-layer fusion strategies, which may add unnecessary
complexity without proportional gains.
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Table 7: Prediction quality using embeddings derived from hidden states of the model, specifically
examining the first (1st, 2nd, 3rd) and last (3rd-Last, 2nd-Last, Last) layers for CL-Verilog.

Hidden Layer Timing Congestion

R² MAPE R² MAPE

1st 0.66 15.46 0.66 18.13
2nd 0.77 5.64 0.59 23.92
3rd 0.75 6.55 0.72 13.62

3rd-Last 0.85 5.88 0.53 22.34
2nd-Last 0.85 9.32 0.59 17.56

Last 0.89 5.57 0.74 11.66

Table 8: Impact of Hidden Dimension and Classifier on Line-Level Detection Performance for
Congestion and Timing. Precision (P), Recall (R).

Hidden
Dim.

Congestion Timing

P R P R

XGB

32 0.76 0.64 0.77 0.71
64 0.88 0.71 0.86 0.83

128 0.94 0.78 0.94 0.94
256 0.94 0.78 0.94 0.94

LGBM

32 0.77 0.64 0.79 0.71
64 0.88 0.72 0.86 0.82

128 0.94 0.79 0.96 0.94
256 0.94 0.79 0.96 0.94

C Additional Ablation Studies

C.1 Role of Encoder and Choice of Hidden Dimensions

As noted in Section 3.3, we use an encoder-decoder architecture to reduce the dimensionality of
raw line- and module-level embeddings before classification/regression. Without the encoder, we
obtained F1-scores of less than 0.5. To determine the optimal hidden dimension for the encoder, we
study different embedding dimensions across XGBoost and LightGBM. The results are summarized
in Table 8.

We find that increasing the hidden dimension significantly improves both congestion and timing
detection performance up to a dimension of 128. Beyond 128, however, there is no observable gain
in performance, suggesting that further increasing the embedding size is not warranted and that 128
is the optimal hidden dimension, balancing performance and computational efficiency.

C.2 Impact of Comments in RTL

As opposed to intermediate representations like AIGs, RTL code also contains comments that we
hypothesized to be useful in design quality predictions. Here, we evaluate the role of comments in
VeriLoC’s accuracy. To this end, we conducted a study where we removed comments from both
the train and test datasets and train VeriLoC classifiers on the resulting code. Table 9 compares
line-level detection performance with (w) vs without (w/o) comments in the embeddings. The results
show a modest but clear improvement in congestion and timing precision, recall, and F1-scores
when comments are included. The benefits are starkest for FNN, where F1-scores increase from
0.71 to 0.77 for timing and 0.70 to 0.76 for congestion. XGBoost and LightGBM also benefit from
comments, especially for congestion prediction with F1-scores increasing from 0.92 to 0.95 in the
best case.
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Table 9: Effect of Comments (C) in Module Embedding Generation on Line Detection Performance.
Precision (P), Recall (R).

Congestion Timing
Emb. P R F1 P R F1

FNN w/o C 0.80 0.64 0.71 0.63 0.78 0.70
w/ C 0.86 0.7 0.77 0.67 0.88 0.76

XGB w/o C 0.93 0.76 0.84 0.91 0.92 0.91
w/ C 0.94 0.78 0.85 0.94 0.94 0.94

LGBM w/o C 0.95 0.77 0.85 0.93 0.91 0.92
w/ C 0.94 0.79 0.86 0.96 0.94 0.95

Fig. 5 further supports these findings through saliency-based visualizations of batched vs individual
line embeddings. Specifically, the saliency heatmaps reveal that, w/o comments, key structural
elements like always @(posedge clk) receive a disproportionate amount of attention, whereas w/
comments, the model distributes attention more effectively across relevant components.

assign  idin    =  {  {(mwidth-dwidth){din[dwidth-1]}},  din};

  //  generate  multiplier  structure

  always  @(posedge  clk)

    if(ena)

      mult_res  <=  #1  icoef  *  idin;

assign  idin    =  {  {(mwidth-dwidth){din[dwidth-1]}},  din};

  //  generate  multiplier  structure

  always  @(posedge  clk)

    if(ena)

      mult_res  <=  #1  icoef  *  idin;

Saliency interpretations of batched line embeddings

Saliency interpretations of individual line embeddings

Figure 5: Saliency map comparing attention of VeriLoC model (bottom) vs. batched line embeddings
(top).

C.3 Alternate Approaches

Recall that including neighboring lines of code can significantly improve performance, especially
for congestion prediction. An alternate method for including local context, however, would be to
obtain a single embedding for a batch of consecutive lines B = {li−p, . . . , li, . . . , li+p} by passing
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B through CL-Verilog as a single input. The model computes batched embeddings zbatch(B), which
natively capture inter-line dependencies via the LLM’s attention mechanism.

Although appealing, the batched approach results in lower F1-scores, achieving at best an F1-score of
0.8 for congestion prediction; recall that VeriLoC achieves an F1-score of 0.86. Fig. 5 depicts the
attention patterns of the model for congestion detection where the line always @(posedge clk) is
critical. For the batched approach, the model’s attention is dispersed across multiple unrelated tokens.
Conversely, line-wise embeddings allow the model to prioritize the relevant tokens more effectively,
as shown by the darker-red shades. This also aligns with the findings in [59], which emphasize the
importance of modular embedding strategies for structured tasks.

D Case Study Using GPT-4o and VeriLoC

GPT-4o
Prompt: You are an expert in Verilog hardware 
design. Can you identify the congestion causing 
lines from the RTL module given below:

module aes_rcon(clk, kld, out);
input clk;
input kld;
output [31:0] out;
reg [31:0] out;
reg [3:0] rcnt;
wire [3:0] rcnt_next;

always @(posedge clk)
if(kld) out <= #1 32'h01_00_00_00;
else out <= #1 frcon(rcnt_next);

assign rcnt_next = rcnt + 4'h1;
always @(posedge clk)

if(kld) rcnt <= #1 4'h0;
else rcnt <= #1 rcnt_next;

function [31:0] frcon;
input [3:0] i;
(* parallel_case *) case(i)
   4'h0: frcon=32'h01_00_00_00;
   4'h1: frcon=32'h02_00_00_00;
   4'h2: frcon=32'h04_00_00_00;
   4'h3: frcon=32'h08_00_00_00;
   4'h4: frcon=32'h10_00_00_00;
   4'h5: frcon=32'h20_00_00_00;
   4'h6: frcon=32'h40_00_00_00;
   4'h7: frcon=32'h80_00_00_00;
   4'h8: frcon=32'h1b_00_00_00;
   4'h9: frcon=32'h36_00_00_00;
   default: frcon=32'h00_00_00_00;
endcase
endfunction

endmodule

VeriLoC

module aes_rcon(clk, kld, out);
input clk;
input kld;
output [31:0] out;
reg [31:0] out;
reg [3:0] rcnt;
wire [3:0] rcnt_next;

always @(posedge clk)
if(kld) out <= #1 32'h01_00_00_00;
else out <= #1 frcon(rcnt_next);

assign rcnt_next = rcnt + 4'h1;
always @(posedge clk)

if(kld) rcnt <= #1 4'h0;
else rcnt <= #1 rcnt_next;

function [31:0] frcon;
input [3:0] i;
(* parallel_case *) case(i)
   4'h0: frcon=32'h01_00_00_00;
   4'h1: frcon=32'h02_00_00_00;
   4'h2: frcon=32'h04_00_00_00;
   4'h3: frcon=32'h08_00_00_00;
   4'h4: frcon=32'h10_00_00_00;
   4'h5: frcon=32'h20_00_00_00;
   4'h6: frcon=32'h40_00_00_00;
   4'h7: frcon=32'h80_00_00_00;
   4'h8: frcon=32'h1b_00_00_00;
   4'h9: frcon=32'h36_00_00_00;
   default: frcon=32'h00_00_00_00;
endcase
endfunction

endmodule

Figure 6: The lines of code highlighted by GPT-4o and VeriLoC for congestion metrics on aes_rcon
design.

As a part of the case study, to understand the capability of generic LLMs to analyze RTL code, we
took GPT-4o [57] and prompted it to report the line numbers in the code responsible for timing and
congestion, respectively. We also showcase VeriLoC performance for the same codes. GPT-4o was
unable to detect the correct line numbers, i.e, showed false positives, whereas VeriLoC has shown
significant results when compared to the ground truth obtained using the EDA tool.

Fig. 6–9 show such examples with highlighted text being the line number reported by GPT-4o and
VeriLoC, respectively. Fig. 6 refers to the aes_rcon design, where GPT-4o predicts every line
as critical for congestion issues, whereas VeriLoC selectively highlights the correct lines related
to congestion. Fig. 7 again shows an inability of GPT-4o, now for the task of timing prediction.
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GPT-4o
Prompt: You are an expert in Verilog hardware 
design. Can you identify the timing issue causing 
lines from the RTL module given below:

module ibex_csr (
clk_i,
rst_ni,
wr_data_i,
wr_en_i,
rd_data_o,
rd_error_o

);
parameter [31:0] Width = 32;
parameter [0:0] ShadowCopy = 1'b0;
parameter [Width - 1:0] ResetValue = 1'sb0;
input wire clk_i;
input wire rst_ni;
input wire [Width - 1:0] wr_data_i;
input wire wr_en_i;
output wire [Width - 1:0] rd_data_o;
output wire rd_error_o;
reg [Width - 1:0] rdata_q;
always @(posedge clk_i or negedge rst_ni)

if (!rst_ni)
rdata_q <= ResetValue;

else if (wr_en_i)
rdata_q <= wr_data_i;

assign rd_data_o = rdata_q;
generate

if (ShadowCopy) begin : gen_shadow
reg [Width - 1:0] shadow_q;
always @(posedge clk_i or negedge rst_ni)

if (!rst_ni)
shadow_q <= ~ResetValue;

else if (wr_en_i)
shadow_q <= ~wr_data_i;

assign rd_error_o = rdata_q != ~shadow_q;
end
else begin : gen_no_shadow

assign rd_error_o = 1'b0;
end

endgenerate
endmodule

VeriLoC

module ibex_csr (
clk_i,
rst_ni,
wr_data_i,
wr_en_i,
rd_data_o,
rd_error_o

);
parameter [31:0] Width = 32;
parameter [0:0] ShadowCopy = 1'b0;
parameter [Width - 1:0] ResetValue = 1'sb0;
input wire clk_i;
input wire rst_ni;
input wire [Width - 1:0] wr_data_i;
input wire wr_en_i;
output wire [Width - 1:0] rd_data_o;
output wire rd_error_o;
reg [Width - 1:0] rdata_q;
always @(posedge clk_i or negedge rst_ni)

if (!rst_ni)
rdata_q <= ResetValue;

else if (wr_en_i)
rdata_q <= wr_data_i;

assign rd_data_o = rdata_q;
generate

if (ShadowCopy) begin : gen_shadow
reg [Width - 1:0] shadow_q;
always @(posedge clk_i or negedge rst_ni)

if (!rst_ni)
shadow_q <= ~ResetValue;

else if (wr_en_i)
shadow_q <= ~wr_data_i;

assign rd_error_o = rdata_q != ~shadow_q;
end
else begin : gen_no_shadow

assign rd_error_o = 1'b0;
end

endgenerate
endmodule

Figure 7: The lines of code highlighted by GPT-4o and VeriLoC for timing metrics on ibex_csr
design.

Although it has highlighted the lines related to timing impact, namely the first always block, it also
reports the next blocks as potential candidates. In Fig. 8, GPT-4o picks registers definitions as a
potential reason for congestion and skips the actual criticial line containing the additions operation.
Finally, in Fig. 9 GPT-4o was unable to pick the correct always block responsible for timing issues.
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GPT-4o
Prompt: You are an expert in Verilog hardware 
design. Can you identify the congestion causing 
lines from the RTL module given below:

wire [mwidth-1:0] idin;
wire [mwidth-1:0] icoef;

reg  [mwidth -1:0] mult_res;
wire [rwidth -1:0] ext_mult_res;

//
// module body
//
assign icoef = { {(mwidth-cwidth){coef[cwidth-1]}}, coef};
assign idin  = { {(mwidth-dwidth){din[dwidth-1]}}, din};

// generate multiplier structure
always @(posedge clk)
    if(ena)

 mult_res <= #1 icoef * idin;

assign ext_mult_res = { {3{mult_res[mwidth-1]}}, mult_res};

// generate adder structure
always @(posedge clk)
   if(ena)

 if(dclr)
      result <= #1 ext_mult_res;
 else
      result <= #1 ext_mult_res + result;

VeriLoC

wire [mwidth-1:0] idin;
wire [mwidth-1:0] icoef;

reg  [mwidth -1:0] mult_res;
wire [rwidth -1:0] ext_mult_res;

//
// module body
//
assign icoef = { {(mwidth-cwidth){coef[cwidth-1]}}, coef};
assign idin  = { {(mwidth-dwidth){din[dwidth-1]}}, din};

// generate multiplier structure
always @(posedge clk)
    if(ena)

 mult_res <= #1 icoef * idin;

assign ext_mult_res = { {3{mult_res[mwidth-1]}}, mult_res};

// generate adder structure
always @(posedge clk)
   if(ena)

 if(dclr)
      result <= #1 ext_mult_res;
 else
      result <= #1 ext_mult_res + result;

Figure 8: The lines of code highlighted by GPT-4o and VeriLoC for congestion metrics on dct_mac
design.
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GPT-4o
Prompt: You are an expert in Verilog hardware 
design. Can you identify the timing issue causing 
lines from the RTL module given below:

output [11:0] dout;
output        douten; // data-out enable

//
// variables
//

reg ld_zigzag;
reg [11:0] sresult [63:0]; // store results for zig-zagging

        //
// module body
//

always @(posedge clk)
  if(ena)
    ld_zigzag <= #1 dstrb;

assign douten = ld_zigzag;

integer n;

always @(posedge clk)
  if(ena)
    if(ld_zigzag)   // reload results-register file
    begin
        sresult[63] <= #1 din_00;
        sresult[62] <= #1 din_01;

                            .
                            .
                            .
                            .
                            .
                            .
                sresult[09] <= #1 din_47;

        sresult[08] <= #1 din_56;
        sresult[03] <= #1 din_57;
        sresult[02] <= #1 din_67;
        sresult[01] <= #1 din_76;
    end
  else       // shift results out
    for (n=1; n<=63; n=n+1) // do not change sresult[0]
       sresult[n] <= #1 sresult[n -1];

assign dout = sresult[63];
endmodule
  

VeriLoC
        //

// module body
//

always @(posedge clk)
  if(ena)
    ld_zigzag <= #1 dstrb;

assign douten = ld_zigzag;
integer n;

always @(posedge clk)
  if(ena)
    if(ld_zigzag)   // reload results-register file
    begin
        sresult[63] <= #1 din_00;

.

.

.
        sresult[45] <= #1 din_32;
        sresult[44] <= #1 din_41;
        sresult[43] <= #1 din_50;

.

.

.
        sresult[33] <= #1 din_25;
        sresult[32] <= #1 din_34;
        sresult[31] <= #1 din_43;
        sresult[30] <= #1 din_52;
        sresult[27] <= #1 din_71;
        sresult[26] <= #1 din_62;
        sresult[19] <= #1 din_36;
        sresult[18] <= #1 din_45;
        sresult[17] <= #1 din_54;
        sresult[16] <= #1 din_63;
        sresult[15] <= #1 din_72;
        sresult[14] <= #1 din_73;
        sresult[13] <= #1 din_64;
        sresult[12] <= #1 din_55;
        sresult[11] <= #1 din_46;
        sresult[10] <= #1 din_37;
        sresult[09] <= #1 din_47;
        sresult[08] <= #1 din_56;
        sresult[03] <= #1 din_57;
        sresult[02] <= #1 din_67;
        sresult[01] <= #1 din_76;
    end
  else       // shift results out
    for (n=1; n<=63; n=n+1) // do not change sresult[0]
       sresult[n] <= #1 sresult[n -1];

assign dout = sresult[63];
endmodule

Figure 9: The lines of code highlighted by GPT-4o and VeriLoC for timing metrics on zigzag
design.
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