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Abstract

Given i.i.d. samples from an unknown distribution P , the goal of distribution
learning is to recover the parameters of a distribution that is close to P . When P
belongs to the class of product distributions on the Boolean hypercube {0, 1}d,
it is known that Ω(d/ε2) samples are necessary to learn P within total variation
(TV) distance ϵ. We revisit this problem when the learner is also given as advice
the parameters of a product distribution Q. We show that there is an efficient
algorithm to learn P within TV distance ε that has sample complexity Õ(d1−η/ε2),
if ∥p − q∥1 < εd0.5−Ω(η). Here, p and q are the mean vectors of P and Q
respectively, and no bound on ∥p− q∥1 is known to the algorithm a priori.

1 Introduction

Science fundamentally relies on the ability to learn models from data. In many real-world settings,
the majority of available datasets consist of unlabeled examples – sample points drawn without
corresponding labels, outputs or classifications. These unlabeled datasets are often modeled as
samples from a joint probability distribution on a large domain. The goal of distribution learning is
to output the description of a distribution that approximates the underlying distribution that generated
the observed samples. See [Dia16] for a comprehensive survey.

In practice, distribution learning rarely occurs in isolation. While a given dataset may be new, one
often has access to previously learned models from related datasets. Alternatively, the data may
arise from an evolving process, motivating the reuse of information from past learning to guide
current inference. This prior information can be viewed as a form of “advice” or “prediction” of
some kind. In the framework of algorithms with predictions, the objective is to integrate such
advice in a way that improves performance when the advice is accurate, while ensuring robustness:
performance should not degrade beyond that an advice-free baseline algorithm, even when the
predictions are inaccurate. Most previous works in this setting are in the context of online algorithms,
e.g. for the ski-rental problem [GP19, WLW20, ADJ+20], non-clairvoyant scheduling [PSK18],
scheduling [LLMV20, BMRS20, AJS22], augmenting classical data structures with predictions (e.g.
indexing [KBC+18] and Bloom filters [Mit18]), online selection and matching problems [AGKK20,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



DLPLV21, CGLB24, CJS25], online TSP [BLMS+22, GLS23], and a more general framework of
online primal-dual algorithms [BMS20]. However, there have been some recent applications to
other areas, e.g. graph algorithms [CSVZ22, DIL+21], causal learning [CGB23], mechanism design
[GKST22, ABG+22], and most relevantly to us, distribution learning [BCGG25].

In this work, we study the problem of learning product distributions over the d-dimensional Boolean
hypercube {0, 1}d, arguably one of the most fundamental classes of discrete high-dimensional
distributions. A product distribution P is fully specified by its mean vector p ∈ [0, 1]d, where the i-th
coordinate pi represents the expectation of the i-th marginal of P , or equivalently, the probability that
the i-th coordinate of a sample from P is 1. It is well-known that Θ(d/ε2) samples from a product
distribution P are both necessary and sufficient to learn a distribution P̂ such that dTV(P, P̂ ) ≤ ε
with probability at least 2/3, where dTV denotes the total variation distance. This optimal sample
complexity is achieved by a simple, natural and efficient algorithm: computing the empirical mean of
each coordinate. Motivated by the framework of algorithms with predictions, we investigate whether
this sample complexity can be improved when, in addition to samples from P , the learner is given an
advice mean vector q ∈ [0, 1]d. Importantly, we make no assumption that q is close to the true mean
p. However, if we can detect that q is accurate – i.e., that ∥q− p∥ is small in an appropriate norm –
can this information be leveraged to constrain the search space and improve sample or computational
efficiency? Our goal is to design algorithms that adapt to the quality of the advice: performing better
when q is accurate, while remaining robust when it is not.

Our main result establishes that this is indeed possible. Specifically, we show that if ∥q−p∥1 ≪ ε
√
d,

then there exists a polynomial-time algorithm with sample complexity sublinear in d that outputs
a distribution P̂ such that dTV(P, P̂ ) ≤ ε with probability at least 2/3. More precisely, under the
regularity condition that no coordinate of P is too close to deterministic (i.e., bounded away from 0
and 1), we show that the sample complexity is:

Õ

(
d

ε2

(
d−η +min

(
1,
∥p− q∥21
d1−4ηε2

)))
for any small enough constant η. In particular, when ∥p−q∥1 is small, the dependence on d becomes
sublinear. We also prove that the non-determinism assumption is necessary: if coordinates of P can
be arbitrarily close to 0 or 1, then sample complexity that is sublinear in d is impossible, even when
∥q− p∥1 = O(1). Furthermore, we show that when ∥q− p∥1 ≫ ε

√
d, no algorithm with sublinear

sample complexity exists.

1.1 Technical Overview

We call a product distribution P balanced if no marginal of P is too biased. That is, each coordinate
of p is bounded away from 0 and 1. It is known that, for balanced distributions, learning P in TV
distance is equivalent to learning the mean vector p with ℓ2-error. Hence, in this overview, we focus
on the latter task.

To build intuition about how an advice vector q can be exploited, consider the following two situations:

1. Exact advice: Suppose q = p. Then, it suffices to verify that ∥q− p∥2 ≤ ε and a learning
algorithm can simply return q. This is the classic identity testing problem, which has been
extensively studied (see [Can20] for a detailed survey). For product distributions, Daskalakis
and Pan [DP17] and Canonne, Diakonikolas, Kane and Stewart [CDKS17] independently
showed that identity testing requires Θ(

√
d/ε2) samples. This demonstrates that sublinear

sample complexity is achievable when q = p. Morever, Ω(
√
d/ε2) is a fundamental lower

bound that applies even when q = p.
2. Sparse disagreement: Suppose q differs from p in at most t coordinates, i.e. ∥q−p∥0 ≤ t.

In this case, one only needs to estimate p on those t coordinates, so the information-theoretic
sample complexity should scale as ∼ log

(
d
t

)
. Unfortunately, since t is unknown a priori,

we cannot directly exploit this sparsity. However, from the compressive sensing literature, it
is known that closeness in ℓ2 norm to a t-sparse vector can be certified by a small ℓ1 norm
(e.g., Theorem 2.5 of [FR13]).

Motivated by the above, we take the quality of the advice q to be governed by the ℓ1-distance
∥p− q∥1, and aim for an algorithm whose sample complexity improves as this distance decreases.
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Suppose we can certify that ∥p − q∥1 ≤ λ. Then, we may restrict attention to the ℓ1-ball of
radius λ centered at q, and cover it with N ℓ2-balls of radius ε, where the covering number N
grows polynomially as dO(λ2/ε2). It is known (e.g. see Chapter 4 of [DL01]) that using the Scheffé
tournament method, the sample complexity of learning p up to ℓ2-norm ε scales as (logN)/ε2,
which yields a bound of O(λ

2

ε4 log d). While the Scheffé tournament is computationally inefficient,
the same sample complexity guarantee can be achieved efficiently by solving a constrained least
squares problem. More precisely, given samples x1, . . . ,xn from P , we consider the estimator:

argmin
b∈Rd:∥b−q∥1≤λ

1

n

n∑
i=1

∥xi − b∥22

For n = O(λ2ε−4 log d), this estimates achieves ℓ2-error at most ε.

The key challenge that remains is then to approximate λ ≈ ∥p − q∥1 using a sublinear number
of samples from P . To this end, we devise a new identity testing algorithm that, using O(

√
d/ε2)

samples, either (i) 2-approximates ∥p − q∥2, or (ii) certifies that ∥p − q∥2 ≤ ε, in which we
simply return q. If we are in case (i), we can upper bound ∥p − q∥1 with λ = ∥p − q∥2 ·

√
d.

However, this would make the sample complexity of the learning algorithm to be O
(

λ2

ε4 log d
)
=

O
(

d log(d)·∥p−q∥2
2

ε4

)
≫ d

ε2 , i.e., exceeding the standard O(d/ε2) bound and defeating the purpose.
To improve upon this, we can partition the d coordinates into d/k blocks of size k each. Then,
within each block, the ratio between the ℓ1 and ℓ2 norms improves from

√
d to
√
k. By appropriately

choosing k, we can obtain a non-trivial reduction in overall sample complexity.

The structure of our algorithm described above and its analysis parallels the recent work by [BCGG25],
which addresses the problem of learning Gaussian distributions with imperfect advice. However, our
setting differs in several important ways:

• [BCGG25] used a well-known algorithm to approximate the ℓ2 norm of a Gaussian’s mean
vector. In contrast, our ℓ2-approximation algorithm for product distribution is new, to the
best of our knowledge.

• We critically rely on the balancedness assumption to relate total variation distance and ℓ2
error of the mean vector. No such assumption is needed in the Gaussian setting. In fact, we
show that for product distributions, balancedness is essential: without it, no sublinear-sample
algorithm exists, even when the advice vector is O(1)-close to the truth in ℓ1 distance. We
find this somewhat surprising since O(

√
d/ε2) samples suffice without any balancedness

assumptions in identity testing [DP17, CDKS17].

2 Preliminaries

A distribution P on {0, 1}d is said to be a product distribution if there exist distributions P1, . . . , Pd

on {0, 1} such that P (x) = P1(x1) · P2(x2) · · ·Pd(xd) for every x ∈ {0, 1}d. In this case, we can
write P = P1 ⊗ P2 · · · ⊗ Pd.
Definition 2.1 (Mean vectors). The mean vector of a distribution P is p ≜ Ex∼P [x]. In particular, if
P = P1 ⊗ · · · ⊗ Pd is a product distribution, p = [p1 · · · pd], where pi = Pi(1).

For a vector p ∈ [0, 1]d, we denote by Ber(p) the product distribution with mean vector p. We next
define the notion of balancedness.
Definition 2.2. For τ ∈ [0, 1/2], a product distribution P on {0, 1}d is said to be τ -balanced if for
every i ∈ [d], the marginal Pi satisfies τ ≤ Pi(1) ≤ 1− τ .
Proposition 2.3 (e.g., [CDKS17], Lemma 1). Suppose P and Q are τ -balanced product distributions
on {0, 1}d with mean vectors p and q respectively. Then their KL divergence dKL(P∥Q) satisfies:

2∥p− q∥22 ≤ dKL(P∥Q) ≤ 2

τ
∥p− q∥22.

Proposition 2.4. Suppose P and Q are τ -balanced product distributions on {0, 1}d with mean
vectors p and q respectively. Then, for some constant c < 0.2, the TV distance dTV(P,Q) satisfies:

c ·min{1, ∥p− q∥2} ≤ dTV(P,Q) ≤ 1√
τ
∥p− q∥2.
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Proof. The first inquality is the main result of [Kon25]. The second inequality follows from applying
Pinsker to the upper bound on dKL in Proposition 2.3.

Note that the dependence on τ above is necessary (up to constant factors). For example, suppose
P = Ber(0) and Q = Ber(u) where 0 is the all-zero vector and u = [ 1d ,

1
d , . . . ,

1
d ]. Then,

∥0− u∥2 = 1/
√
d, while dTV(P,Q) ≥ P (0)−Q(0) = 1− (1− 1/d)d ≈ 1− 1/e.

3 Algorithm

The goal of this section is to establish the following result.
Theorem 3.1. There exists algorithm TESTANDOPTIMIZEMEAN that for any given ε, δ, τ ∈ (0, 1),
η ≥ 0, and q ∈ [0, 1]d, and sample access to a τ -balanced product distribution Ber(p) on {0, 1}d, it
draws n = Õ

(
d
ε2 · (d

−η +min{1, f(p,q, d, η, ε)})
)

i.i.d. samples from Ber(p), where:

f(p,q, d, η, ε) =
∥p− q∥21
d1−4ητ6ε2

.

The algorithm produces as output p̂ in poly(n, d) time such that dTV(Ber(p),Ber(p̂)) ≤ ε with
success probability at least 1− δ.

A basic component of the algorithm is a test to determine how close the advice q is to the true p in ℓ2
norm.
Lemma 3.2 (Tolerant mean tester). Given ε > 0, δ ∈ (0, 1), d sufficiently large integer, and

q ∈ [0, 1]d, there is a tolerant tester TMT that uses O
(√

d
ε2 log

(
1
δ

))
i.i.d. samples from Ber(p) and

satisfies both conditions below with probability at least 1− δ:

1. If ∥p− q∥2 ≤ ε, then the tester outputs Accept

2. If ∥p− q∥2 ≥ 2ε, then the tester outputs Reject

Proof. Notice that if
∑

pi =
∑

qi = 1, we could interpret p1, . . . , pd and q1, . . . , qd as distributions
p̃ and q̃ on [d] that sample i ∈ [d] with probability pi and qi respectively. Diakonikolas and Kane
[DK16] showed that using O(∥p̃∥2/ε2) samples from p̃, one can test whether ∥p̃ − q̃∥2 ≤ ε or
∥p̃− q̃∥2 ≥ 2ε. Inspired by this observation, we mimic the analysis of [DK16] to devise a tolerant
tester for general product distributions.

Assume the desired failure probability to be 1/3; we can reduce to any δ by repeating the test
O(log 1/δ) times and taking the majority vote. Set m = c

√
d/ε2 for a large enough constant c, and

let mi be sampled independently from Poi(m) for each i ∈ [d]. Note that maxi mi ≤ 2em with high
probability; we condition on this event and set the desired failure probability to 1/4. Therefore, using
2em samples from Ber(p), for each i, we can obtain mi samples from the ith coordinate, and let Xi

be the number of times the i’th coordinate is sampled to be 1. Note that by standard properties of the
Poisson distribution, the X1, . . . , Xd are independent and each Xi is sampled from Poi(mpi).

Define the statistic Z =
∑d

i=1 Zi, where:

Zi = (Xi −mqi)
2 −Xi.

Using similar calculations as in [DK16], we can show that:
E[Zi] = m2(pi − qi)

2 and E[Z] = m2∥p− q∥22.
Also, we can calculate the variance to be:

Var[Z] = 4m3
d∑

i=1

pi(pi − qi)
2 + 2m2

d∑
i=1

p2i ≤ 4m3∥p∥2∥p− q∥24 + 2m2∥p∥22,

where the inequality is by Cauchy-Schwarz.

If ∥p−q∥2 ≤ ε, then E[Z] ≤ c2d/ε2, and Var[Z] ≤ (4c3+2c2)d2/ε4. On the other hand, it always
holds that E[Z] ≥ c2d∥p − q∥22/ε4, and Var[Z] ≤ (4c3d1.5∥p∥2∥p − q∥22/ε2 + 2c2d∥p∥22)/ε4 ≤
(4c3∥p−q∥22/ε2+2c2)d2/ε4, since ∥p∥2 ≤

√
d. Using Chebyshev’s inequality, if c is large enough,

when ∥p− q∥2 ≤ ε, Z is at most 2c2d/ε2 with probability 3/4, but when ∥p− q∥2 ≥ 2ε, Z is at
least 3c2d/ε2 with probability 3/4.
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Algorithm 1 The APPROXL1 algorithm.
1: Input: Block size k ∈ [d], lower bound α > 0, upper bound ζ > 2α, failure rate δ ∈ (0, 1),

advice q ∈ [0, 1]d, and i.i.d. samples S (multiset) from Ber(p).
2: Output: Fail or λ ∈ R
3: Define w = ⌈d/k⌉ and δ′ = δ

w·⌈log2 ζ/α⌉
4: Partition the index set [d] into w blocks:

B1 = {1, . . . , k},B2 = {k + 1, . . . , 2k}, . . . ,Bw = {k(w − 1) + 1, . . . , d}

5: for j ∈ {1, . . . , w} do
6: Define multiset Sj = {xBj

∈ R|Bj | : x ∈ S} as the samples projected to Bj

7: Let qBj
∈ R|Bj | be the vector q projected to coordinates Bj .

8: Initialize oj = Fail
9: for i = 1, 2, . . . , ⌈log2 ζ/α⌉ do

10: Define li = 2i−1 · α
11: Let Outcome be the output of the tolerant tester TMT of Lemma 3.2 using sample set Sj
12: with parameters ε← li, δ ← δ′, d← |Bj | and q← qBj

13: if Outcome is Accept then
14: Set oj = li and break {Escape inner loop for block j}
15: end if
16: end for
17: end for
18: if there exists a Fail amongst {o1, . . . , ow} then
19: return Fail
20: else
21: return λ = 2

∑w
j=1

√
|Bj | · oj {λ is an estimate for ∥p− q∥1}

22: end if

Lemma 3.3. Let k, α, and ζ be the input parameters to the APPROXL1 algorithm. Given q ∈ [0, 1]d

and m(k, α, δ) ≜ ⌈ 16
√
k

3α2 ⌉ ·
(
1 + ⌈log

(
12w·log2⌈ζ/α⌉

δ

)
⌉
)

i.i.d. samples from Ber(p), APPROXL1
succeeds with probability at least 1− δ and has the following properties:
Property 1: If APPROXL1 outputs Fail, then ∥p− q∥2 > ζ/2.
Property 2: If APPROXL1 outputs λ ∈ R, then ∥p− q∥1 ≤ λ ≤ 2

√
k · (⌈d/k⌉ · α+ 2∥p− q∥1).

Proof. We begin by stating some properties of o1, . . . , ow. Fix an arbitrary index j ∈ {1, . . . , w}
and suppose oj is not a Fail, i.e. the tolerant tester of Lemma 3.2 outputs Accept for some i∗ ∈
{1, 2, . . . , ⌈log2 ζ/α⌉}. Note that APPROXL1 sets oj = ℓi∗ and the tester outputs Reject for all
smaller indices i ∈ {1, . . . , i∗ − 1}. Since the tester outputs Accept for i∗, we have that ∥pBj

−
qBj∥2 ≤ 2ℓi∗ = 2oj . Meanwhile, if i∗ > 1, then ∥pBj − qBj∥2 > ℓi∗−1 = ℓi∗/2 = oj/2 since the
tester outputs Reject for i∗ − 1. Thus, we see that

• When oj is not Fail, we have ∥pBj
− qBj

∥2 ≤ 2oj .

• When ∥pBj
− qBj

∥2 ≤ 2α, we have i∗ = 1 and oj = ℓ1 = α.

• When ∥pBj − qBj∥2 > 2α = 2ℓ1, we have i∗ > 1 and so oj < 2∥pBj − qBj∥2.

Success probability. Fix an arbitrary index i ∈ {1, 2, . . . , ⌈log2 ζ/α⌉} with ℓi = 2i−1α, where
ℓi ≤ ℓ1 = α for any i. We invoke the tolerant tester with ε = ℓi in the ith invocation, so the ith

invocation uses at most m1(k, ε, δ) ≜ nk,ε · rδ i.i.d. samples to succeed with probability at least
1− δ, where nk,ε ≜ ⌈ 16

√
k

3ε2 ⌉ and rδ ≜ 1 + ⌈log(12/δ)⌉.

So, with at most m(k, α, δ) ≜ m1(k, α, δ
′) = nk,α · rδ′ samples, any call to the tolerant tester

succeeds with probability at least 1− δ′, where δ′ ≜ δ
w·⌈log2 ζ/α⌉ . By construction, there will be at

most w · ⌈log2 ζ/α⌉ calls to the tolerant tester. Therefore, by union bound, all calls to the tolerant
tester jointly succeed with probability at least 1− δ.
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Proof of Property 1. When APPROXL1 outputs Fail, there exists a Fail amongst {o1, . . . , ow}. For
any fixed index j ∈ {1, . . . , w}, this can only happen when all calls to the tolerant tester outputs
Reject. This means that ∥xBj∥2 > ε1 = ℓi = 2i−1 · α for all i ∈ {1, 2, . . . , ⌈log2 ζ/α⌉}. In
particular, this means that ∥xBj

∥2 > ζ/2.

Proof of Property 2. When APPROXL1 outputs λ = 2
∑w

j=1

√
|Bj | · oj ∈ R, we can lower bound

λ as follows:

λ = 2

w∑
j=1

√
|Bj | · oj ≥ 2

w∑
j=1

√
|Bj | ·

∥pBj
− qBj

∥2
2

(since ∥pBj − qBj∥2 ≤ 2oj)

≥
w∑

j=1

∥pBj − qBj∥1 (since ∥pBj − qBj∥1 ≤
√
|Bj | · ∥pBj − qBj∥2)

= ∥p− q∥1 (since
∑w

j=1 ∥pBj
− qBj

∥1 = ∥pBj
− qBj

∥1)

That is, λ ≥ ∥p− q∥1. Meanwhile, we can also upper bound λ as follows:

λ = 2
w∑

j=1

√
|Bj | · oj ≤ 2

√
k

w∑
j=1

oj (since |Bj | ≤ k)

= 2
√
k ·


w∑

j=1
∥pBj

−qBj
∥2≤2α

oj +

w∑
j=1

∥pBj
−qBj

∥2>2α

oj


(partitioning the blocks based on ∥pBj

− qBj
∥2 versus 2α)

= 2
√
k ·


w∑

j=1
∥pBj

−qBj
∥2≤2α

α+

w∑
j=1

∥pBj
−qBj

∥2>2α

oj


(since ∥pBj

− qBj
∥2 ≤ 2α implies oj = α)

≤ 2
√
k ·


w∑

j=1
∥pBj

−qBj
∥2≤2α

α+

w∑
j=1

∥pBj
−qBj

∥2>2α

2∥pBj
− qBj

∥2


(since ∥pBj − qBj∥2 > 2α implies oj ≤ 2∥pBj − qBj∥2)

≤ 2
√
k ·


w∑

j=1
∥pBj

−qBj
∥2≤2α

α+ 2

w∑
j=1

∥pBj
−qBj

∥2>2α

∥pBj
− qBj

∥1


(since ∥pBj

− qBj
∥2 ≤ ∥pBj

− qBj
∥1)

≤ 2
√
k ·

⌈d/k⌉ · α+ 2

w∑
j=1

∥pBj
−qBj

∥2>2α

∥pBj − qBj∥1


(since |{j ∈ [w] : pBj

∥2 ≤ 2α}| ≤ w)

≤ 2
√
k · (⌈d/k⌉ · α+ 2∥p− q∥1)

(since
∑w

j=1
∥pBj

−qBj
∥2>2α

∥pBj
− qBj

∥1 ≤
∑w

j=1 ∥pBj
− qBj

∥1 = ∥pBj
− qBj

∥1)

That is, λ ≤ 2
√
k · (⌈d/k⌉ · α+ 2∥p− q∥1). The property follows by putting together both bounds.
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Now, suppose APPROXL1 tells us that ∥p− q∥1 ≤ r. We can then perform a constrained LASSO to
search for a candidate p̂ ∈ [0, 1]d using O( r

2

ε4 log
d
δ ) samples from Ber(p).

Lemma 3.4. Fix d ≥ 1, r ≥ 0, ε, δ > 0, and q ∈ [0, 1]d. Given O( r
2

ε4 log
d
δ ) samples from Ber(p)

for some unknown p ∈ [0, 1]d with ∥p − q∥1 ≤ r, one can produce an estimate p̂ ∈ [0, 1]d in
poly(n, d) time such that ∥p̂− p∥2 ≤ ε with success probability at least 1− δ.

Proof. Suppose we get n samples y1, . . . ,yn ∼ Ber(p). For i ∈ [n], we can re-express each yi as
yi = p+ zi for some zi distributed as Ber(p)− p. Let us define p̂ ∈ [0, 1]d as follows:

p̂ = argmin
∥b−q∥1≤r

1

n

n∑
i=1

∥yi − b∥22 (1)

By optimality of p̂ in Equation (1), we have

1

n

n∑
i=1

∥yi − p̂∥22 ≤
1

n

n∑
i=1

∥yi − p∥22 (2)

By expanding and rearranging Equation (2), one can show:

∥p̂− p∥22 ≤
2

n

〈
n∑

i=1

zi, p̂− p

〉
(3)

Meanwhile, a standard Chernoff bound shows that Pr
[
∥
∑n

i=1 zi∥∞ ≥
√

2n log
(
2d
δ

)]
≤ δ. There-

fore, using Hölder’s inequality and triangle inequality with the above, we see that, with probability at
least 1− δ,

∥p̂− p∥22 ≤
2

n
⟨

n∑
i=1

zi, p̂− p⟩ ≤ 2

n
·

∥∥∥∥∥
n∑

i=1

zi

∥∥∥∥∥
∞

· ∥p̂− p∥1

≤ 2

n
·

∥∥∥∥∥
n∑

i=1

zi

∥∥∥∥∥
∞

· (∥p̂− q∥1 + ∥p− q∥1)

≤ 4r ·

√
2 log

(
2d
δ

)
n

Finally, it is known that LASSO runs in poly(n, d) time.

Using Lemma 3.4, we now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Correctness of p̂ output. TESTANDOPTIMIZEMEAN (Algorithm 2) has two
possible outputs for p̂:
Case 1: p̂ = argmin∥b−q∥1≤λ

1
n

∑n
i=1 ∥yi − b∥22, which can only happen when Outcome is λ ∈ R

and λ < ε
√
d

Case 2: p̂ = 1
n

∑n
i=1 yi

Conditioned on APPROXL1 succeeding, with probability at least 1 − δ, we will show that
dTV(Ber(p),Ber(p̂)) ≤ ε and failure probability at most δ in each of these cases, which implies the
theorem statement.

Case 1: Using r = λ as the upper bound, Lemma 3.4 tells us that ∥p̂ − p∥2 ≤ ε
√

τ(1− τ)/2

with failure probability at most δ when Õ(λ2/τ2ε4) i.i.d. samples are used. Using Proposition 2.4,
dTV(Ber(p),Ber(p̂)) ≤ ε.

Case 2: With Õ(d/ε2) samples, it is known that the empirical mean p̂ achieves
dTV(Ber(p),Ber(p̂)) ≤ ε with failure probability at most δ.
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Algorithm 2 The TESTANDOPTIMIZEMEAN algorithm.
1: Input: Error rate ε > 0, failure rate δ ∈ (0, 1), parameter η ∈ [0, 1

4 ], parameter τ ∈ [0, 1
2 ], and

sample access to Ber(p)
2: Output: p̂ ∈ Rd

3: Define k = min(⌈d4η/τ4⌉, d), α = εd(3η−1)/2/τ , ζ = 4ε ·
√
d, and δ′ = δ

⌈d/k⌉·⌈log2 ζ/α⌉

4: Draw O(
√
k log(1/δ′)/α2) i.i.d. samples from Ber(p) and store it into a set S

5: Let Outcome be the output of the APPROXL1 algorithm given k, α, ζ, and S as inputs
6: if Outcome is λ ∈ R and λ < ε

√
d then

7: Draw n ∈ Õ(λ2/ε4) i.i.d. samples y1, . . . ,yn ∈ {0, 1}d
8: return p̂ = argmin∥b−q∥1≤λ

1
n

∑n
i=1 ∥yi − b∥22

9: else
10: Draw n ∈ Õ(d/ε2) i.i.d. samples y1, . . . ,yn ∈ {0, 1}d
11: return p̂ = 1

n

∑n
i=1 yi {Empirical mean}

12: end if

Sample complexity used. APPROXL1 uses |S| = m(k, α, δ′) ∈ Õ(
√
k/α2) samples to pro-

duce Outcome. Then, APPROXL1 further uses Õ(λ2/τ2ε4) samples or Õ(d/ε2) samples de-
pending on whether λ < ε

√
d. So, TESTANDOPTIMIZEMEAN has a total sample complex-

ity of Õ
(√

k
α2 +min

{
λ2

τ2ε4 ,
d
ε2

})
. Meanwhile, Lemma 3.3 states that ∥p − q∥1 ≤ λ ≤

2
√
k · (⌈d/k⌉ · α+ 2∥p− q∥1) whenever Outcome is λ ∈ R. Since (a + b)2 ≤ 2a2 + 2b2

for any two real numbers a, b ∈ R, we see that λ2

τ2ε4 ∈ O
(

k
τ2ε4 ·

(
d2α2

k2 + ∥p− q∥21
))
⊆

O
(

d
ε2 ·

1
τ2

(
dα2

ε2k +
k·∥p−q∥2

1

dε2

))
. Putting together the above observations, we see that the total

sample complexity is

Õ

(√
k

α2
+

d

ε2
·min

{
1,

dα2

ε2τ2k
+

k · ∥p− q∥21
dτ2ε2

})
.

Recalling that TESTANDOPTIMIZEMEAN sets k = min(⌈d4ητ−4⌉, d) and α = εd(3η−1)/2τ−1, the
above expression simplifies to Õ

(
d
ε2 ·

(
d−η +min

(
1,

∥p−p̃∥2
1

d1−4ητ6ε2

)))
..

4 Lower Bounds

For proving of our lower bounds, we use the following corollary of Fano’s inequality.
Lemma 4.1 (Lemma 6.1 of [ABDH+20]). Let κ : R → R be a function and let F be a class of
distributions such that, for all ε > 0, there exist distributions f1, . . . , fM ∈ F such that

dKL(fi, fj) ≤ κ(ε) and dTV(fi, fj) > 2ε ∀i ̸= j ∈ [M ]

Then any method that learns F to within total variation distance ε with probability≥ 2/3 has sample

complexity Ω
(

logM
κ(ε) log(1/ε)

)
.

Lemma 4.2 (Learning unbalanced distributions requires linear samples). Suppose ε is sufficiently
small, and we are given sample access to a product distribution Ber(p) on {0, 1}d with mean vector
p having entries which are O(1/d), along with an advice mean vector q such that ∥p− q∥1 ≤ O(ε).
Even in this case, learning p̂ such that dTV(Ber(p),Ber(p̂)) ≤ ε requires Ω̃

(
d
ε

)
samples

Proof. Suppose that the advice distribution Ber(q) has mean vector q ≜
[
ε
d · · · ε

d

]
. If

S ⊆ [d], define pS ∈ [0, 1]d with pS [i] = 2ε
d if i ∈ S and = ε

d otherwise. Then, we have
∥pS − q∥1 = |S| εd for all S ⊆ [d]. Also, for all S, T ⊆ [d] we have dTV(Ber(pS),Ber(pT)) ≥∣∣Prx∼Ber(pS)(xS\T = 0)− Prx∼Ber(pT)(xS\T = 0)

∣∣ =
∣∣∣(1− 2ε

d

)|S\T | −
(
1− ε

d

)|S\T |
∣∣∣ ≥ 1 −(

|S\T |ε
d + 1

1+2
|S\T |ε

d

)
; this is using the inequalities (1 − x)r ≥ 1 − rx for r ∈ {0} ∪ [1,∞),
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x ≤ 1, and (1 − x)r ≤ 1
1+rx for r ≥ 0, x ∈ (−1/r, 1]. Using the same argument with

the set T \ S, we get dTV(Ber(pS),Ber(pT)) ≥ 1 −
(

|T\S|ε
d + 1

1+2
|T\S|ε

d

)
. Thus, we have

dTV(Ber(pS),Ber(pT)) ≥ maxH∈{S\T,T\S}
ξ≜|H|ε/d

1 −
(
ξ + 1

1+2ξ

)
. Note that, by calculation, we can

show that 1−
(
ξ + 1

1+2ξ

)
≥ ξ/2− ξ2 for ξ ≥ 0, which is Ω(ξ) for ξ ∈ (0, 1/4).

Similarly, we have dKL(Ber(pS)∥Ber(pT)) =
∑

i∈[d] kl([pS ]i, [pT ]i) =
∑

i∈S\T kl( 2εd , ε
d ) +∑

i∈T\S kl( εd ,
2ε
d ) (where kl(p, q) ≜ dKL(Ber(p)∥Ber(q))). We can see by simple calculations along

with the logarithmic inequality ln(1+x) ≤ x for x > −1, that kl( εd ,
2ε
d ) ≤ ε

d

(
1− ln(2) + ε

d−2ε

)
≤

0.5ε
d (for d ≥ 10 and ε ≤ 1), and kl

(
2ε
d , ε

d

)
≤ ε

d

(
2 ln(2)− 1 + ε

d−ε

)
≤ 0.5

d (for d ≥ 10 and ε ≤ 1).

Thus dKL(Ber(pS)∥Ber(pT)) ≤ ε
2d (|S \ T |+ |T \ S|) =

|S⊕T |ε
2d .

Viewing sets S ⊆ [d] as vectors in Fd
2 and using the Gilbert-Varshamov bound, we can say that, for

any constant c ∈ (0, 1) and sufficiently large d, there exists a family of sets {S1, . . . , SM} ⊆ 2[d]

with M ≥ 2Ω(cd) such that |Si| = cd and |Si ⊕ Sj | ≥ cd
4 for all i, j ∈ [M ]. We use this family to

instantiate distributions fi ≜ Ber(pSi
) for each i ∈ [M ].

Suppose we take S = Si, T = Sj , with |S| = |T | = cd and |S ⊕ T | ∈
[
cd
4 , 2cd

]
, so that

dKL(fi∥fj) ≤ |S⊕T |ε
2d ≤ cε for all i, j ∈ [M ]. Since |Si ⊕ Sj | ≥ cd/4, we will have at least one of

H ∈ {S \ T, T \ S} with |H| ∈
[
cd
8 , cd

]
. Thus, we will have |H|ε

d ∈
[
cε
8 , cε

]
= Θ(ε) (for constant

c > 0), and dTV(fi, fj) ≥ Ω(ε) (supposing cε < 1/4).

By appropriately scaling ε and applying Lemma 4.1, we can show that we need Ω̃
(
d
ε

)
samples

to learn a product distribution f∗ = Ber(pS∗) ∈ {f1, . . . , fM} to within ε in TV distance, even
when given advice q with ∥pS∗ − q∥1 < ε, if the distribution mean vector pS∗ are allowed to be
unbalanced (specifically, with entries ≤ O(1/d)).

We also prove a sample complexity lower bound for learning product distributions balanced case
given advice, which adapts the sample complexity lower bound in ([BCGG25], Lemma 32) for
learning multivariate isotropic gaussians N (µ∗, Id) given an advice vector which is close to the true
mean vector in ℓ1 distance.
Lemma 4.3. Let ε > 0 be sufficiently small. Suppose that we are given sample access to a distribution
Ber(p) where p is 1

4 -balanced, and also an advice vector q with ∥p− q∥1 = λ ≥ 100ε. Then, any
algorithm that learns Ber(p) up to distance ε in total variation with constant failure probability
requires Ω̃

(
min

{
∥p− q∥21/ε4, d/ε2

})
samples. In particular, when ∥p − q∥1 ≥ ε

√
d, we need

Ω(d/ε2) samples.

Proof. Suppose we want ∥p− q∥1 = λ for λ sufficiently small. Fix q =
[
1
2 · · · 1

2

]
and suppose

p = pS for some S ⊆ [d] with |S| = k such that pS [i] =
1
2 + λ

k for i ∈ S and = 1
2 otherwise.

Then ∥pS − q∥1 = λ and ∥pS − pT ∥2 = λ
k

√
|S ⊕ T |. If λ

k < 1
4 , the distributions pS are τ -

balanced for τ = 1
4 . In that case, for any S, T ⊆ [d], we can bound dKL(Ber(pS)∥Ber(pT)) ≤

8
(
λ
k

)2 |S ⊕ T | (by Proposition 2.3), and the total variation distance by dTV(Ber(p),Ber(q)) ≥
Ω
(
min

{
1, λ

k

√
|S ⊕ T |

})
(Proposition 2.4).

As in ([BCGG25], Lemma 32), we consider {S1, . . . , SM} and take pi ≜ pSi
for a family of k-

subsets with M ≥ 2Ω(k) and |Si⊕Sj | ≥ k/4 for all i ̸= j, known to exist via the Gilbert-Varshamov
bound. We can do this as long as, e.g. k ≥ 10. This gives dKL(Ber(pi)∥Ber(pj)) ≤ 16λ2

k (where λ

is a function of ε) and dTV(Ber(pi),Ber(pj)) ≥ c λ
2
√
k

as long as λ
2
√
k
< 1.

If we choose k = ⌈λ
2

ε2 ⌉ ≥ 100 such that λ = ε
√
k < 2

√
k, we will get pairwise TV ≥ cε/2 and

pairwise KL ≤ 16ε2k
k ≤ O(ε2). Finally, scaling ε before applying Lemma 4.1 gives the result.
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5 Conclusion

This work introduces an efficient algorithm for learning product distributions on the Boolean hyper-
cube when provided with an imperfect advice distribution. The sample complexity of this algorithm
is O(d1−η/ε2) under specific conditions on the advice quality and a "balancedness" assumption on
the true distribution. Note that the algorithm’s sample complexity becomes sublinear in the dimension
d if the advice is sufficiently accurate, and it remains robust even with poor advice. Key to this
is a novel tolerant mean tester and techniques for approximating the ℓ1-distance between the true
and advice distributions. Future research could extend this learning-with-advice framework to other
complex models like Bayesian networks and Ising models, aiming to understand how structural
properties of these models interact with advice quality. It would also be interesting to investigate if
advice can improve the sample complexity of learning an unstructured distribution over a discrete
domain [n] compared to the classical upper bound of O( n

ε2 ) samples.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Formal theorems are stated and proved for every claim made.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: The paper is entirely theoretical. Theoretical limitations and assumptions etc
are formally discussed. The claims are only made under the scope of these assumptions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are stated and full proofs are given in the paper itself.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: This paper does not include experiments, and does not provide code or data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper is entirely theoretical, and does not use human subjects or real-world
datasets. The proposed algorithms are fully specified for reproducibility, and theorems/ideas
from other papers have been acknowledged.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is theoretical and abstract; there is no direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not introduce real world data or models, and poses no risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce any assets other than the pseudocode and
algorithms described.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper is entirely theoretical and does not use crowdsourcing or human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper is entirely theoretical and has no human subjects or study partici-
pants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in the development of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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