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ABSTRACT

In recent years, Large Language Models (LLMs) have demonstrated high rea-
soning capabilities, drawing attention for their applications as agents in various
decision-making processes. One notably promising application of LLM agents
is robotic manipulation. Recent research has shown that LLMs can generate text
planning or control code for robots, providing substantial flexibility and interac-
tion capabilities. However, these methods still face challenges in terms of flexibil-
ity and applicability across different environments, limiting their ability to adapt
autonomously. Current approaches typically fall into two categories: those relying
on environment-specific policy training, which restricts their transferability, and
those generating code actions based on fixed prompts, which leads to diminished
performance when confronted with new environments. These limitations signifi-
cantly constrain the generalizability of agents in robotic manipulation. To address
these limitations, we propose a novel method called EnvBridge. This approach
involves the retention and transfer of successful robot control codes from source
environments to target environments. EnvBridge enhances the agent’s adaptabil-
ity and performance across diverse settings by leveraging insights from multi-
ple environments. Notably, our approach alleviates environmental constraints,
offering a more flexible and generalizable solution for robotic manipulation tasks.
We validated the effectiveness of our method using robotic manipulation bench-
marks: RLBench, MetaWorld, and CALVIN. Our experiments demonstrate that
LLM agents can successfully leverage diverse knowledge sources to solve com-
plex tasks. Consequently, our approach significantly enhances the adaptability
and robustness of robotic manipulation agents in planning across diverse environ-
ments.

1 INTRODUCTION

The development of Large Language Models (LLMs) has remarkably advanced various fields,
demonstrating impressive capabilities in understanding and generating human-like text. Methods
such as Chain of Thought (CoT) (Wei et al. (2023)) and ReAct (Yao et al. (2023)) have showcased
the high reasoning capabilities of LLMs, while models like OpenAI-o1 have further enhanced these
abilities. Building on these strengths, researchers have explored the integration of LLMs into intel-
ligent agents capable of complex decision-making tasks. These LLM agents leverage sophisticated
language understanding and reasoning abilities to perform a wide range of functions, from customer
service chatbots to complex problem-solving systems, demonstrating their versatility and potential.

Among the various applications of LLM Agents, robotic manipulation stands out as a particularly
promising area. Recent studies such as EmbodiedGPT (Mu et al. (2023)) combine LLM with vi-
sual components and policy net, building agents based on LLM’s planning ability. Methods such
as Code as Policies (CaP) (Liang et al. (2023)) and VoxPoser (Huang et al. (2023)) utilize LLMs to
create robotic control code, achieving high accuracy and stability in responding to instructions and
removing the need for extensive pre-training specific to robot actions. However, despite these ad-
vancements, LLM embodied agents still face significant limitations. LLM agents which use natural
language for planning often require policy training to align text action steps with the environment’s
numerical action space. This need for environment-specific policy training restricts their flexibility
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to adapt to diverse and new environments. On the other hand, LLM agents that generate control
code for robots, while eliminating the need for pre-training, still exhibit poor performance when
applied to unseen environments due to the use of fixed, human-created prompts. This shortcoming
reveals their limited transferability and lack of robustness across diverse settings. Essentially, cur-
rent methods struggle to support continuous learning and adaptation, which are crucial for sustained
high performance in changing environments.

Our research addresses these critical limitations by introducing a novel agent, EnvBridge. EnvBridge
employs a key process called Cross-Environment Knowledge Transfer to integrate insights from
different environments. This is based on traditional human intelligence: gaining insights from suc-
cessful experiences in previous familiar environments and transferring knowledge to similar tasks
in unseen scenarios. In a similar approach, we leverage successful robotic control code from one
benchmark environment and apply it to another, thereby enhancing the agent’s adaptability and per-
formance in diverse environments. This approach alleviates the environmental constraints, providing
a more flexible and generalizable solution.

EnvBridge is comprised of three components: Code Generation, Memory-Retrieval, and Re-
Planning with Transferred Knowledge. When encountering the tasks in the target environment,
EnvBridge will first use LLMs to generate robotic control code attempting the task. If the task is not
accomplished, EnvBridge will retrieve successfully executed codes solving similar tasks in source
environment stored in our memory. Subsequently, EnvBridge transfers the codes into knowledge
appropriate for the target environment and applies them as in-context learning for the agent. By
leveraging on appropriate transfer of knowledge across environments, EnvBridge can operate across
diverse environments with high performance.

We evaluate EnvBridge across three representative embodied environments: RLBench, MetaWorld,
and Calvin. These benchmarks encompass common actions like pick and place, while each presents
unique environments and a diverse range of tasks. EnvBridge achieves an average success rate of
69% on RLBench tasks, significantly outperforming both code generation and Re-Planning base-
lines. Furthermore, EnvBridge demonstrates robust performance across various knowledge sources
and task instructions, highlighting its adaptability to diverse environments and tasks.

Our contributions can be summarized as follows:

• We propose a novel agent named EnvBridge, which tackles the key challenges in LLM em-
bodied agents that struggle with transferability using a process called Cross-Environment
Knowledge Transfer. Inspired by human intelligence—where successful experiences in fa-
miliar environments are applied to similar tasks in new scenarios—EnvBridge leverages
successful examples from one benchmark environment and applies them to another, en-
hancing adaptability and performance.

• EnvBridge enhances adaptability across various environments without relying on pre-
training or human-initiated prompt adjustments. It uses Cross-Environment Knowledge
Transfer to retrieve successful control codes from memory and adapt them for the target
environment, allowing the agent to flexibly handle new environments and tasks.

• We evaluate EnvBridge with three distinct robot manipulation benchmarks: RLBench,
MetaWorld, and CALVIN. Each benchmark has different settings and task complexities,
making them ideal for evaluating EnvBridge’s performance. Our results demonstrate that
EnvBridge consistently achieves high task success rates across varied scenarios, confirming
its effectiveness and robustness.

2 RELATED WORK

2.1 ADVANCEMENTS IN REASONING WITH LLMS

LLMs have made significant strides in natural language processing tasks, including text generation,
summarization, translation, and tasks that require elements of reasoning such as reading, comprehen-
sion, and question answering. Though their capacity for reasoning and complex problem-solving is
impressive, there is still much room for improvement. To enhance their reasoning skills, researchers
are exploring techniques like hierarchical reasoning, where complex problems are broken down
into smaller sub-problems. Wei et al. (2023) developed chain-of-thought prompting, a strategy that
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prompts LLMs to reason by articulating their thought process step-by-step. Multi-agent discussion,
as demonstrated in Debate (Du et al. (2023)), involves multiple LLMs working together to reason
collaboratively. To further improve LLM reasoning, incorporating external knowledge is crucial.
Approaches like knowledge graph integration (Pan et al. (2024)) and Retrieval-Augmented Gener-
ation (Lewis et al. (2021)) allow LLMs to access and leverage structured information, leading to
more accurate and informed responses.

2.2 LLM AGENTS WITH MEMORY

LLM-based agents can interact with humans using natural language, offering a more flexible and
transparent interface. The memory module is crucial for enabling an agent to acquire, accumulate,
and use knowledge through interactions with its environment, achieved via three key operations:
memory reading, writing, and reflection. Memory reading extracts useful information from past
experiences to guide future actions, while memory writing stores environmental data for later use.
Memory reflection allows agents to evaluate their cognitive processes. Unlike traditional LLMs,
agents must learn and act in dynamic environments, necessitating a module that aids in planning
future actions. RAP (Kagaya et al. (2024)) dynamically leverages past experiences corresponding
to the current situation and context, thereby enhancing agents’ planning capabilities. SayPlan (Ahn
et al. (2022)) is an embodied agent tailored for task planning. In this system, scene graphs and
environmental feedback function as the agent’s short-term memory, directing its actions. The Gen-
erative Agent (Park et al. (2023)) utilizes a hybrid memory structure to support the agent’s behavior.
Its short-term memory holds contextual information about the agent’s present situation, while its
long-term memory stores past behaviors and thoughts, which can be accessed based on current
events.

2.3 EMBODIED AGENTS

Recent works have developed more efficient reinforcement learning agents for robotics and embod-
ied artificial intelligence to enhance agents’ abilities for planning, reasoning, and collaboration in
embodied environments. Hierarchical planning models (e.g., Sharma et al. (2022)) represent a type
of approach where a high-level planner leverages LLMs to generate subgoals, and a low-level plan-
ner carries out their execution. The LLMs outline a sequence of subgoals aimed at reaching the final
objective specified by the language instruction, while the low-level planner translates these subgoals
into appropriate actions for the given environment. Dasgupta et al. (2023) proposes a similar idea of
a unified system for embodied reasoning and task planning, combining high-level commands with
low-level controllers for effective planning and action execution. Furthermore, various approaches
that utilize the high code-generation capabilities of LLMs for robotic manipulation are being re-
searched. These include methods for grounding actions available within the environment (Singh
et al. (2022)), attempting error recovery in case of failures (Duan et al. (2024)), and learning skills
from a lifelong learning perspective (Tziafas & Kasaei (2024)). These methods do not require pre-
training and can take advantage of the flexible reasoning abilities of LLMs, making them highly
notable. However, their applications across various environments are still limited.

3 ENVBRIDGE: CROSS-ENVIRONMENT KNOWLEDGE TRANSFER AND
RE-PLANNING

In this section, we introduce how we design and combine Cross-Environment Knowledge Transfer,
Re-Planning method with LLM code generation to build our agent EnvBridge. Figure 1 provides an
overview of the framework. The framework consists of three main components: Code Generation,
Memory Retrieval, Knowledge Transfer and Re-Planning.

3.1 PROBLEM FORMULATION

In this work, we consider an agent operating in a particular environment E0 and assigned with
completing some task given a free-form language instruction l. To achieve this goal, the agent needs
to generate robot trajectories τl according to l .
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Figure 1: Overview of EnvBridge. In the method for generating code for robot operation, the suc-
cessfully generated code in the source environment is stored in memory and utilized for code gen-
eration (Re-Planning) in the target environment. At that time, codes with high query similarity are
retrieved from memory and converted to match the style of the target environment, thereby facilitat-
ing smooth knowledge transfer.

3.2 CODE GENERATION FOR ROBOT MANIPULATION

We use LLMs to generate Python code that is executed by an interpreter to decompose the lan-
guage instruction into subtasks, invoke perception APIs and generate robot trajectories. Our Code
Generation pipeline follows the design from VoxPoser (Huang et al. (2023)), which comprises 3
LLM-calling steps:

Step 1: The Planner is responsible for decomposing language-instruction guided tasks (e.g., “press
the light switch”) into sub-tasks (e.g., “grasp the button”, “move to the center of the button”).

Planner(l) = (l1, l2..., ln) (1)

Step 2: The Composer takes in sub-task instruction li (e.g., “grasp the button”, “move to the center of
the button”) and invokes necessary low-level language model program (LMP). Each low-level LMP
is responsible for unique functionality (e.g., parsing query objects in dictionary form, generating
affordance map in Numpy array from Composer parametrization).

Composer(li) = (LMP1(li), LMP2(li), ..LMPk(li)) (2)

Step 3: The Low-Level LMPs will be executed to interact with certain perception APIs to generate
necessary value maps such as affordance and avoidance maps. These value maps will then be used
together to find a sequence of end-effector positions serving as robot trajectories.

execLMP (Composer(li)) = τli (3)

Thereafter, we combine the robot trajectories of each sub-task li to form the complete robot trajec-
tories attempting to accomplish the task.

τl = (τl1 , τl2 ..., τln) (4)

Additionally, the prompt used for code generation is documented in Appendix A.2.1.

3.3 MEMORY CONSTRUCTION AND RETRIEVAL

Although Code Generation method can be applied to different embodied environments, we observe
a high failure rate in solving tasks in unseen environments. The challenges mainly come from two
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perspectives. The high-level planner struggles to decompose unseen tasks in new environments and
the composer fails to assign proper low-level LMPs. These reveal LLM’s limitations when reasoning
in complex zero-shot scenarios. Aiming to build a robust embodied agent that can function in
various environments with high efficacy, we leverage on traditional human behavior: learning from
successful experiences in previous familiar environments and transferring knowledge to similar tasks
in unseen scenarios. To enhance the ability for our agent, we build our Memory and Retrieval
mechanism, inspired by the Retrieval-Augmented Generation (Lewis et al. (2021)) framework.

3.3.1 MEMORY COMPONENT

Here, we describe in detail the contents stored in the memory component shown in Figure 1. During
the execution of tasks in the Code Generation pipeline, our system records the details of each task,
including the environment, the input instructions, the generated code, and the outcomes (successes
or failures). After execution and evaluation, only successfully executed codes are saved into our
memory. We place heavier emphasis on Planner-level and Composer-level code as they are highly
related to the specific task instruction and can be flexible, while low-level LMPs code has less
variation in terms of instructions. Therefore, we save only Planner and Composer-level code in our
memory.

Each successful log L contains the following information: The environment E, the code-level c
(Planner or Composer), the instruction l (task instruction on Planner-level and decomposed sub-task
instruction on Composer-level), and the successfully executed code. Examples of the information
recorded in memory are provided in Appendix A.3, showcasing the types of data our system stores.

Lplanner = {E, c = planner, l, (l1, l2..., ln))} (5)

Lcomposer = {E, c = composer, li, (LMP1(li), LMP2(li), ..LMPk(li))} (6)

3.3.2 MEMORY RETRIEVAL

When encountering a new task T , EnvBridge can query the memory to find relevant successful logs
that can be adapted and helpful at the two stages of code generation.

Assuming we are at the code generation stage cT , the instruction is lT . For each log in the memory
Lj = {E, cj , lj , Codej}, we will calculate a similarity score between the instructions from the
memory log and the current instruction of task T .

Score(Lj) = 1{cT=cj} ∗ cos sim(lT , lj) (7)

Here, the similarity score is calculated as the cosine similarity between the text embedding of current
task instruction and logged instruction, if they are on the same code generation level (cT = cj);
otherwise, it is 0. Then we retrieve the codes with the highest similarity scores. For generating these
text embeddings, we employ sentence-transformers (Reimers & Gurevych (2019)).

After retrieval, EnvBridge transfers the retrieved codes and applies them as prompts for agents to
generate more accurate code in the current task. This will be further explained in Section 3.4.

Retrieved(Code1, Code2, ..CodeK) = TOP
Score(Lj)
K {Codej} (8)

3.4 RE-PLANNING WITH TRANSFERRED KNOWLEDGE

In this section, we introduce two important designs to apply retrieved code from source environments
to LLM code generation in the target environment: Knowledge Transfer and Re-Planning. In Section
3.4.1, we introduce how Knowledge Transfer minimize the difference in robotic manipulation code
between source and target environments. In Section 3.4.2, we introduce the instances and the form
we apply the adapted retrieved code to better leverage in-context learning for code generation.

3.4.1 KNOWLEDGE TRANSFER

Robot foundation models such as RT-X (Collaboration (2024)) learn by integrating diverse robotic
manipulation data, enabling them to operate in various environments. This clearly demonstrates that
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Figure 2: The process flow from Knowledge Transfer to Re-Planning. From left to middle: Using
a code example from the target environment as a reference, convert the code from the source envi-
ronment. From middle to right: Use the target environment’s example and the transferred code to
generate new code for the task.

Algorithm 1 Re-Planning in EnvBridge

Initialize: Environment E, Memory M , MaxTrial d
Input: Task T , Instruction l
code = CodeGeneration(l, E) // Code Generation for 1st trial
result = Execution(code, E)
if result is Fail then

for i in range(d - 1) do
codem = MemoryRetrieval(l, M , i) // Memory Retrieval for ith similar code
code′m = KnowledgeTransfer(codem) // Knowledge Transfer into target environment
code = CodeGeneration(l, code′m, E) // Code Generation with transferred code
result = Execution(code, E)
if result is Success then

break
end if

end for
end if

common information is shared across different tasks and environments. Building on these insights,
we apply Cross-Environment Knowledge Transfer for robotic planning by adapting the retrieved
code to different target environments. This process minimizes differences between environments
and focuses on transferring the essential insights needed for the target context.

This process is illustrated in the left and center of Figure 2. Here, code examples from the target
environment are provided as prompts, and the retrieved code is adapted to suit the target environment
by LLMs. This allows us to convert environment-specific plans (such as initializing a robot arm at
the beginning) and environment-dependent information like coordinates and scales to match the
target environment. The prompt used for knowledge transfer is provided in Appendix A.2.2.

3.4.2 RE-PLANNING

Using the code adapted by Knowledge Transfer, EnvBridge proceeds with Re-Planning. Figure 2
shows this process progressing from the middle to the right. If the initially generated code fails, the
agent utilizes the most similar retrieved code in LLM inference context to generate new code. If
this new attempt also fails, the agent uses the second most similar code to generate the code again.
In this manner, EnvBridge incorporates new ideas from similar knowledge to perform Re-Planning.
By combining initial prompt examples with those retrieved from memory, we leverage in-context
learning. This approach allows us to maintain code quality while integrating new insights.

This methodology is akin to the technique for generating new ideas discussed by Lu et al. (2024) and
demonstrates that leveraging archived ideas or insights for the target task is a viable approach. Con-
sequently, this method enhances the agents’ capabilities, improving their flexibility and creativity in
task resolution. Detailed prompt illustrating this process is provided in Appendix A.2.3.
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4 EXPERIMENTS

To assess the effectiveness of EnvBridge, we conducted experiments across three representative
embodied agent benchmarks: RLBench, MetaWorld, and CALVIN.

These benchmarks are chosen for their widespread use in embodied agent research and their near-
real-world robotic settings. These benchmarks share common actions, such as pick and place, but
they each include different variations in terms of robots and types of tasks. In the following section,
we present the evaluation results, demonstrating how memory transfer—where knowledge gained
in one environment is applied to an unfamiliar one—enhances the agent’s efficiency and perfor-
mance. This approach allows us to assess the agent’s adaptability to new challenges while leveraging
previously learned knowledge to solve novel tasks, closely mimicking real-world problem-solving
scenarios for embodied AI.

4.1 RLBENCH: MAIN RESULTS COMPARED WITH BASELINES

RLBench(James et al. (2019)) is a robot learning benchmark for tabletop environments with various
tasks. We sampled 10 tasks from it and conduct evaluations covering various tasks, instructions, and
objects. Each task comprises 20 trials, with instructions randomly selected from those supported by
RLBench. GPT-4o-mini was used for this evalution.

We compare EnvBridge with Voxposer(Code Generation baseline) and two Re-Planning baselines:
Retry and Self-Reflection. Retry indicates re-executing without making any changes if the previous
trial fails. As the method for Self-Reflection, we used a novel conventional approach (Shinn et al.
(2023)) to generate a plan for the next trial. Additionally, to extend Self-Reflection to RLBench, we
create the prompts ourselves and use the images obtained from RLBench as Observations to generate
the next plan. The prompts used for generating Self-Reflection are described in the Appendix A.2.4.
In the proposed method, we conduct the evaluation using memory constructed from successful codes
in the CALVIN benchmark (Mees et al. (2022)). While detailed settings for the CALVIN benchmark
are described in Section 4.3, we used the successful codes from 200 tasks in CALVIN, executed with
the Retry Re-Planning method, to build the memory. Moreover, for methods excluding the baseline,
the success rate is calculated based on up to three trials.

The evaluation results are shown in the Figure 3. From these results, our proposed method performs
better than Self-Reflection. Furthermore, while our method requires memory from other environ-
ments, Self-Reflection necessitates manual creation of prompts for reflection for each environment.
Therefore, our method is more generalized for expanding the application range of robotic operations.

When analyzing individual task performance, we observe distinct trends between Self-Reflection
and EnvBridge. Self-Reflection shows improved performance on tasks partially addressed by the
baseline, such as BeatTheBuzz and CloseDrawer. In contrast, EnvBridge demonstrates significant
improvements on tasks with low baseline performance, like PushButton and TakeLidOffSaucepan.
This difference arises because Self-Reflection enhances the generation of better code for tasks that
are already partially solvable, whereas EnvBridge can solve previously unsolvable tasks by incorpo-
rating new insights from other environments. Additionally, specific examples of success and failure
with EnvBridge are provided in Appendix A.5.

4.2 METAWORLD: EVALUATION WITH VARIOUS KNOWLEDGE SOURCES

MetaWorld (Yu et al. (2021)) is an open-source simulated robotics environment designed for multi-
task and meta-learning scenarios. It provides a suite of benchmark manipulation tasks of varying
complexity, all sharing a common robot arm and basic physics. MetaWorld’s standardized task set
and simulated table robotic manipulation scenario are similar to the settings in RLBench, making it
an appropriate benchmark environment to evaluate EnvBrdige’s transferability across environments.

We select five tasks from MetaWorld’s standardized task set for evaluation. Assembly, Button-Press,
Drawer-open, Hammer, and Window-close. One instruction is given for each task. For each task,
we evaluate with 20 trials. GPT-4o is used for this evalution.

For MetaWorld, we evaluate EnvBridge’s performance with different sources of knowledge. They
are in-domain knowledge (memory from MetaWorld), transferred knowledge (memory from RL-
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Figure 3: Task-specific and average success rate(%) on RLBench.

Figure 4: Task-specific success rate(%) on MetaWorld

Bench) and unified knowledge (a combined memory from MetaWorld and RLBench). We compare
EnvBridge under various settings with Voxposer, which is the LLM code generation agent baseline.

From Figure 4 we can see that with transferred knowledge from RLBench, EnvBridge can surpass
the perfomance of robotic manipulation code generation baseline, which proves EnvBridge’s effi-
cacy in the unseen environment. Furthermore, if EnvBridge can retrieve successful experiences from
unified memory of the source environment and target environment, it can have a better performance
than the agent with only in-domain knowledge, which further prove EnvBridge’s robustness.

4.3 CALVIN: EVALUATION ON INSTRUCTION ROBUSTNESS

CALVIN (Mees et al. (2022)) is a robot manipulation benchmark for language-conditioned tasks.
It allows for the construction of long-horizon tasks, which are specified solely through natural lan-
guage. To maintain a consistent number of subtasks, we chose 200 single tasks from the validation
dataset instead of long-horizon tasks, with GPT-4o-mini as the LLM for the evalution. For com-
parison, we use the learning-based model provided by CALVIN, known as multi-context imitation
learning (MCIL) (Lynch & Sermanet (2021)), as well as two Re-Planning methods: Retry and En-
vBridge. Additionally, CALVIN includes 15 types of tasks, primarily involving the movement of
blocks, with each type having a single instruction assigned to it. To assess robustness to variations
in instructions, we conducted two types of evaluations. The first evaluation uses a single instruction,

8
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specifically the one provided by CALVIN. The second evaluation uses multiple instructions, where
we generated five additional paraphrased instructions for each task using GPT-4o.

As shown in Table 1, the results indicate that in the evaluation with a single instruction, Retry method
performs slightly better. However, when evaluated with paraphrased instructions, the performance
of Retry degrades, whereas our method demonstrates better performance. These results indicate that
while the effect is less observable in environments with limited variations in instructions and tasks,
such as CALVIN with single instructions, our method is confirmed to be effective in more complex
environments with greater variations, like CALVIN with paraphrased instructions and RLBench.

Table 1: Success rate(%) on CALVIN.

Method Single Instruction Paraphrased Instructions

MCIL 32.0 -
Retry 61.0 57.5
Ours 60.5 63.0

5 ABLATION STUDY

5.1 KNOWLEDGE TRANSFER

In EnvBridge, Knowledge Transfer is a crucial process for connecting different environments.
Therefore, we evaluated its impact on performance. In this evaluation, we assessed the scenario
without Knowledge Transfer described in Section 3.4.1, directly using the code from different envi-
ronments for Re-Planning. The results are shown in Figure 5. These results confirm that Knowledge
Transfer improves performance and enables smooth transfer of insights across various environments.

5.2 MEMORY RETRIEVAL

In the Memory-Retrieval mechanism, it is important to efficiently utilize the various codes stored
in memory. In this section, to verify the effectiveness of our similarity-based query retrieval, we
compare it with the scenario where codes are randomly selected. The results are shown in Figure
5. These results demonstrate that our method improves performance compared to random choice,
confirming that selecting the most relevant codes will effectively improve the performance.

Figure 5: Performance comparison across different methods on RLBench.

5.3 MEMORY COMPARISON

Memory is an important component in EnvBridge, and performance varies depending on the codes
stored. We evaluated the performance differences due to different memories. Specifically, we
constructed and assessed memories from three different benchmarks: RLBench, MetaWorld, and

9
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CALVIN. The results are shown in Table 2. All results with EnvBridge show improved performance
compared to Retry. Interestingly, the performance with memory from CALVIN outperformed that
with memory from RLBench, even though RLBench is the same environment used in the evaluation.
On the other hand, the performance using memory from MetaWorld is worse compared to the other
two. Upon analysis, it is found that MetaWorld’s memory contains 10 codes as planners, whereas
CALVIN has 26 and RLBench has 50 codes. It is believed that the smaller variation in the codes
stored in the memory affects the performance. This suggests that incorporating various knowledge
from other environments can potentially yield better results.

5.4 ACCURACY IMPROVEMENT WITH TRIALS

EnvBridge promotes the generation of new code by incorporating insights from different environ-
ments. To verify whether EnvBridge enables effective Re-Planning, we examine trends in accuracy
improvement with the number of trials. The results are shown in Figure 6. The figure illustrates that
the accuracy of the EnvBridge method improves over the number of trials and consistently outper-
forms the Retry method. This demonstrates that EnvBridge is more effective in achieving accurate
results through its Re-Planning strategy.

Table 2: Performance comparison of differ-
ent memory on RLBench.

Memory Success rate(%)

Retry without memory 47.0
MetaWorld 57.5
CALVIN 69.0
RLBench 65.5

Figure 6: Accuracy improvement with num-
ber of trials on RLBench.

6 CONCLUSION AND LIMITATIONS

We propose EnvBridge, a novel method for transferring knowledge from various environments to
target environment in robotic manipulation agents. EnvBridge stores successful control codes from
one environment in memory and transfers this knowledge to other environments to apply it, thereby
enhancing the agent’s adaptability and performance. Our approach demonstrates superior perfor-
mance in robotic manipulation benchmarks.

While EnvBridge shows promising results, several important challenges remain. Our current im-
plementation uses open-loop trajectories with task decomposition; integrating reactive control could
enhance robustness in dynamic environments. While we use affordance and avoidance maps for
trajectory planning, more sophisticated collision avoidance mechanisms could ensure safer robot-
environment interactions. Additional challenges include efficient memory organization for lifelong
learning and handling diverse sensory inputs like images and audio.

In conclusion, EnvBridge demonstrates the value of utilizing information from various environments
to improve adaptability to new settings and flexible planning capabilities. Addressing these limita-
tions while building upon the current strengths of cross-environment knowledge transfer will be
crucial for advancing the practical use of AI agents in diverse real-world scenarios.

ETHICS STATEMENT

We have read the ICLR Code of Ethics and ensured this paper follows it. Our work does not involve
the release of any new datasets; all benchmark datasets used in this research, specifically RLBench,
MetaWorld, and CALVIN, are publicly available. We believe our work will have a positive societal
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impact by enhancing the adaptability and robustness of robotic manipulation agents, which can lead
to more efficient and safer autonomous systems in various real-world applications.
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A APPENDIX

A.1 PARAMETERS FOR EVALUATION

Table 3: Parameters

Parameters for EnvBridge
Text Embedding Model sentence-transformers/all-MiniLM-L6-v2

LLM model for RLBench and CALVIN evaluation gpt-4o-mini-2024-07-18
LLM model for MetaWorld evaluation gpt-4o-2024-05-13

LLM temperature 0
LLM max token 512

A.2 PROMPTS IN RLBENCH

The following are the prompts used in RLBench. Also, {} indicates variables where examples and
other content will be inserted.

A.2.1 PROMPT FOR CODE GENERATION

The prompt is exactly the same as VoxPoser.� �
Instruction
You are a helpful assistant that pays attention to the user’s instructions and writes
good python code for operating a robot arm in a tabletop environment.

User
I would like you to help me write Python code to control a robot arm operating in
a tabletop environment. Please complete the code every time when I give you new
query. Pay attention to appeared patterns in the given context code. Be thorough
and thoughtful in your code. Do not include any import statement. Do not repeat my
question. Do not provide any text explanation (comment in code is okay). I will first
give you the context of the code below:
{The same examples as VoxPoser}
Note that x is back to front, y is left to right, and z is bottom to up.

Assistant
Got it. I will complete what you give me next.

User
# {Query}� �
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A.2.2 PROMPT FOR KNOWLEDGE TRANSFER

� �
Instruction
You are a helpful assistant that pays attention to the user’s instructions and writes
good python code for operating a robot arm in a tabletop environment.

User
I would like you to help me write Python code to control a robot arm operating in a
tabletop environment. Please complete the Python code to execute the query in the
target environment. Pay attention to appeared patterns, coordinates, and scale in the
given context code. Be thorough and thoughtful in your code. Do not include any
import statement. Do not repeat my question. Do not provide any text explanation. I
will first give you the context of the code in the target environment below:
{The same examples as VoxPoser}
Note that coordinates and scale should be modified to match the target environment.
Please do not generate empty code.

Assistant
Got it. I will complete what you give me next.

User
# Python code in different environment
{Example retrieved from memory}
# Python code in target environment� �

A.2.3 PROMPT FOR RE-PLANNING

� �
Instruction
You are a helpful assistant that pays attention to the user’s instructions and writes
good python code for operating a robot arm in a tabletop environment.

User
I would like you to help me write Python code to control a robot arm operating in
a tabletop environment. Please complete the code every time when I give you new
query. Pay attention to appeared patterns in the given context code. Be thorough
and thoughtful in your code. Do not include any import statement. Do not repeat my
question. Do not provide any text explanation (comment in code is okay). I will first
give you the context of the code below:
{The same examples as VoxPoser}
Note that x is back to front, y is left to right, and z is bottom to up. Please refer to the
Python code for similar query.

Assistant
Got it. I will complete what you give me next.

User
# Python code for similar query
{Example retrieved and transferred from memory}
# Python code for target query� �
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A.2.4 PROMPT FOR SELF-REFLECTION� �
Instruction
You are a helpful assistant that pays attention to the user’s instructions and writes
good python code for operating a robot arm in a tabletop environment.

User
I would like you to help me consider new plan to solve the task in a tabletop envi-
ronment using a robot arm. Please complete the new plan every time when I give
you new Python code. Do not summarize the Python code, but rather think about the
strategy and path you took to attempt to complete the task. Devise a concise, new
plan of action that accounts for the wrong code with reference to specific actions that
you should have taken. I will first give you the examples of the new plan:

objects = [‘grape’, ‘lemon’, ‘drill’, ‘router’, ‘bread’, ‘tray’]
# Query: put the sweeter fruit in the tray that contains the bread.
composer(“grasp the grape”)
composer(“back to default pose”)
composer(“move to the top of the tray that contains the bread”)
composer(“open gripper”)
# done STATUS: FAIL
New plan: Based on the image, I was able to grasp the grape, but I couldn’t place it in
the correct position. Therefore, I will create a detailed plan by interpreting the intent of
the query regarding where to place it.

objects = [‘drawer’, ‘umbrella’]
# Query: close the drawer.
composer(“push close the drawer handle by 25cm”)
# done STATUS: FAIL
New plan: Based on the image, I couldn’t reach the drawer handle. Therefore, the
plan should take into account the location of the target and the position of other objects.

Please refer to the given image as the current observation information.

Assistant
Got it. I will complete what you give me next.

User
{Generated Python code in the previous trial}
STATUS: FAIL
New plan:� �

A.3 MEMORY EXAMPLES FROM RLBENCH

1 {
2 "environment": "rlbench",
3 "type": "planner",
4 "query": "pick up the rubbish and leave it in the trash

can.",↪→

5 "code": "objects = ['bin', 'rubbish', 'tomato1', 'tomato2']
6 # Query: pick up the rubbish and leave it in the trash can.
7 composer(\"grasp the rubbish\")
8 composer(\"back to default pose\")
9 composer(\"move to the top of the bin\")

10 composer(\"open gripper\")
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11 # done"
12 }

1 {
2 "environment": "rlbench",
3 "type": "composer",
4 "query": "grasp the rubbish.",
5 "code": "# Query: grasp the rubbish.
6 movable = parse_query_obj('gripper')
7 affordance_map = get_affordance_map('a point at the center of

the rubbish')↪→

8 gripper_map = get_gripper_map('open everywhere except 1cm
around the rubbish')↪→

9 execute(movable, affordance_map=affordance_map,
gripper_map=gripper_map)"↪→

10 }

A.4 BENCHMARK DETAILS

A.4.1 RLBENCH

Table 4: Task-specific success rate(%) on RLBench. Best results are in bold.

Tasks Baseline Retry Self-Reflection EnvBridge

BasketballInHoop 15 15 20 25
BeatTheBuzz 60 70 90 65
CloseDrawer 60 65 85 75

LampOff 55 75 80 65
OpenWineBottle 15 40 65 95

PushButton 15 25 45 80
PutRubbishInBin 60 80 100 90

TakeFrameOffHanger 5 15 30 15
TakeLidOffSaucepan 0 0 15 85

TakeUmbrellaOutOfUmbrellaStand 80 85 95 95

Average 36.5 47.0 62.5 69.0

A.4.2 MEMORY COMPARISON ON RLBENCH

Through comparison of various source environment memories, using CALVIN s memory yields the
best performance. It shows superior results compared to using RLBench memory, which is the same
environment as the evaluation setting, with particularly significant improvements in the PushButton
and TakeLidOffSaucePan tasks.

This finding suggests that for challenging tasks, leveraging knowledge from different environments
can potentially achieve better results than using knowledge from the same environment, even if the
latter contains more examples.

A.4.3 METAWORLD

We compare different memory settings in section 4.2. We focuse on RLBench as the source envi-
ronment for transferred knowledge results because MetaWorld’s standardized task set and simulated
table robotic manipulation scenario are similar to the settings in RLBench. Here, we add CALVIN
memory for transferred knowledge into comparison.
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Table 5: Task-specific success rate(%) on RLBench with different memory. Best results are in bold.

Tasks Retry EnvBridge
(MetaWorld)

EnvBridge
(CALVIN)

EnvBridge
(RLBench)

BasketballInHoop 15 15 25 35
BeatTheBuzz 70 75 65 60
CloseDrawer 65 50 75 70

LampOff 75 80 65 85
OpenWineBottle 40 65 95 95

PushButton 25 40 80 55
PutRubbishInBin 80 95 90 95

TakeFrameOffHanger 15 20 15 10
TakeLidOffSaucepan 0 40 85 55

TakeUmbrellaOutOfUmbrellaStand 85 95 95 95

Average 47.0 57.5 69.0 65.5

The results show that knowledge transfer from CALVIN (31% average success rate) performs
slightly worse than transfer from RLBench (37% average success rate) when applied to MetaWorld
tasks. This could be explained by the factor that RLBench’s environment and task structure might
be more similar to MetaWorld compared to CALVIN, making knowledge transfer more effective.

Table 6: Task-specific success rate(%) on MetaWorld

Tasks Baseline In-domain Transferred (RLBench) Transfoerred(CALVIN) Unified

Hammer 25 35 25 25 50
Window-close 20 55 35 25 50

Assembly 25 50 35 35 50
Button-Press 20 35 40 35 55
Drawer-Open 35 65 50 55 85

Average 25 48 37 31 56

A.5 QUALITATIVE ANALYSIS ON RLBENCH

We provide specific success and failure examples as part of our qualitative evaluation. In the success
case, the Planner generates detailed subtasks. In contrast, in the failure case, it produces almost
identical subtasks. We believe this issue arises because the memory lacks the appropriate code to
solve the tasks, preventing the presentation of suitable examples.
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Figure 7: Success Case

Figure 8: Failure Case
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