
CAR-Flow: Condition-Aware Reparameterization
Aligns Source and Target for Better Flow Matching

Chen Chen Pengsheng Guo∗ Liangchen Song Jiasen Lu Rui Qian Xinze Wang

Tsu-Jui Fu∗ Wei Liu∗ Yinfei Yang Alex Schwing

Apple Inc.

Abstract

Conditional generative modeling aims to learn a conditional data distribution
from samples containing data-condition pairs. For this, diffusion and flow-based
methods have attained compelling results. These methods use a learned (flow)
model to transport an initial standard Gaussian noise that ignores the condition
to the conditional data distribution. The model is hence required to learn both
mass transport and conditional injection. To ease the demand on the model, we
propose Condition-Aware Reparameterization for Flow Matching (CAR-Flow) – a
lightweight, learned shift that conditions the source, the target, or both distributions.
By relocating these distributions, CAR-Flow shortens the probability path the model
must learn, leading to faster training in practice. On low-dimensional synthetic
data, we visualize and quantify the effects of CAR-Flow. On higher-dimensional
natural image data (ImageNet-256), equipping SiT-XL/2 with CAR-Flow reduces
FID from 2.07 to 1.68, while introducing less than 0.6% additional parameters.

1 Introduction

Conditional generative models enable to draw samples conditioned on an external variable—for
example, a class label, a text caption, or a semantic mask. They are a key technology that has advanced
significantly in the last decade, from variational auto-encoders (VAEs) [Kingma and Welling, 2014]
and generative adversarial nets [Goodfellow et al., 2014] to diffusion [Ho et al., 2020, Song et al.,
2021a,b, Dhariwal and Nichol, 2021, Peebles and Xie, 2023, Rombach et al., 2022, Nichol and
Dhariwal, 2021] and flow-matching [Ma et al., 2024, Liu et al., 2023, Lipman et al., 2023, Albergo
and Vanden-Eijnden, 2023, Albergo et al., 2023].

State-of-the-art diffusion and flow-matching frameworks accomplish conditional generation by using a
trained deep net to trace a probability path that progressively transforms samples from a simple source
distribution into the rich, condition-dependent target distribution. A popular choice for the source
distribution is a single, condition-agnostic standard Gaussian. Consequently, the conditioning signal
enters only through the network itself: in flow matching, for instance, the model predicts a velocity
field where the condition is commonly incorporated via embeddings or adaptive normalization layers.
Although this strategy has enabled impressive results, this design forces the network to shoulder two
tasks simultaneously—(i) transporting probability mass to the correct region of the data manifold,
and (ii) encoding the semantic meaning of the condition. Because different conditions often occupy
distant parts of that manifold, the dual burden stretches the learned trajectory, slows convergence, and
can impair sample quality and diversity.

∗Work done while at Apple.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

pinit
x

pinit
z (· | y)

pdata
x (· | y)

pdata
z (· | y)

x0

z0 z1

x1

f(·, y)

vθ(zt, t, y)

g−1(·, y)
g(·, y)

vθ(xt, t, y)

Figure 1: Condition-Aware Reparameterization for Flow Matching (CAR-Flow). Illustration of
the push-forward under standard conditional flow matching (direct mapping x0 → x1) versus our
Condition-Aware Reparameterization (CAR-Flow) chain (x0 → z0 → z1 → x1). In the standard
setting, a condition-agnostic prior sample (red) is carried by the network’s velocity field directly to
each condition-dependent data manifold (blue), forcing it to juggle long-range transport and semantic
injection at once. CAR-Flow, in contrast, employs lightweight source distribution map f(·, y) and
target distribution map g(·, y) to align the source and target distributions to relieve the network of
unnecessary transport. During sampling, x1 is obtained via the (approximate) inverse map g−1(·, y).

In this paper, we alleviate this burden via a condition-dependent mapping of the source and target
distributions. First, we endow the source distribution with condition-awareness through a lightweight
map, i.e., the source distribution map. Hence, every condition has its own source distribution.
The same idea can be mirrored to the target distribution using another lightweight map, i.e., the
target distribution map, that we require to be approximately invertible to keep sampling tractable.
The resulting push-forward chain is illustrated in Figure 1. Intuitively, the target distribution map
and its approximated inverse correspond to the encoder and decoder, commonly used in latent
diffusion pipelines [Rombach et al., 2022]. Differently, here, the target distribution map is explicitly
conditional, aligning our formulation with recent latent-space conditioning approaches that embed
semantic information directly into the latent representation [Wu et al., 2024, Leng et al., 2025, Yao
et al., 2025].

Although fully general maps provide maximal flexibility, this freedom conceals a critical failure
mode: the flow-matching objective admits zero-cost solutions. The predicted data distribution then
collapses to a single mode. A comparable drop in generation quality has been observed in recent work
when a variational auto-encoder (VAE) is naively fine-tuned end-to-end with a diffusion model [Leng
et al., 2025]. We formalize these collapse routes and later verify them experimentally.

To preclude this trivial solution, we impose the simplest effective constraint—shift-only conditioning.
Concretely, we reparameterize the maps to only translate. Relocating the start and/or end points
while leaving scales untouched removes all trivial solutions, and still shortens the residual probability
path. Note that volume-preserving maps are also possible. We refer to the resulting framework as
condition-aware reparameterization for flow matching (CAR-Flow).

CAR-Flow can be applied to the source distribution, the target distribution, or both. Each variant
shapes the learned path differently, and we find the joint version to perform best in practice. For
both low-dimensional synthetic benchmarks and high-dimensional natural image (ImageNet-256)
data, CAR-Flow consistently improves performance: augmenting the strong SiT-XL/2 baseline [Ma
et al., 2024] with CAR-Flow reduces FID from 2.07 to 1.68 while adding fewer than 0.6% additional
parameters.

Our contributions are as follows:

2

1. We introduce CAR-Flow, a simple yet powerful shift-only mapping that aligns the source,
the target, or both distributions with the conditioning variable. CAR-Flow relieves the
velocity network of unnecessary transport while adding negligible computational overhead.

2. We provide a theoretical analysis that uncovers zero-cost solutions present under unrestricted
reparameterization and prove that they render the velocity collapse, thereby explaining the
empirical failures of naïve end-to-end VAE-diffusion training.

3. We validate CAR-Flow on low-dimensional synthetic data and the high-dimensional
ImageNet-256 benchmark, consistently outperforming the standard rectified flow base-
line.

2 Background and Preliminaries

We start with a brief review of the standard flow-matching formulation.

2.1 Conditional Generation and Probability Paths

Conditional generation seeks to sample from a conditional data distribution x1 ∼ pdata
x (· | y), where y

is a conditioning variable, e.g., a class label or a text prompt. Diffusion and flow-based models tackle
this problem by simulating a differential equation that traces a probability-density path pt(x1 | x0, y),
gradually transporting samples from a simple source distribution x0 ∼ pinit

x into the target conditional
distribution. A standard choice for the source distribution is the isotropic Gaussian pinit

x = N (0, Id).

The stochastic trajectory (Xt)0≤t≤1 follows the SDE

dXt =

[
ut(Xt, y) +

σ2
t

2
∇log pt(Xt | y)

]
dt + σt dWt, (1)

where ut is the drift field, σt is the diffusion coefficient, andWt is a standard Wiener process. The term
∇ log pt(Xt | y) denotes the score function, which can be written in terms of the drift field ut [Ma
et al., 2024]. In the deterministic limit σt = 0, this SDE reduces to the ODE dXt = ut(Xt, y) dt.

2.2 Gaussian Probability Paths

A convenient instantiation is the Gaussian path. Let αt and βt be two continuously differentiable,
monotonic noise scheduling functions satisfying the boundary conditions α0 = β1 = 0 and α1 =
β0 = 1. At time t, the conditional distribution is

pt(· | x1, y) = N
(
αtx1, β

2
t Id | y

)
, (2)

whose endpoints are p0(· | x1, y) = N (0, Id) and p1(· | x1, y) = δx1|y. Here δ denotes the Dirac
delta “distribution”. Along this path, the state evolves by the interpolant xt = βtx0 + αtx1, with
velocity field

ut = β̇tx0 + α̇tx1, (3)

where overdots denote time derivatives.

2.3 Conditional Flow Matching and Sampling

Conditional flow matching trains a neural velocity field vθ(x, t, y) to approximate the true velocity
ut specified in Eq. (3). The commonly employed objective is

L(θ) = E y∼pY , t∼pT

x0∼pinit
x , x1∼pdata

x

∥∥∥vθ(βtx0 + αtx1, t, y
)
−

(
β̇tx0 + α̇tx1

)∥∥∥2, (4)

where pY is the marginal distribution over conditions y, and pT is a time density on [0, 1].

After training, one draws x1 ∼ pdata
x by numerically integrating Eq. (1) from t = 0 to t = 1 with

ût = vθ(xt, t, y). A solver-agnostic procedure is outlined in Algorithm 1.

3

Algorithm 1 Sampling via conditional flow matching (standard Gaussian source)

Require: trained network vθ; diffusion schedule {σt}t∈[0,1]; number of steps N
1: Sample y ∼ pY
2: Sample x0 ∼ N (0, Id)
3: ∆t← 1/N ; x← x0
4: for k = 0 to N − 1 do
5: t← k∆t
6: u← vθ(x, t, y) /* drift */
7: Integrate SDE in Eq. (1) over [t, t+∆t] with (u, σt) /* e.g., Euler–Maruyama */
8: end for
9: return x /* sample at t = 1 conditioned on y */

3 Condition-Aware Reparameterization

As detailed in Section 2, standard conditional flow matching initiates the probability path from
a condition-agnostic prior, typically a standard Gaussian. Consequently, the velocity network
vθ(xt, t, y) must simultaneously learn two intertwined tasks—transporting mass and encoding se-
mantics, imposing a dual burden. To alleviate this, we reparameterize the source and/or target
distributions via explicit functions of the condition y. In this section, we first reformulate conditional
flow-matching using general reparameterizations (Section 3.1). We then show that allowing arbi-
trary reparameterizations leads to trivial zero-cost minima, collapsing distributions to a single mode
(Section 3.2). To both shorten the transport path and eliminate these trivial solutions, we propose
Condition-Aware Reparameterization for Flow Matching (CAR-Flow) (Section 3.3).

3.1 General Reparameterization

Formally, instead of drawing an initial value x0 directly from the fixed source distribution pinitx , we
first apply a condition-dependent source distribution map f : Rn × Y → Rm, (x, y) 7→ z such that

z0 = f(x0, y), x0 ∼ pinitx . (5)

We hence obtain a sample from the modified source distribution pinitz via the push-forward z0 ∼
pinitz (· | y) = f(·, y)#pinitx .

Similarly, we define the target distribution map g : Rn × Y → Rm, (x, y) 7→ z such that

z1 = g(x1, y), x1 ∼ pdatax (· | y). (6)

We characterize a sample from the target distribution in latent space pdataz via the push-forward z1 ∼
pdataz (· | y) = g(·, y)#pdatax (· | y). Critically, to make sampling tractable, g must be approximately
invertible—i.e., we assume there exists g−1 such that x1 ≈ g−1(z1, y).

It is worth noting that our reparameterization framework subsumes both the classic VAE-based latent
diffusion model [Rombach et al., 2022] and more recent efforts to inject semantic awareness directly
into the latent space, e.g., work by Leng et al. [2025]. To recover the standard latent diffusion model,
we leave the source untouched, i.e., f(x0, y) = x0, and set g(x1, y) ≜ E(x1), g−1(z1, y) ≜ D(z1),
where E , D are the encoder and decoder of a VAE trained via the ELBO (reconstruction loss plus KL
divergence) without explicit semantic supervision. In contrast, more recent works [Yu et al., 2025,
Leng et al., 2025, Yao et al., 2025] augment VAE training with a semantic alignment loss—often
using features from a pretrained DINO-V2 network—so that the encoder and decoder effectively
depend on semantic embeddings of y. Both paradigms arise naturally as special cases of our general
push-forward reparameterization framework. Moreover, our framework readily accommodates
further reparameterization of any pretrained VAE. Concretely, one can introduce an invertible map
g′ : Rm × Y → Rm and set

g(x1, y) ≜ g′
(
E(x1), y

)
, g−1(z1, y) ≜ D

(
(g′)−1(z1, y)

)
, (7)

thus embedding semantic conditioning directly into both the encoder and decoder.

Flow-matching loss and sampling under reparameterization. When pinit
z (· | y) is Gaussian,

the probability path z0 → z1 remains Gaussian under the interpolation zt = βtz0 + αtz1, ut =

4

Algorithm 2 Sampling via conditional flow matching (reparameterized)

Require: trained vθ; diffusion schedule {σt}; steps N
1: Sample y ∼ pY
2: Sample x0 ∼ N (0, Id) and set z ← f(x0, y)
3: ∆t← 1/N
4: for k = 0 to N − 1 do
5: t← k∆t
6: u← vθ(z, t, y)
7: Integrate SDE in Eq.(8) over [t, t+∆t] with (u, σt)
8: end for
9: x← g−1(z, y) /* invertible g needed here */

10: return x /* sample at t = 1 conditioned on y */

β̇tz0 + α̇tz1. The evolution of Zt then follows the SDE

dZt =

[
ut(Zt, y) +

σ2
t

2
∇log pt(Zt | y)

]
dt + σt dWt, (8)

where pt is the Gaussian path in z-space. Note that the conditional score functions generally differ:
∇ log pt(Zt | y) ̸= ∇ log pt(Xt | y), unless f(x0, y) = x0 (see Appendix A for details). The
resulting flow-matching loss becomes

L(θ) = E y∼pY , t∼pT

x0∼pinit
x , x1∼pdata

x

∥∥∥vθ(βtz0 + αtz1, t, y
)
−

(
β̇tz0 + α̇tz1

)∥∥∥2. (9)

Once trained, sampling proceeds by first drawing an initial starting point x0 ∼ pinitx and computing
the condition-aware latent z0 = f(x0, y). We then integrate the reparameterized SDE in Eq. (8) from
t = 0 to t = 1 to obtain z1, and finally map back to data space via x1 = g−1(z1, y). Algorithm 2
provides a pseudo-code that summarizes the process.

3.2 Mode Collapse under Unrestricted Reparameterization

Under the general reparameterization framework of Eq. (9), the maps f and g enjoy full flexibility.
Unfortunately, this expressivity also admits several trivial zero-cost minima: analytically, the loss can
be driven to zero by degenerate shift solutions, resulting in a collapse of the generative distribution to
a single/improper mode.
Claim 1. Let f, g : Rn × Y → Rm be arbitrary maps. If any of the following holds (for some
functions c(y) ∈ Rm or scalars k(y) ∈ R):

(i) Constant source: f(x0, y) = c(y) for all x0,
(ii) Constant target: g(x1, y) = c(y) for all x1,

(iii) Unbounded source scale: ∥f(x0, y)∥ → ∞,
(iv) Unbounded target scale: ∥g(x1, y)∥ → ∞,
(v) Proportional collapse: f(x0, y) = k(y) g(x1, y),

then the flow-matching loss in Eq. (9) admits a trivial minimum in which the optimal velocity field
takes the form

vθ(zt, t, y) = γ(t, y) zt + η(t, y),

causing all probability mass to collapse to a single/improper mode.

The proof of Claim 1, together with closed-form expressions for γ(t, y) and η(t, y), is deferred to the
Appendix B.

To illustrate the collapse concretely, we consider the linear schedule βt = 1− t, αt = t and an affine
reparameterization

f(x0, y) = σ0(y)x0 + µ0(y), g(x1, y) = σ1(y)x1 + µ1(y), (10)

analogous to the standard Gaussian trick. Table 1 summarizes each collapse mode, listing the maps,
the closed-form collapsed velocity v∗(z, t, y) = γ(t, y) z + η(t, y), and the resulting push-forward
distributions pinitz and pdataz .

5

Table 1: Zero-cost collapse modes under the linear schedule αt = t, βt = 1− t, using affine maps
f(x0) = σ0x0 + µ0 and g(x1) = σ1x1 + µ1. For brevity, we omit explicit y-dependence.

Case f g γ(t) η(t) v∗(zt, t) pinit
z pdata

z

(i) µ0 arbitrary 1
t − 1

tµ0
zt−µ0

t δµ0
–

(ii) arbitrary µ1 − 1
1−t

1
1−tµ1

µ1−zt
1−t – δµ1

(iii) ∞ arbitrary − 1
1−t 0 − zt

1−t Uniform(Rd) –
(iv) arbitrary ∞ 1

t 0 zt
t – Uniform(Rd)

(v) µ0 kµ0 0 (k − 1)µ0 (k − 1)µ0 δµ0 δµ1

We note that in the constant-map scenarios (cases (i) and (ii)), the affine transforms f or g effectively
collapse the variance of pinitz or pdataz to zero. In particular, case (ii) mirrors the finding in REPA-E
(Table 1) [Leng et al., 2025], where end-to-end VAE–diffusion tuning favored a simpler latent space
with reduced variance. In contrast, the unbounded-scale modes (iii) and (iv) push the distributions
toward an improper uniform distribution, eliminating any meaningful localization. Proportional
collapse (v) yields a degenerate flow with pinitz , pdataz , and the velocity field being constant.

Empirically, we do not observe cases (iii)–(v). In particular, cases (iii) and (iv) correspond to
unbounded collapse solutions: when the scale of either the source or target distribution tends to
infinity, the counterpart distribution collapses relative to it, yielding zero cost. These solutions require
unbounded weights and are therefore unstable—any perturbation pushes the optimization back toward
cases (i) or (ii). Case (v), in contrast, assumes exact proportionality between maps f and g, which
cannot occur under independently sampled inputs except in trivial constant-map settings that reduce
to cases (i) or (ii). In practice, the optimizer thus follows the easiest “shortcut”—the constant-map
collapse—since setting f or g to a fixed constant immediately zeroes the loss. In Section 4, we
empirically verify not only that such constant-map collapses occur in real models, but also how these
mode-collapse behaviors manifest in practice.

3.3 Shift-Only Condition-Aware Reparameterization

To eliminate the trivial zero-cost solutions while retaining the benefits of condition-aware reparam-
eterization, we restrict both reparameterizations to additive shifts only, while noting that volume-
preserving maps are possible. For simplicity we use

f(x0, y) = x0 + µ0(y), g(x1, y) = x1 + µ1(y). (11)

Here, µ0, µ1 : Y → Rm are lightweight, learnable, condition-dependent shifts. By preserving scale,
we block every collapse mode given in Claim 1, yet we still move z0 and z1 closer in latent space. In
particular, when used with a pretrained VAE, Eq. (7) becomes

g(x1, y) ≜ E(x1) + µ0(y), g−1(z1, y) ≜ D
(
z1 − µ1(y)

)
, (12)

CAR-Flow admits three natural variants:

• Source-only: µ1 ≡ 0, so only the source is shifted.
• Target-only: µ0 ≡ 0, so only the target is shifted.
• Joint: both µ0 and µ1 active.

Each variant alters the probability path zt = βt (x0 + µ0(y)) + αt (x1 + µ1(y)) in a distinct way.
Note that shifting the source cannot be replicated by an opposite shift on the target. In fact, no
nonzero constant shift on the source can ever be matched by a constant shift on the target—except in
the trivial case:
Claim 2. Shifting the source by µ0 is equivalent to shifting the target by µ1, if and only if µ0 = µ1 = 0.

Proof. With a source-only shift (µ0, µ1) = (µ0, 0), the interpolant is z(s)t = βt (x0 + µ0) + αt x1.

With a target shift (µ0, µ1) = (0, µ1), it is z(t)t = βt x0 + αt (x1 + µ1). Equating these gives for
∀t, βt µ0 = αt µ1. Since µ0 and µ1 are t-independent functions of y, it forces µ0 = µ1 = 0.

For Source-only, the interpolant simplifies to zt = xt + βtµ0(y). When µ0(y) ≈ µ0(y
′) for two

conditions y, y′, their paths share a common starting region, simplifying the early-time flow. For

6

2 0 2

x0

z0

z1

x1

Fl
ow

 S
ta

ge

(a) Baseline

2 0 2

(b) Source-only

2 0 2

(c) Target-only

2 0 2

Pred A
Pred B
GT A
GT B
Shift (3)
Flow traj.

(d) Joint

Figure 2: Learned flow trajectories on 1D synthetic data. Each panel shows trajectories from
source x0 (bottom) to target x1 (top) for (a) baseline and CAR-Flow variants–(b) source-only, (c)
target-only, and (d) joint. Intermediate stages z0 and z1 reflect reparameterized coordinates. Colored
densities represent predicted and ground-truth class distributions (red/blue: prediction; magenta/cyan:
ground truth). Thin lines illustrate individual sample trajectories between z0 and z1. Dashed vertical
lines mark ±3σ for each shift. The source-only CAR-Flow relocates the source distribution per class,
while the target-only variant unifies the trajectory endpoints. The joint variant combines both and
achieves the best alignment and flow quality.

Target-only, the trajectory becomes zt = xt + αt µ1(y). When µ1(y) ≈ µ1(y
′), the network only

needs to learn a shared “landing zone”, easing the late-time flow. For Joint, we have zt = xt + µt(y)
where µt(y) = βt µ0(y) + αtµ1(y), so the time-varying shift aligns both endpoints, minimizing the
overall transport distance and reducing the burden on vθ throughout the entire trajectory.

Empirically, we find that the joint CAR-Flow variant—allowing both µ0 and µ1 to adapt—yields the
largest improvements in convergence speed and sample fidelity (see Section 4).

4 Experiments

In this section, we evaluate the efficacy of the Condition-Aware Reparameterization for Flow Matching
(CAR-Flow) under a linear noise schedule βt = 1− t, αt = t and compare to classic rectified flow.
All experiments are done using the axlearn framework.2 Detailed implementation settings can be
found in Appendix C.

4.1 Synthetic Data

For our synthetic-data experiments, we consider a one-dimensional task where the source distribution
is N (0, 1) and the target distribution is a two-class Gaussian mixture, with class A data distribution
N (−1.5, 0.22) and class B data distribution N (+1.5, 0.22).

We encode xt, y, and t using sinusoidal embeddings before feeding them to the network. In the
baseline rectified-flow model, these embeddings are concatenated and passed through a three-layer
MLP (1,993 parameters total) to predict the velocity field vθ(xt, y, t). Training uses the loss in Eq. (4),
and sampling follows Algorithm 1. For CAR-Flow, we augment this backbone with two lightweight
linear layers that map the class embedding to the shifts µ0(y) and/or µ1(y), each adding only 9
parameters. In the source-only variant we predict µ0 (with µ1 = 0); in the target-only variant we
predict µ1 (with µ0 = 0); and in the joint variant we predict both. These shifts are applied via Eq. (11),
training proceeds with the loss in Eq. (9), and sampling uses Algorithm 2. All models—baseline and
CAR variants—set σt = 0 (reducing the SDE to an ODE) and employ a 50-step Euler integrator for
sampling. To ensure robustness, each configuration is run three times, and we report the average
performance, noting that variance across runs is negligible.

Figure 2 shows how CAR-Flow alters the learned flow. In Figure 2a, the baseline must both transport
mass and encode class information, yielding the longest paths. The source-shift variant in Figure 2b

2https://github.com/apple/axlearn

7

https://github.com/apple/axlearn

Table 2: Average trajectory length ∥z0 → z1∥ with 2σ error bounds.

Baseline
Source-only
CAR-Flow

Target-only
CAR-Flow

Joint
CAR-Flow

Length 1.5355± 0.0024 0.7432± 0.0019 0.7129± 0.0010 0.7121± 0.0011

0 10 20 30 40 50
Training Steps (K)

10 1

100

W
as

se
rs

te
in

 D
ist

an
ce Baseline

Source-only
Target-only
Joint

(a) Wasserstein distance

1
0
1

Sh
ift

0 Source-only (A)

Source-only (B)
Joint (B)
Joint (A)

0 10 20 30 40 50
Training Steps (K)

1
0
1

Sh
ift

1 Target-only (A)

Target-only (B)
Joint (B)
Joint (A)

(b) Learned µ0 and µ1 shifts

Figure 3: Comparison of convergence and learned shifts. (a) shows the Wasserstein distance
between predicted and ground-truth distributions in symlog-scale. Joint CAR-Flow achieves both
the fastest convergence (b) plots the evolution of the learned shifts µ0 (top) and µ1 (bottom) for two
classes.

cleanly relocates each class’s start, the target-shift variant in Figure 2c leaves the source untouched
and merges endpoints, and the joint variant in 2d aligns both start and end with minimal source
shift—producing the shortest trajectories (Table 2).

Figure 3a summarizes convergence measured by Wasserstein distance over training: joint CAR-Flow
converges fastest and reaches the lowest error, followed by source and target-only, all outperforming
the baseline. Figure 3b traces the learned µ0 and µ1 for each class and variant: joint CAR-Flow
yields the most moderate, balanced shifts, explaining its superior convergence and flow quality.

Mode Collapse. To empirically validate the mode-collapse analysis described in Section 3.2, we
reuse the setup but now allow both shift and scale parameters to be learned simultaneously (Eq.(10)).
We train two separate models: one reparameterizing the source distribution with learned parameters
(µ0, σ0), and another morphing the target distribution with (µ1, σ1). Results are presented in Figure 4.
Specifically, Figure 4a shows the rapid evolution of the learned standard deviations σ, clearly
indicating the network quickly discovers a “shortcut” solution by shrinking σ to zero. Figure 4b
plots the expected norm gap E∥vθ − v∗∥2, demonstrating convergence to zero, which indicates the
network’s velocity prediction aligns closely with the analytic zero-cost solutions derived in Table 1.
Moreover, unrestricted parameterization of the source distribution triggers mode-collapse case (i) as
described in Claim 1, where the flow degenerates to predicting the class-wise mean of the target (see
Figure 4c). Conversely, unrestricted parameterization of the target collapses the distribution nearly to
a constant, and consequently, the predicted x1 degenerates into an improper uniform distribution due
to σ1 → 0, as illustrated in Figure 4d.

4.2 ImageNet

To benchmark on a high-dimensional, large-scale dataset, we conduct experiments on ImageNet
256× 256 data using v6e-256 TPUs. Our baseline is SiT-XL/2 [Ma et al., 2024], re-implemented
in JAX [Bradbury et al., 2018]; we strictly follow the original training recipe from the open-source
SiT repository to replicate the results reported in the paper. For our CAR variants, we apply the
shift-only reparameterization to the sd-vae-ft-ema VAE backbone used by SiT (see Eq. (11)- (12)).
We introduce two lightweight convolutional networks (≈ 2.3M parameters each) to predict µ0 and
µ1 from the class embeddings, projecting them into the latent space. All models are sampled using
the Heun SDE solver with 250 NFEs.

Table 3 presents the quantitative results. Augmenting SiT-XL/2 with CAR-Flow consistently outper-
forms the baseline across all variants. In particular, the joint-shift variant achieves the best result,
reducing FID from 2.07 to 1.68 while adding fewer than 0.6% parameters. These results underscore
the importance of explicitly conditioning the source and target distributions: simple shift reparam-

8

0 20 40 60 80 100
0

1

Sc
al

e

Source-only 0(A)
Source-only 0(B)

Target-only 1(A)
Target-only 1(B)

(a) Learned scale σ

0 20 40 60 80 100
Training Steps (K)

0

2

v
v *

2 Source-only
Target-only

(b) Validation error

2 0 2

x0

z0

z1

x1

Fl
ow

 S
ta

ge

(c) Source-only

2 0 2

Pred A
Pred B
GT A
GT B
Shift (3)
Flow traj.

(d) Target-only

Figure 4: Mode collapse diagnostics with scale reparameterization. (a)–(b) Evolution of learned
σ and validation error. (c)–(d) Learned flows when allowing shift+scale on source vs. target.

Table 3: Benchmarking class-conditional image generation on ImageNet 256× 256. All CAR-Flow
variants surpass the SiT-XL/2 baseline.

Method Params (M) Training Steps FID ↓ IS ↑ sFID ↓ Precision ↑Recall ↑

SiT-XL/2 675 400K 17.28 78.88 5.71 0.67 0.61
SiT-XL/2CAR-Flow Source-only 677 400K 15.15 83.42 5.56 0.68 0.61
SiT-XL/2CAR-Flow Target-only 677 400K 14.44 85.66 5.59 0.68 0.61
SiT-XL/2CAR-Flow Joint 679 400K 13.91 87.96 5.38 0.68 0.62

SiT-XL/2cfg=1.5 675 7M 2.07 280.2 4.46 0.81 0.58
SiT-XL/2CAR-Flow Joint+cfg=1.5 679 7M 1.68 304.0 4.34 0.82 0.62

eterization not only improves sample fidelity but does so with minimal computational overhead,
facilitating easy integration into existing large-scale generative frameworks.

Table 3 presents the quantitative results. Augmenting SiT-XL/2 with CAR-Flow consistently outper-
forms the baseline across all variants. In particular, the joint-shift variant achieves the best result,
reducing FID from 2.07 to 1.68 while adding fewer than 0.6% parameters. Beyond final performance,
CAR-Flow also accelerates optimization: our convergence analysis on ImageNet-256 shows that
all CAR-Flow variants consistently reduce FID faster than the baseline across training steps (see
Fig. 5). These results underscore the importance of explicitly conditioning the source and target
distributions: simple shift reparameterization not only improves sample fidelity but does so with
minimal computational overhead, facilitating easy integration into existing large-scale generative
frameworks.

5 Related Work

Generative modeling has advanced significantly in the last decade from variational auto-encoders
(VAEs) [Kingma and Welling, 2014], Generative Adversarial Nets [Goodfellow et al., 2014], and
normalizing flows [Rezende and Mohamed, 2015]. More recently, score matching [Song and Ermon,
2019, Song et al., 2020], diffusion models [Ho et al., 2020], and flow matching [Liu et al., 2023,
Lipman et al., 2023, Albergo and Vanden-Eijnden, 2023, Albergo et al., 2023] was introduced. The
latter three frameworks are related: sampling at test-time can be viewed as numerically solving a
transport (ordinary) differential equation by integrating along a learned velocity field from the source
distribution at time zero to the target distribution at time one.

For learning the velocity field, various approaches to interpolate between samples from the source
distribution and the target distribution have been discussed [Lipman et al., 2023, Liu et al., 2023,

9

100000 150000 200000 250000 300000 350000 400000
Training steps

15

20

25

30

35

40

FI
D

Baseline
Source-only
Target-only
Joint

Figure 5: Convergence on ImageNet 256× 256: FID vs. training steps. CAR-Flow variants consis-
tently converge faster than the baseline.

Tong et al., 2024]. Among those, rectified flow matching was shown to lead to compelling results on
large-scale data [Ma et al., 2024, Esser et al., 2024].

For use on large-scale data, flow matching is typically formulated in latent space by compressing
data via the encoder of a pre-trained and frozen VAE [Rombach et al., 2022]. These mappings differ
from the discussed CAR-Flow, as they are typically independent of the conditioning variable. As
mentioned before, CAR-Flow can be applied on top of pre-trained and frozen projections on the
latent space.

More recently, Yu et al. [2025], Yao et al. [2025] proposed to align representations within deep nets
that model the velocity to visual representations from vision foundation models. Specifically, Yu et al.
[2025] align early layer features of DiT [Peebles and Xie, 2023] and SiT [Ma et al., 2024] models
with representations extracted from DINOv2 [Oquab et al., 2024] and CLIP [Radford et al., 2021].
In contrast, Yao et al. [2025] aligns the latent space of a VAE with representations from pre-trained
vision foundation models, which are then frozen for diffusion model training. These approaches
differ from our approach, which learns to transform the source and target distributions rather than
encouraging feature alignment.

Most related to our work is the recently introduced REPA-E [Leng et al., 2025]. In REPA-E, Leng
et al. [2025] study end-to-end training of diffusion models and VAE encoders/decoders, which map
data to/from a latent space. Differently, in this paper, we formalize failure modes reported by Leng
et al. [2025] and identify them as trivial solutions that arise when jointly training a flow matching
model and a target distribution mapping. We further introduce a source distribution mapping. Finally,
we impose simple restrictions that preclude those trivial solutions.

6 Conclusion

We propose and study condition-aware reparameterization for flow matching (CAR-Flow), which
aligns the source and target distributions in flow-matching models. We find CAR-Flow to alleviate
the burden of classic flow-matching, where a model simultaneously transports probability mass to the
correct region of the data manifold, while also encoding the semantic meaning of the condition.

Limitations and broader impact. This work characterizes the failure modes when jointly training a
flow matching model, a source distribution mapping, and a target distribution mapping, and identifies
them as trivial solutions of the objective. We further study the simplest effective approach to avoid
these trivial solutions. While we find this simple approach to lead to compelling results, we think
more general mappings will likely improve results even further. We leave the identification of more
general suitable mappings to future work.

Improving the expressivity of generative models has a significant broader impact. On the positive
side, modeling complex distributions more easily saves resources and enables novel applications. On
the negative side, efficient generative modeling can be abused to spread misinformation more easily.

10

Acknowledgements

We begin by thanking Byeongjoo Ahn, Wenze Hu, Zhe Gan, and Jason Ren for their thoughtful
discussions and rapid feedback, which significantly shaped this study. We also acknowledge the
Apple Foundation Model team for providing the critical infrastructure that powered our experiments
Finally, we are profoundly appreciative of Ruoming Pang and Yang Zhao for their strategic vision,
steadfast guidance, and unwavering encouragement throughout this project.

11

References
M. Albergo and E. Vanden-Eijnden. Building normalizing flows with stochastic interpolants. In Proc.

ICLR, 2023.

M. Albergo, N. Boffi, and E. Vanden-Eijnden. Stochastic interpolants: A unifying framework for
flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.

P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini, Y. Levi, D. Lorenz, A. Sauer,
F. Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In
Forty-first international conference on machine learning, 2024.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Proc. NeurIPS, 2014.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

D. Kingma and M. Welling. Auto-Encoding Variational Bayes. In Proc. ICLR, 2014.

X. Leng, J. Singh, Y. Hou, Z. Xing, S. Xie, and L. Zheng. Repa-e: Unlocking vae for end-to-end
tuning with latent diffusion transformers, 2025. URL https://arxiv.org/abs/2504.10483.

Y. Lipman, R. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative modeling.
In Proc. ICLR, 2023.

X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data with
rectified flow. In Proc. ICLR, 2023.

N. Ma, M. Goldstein, M. S. Albergo, N. M. Boffi, E. Vanden-Eijnden, and S. Xie. Sit: Exploring
flow and diffusion-based generative models with scalable interpolant transformers. In European
Conference on Computer Vision, pages 23–40. Springer, 2024.

A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In International
conference on machine learning, pages 8162–8171. PMLR, 2021.

M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li,
I. Misra, M. Rabbat, V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin,
and P. Bojanowski. Dinov2: Learning robust visual features without supervision, 2024. URL
https://arxiv.org/abs/2304.07193.

W. Peebles and S. Xie. Scalable diffusion models with transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4195–4205, 2023.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
supervision, 2021. URL https://arxiv.org/abs/2103.00020.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In Proc. ICML, 2015.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10684–10695, 2022.

J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In Proc. ICLR, 2021a.

Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In Proc.
NeurIPS, 2019.

12

http://github.com/jax-ml/jax
https://arxiv.org/abs/2504.10483
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2103.00020

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative
modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

Y. Song, J. Sohl-Dickstein, D. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative
modeling through stochastic differential equations. In Proc. ICLR, 2021b.

A. Tong, N. Malkin, G. Huguet, Y. Zhang, J. Rector-Brooks, K. Fatras, G. Wolf, and Y. Bengio.
Improving and generalizing flow-based generative models with minibatch optimal transport. TMLR,
2024.

Y. Wu, Z. Zhang, J. Chen, H. Tang, D. Li, Y. Fang, L. Zhu, E. Xie, H. Yin, L. Yi, et al. Vila-
u: a unified foundation model integrating visual understanding and generation. arXiv preprint
arXiv:2409.04429, 2024.

J. Yao, B. Yang, and X. Wang. Reconstruction vs. generation: Taming optimization dilemma in latent
diffusion models, 2025. URL https://arxiv.org/abs/2501.01423.

S. Yu, S. Kwak, H. Jang, J. Jeong, J. Huang, J. Shin, and S. Xie. Representation alignment for
generation: Training diffusion transformers is easier than you think. In Proc. ICLR, 2025.

13

https://arxiv.org/abs/2501.01423

Appendix — CAR-Flow: Condition-Aware Reparameterization Aligns Source
and Target for Better Flow Matching

The appendix is organized as follows:

• In Section A we derive the effects of our reparameterization on the score function. This is
important for correct sampling, particularly when using an SDE solver.

• In Section B we prove Claim 1.
• In Section C we provide additional implementation details for both synthetic and ImageNet

experiments.
• In Section D we discuss some findings.
• In Section F we illustrate additional qualitative results.

A Score Function Under Reparameterization

In this section we show that

1. The conditional score st = ∇log p(zt | y) generally changes, once the source-space map f
is applied, unless f(x, y) = x;

2. For the practically important shift-only map f(x, y) = x + µ0(y) under a Gaussian path,
both the density and the score admit closed forms; and

3. The score couples to the drift (velocity field) ut that appears in the SDE used for sampling.

A.1 Change of the Conditional Score

Recall that the source transform is f : Rn × Y → Rm, (x, y) 7→ z. Let Jf (x, y) ∈ Rm×n denote its
Jacobian. By the change-of-variables formula,

pX(x | y) = pZ
(
f(x, y) | y

) ∣∣det Jf (x, y)∣∣. (13)

Taking ∇x log of Eq. (13) gives

∇x log pX(x | y) = Jf (x, y)
⊤ ∇z log pZ

(
f(x, y) | y

)︸ ︷︷ ︸
score in z-space

+∇x log
∣∣det Jf (x, y)∣∣ . (14)

The first term transports the z-space score back to the x-space tangent via the Jacobian transpose; the
second term corrects for the local volume change introduced by f .

Volume-preserving maps. If f is volume preserving, det Jf ≡ ±1 and hence∇x log |det Jf | = 0.
Eq. (14) then reduces to∇x log pX = J⊤f∇z log pZ . In the special case of f(x, y) = x, one has Jf =
I and therefore ∇x log pX = ∇x log pZ , recovering the classical setting without reparameterization.

A.2 Shift-only Transform

Assume the initial distribution pinitx = N (0, Id) is standard Gaussian and f is a shift-only map, i.e.,
f(x, y) = x + µ0(y). Along a Gaussian path parameterized by αt, βt (with boundary conditions
α0 = 0, β0 = 1 and α1 = 1, β1 = 0), the conditional density at time t is

pt(· | z1, y) = N
(
αtz1 + βtµ0, β

2
t Id | y

)
, (15)

with both endpoints being

p0(· | z1, y) = N
(
µ0, Id | y

)
, p1(· | z1, y) = δz1|y. (16)

Consequently, by using the form of the Gaussian probability density, the (conditional) score reads

st(zt | z1, y) = ∇zt log pt(zt | z1, y) =
αtz1 + βtµ0(y)− zt

β 2
t

. (17)

14

A.3 Link Between Score and Velocity Field

Fix a conditioning label y and a pair (z0, z1) drawn from the Gaussian endpoint distributions
introduced in Section. 3.1. The flow is defined as

ψt(z0 | z1, y) = βt z0 + αt z1, 0 ≤ t ≤ 1, (18)

so that ψ0 = z0 and ψ1 = z1. Because ψt satisfies the ODE dψt/dt = ut
(
ψt | z1, y

)
, differentiating

Eq. (18) in t gives the conditional velocity field

ut(αtz1 + βtz0 | z1, y) = β̇t z0 + α̇t z1. (19)

Since zt = ψt(z0 | z1, y), z0 = (zt − αtz1)/βt, substituting these into Eq. (19) yields

ut(zt | z1, y) = β̇t

(
zt − αtz1

βt

)
+ α̇t z1. (20)

Eq. (17) links z1 and the conditional score st(zt | z1, y). Solving Eq. (17) for z1 and inserting the
result into Eq. (20) yields

ut(zt | z1, y) =
α̇t

αt
zt +

(
β2
t

α̇t

αt
− β̇tβt

)αtz1 + βtµ0(y)− zt
β2
t︸ ︷︷ ︸

st(zt|z1,y)

− µ0(y)

βt︸ ︷︷ ︸
bias correction

 . (21)

The first term under the brace is precisely the conditional score from Eq. (17), while the second term
compensates for the mean shift µ0(y) introduced by the shift-only transformation.

Eq. (21) can be rearranged to express the score through the velocity:

st(zt |z1, y) =
αt ut(zt |z1, y)− α̇t zt

β 2
t α̇t − αtβ̇tβt

+
µ0(y)

βt
. (22)

To translate the conditional identity given in Eq. (22) to the marginal setting used at inference time,
we integrate over the target endpoint z1. For this we introduce the posterior

qt(z1 | zt, y) :=
p(zt | z1, y) pdata

z (z1 | y)
pt(zt | y)

, with
∫
qt(z1 | zt, y) dz1 = 1.

The marginal velocity and score are simply expectations under this density, i.e.,

ut(zt | y) = Eqt

[
ut(zt | z1, y)

]
, st(zt | y) = Eqt

[
st(zt | z1, y)

]
.

Applying Eq. (22) inside the expectation and using linearity yields

st(zt | y) =
αt ut(zt | y)− α̇t zt

β 2
t α̇t − αtβ̇tβt

+
µ0(y)

βt
, (23)

the exact coupling used in the latent-space SDE (Eq. 8) to express the score with the drift during
sampling.

B Proof of Claim 1

In this section we prove Claim 1 in two steps: (i) We show that any parameter choice driving the
objective in Eq. (9) to its global minimum forces the velocity field to be affine in the interpolant,
vθ(zt, t, y) = γ(t, y) zt+ η(t, y). (ii) For each collapse pattern (i)–(v) in the claim, we verify that the
loss indeed attains this trivial minimum and we state the resulting γ(t, y) and η(t, y) in closed form.

Step 1. Affine Form at Zero Loss

Let zt = βtz0 + αtz1. If the loss in Eq. (9) vanishes almost surely, the integrand must be identically
zero:

vθ(zt, t, y) = β̇t z0 + α̇t z1 ∀(z0, z1, t, y). (24)

15

Fix (t, y) and apply the chain rule w.r.t. z0 and z1:

∂vθ
∂zt

βt = β̇t,
∂vθ
∂zt

αt = α̇t.

The right–hand sides are constant in (z0, z1), hence ∂vθ/∂zt ≡ γ(t, y) does not depend on zt.
Integrating once in zt gives the affine form

vθ(zt, t, y) = γ(t, y) zt + η(t, y), (25)

with η(t, y) an integration constant. Thus any zero-loss solution necessarily has the affine form given
in Eq. (25) and is already independent of θ. This completes Step 1.

Step 2. Each Collapse Pattern Attains the Zero–loss Affine Field

Write z0 := f(x0, y) and z1 := g(x1, y). Insert the ansatz given in Eq. (25) into the pointwise
identity given in Eq. (24) and substitute zt = βtz0 + αtz1:

γ(t, y)
[
βtz0 + αtz1

]
+ η(t, y) = β̇t z0 + α̇t z1. (26)

Eq. (26) is linear in (z0, z1); each collapse scenario reduces it to one or two scalar conditions, from
which γ and η are obtained explicitly.

(i) Constant source. z0 ≡ c(y) is fixed while z1 varies freely. Matching the z1-coefficient in
Eq. (26) forces γ = α̇t/αt. The remaining scalar equation fixes η = c(y) (β̇t − γβt).

(ii) Constant target. Symmetric to case (i): γ = β̇t/βt and η = c(y) (α̇t − γαt).

(iii) Unbounded source scale. As ∥z0∥→∞ with z1 bounded, the z0-terms in Eq. (26) dominate;
finiteness of the left-hand side requires γβt = β̇t ⇒ γ = β̇t/βt. With this choice the entire identity
holds for all (z0, z1) when we set η = 0.

(iv) Unbounded target scale. Analogous to (iii) with roles exchanged: γ = α̇t/αt and η = 0.

(v) Proportional collapse. Suppose z0 = k(y)z1. Substituting into Eq. (26) yields a single free
variable z1: γ [βtk(y) + αt] z1 = [β̇tk(y) + α̇t] z1. Hence γ(t, y) = (β̇tk(y) + α̇t)/(βtk(y) + αt)
and η(t, y) = 0.

In all five situations γ and η depend only on (t, y) and the collapse maps (f, g). Consequently the
optimizer can reach a trivial minimum in which vθ no longer guides a meaningful flow and the
generated distribution collapses to a single/improper mode.

C Implementation Details

C.1 Synthetic Data

The velocity network consumes three sinusoidal position embeddings that encode the latent state xt,
the class label y, and time t. Each embedding has dimensionality 8, and concatenating them yields a
24-dimensional feature vector. This vector is processed by a three-layer MLP whose hidden layers
are all 24→24 linear projections followed by GELU activations. A final linear layer maps 24→1,
producing the scalar velocity. The entire model—including all embedding parameters—contains
1 993 trainable parameters.

To implement the additive shifts µ0(y) and µ1(y) we introduce two lightweight condition networks.
Each consists of a single linear layer that maps the 8-dimensional class embedding to a scalar shift,
plus a bias term, for 9 parameters per network. Both linear layers are initialized with all weights and
biases set to zero, ensuring the additive shifts are identically zero at the start of training.

We train with a batch size of 1 024 using AdamW with β1 = 0.9 and β2 = 0.95. Learning rates are
fine-tuned per parameter group: 1× 10−3 for the source shift network, 1× 10−4 for the target shift
network, and 1× 10−5 for all remaining parameters. Unless noted otherwise, models are trained for
50k steps; mode-collapse experiments are extended to 100k steps to ensure convergence.

All the synthetic data experiments were executed on the CPU cores of an Apple M1 Pro laptop.

16

C.2 ImageNet

We re-implemented the open-source SiT3 code-base in JAX and reproduced the SiT/XL-2 config-
uration on ImageNet at 256× 256 resolution as our baseline. The exact architecture, datapipeline,
optimizer (AdamW) and learning-rate schedule are identical to the original code. Training is per-
formed on a single v6e-256 TPU slice.

For both source and target CAR-Flows, we append a lightweight label-conditioning network that
maps the 1152-dimensional class embedding to a latent tensor of shape 32× 32× 4:

• Dense: 1152→ 128×4×4.
• Upsampling: three repeats of ConvTranspose2d(kernel_size=2, stride=2)→ GroupNorm→
ReLU; shapes 4× 4× 128→ 8× 8× 64→ 16× 16× 32→ 32× 32× 16.

• Head: 3× 3 convolution (padding 1) to 32× 32× 4, initialized with all weights and bias set to
zero to ensure the no shifts at the start of training.

Each network contains 2.4M parameters (∼ 0.3% of the SiT/XL-2 backbone) incurring negligible
overhead.

We inherit the original AdamW optimizer for the SiT backbone with learning rate of 1× 10−4 and
global batch size of 256. Both label-conditioning networks are trained with a higher learning rate
1× 10−1; all other hyper-parameters are unchanged.

D Discussion of Findings

D.1 Relative Learning Rates

During our experiments, we discovered that the relative learning rate between the lightweight
condition networks (which learn the additive shifts µ0(y) and µ1(y)) and the velocity-network
backbone has a first-order effect on both the magnitude of the learned shifts and the convergence
speed—a “race condition” between them.

To study this, we reuse the synthetic-data example: we fix the backbone’s learning rate at 1× 10−5

and train source-only and target-only CAR-Flow models while sweeping the shift-network learning
rate across three orders of magnitude (1× 10−5, 1× 10−4, and 1× 10−3). Figures 6a and 6c plot the
µ0 and µ1 trajectories for the source-only and target-only variants, respectively. At the smallest rate,
the shifts remain near zero and the backbone carries the conditioning, yielding slower alignment; at
the intermediate rate, the shifts grow steadily—though they can still be pulled by the backbone (e.g.,
µ0(y = B) starts positive but gradually becomes negative, reducing |µ0(y = A) − µ0(y = B)|);
and at the largest rate, the shifts rapidly attain larger magnitudes and drive the quickest convergence.
Figures 6b and 6d report the Wasserstein distances, confirming that the highest shift-network rate
achieves the fastest distribution alignment.

These observations suggest that empowering the shift networks with a higher learning rate can
substantially accelerate alignment. In practice, one should choose a shift-network rate that is
sufficiently high to speed convergence while preserving robust inter-class separation.

To verify that these trends extend to large-scale data, we performed the same learning-rate sweep on
ImageNet using the SiT-XL/2 backbone. We fixed the backbone’s learning rate at its default 1× 10−4

and trained the CAR-Flow condition networks under three configurations—source-only, target-only,
and joint—while varying their learning rate from 1× 10−3 to 1× 10−1. Figure 7 shows the FID at
400K steps for each variant, with a SiT-XL/2 baseline of 17.2 indicated by the dashed line.

At the lower condition-network rate (∼ 10−3), source-only and target-only variants remain on-par
or worse than the baseline, whereas the joint variant already outperforms it. As the rate increases,
all three variants deliver substantial improvements—target-only achieves the best FID of 12.77 at
2× 10−2, and the joint variant exhibits the most stable performance across the sweep. Even at the
highest rate (10−1), all configurations remain well below the baseline.

These large-scale results mirror our synthetic-data findings: increasing the shift-network learning rate
accelerates alignment and improves sample quality, although the exact optimum varies by variant and
requires some tuning. For simplicity and robust performance, we therefore adopt a rate of 1× 10−1

3https://github.com/willisma/SiT

17

https://github.com/willisma/SiT

0 10 20 30 40 50
Training step (K)

1

0

1

0 s
hi

ft

0 10 20 30 40 50
Training step (K)

1

0

1

1 s
hi

ft

lrshift=1 × 10 5 lrshift=1 × 10 4 lrshift=1 × 10 3 Class A Class B

0 10 20 30 40 50
Training step (K)

1

0

1
0 s

hi
ft

(a) Learnedµ0 shift for source-only

0 10 20 30 40 50
Training Steps (K)

10 1
100

W
as

se
rs

te
in

 D
ist

an
ce

(b) Wasserstein distance for source-only

0 10 20 30 40 50
Training step (K)

1

0

1

1 s
hi

ft

(c) Learnedµ1 shift for target only

0 10 20 30 40 50
Training Steps (K)

10 1
100

W
as

se
rs

te
in

 D
ist

an
ce

(d) Wasserstein distance for target-only

Figure 6: Effect of varying the shift-network learning rate relative to a fixed backbone rate of 1×10−5.
Panels (a) and (c) show the trajectories of µ0 and µ1 for three learning rates; panels (b) and (d) plot
the corresponding 1-D Wasserstein distances. At the lowest shift-network rate, the learned shifts
remain negligible (slow alignment); at the intermediate rate, they grow steadily without instability;
and at the highest rate, they overshoot then damp, yielding the fastest overall convergence despite
early oscillations.

10 3 10 2 10 1

Condition Network Learning Rate

14

16

18

FI
D

@
40

0k
 S

te
ps

Source only
Target-only
Joint
SiT/XL-2 Baseline

Figure 7: ImageNet FID at 400K steps vs. condition-network learning rate for SiT-XL/2 CAR-Flow
variants: source-only (blue), target-only (orange), and joint (green). The dashed horizontal line marks
the baseline FID of 17.2. All variants improve over the baseline as the shift-network rate increases.

in our main experiments. Figure 8 presents example outputs from each CAR-Flow variant at this rate,
demonstrating that the joint variant attains superior visual fidelity compared to the source-only and
target-only models.

D.2 Condition-aware source versus unconditional shift

Complementary to the observations above, we examine whether making the condition-aware is
beneficial compared to using a single unconditional shift. For intuition, consider the source-only
CAR-Flow variant: it reparameterizes the source with a shift that depends on y. When the target
distribution varies with the conditioning variable, aligning the source per condition should reduce
transport effort relative to an unconditional source [Albergo et al., 2023].

We test this in the 1-D synthetic setup of Sec. 4.1 by comparing (i) a learnable unconditional source
with a global shift and (ii) a condition-aware source with a y-dependent shift. The Wasserstein
distances are 0.058 for (i) versus 0.041 for (ii), indicating that per-condition alignment reduces
transport. This supports CAR-Flow’s design choice and clarifies its distinction from an unconditional
“learnable source”.

18

S
o
u
rc
e-
o
n
ly

T
ar
g
et
-o
n
ly

Jo
in
t

Figure 8: Qualitative ablation of CAR-Flow variants on SiT-XL/2 at 400K steps. Each row corre-
sponds to one variant—(top) source-only, (middle) target-only, and (bottom) joint CAR-Flow—and
each column shows a generated sample for a different class from the same noise using cfg = 1. The
joint model produces the most realistic and semantically accurate images across all scenarios.

Table 4: Class-conditional image generation on CIFAR-10 (FID ↓).

Baseline
Source-only
CAR-Flow

Target-only
CAR-Flow

Joint
CAR-Flow

FID ↓ 13.8 7.5 11.1 10.6

E Additional Results on CIFAR-10

To assess generalization beyond ImageNet, we trained a SiT-XL/2 baseline and CAR-Flow variants
for 400k steps on CIFAR-10 using pixel-space diffusion (VAE omitted due to CIFAR-10’s low
resolution 32 × 32). All CAR-Flow variants outperformed the baseline, demonstrating that the
benefits of CAR-Flow generalize across datasets.

19

F Qualitative Results

Qualitative results are provided in Figure 9.

Figure 9: Randomly selected samples generated from our SiT-XL/2CAR-Flow Joint model trained on
ImageNet 256× 256 data using cfg = 4.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our three contributions are summarized at the end of Section 1. Points 1 and 2
are detailed in Section 3, while point 3 is detailed in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

21

Justification: We have two claims (Claim 1 and Claim 2). The proof of Claim 1 is provided
in the Appendix B. The proof of Claim 2 is provided in Section 3.3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation details are provided in Section 4 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22

Answer: [No]

Justification: Implementing the proposed approach is straightforward. We follow prior work
w.r.t. hyper-parameter settings.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided in Section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Details are provided in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information is provided in Section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We verified that the research conducted in the paper conforms with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts are discussed in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

24

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our contribution is mostly theoretical. Direct risk of misuse is minimal.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Baselines and datasets are properly cited and licenses properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

25

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets will be released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The reported research does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The reported research does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Method development in this research does not involve LLMs as any important,
original, or non-standard component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Preliminaries
	Conditional Generation and Probability Paths
	Gaussian Probability Paths
	Conditional Flow Matching and Sampling

	Condition-Aware Reparameterization
	General Reparameterization
	Mode Collapse under Unrestricted Reparameterization
	Shift‐Only Condition‐Aware Reparameterization

	Experiments
	Synthetic Data
	ImageNet

	Related Work
	Conclusion
	Score Function Under Reparameterization
	Change of the Conditional Score
	Shift-only Transform
	Link Between Score and Velocity Field

	Proof of Claim 1
	Implementation Details
	Synthetic Data
	ImageNet

	Discussion of Findings
	Relative Learning Rates
	Condition-aware source versus unconditional shift

	Additional Results on CIFAR-10
	Qualitative Results

