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Abstract

This paper rethinks Sharpness-Aware Minimization (SAM), which is origi-
nally formulated as a zero-sum game where the weights of a network and
a bounded perturbation try to minimize/maximize, respectively, the same
differentiable loss. We argue that SAM should instead be reformulated
using the 0-1 loss, as this provides a tighter bound on its generalization
gap. As a continuous relaxation, we follow the simple conventional approach
where the minimizing (maximizing) player uses an upper bound (lower
bound) surrogate to the 0-1 loss. This leads to a novel formulation of SAM
as a bilevel optimization problem, dubbed as BiSAM. Through numerical
evidence, we show that BiSAM consistently results in improved performance
when compared to the original SAM and variants, while enjoying similar
computational complexity.

1 Introduction

The rise in popularity of Large Language Models (LLMs) has motivated the question of
which optimization methods are better suited for their training. Recently, it has been found
that Sharpness-Aware Minimization (SAM) (Foret et al., 2021) can greatly improve their
generalization with almost negligible increase in computational complexity (Bahri et al.,
2021). SAM not only improves the performance of LLMs, but supervised learning tasks from
computer vision also benefit greatly (Foret et al., 2021; Dosovitskiy et al., 2020). Hence, it is
natural to ask whether SAM can be improved further. Indeed, many works have been quick
to present modifications of the original SAM algorithm, that improve its speed (Du et al.,
2022) or performance (Kwon et al., 2021) in practice.

The motivation behind SAM is to find a parameter w⋆ in the so-called loss landscape, that
achieves a low loss value while being flat i.e., the loss in its immediate neighborhood should
not deviate meaningfully from the value attained at w⋆. Such loss landscape is usually
understood as the one associated with the cross-entropy, or other common differentiable
losses, on the training set. Indeed, the most popular method for supervised learning with deep
neural networks is to use the cross-entropy as a surrogate of the misclassification error, and
minimize it through gradient-based methods in an effort to find highly accurate classifiers.

Why is such flatness important? The main theoretical advantage is that it promotes good
generalization, which can be defined as the difference between a performance measure in
the training set vs the testing set. This important property has been brought forward by
the PAC-Bayesian generalization bounds derived in Dziugaite and Roy (2017), confirmed
empirically through extensive evaluation in Keskar et al. (2017); Jiang* et al. (2020) and
exploited by Foret et al. (2021) to derive the SAM algorithm. Denoting by LS the average
(cross-entropy) loss on the dataset S, the original SAM optimization template is stated as
the zero-sum game:

min
w

max
ϵ:∥ϵ∥2≤ρ

LS(w + ϵ) + h
(
∥w∥22/ρ

)
(1)

where h : R+ → R+ is some strictly increasing function. This min-max zero-sum formulation
is the starting point for all works that try to improve upon the method. For example, Du
et al. (2022) introduce modifications over the original SAM algorithm like perturbing only a
random subset of weights in each iteration, or optimizing only on a subset of data that is
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more sensitive to the sharpness. Alternatively, Kwon et al. (2021) modify the allowed set
of perturbations to make SAM scale-invariant. The use of a surrogate loss LS in Eq. (1),
usually the cross-entropy, is a mainstay in such approaches.

Nevertheless, in the context of supervised classification, the usage of the cross-entropy loss in
the definition of SAM (1) presents a concerning subtlety. As SAM controls the generalization
of the loss, the formulation (1) is in fact looking for a parameter such that the cross-entropy
on the testing set does not deviate from the low value of cross-entropy achieved on the
training set. Even though this appears beneficial, we should recall that the goal in supervised
classification is not to achieve a low value of the cross-entropy, rather, the goal is to enjoy a
small misclassification error rate on the testing set. This raises the question:

If our goal is to achieve a better classifier, should we not apply the SAM formulation directly
on the misclassification error i.e., the 0-1 loss?

In order to answer this question, first of all, we need to make sure that the theoretical
properties of generalization that motivate SAM (Dziugaite and Roy, 2017) still hold for the
so-called 0-1 loss, which corresponds to the misclassification error of the model. Assuming
we answer this in the positive, the question remains whether the formulation in Eq. (1) is
amenable to optimization when the loss is chosen as the 0-1 loss.

In this work, we answer the first question affirmatively, that is, we verify that the theoretical
results of Dziugaite and Roy (2017) and Foret et al. (2021) apply directly to the 0-1 loss. The
statements therein are of statistical nature, and their proofs do not require any differentiability
or continuity assumptions. Hence, applying SAM directly on the misclassification error
indeed leads to better generalization of the actual desired performance metric of a classifier.
This suggests we should reframe SAM as:

min
w

max
ϵ:∥ϵ∥2≤ρ

L01
S (w + ϵ) + h

(
∥w∥22/ρ

)
(2)

Unfortunately, the 0-1 loss is discontinuous nature and has zero-gradient almost everywhere,
which prevents its direct optimization through gradient-based methods. Therefore, even
though 0-1 loss-based SAM has better theoretical guarantees, it does not lead to a practical
method. This issue is not foreign in supervised classification: precisely, differentiable
surrogate losses like the cross-entropy were originally introduced as upper-bounds on the
misclassification error, which motivates their minimization as a proxy for obtaining accurate
classifiers through algorithms like SGD.

Following this bound-based approach from textbook ML, one might be inclined to simply
replace the 0-1 loss with the cross-entropy, going full-circle and arriving at the original SAM
formulation Eq. (1). In this work, we posit that such careless modification would suffer from
a fundamental flaw: whereas for the model weights w, whose goal is one of minimization,
it makes sense to use an upper bound on the misclassification error e.g., cross-entropy, the
same cannot be said about the weight-perturbation ϵ whose objective is to maximize the
error. Instead, a sound approach is for the maximization player ϵ to optimize a lower bound
on the misclassification error.

Namely, in order to solve Eq. (2) via gradient-based algorithms, we need to relax the
objective of the model weights and adversary independently of each other. This leads to a
situation where both players end up with a fundamentally different objective function i.e.,
a non-zero-sum game. In conclusion, in this work we argue that improving SAM requires
moving away from the original zero-sum game formulation Eq. (1) and towards a bilevel
optimization formulation (Bard, 2013), that can effectively capture different surrogate losses
for the two players in the 0-1 loss SAM formulation (2).

We summarize our contributions as follows:

• We present (15), a novel bilevel optimization (Bard, 2013) formulation of SAM,
where instead of solving a min-max zero-sum game between the model parameters
w and the perturbation ϵ, each player has a different objective. This formulation
appears naturally by applying SAM to the relevant performance metric in supervised
learning: the misclassification error, i.e., the so-called 0-1 loss. Our formulation
retains the guarantees of good generalization (8).
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• We propose BiSAM (Algorithm 1), a scalable first-order optimization method to
solve our proposed bilevel formulation of SAM. BiSAM is simple to implement and
enjoys a similar computational complexity when compared to SAM.

• We present numerical evidence on CIFAR10/CIFAR100 showing that our proposed
reformulation and algorithm consistently outperforms SAM across five models, and
also see improvement on ImageNet-1K. BiSAM incorporating variants of SAM
(ASAM and ESAM) also demonstrates enhancement. We additionally verify that
our reformulation remains robust in finetuning and noisy label tasks.

2 Preliminaries and Problem Setup

Notation. Throughout this work we let D be an (unknown) distribution over data-label
pairs (x, y) where x ∈ Rd and y ∈ {1, . . . ,K} = [K], S = {(x1, y1), . . . (xn, yn)} is a finite
sample drawn from D. fw : Rd → RK corresponds to the logits (scores) that are output by
a neural network with parameters w. For a given loss function ℓ we denote the population
loss LD(w) = E(x,y)∼D[ℓ(fw(x), y)] and the training set loss LS(w) =

1
n

∑n
i=1 ℓ(fw(xi), yi).

We denote the cross-entropy loss as ℓce, and its corresponding population and training set
loss as Lce

D , Lce
S . We denote as {A} the indicator function of an event i.e., {A} = 1 if A is

true or {A} = 0 if A is false. In this way we can write the 0-1 loss as

ℓ01(fw(x), y) =

{
argmax
j=1,...,K

fw(x)j ̸= y

}
(3)

For the 0-1 loss we denote its corresponding population and training set loss as L01
D , L01

S .

Let us start by recalling that the motivation behind SAM is the PAC-Bayesian generalization
bound by Dziugaite and Roy (2017), which leads to the following:

Theorem 1. (Foret et al., 2021, (stated informally)) For any ρ > 0, with high probability
over training set S generated from distribution D:

LD(w) ≤ max
ϵ:∥ϵ∥2≤ρ

LS(w + ϵ) + h
(
∥w∥22/ρ

)
(4)

where h : R+ → R+ is a strictly increasing function (under some technical conditions on
LD(w)).

This result suggests that by minimizing both sides of Eq. (4), we can minimize the population
loss:

min
w

LD(w) ≤ min
w

max
ϵ:∥ϵ∥2≤ρ

LS(w + ϵ) + h
(
∥w∥22/ρ

)
(5)

By choosing the loss L = Lce as the cross-entropy, or any other common differentiable
loss functions, we arrive at the SAM formulation used in practice. However, taking a step
back, we stress that the final goal in supervised learning is to minimize the 0-1 loss at
the population level i.e., minimize the expected (test set) misclassification error. This is
indeed the metric that is reported experimentally and determines which method is the
state-of-the-art in classification tasks.

The reason why differentiable losses like the cross-entropy are introduced are two-fold: first,
their differentiability allows the use of first-order optimization methods, and second, they
provide an upper bound to the 0-1 loss L01. Consequently, minimizing an upper bound leads
to a decrease in misclassification error, which is the actual goal of the classifier. In summary,
the chain of inequalities that motivate the original SAM formulation (Foret et al., 2021) is
the following:

min
w

L01
D (w) ≤ min

w
Lce
D (w) ≤ min

w
max

ϵ:∥ϵ∥2≤ρ
Lce
S (w + ϵ) + h

(
∥w∥22/ρ

)
(6)

Given that the PAC-Bayesian bounds motivating SAM are considered the tightest (Dziugaite
and Roy, 2017; Lotfi et al., 2022), it seems like the choice of first upper bounding the 0-1 loss
with the cross-entropy loss is suboptimal. Can we apply directly the PAC-Bayesian bound
from Dziugaite and Roy (2017) to the 0-1 loss? Yes we can:
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Remark 1. The PAC-Bayesian bounds from Dziugaite and Roy (2017) hold for the 0-1 loss.
Furthermore, after inspecting the proof of Theorem 1 in Foret et al. (2021) we conclude that
the following bound also applies to the 0-1 loss:

L01
D (w) ≤ max

ϵ:∥ϵ∥2≤ρ
L01
S (w + ϵ) + h

(
∥w∥22/ρ

)
(7)

With this in mind, we decide to delay the introduction of differentiable losses like cross-entropy,
and instead start from the inequality:

min
w

L01
D (w) ≤ min

w
max

ϵ:∥ϵ∥2≤ρ
L01
S (w + ϵ) + h

(
∥w∥22/ρ

)
(8)

we now turn to the question of how to solve the problem in the right-hand-side of Eq. (8).
To make this formulation amenable to first-order optimization, we need to replace the
discontinuous 0-1 loss by a neural network. However, due to the min-max formulation in
Eq. (8), it would be wrong to simply replace it by the cross-entropy.

While such approach would work for the minimization player (corresponding to the variable
w), it is not valid for the maximization player (corresponding to the variable ϵ). When the
goal is to minimize a given untractable objective, it is sensible to minimize a differentiable
upper bound. Analogously, if the goal is to maximize an objective like the 0-1 loss, one
can instead maximize a lower bound. Otherwise, maximizing an upper bound leads to no
guarantees whatsoever on the true objective. Precisely, this asymmetry is what will lead to
a natural formulation of SAM as a bilevel optimization problem (Bard, 2013).

3 Bilevel Sharpness-aware Minimization (BiSAM)

In order to obtain differentiable objectives for the minimization and maximization players in
the formulation Eq. (8), our starting point is to decouple the problem as follows:

min
w

L01(w + ϵ⋆) + h
(
∥w∥22/ρ

)
, subject to ϵ⋆ ∈ argmax

ϵ:∥ϵ∥2≤ρ

L01(w + ϵ) (9)

Up to this point, there has been no modification of the original objective Eq. (8). We first
note that for the minimization player w, we can minimize a differentiable upper bound (e.g.,
cross-entropy) instead of the 0-1 loss, leading to the formulation:

min
w

Lce(w + ϵ⋆) + h
(
∥w∥22/ρ

)
, subject to ϵ⋆ ∈ argmax

ϵ:∥ϵ∥2≤ρ

L01(w + ϵ) (10)

Now, we need only deal with replacing the 0-1 loss in the objective of the perturbation ϵ.
Because this corresponds to a maximization problem, we need to derive a lower bound.

Lemma 1. Let ϕ(x) be a lower bound of the 0-1 step function {x > 0}. For each j ∈ [K],
let Fw+ϵ(xi, yi)j = fw+ϵ(xi)j − fw+ϵ(xi)yi

and let µ > 0. It holds that

L01(w + ϵ) ≥ 1

n

n∑
i=1

1

µ
log

 K∑
j=1

eµϕ(Fw+ϵ(xi,yi)j)

− 1

µ
log(K) (11)

Remark 2. Choice ϕ(x) = tanh(x) is a valid lower bound (see (17) for further discussion).

Proof. Note that for a training sample (xi, yi) we have misclassification error if and only if
for some class j ≠ yi the score assigned to class j is larger than the score assigned to yi.
Equivalently, argmaxj∈[K] fw+ϵ(xi)j ̸= yi if and only if maxj=1,...K Fw+ϵ(xi, yi)j > 0. Thus,

L01(w + ϵ) =
1

n

n∑
i=1

{
argmax
j∈[K]

fw+ϵ(xi)j ̸= yi

}
=

1

n

n∑
i=1

{
max
j∈[K]

Fw+ϵ(xi, yi)j > 0

}

=
1

n

n∑
i=1

max
j∈[K]

{Fw+ϵ(xi, yi)j > 0} ≥ 1

n

n∑
i=1

max
j∈[K]

ϕ (Fw+ϵ(xi, yi)j)

(12)

To end up with a differentiable expression, we need only get rid of the non-differentiable
maximum operator over the set [K] = {1, . . . ,K}. To this end we use the well-known bounds
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of the log-sum-exp function:

1

µ
log

(
K∑
i=1

eµai

)
≤ max{a1, . . . , aK}+ 1

µ
log(K) (13)

Using Eq. (13) in Eq. (12) yields the desired bound.

As a consequence of Lemma 1 we conclude that a valid approach for the maximization player
is to solve the differentiable problem in the right-hand-side of the following inequality:

max
ϵ:∥ϵ∥2≤ρ

L01(w + ϵ) ≥ max
ϵ:∥ϵ∥2≤ρ

1

n

n∑
i=1

1

µ
log

 K∑
j=1

eµϕ(Fw+ϵ(xi,yi)j)

− 1

µ
log(K)

=: max
ϵ:∥ϵ∥2≤ρ

Qϕ,µ(w + ϵ)

(14)

Continuing from Eq. (10), we finally arrive at a bilevel and fully differentiable formulation:

min
w

Lce(w + ϵ⋆) + h
(
∥w∥22/ρ

)
, subject to ϵ⋆ ∈ argmax

ϵ:∥ϵ∥2≤ρ

Qϕ,µ(w + ϵ) (15)

The above setting forces us to take a slight detour to the general framework of bilevel
optimization and its solution concepts. In particular, the nested nature of the problem makes
its solution to be notoriously difficult. Therefore, the success of the up-to-date iterative
methods relies on a set of quite restrictive assumptions, which do not apply in the complex
environment of neural networks (we refer the reader to Ghadimi and Wang (2018); Tarzanagh
and Balzano (2022) for more details). In particular, an important feature that needs to
be satisfied is that the so-called inner problem should be strongly convex; which here is
clearly not the case. Therefore, in order to devise a fast algorithm for the problem in the
right-hand-side of (15), some particular modifications should be made. More precisely, we
follow the same approach in the original SAM algorithm (Foret et al., 2021), and do a
first-order Taylor expansion of Qϕ,µ(w + ϵ) with respect to ϵ around 0. We obtain:

ϵ⋆ ∈ argmax
ϵ:∥ϵ∥2≤ρ

Qϕ,µ(w + ϵ) ≈ argmax
ϵ:∥ϵ∥2≤ρ

Qϕ,µ(w) + ϵ⊤∇wQ(w)

= argmax
ϵ:∥ϵ∥2≤ρ

ϵ⊤∇wQ(w) = ρ
∇wQ(w)

∥∇wQ(w)∥2

(16)

As the function Qϕ,µ involves a sum over the whole dataset, this makes the computation of
the full gradient in Eq. (16) too costly. For scalability, in practice we use stochastic gradients
defined on a mini-batch. Our proposed algorithm to solve SAM in the bilevel optimization
paradigm (BiSAM), finally takes shape as shown in Algorithm 1.

Algorithm 1 Bilevel SAM (BiSAM)

Input: Initialization w0 ∈ Rd, iterations T , batch size b, step sizes {ηt}T−1
t=0 , neighborhood

size ρ > 0, µ > 0, lower bound ϕ.
1 for t = 0 to T − 1 do
2 Sample minibatch B = {(x1, y1), . . . , (xb, yb)}.
3 Compute the (stochastic) gradient of the perturbation loss Qϕ,µ(wt) defined in Eq. (14)

4 Compute perturbation ϵt = ρ ∇wQ(w)
∥∇wQ(w)∥ .

5 Compute gradient gt = ∇wLB(wt + ϵt).
6 Update weights wt+1 = wt − ηtgt.

On the choice of lower bound ϕ. The function ϕ plays a crucial role in the objective
Qϕ,µ that defines the perturbation Eq. (16). Although in theory we can use any lower bound
for the 0-1 step function {x > 0}, the choice can affect the performance of the optimization
algorithm. As is always the case in Deep Learning, one should be on the look for possible
sources of vanishing/exploding gradients (Hochreiter et al., 2001).

As shown in Fig. 1, the function
ϕ(x) = tanh(αx) (17)
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Figure 1: Plot of suggested lower bounds. Left: ϕ(x) = tanh(αx), Right: ϕ(x) = − log(1+e(γ−x))+1.

seems to be a good lower bound of the 0-1 step function. However, at all points far from
zero, the gradient quickly vanishes, which might harm performance. We suggest considering
the alternative:

ϕ(x) = − log(1 + e(γ−x)) + 1 (18)

where γ = log(e− 1), also shown in Fig. 1, as it only suffers from a vanishing gradient on
large positive values. However, note that having a vanishing gradient in such region is not
really an issue: the objective of the perturbation ϵ is to move points towards the right side
of the plot in Fig. 1, where misclassification happens. Hence, if a point stays there due to
the vanishing gradient problem, it means it will remain misclassified. In contrast, having
vanishing gradients on the left side of the plot in Fig. 1 might mean that the optimization
algorithm is unable to move points that are correctly classified towards the misclassification
region, therefore the adversary would fail.

4 Experiments

In this section we verify the benefit of BiSAM across a variety of models, datasets and tasks.

4.1 Image classification on CIFAR-10/100 and ImageNet-1K

We follow the experimental setup of Kwon et al. (2021). We use the CIFAR-10 and CIFAR-
100 datasets (Krizhevsky et al., 2009), both consisting of 50 000 training images of size 32×32,
with 10 and 100 classes, respectively. For data augmentation we apply the commonly used
random cropping after padding with 4 pixels, horizontal flipping, and normalization using the
statistics of the training distribution at both train and test time. We train multiple variants
of VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2016), DenseNet (Huang et al.,
2017) and WideResNet (Zagoruyko and Komodakis, 2016) (see Tables 1 and 2 for details)
using cross entropy loss. All experiments are conducted on a NVIDIA A100 GPU.

Our two variants of BiSAM are compared against two baselines.

SGD: Standard training using stochastic gradient descent (SGD) (see details below)

SAM: The original Sharpness-Aware Minimization (SAM) algorithm from Foret et al. (2021)

BiSAM (tanh): Algorithm 1 using (17) as the lower bound

BiSAM (-log): Algorithm 1 using (18) as the lower bound

The models are trained using stochastic gradient descent (SGD) with a momentum of 0.9 and
a weight decay of 0.0005. We used a batch size of 128, and a cosine learning rate schedule that
starts at 0.1. The number of epochs is set to 200 for SAM and BiSAM while SGD are given
400 epochs. This is done in order to provide a computational fair comparison as (Bi)SAM uses
twice as many gradient computation. Label smoothing with a factor 0.1 is employed for all
method. For the SAM and BiSAM hyperparameter ρ we use a value of 0.05. We fix µ = 10 and
α = 0.1 for BiSAM (tanh) and µ = 1.5 for BiSAM (-log) throughout all experiments on both
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Table 1: Test accuracies on CIFAR-10. BiSAM (-log) has strictly better performance than
SAM across all models. We include BiSAM (tanh) for completeness which sometimes performs
better than BiSAM (-log).

Model SGD SAM
BiSAM
(-log)

BiSAM
(tanh)

DenseNet-121 96.14±0.09 96.52±0.10 96.61±0.17 96.63±0.21

Resnet-56 94.01±0.26 94.09±0.26 94.28±0.31 94.87±0.34

VGG19-BN 94.76±0.10 95.09±0.12 95.22±0.13 95.01±0.06

WRN-28-2 95.71±0.19 96.00±0.10 96.02±0.12 95.99±0.09

WRN-28-10 96.77±0.21 97.18±0.04 97.26±0.10 97.17±0.05

Average 95.48±0.08 95.78±0.06 95.88±0.08 95.93±0.08

Table 2: Test accuracies on CIFAR-100. BiSAM (-log) consistently improves over SAM across
all models. We include BiSAM (tanh) for completeness which sometimes performs better than
BiSAM (-log).

Model SGD SAM
BiSAM
(-log)

BiSAM
(tanh)

DenseNet-121 81.31±0.38 82.31±0.15 82.49±0.14 82.88±0.42

Resnet-56 73.98±0.16 74.38±0.37 74.67±0.15 74.54±0.35

VGG19-BN 74.90±0.30 74.94±0.12 75.25±0.24 75.12±0.34

WRN-28-2 77.95±0.14 78.09±0.13 78.21±0.23 78.07±0.13

WRN-28-10 81.50±0.48 82.89±0.47 83.27±0.26 83.35±0.25

Average 77.93±0.14 78.52±0.13 78.78±0.09 78.79±0.14

CIFAR-10 and CIFAR-100 datasets as a result of a grid search over {0.01, 0.1, 1, 10, 100} for α
and over {0.1, 0.5, 1, 1.5, 2, 4} for µ using the validation dataset on CIFAR-10 with Resnet-56.

The training data is randomly partitioned into a training set and validation set consisting
of 90% and 10%, respectively. We deviate from Foret et al. (2021); Kwon et al. (2021) by
using the validation set to select the model on which we report the test accuracy in order to
avoid overfitting on the test set. We report the test accuracy of the model with the highest
validation accuracy across the training with mean and standard deviations computed over 6
independent executions. The results can be found in Tables 1 and 2.

For evaluations at a larger scale, we compare the performance of SAM and BiSAM on
ImageNet-1K (Russakovsky et al., 2015). We apply each method with ρ = 0.05 for both
SAM and BiSAM. We use training epochs 90, peak learning rate 0.2, and batch size 512.
We employ mSAM (Foret et al., 2021; Behdin et al., 2023) with micro batch size m = 128 to
accelerate training and improve performance. We set µ = 5 for BiSAM (-log) and µ = 20 and
α = 0.1 for BiSAM (tanh). Other parameters are the same as CIFAR-10 and CIFAR-100. We
run 3 independent experiments for each method and results are shown in Table 3. Note that
we do not reproduce experiments of SGD on ImageNet-1K due to computational restriction
but it well-documented that SAM and its variants have better performance than SGD (Foret
et al., 2021; Kwon et al., 2021; Du et al., 2022).

We find that BiSAM (-log) consistently outperforms SGD and SAM across all models on
both CIFAR-10 and CIFAR-100, and it also outperforms SAM on ImageNet-1K. In most
cases, BiSAM (tanh) has better or almost same performance than SAM. Average accuracies
across 5 models of both BiSAM (-log) and BiSAM (tanh) outperform SAM and the result
is statistically significant as shown by the small standard deviation when aggregated over
all model types. This improvement is achieved without modifying the original experimental
setup and the hyperparameter involved. Specifically, we use the same ρ = 0.05 for BiSAM
which has originally been tuned for SAM. The consistent improvement using BiSAM, despite
the favorable setting for SAM, shows the benefit of our reformulation based on the 0-1
loss. Note that the generalization improvement provided by BiSAM comes at essentially no
computational overhead (see Appendix B for detailed discussion).
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We recommend using BiSAM (-log) as it generally achieves better or comparable test
accuracies to BiSAM (tanh). Therefore, we choose BiSAM (-log) as representative while
BiSAM (tanh) serves as reference in all tables.

Table 3: Test accuracies on ImageNet-1K.

SAM
BiSAM
(-log)

BiSAM
(tanh)

Top1 75.83±0.16 75.96±0.15 76.02±0.08

Top5 92.47±0.02 92.49±0.10 92.40±0.13

Table 4: Test accuracies for finetuning.

SAM
BiSAM
(-log)

Flowers 98.79±0.07 98.93±0.15

Pets 93.66±0.48 94.15±0.24

4.2 Finetuning on Oxford Flowers and Pets

We conduct experiments of transfer learning on ViT architectures. In particular, we use
pretrained ViT-B/16 checkpoint from Visual Transformers (Wu et al., 2020) and finetune
the model on Oxford-flowers (Nilsback and Zisserman, 2008) and Oxford-IITPets (Parkhi
et al., 2012) datasets. We use AdamW as base optimizer with no weight decay under a linear
learning rate schedule and gradient clipping with global norm 1. We set peak learning rate
to 1e− 4 and batch size to 512, and run 500 steps with a warmup step of 100. Note that for
Flowers dataset, we choose µ = 4 for BiSAM(-log) and µ = 20 for BiSAM(tanh); and for
Pets dataset, set µ = 6 for BiSAM(-log) and µ = 20 for BiSAM(tanh). The results in the
table indicate that BiSAM benefits transfer learning.

4.3 Incorporation with variants of SAM

Since we just reformulate the perturbation loss of original SAM, existing variants of SAM
can be incorporated within BiSAM. The mSAM variant has been combined with BiSAM in
experiments on ImageNet-1K. Moreover, we incorporate BiSAM with both Adaptive SAM
(Kwon et al., 2021) and Efficient SAM (Du et al., 2022).

Adaptive BiSAM. We combine BiSAM with Adaptive Sharpness in ASAM (Kwon et al.,
2021) which proposes a normalization operator to realize adaptive sharpness. The Adaptive
BiSAM (A-BiSAM) algorithm is specified in detail in Appendix A.1 and results on CIFAR-10
are shown in Table 5. A-BiSAM (-log) consistently outperforms ASAM across all models on
CIFAR-10 except for one on DenseNet-121 where the accuracy is the same.

Efficient BiSAM. BiSAM is also compatible with the two ideas constituting ESAM (Du
et al., 2022), Stochastic Weight Perturbation and Sharpness-sensitive Data Selection. A de-
tailed description of the combined algorithm, denoted E-BiSAM, is described in Appendix A.2
and results on CIFAR-10 are shown in Table 6. E-BiSAM (-log) improves the performance
of ESAM across all models on CIFAR-10.

Table 5: Test accuracies of A-(Bi)SAM.

Model ASAM
A-BiSAM

(-log)

DenseNet-121 96.79±0.14 96.79±0.13

Resnet-56 94.86±0.18 95.09±0.09

VGG19-BN 95.10±0.09 95.14±0.14

WRN-28-2 96.22±0.10 96.28±0.14

WRN-28-10 97.37±0.07 97.42±0.09

Average 96.07±0.05 96.14±0.05

Table 6: Test accuracies of E-(Bi)SAM.

Model ESAM
E-BiSAM
(-log)

DenseNet-121 96.30±0.22 96.35±0.12

Resnet-56 94.21±0.38 94.60±0.24

VGG19-BN 94.16±0.09 94.43±0.14

WRN-28-2 95.95±0.08 96.00±0.04

WRN-28-10 97.17±0.09 97.18±0.05

Average 95.56±0.09 95.71±0.06

5 Related Work

The min-max zero-sum optimization template has been used in recent years in multiple
applications beyond SAM (Foret et al., 2021) e.g., in Adversarial Training (Madry et al., 2018;
Latorre et al., 2023) or Generative Adversarial Networks (GANs) (Goodfellow et al., 2014).
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In particular, the SAM formulation as a two player game that interact via addition, already
has precedence in Robust Bayesian Optimization (Bogunovic et al., 2018), where it is called ϵ-
perturbation stability. Even though our formulation starts as a zero-sum game (2), a tractable
reformulation (15) requires leveraging the bilevel optimization approach (Bard, 2013).

The bilevel paradigm has already seen applications in Machine Learning, in the context
of hyperparameter optimization (Domke, 2012; Lorraine et al., 2020; Mackay et al., 2019;
Franceschi et al., 2018), meta-learning (Franceschi et al., 2018; Rajeswaran et al., 2019),
data denoising by importance learning (Ren et al., 2018), neural architecture search (Liu
et al., 2018) and training data poisoning (Mei and Zhu, 2015; Muñoz-González et al., 2017;
Huang et al., 2020). Our formulation is the first bilevel formulation in the context of SAM.

ESAM (Du et al., 2022) introduces two tricks, Stochastic Weight Perturbation (SWP) and
Sharpness-sensitive Data Selection (SDS) that subset random variables of the optimization
problem, or a subset of the elements in the mini-batch drawn in a given iteration. Neither
modification is related to the optimization objective of SAM. Thus, analogous ideas can be
used inside our bilevel approach as shown in Algorithm 3. This is useful, as ESAM is able to
reduce the computational complexity of SAM while retaining its performance. We can see a
similar result when combined with BiSAM.

In ASAM (Kwon et al., 2021), a notion of Adaptive Sharpness is introduced, whereby the
constraint set of the perturbation ϵ in (1) is modified to depend on the parameter w. This
particular choice yields a definition of sharpness that is invariant under transformations that
do not change the value of the loss. The arguments in favor of adaptive sharpness hold for
arbitrary losses, and hence, adaptivity can also be incorporated within the bilevel formulation
of BiSAM as shown in Algorithm 2. Experimental results in Table 5 demonstrate that this
incorporation improves performance.

A relationship between the inner-max objective in SAM and a Bayesian variational formulation
was revealed by Möllenhoff and Khan (2022). Based on this result, they proposed Bayesian
SAM (bSAM), a modification of SAM that can obtain uncertainty estimates. While such
results require a continuity condition on the loss c.f. Möllenhoff and Khan (2022, Theorem
1.), their arguments could be applied to any sufficiently tight continuous approximation
of the 0-1 loss. Therefore, a similar relationship between our formulation of SAM and the
Bayesian perspective could be derived, enabling uncertainty estimates for BiSAM.

In GSAM (Zhuang et al., 2021), propose to minimize the so-called surrogate gap
maxϵ:∥ϵ∥≤ρ LS(w + ϵ)− LS(w) and the perturbed loss maxϵ:∥ϵ∥≤ρ LS(w + ϵ) simultaneously,
which leads to a modified SAM update. In Liu et al. (2022), it is proposed to add a random
initialization before the optimization step that defines the perturbation. In Ni et al. (2022),
it is suggested that using the top-k elements of the mini-batch to compute the stochastic
gradients is a good alternative to improve the speed of SAM. To different degrees, such SAM
variants have analogous versions in our framework.

6 Conclusions and Future Work

In this work, we proposed a novel formulation of SAM by utilizing the 0-1 loss for classification
tasks. By reformulating SAM as a bilevel optimization problem, we aimed to maximize the
lower bound of the 0-1 loss through perturbation. We proposed BiSAM, a scalable first-
order optimization method, to effectively solve this bilevel optimization problem. Through
experiments on CIFAR-10, CIFAR-100 and ImageNet-1K datasets, BiSAM outperformed
SAM meanwhile maintaining a similar computational complexity. In addition, incorporating
variants of SAM (e.g., ASAM, ESAM, mSAM) in BiSAM formulation can improve its
performance or efficiency further. Moreover, BiSAM also showed good performance in
finetuning and noisy label tasks.

Considering the promising results obtained in the context of classification tasks, it is intriguing
to investigate the applicability of the BiSAM formulation in the realm of natural language
processing (NLP) which would broaden the scope of application. Overall, the insights
gained from this work offer new directions and opportunities for advancing the field of
sharpness-aware optimization.
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Reproducibility statement. Our implementation is built upon the PyTorch version of
SAM.1 To reproduce our BiSAM (tanh) and BiSAM (-log) variants, simply modify the
perturbation loss function following equations (17) and (18), respectively. The same revision
applies when integrating BiSAM with SAM variants such as A-BiSAM (Algorithm 2) and
E-BiSAM (Algorithm 3). Implementation details and specific parameters are provided in
Section 4 and the supplementary material in Section A.
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A Complete experiments

A.1 Adaptive BiSAM

As we introduced in Section 5, some existing variants of SAM can be incorporated within
BiSAM. To demonstrate this, we combine BiSAM with Adaptive Sharpness in ASAM (Kwon
et al., 2021). Kwon et al. (2021) propose that the fixed radius of SAM’s neighborhoods has
a weak correlation with the generalization gap. Therefore, ASAM proposes a normalization
operator to realize adaptive sharpness. Following the element-wise operator in Kwon et al.
(2021) defined by

Tw = diag(|w1|, . . . , |wb|), where w = [w1, . . . , wb], (19)

we construct Adaptive BiSAM (A-BiSAM) in Algorithm 2.

Algorithm 2 Adaptive BiSAM (A-BiSAM)

Input: Initialization w0 ∈ Rd, iterations T , batch size b, step sizes {ηt}T−1
t=0 , neighborhood

size ρ > 0, µ > 0, lower bound ϕ.
1 for t = 0 to T − 1 do
2 Sample minibatch B = {(x1, y1), . . . , (xb, yb)}.
3 Compute the (stochastic) gradient of the perturbation loss Qϕ,µ(wt) defined in Eq. (14)

4 Compute perturbation ϵt = ρ
T 2
w∇wQ(w)

∥Tw∇wQ(w)∥ .

5 Compute gradient gt = ∇wLB(wt + ϵt).
6 Update weights wt+1 = wt − ηtgt.

To compare A-BiSAM with ASAM, we use the same experimental setting as in Section 4.1
except for the choice of ρ. For both ASAM and A-BiSAM, we use ρ = 2 as a result of a
grid search over {0.1, 0.5, 1, 2, 3} using the validation dataset on CIFAR-10 with Resnet-56.
(Note that we do not use ρ = 0.5 as in Kwon et al. (2021) because the results of ASAM
with ρ = 0.5 cannot outperform SAM in our experiments.) We also have two variants of
A-BiSAM compared against ASAM:

ASAM: The original Adaptive Sharpness-Aware Minimization (ASAM) algorithm from
Kwon et al. (2021)

A-BiSAM (tanh): Algorithm 2 using (17) as the lower bound

A-BiSAM (-log): Algorithm 2 using (18) as the lower bound

We report the test accuracy of the model with the highest validation accuracy across the
training with mean and standard deviations computed over 5 independent executions. The
results can be found in Table 7.

Table 7: Test accuracies of A-(Bi)SAM on CIFAR-10 dataset.

Model ASAM A-BiSAM (-log) A-BiSAM (tanh)

DenseNet-121 96.79±0.14 96.79±0.13 96.76±0.06

Resnet-56 94.86±0.18 95.09±0.09 94.86±0.12

VGG19-BN 95.10±0.09 95.14±0.14 95.19±0.15

WRN-28-2 96.22±0.10 96.28±0.14 96.29±0.18

WRN-28-10 97.37±0.07 97.42±0.09 97.34±0.11

We find that A-BiSAM (-log) consistently outperforms ASAM across all models on CIFAR-10
except for one on DenseNet-121 where the accuracy is the same. In addition, A-BiSAM (tanh)
has same or better performance than ASAM on Resnet-56, VGG19-BN, and WRN-28-2. It
may be improved by further tuning µ and α.

13



A.2 Efficient BiSAM

A-BiSAM above mainly improves the performance of BiSAM while some variants of SAM
can enhance the efficiency like Efficient SAM (ESAM) (Du et al., 2022). As we introduced in
Section 5, ESAM proposes two tricks, Stochastic Weight Perturbation (SWP) and Sharpness-
sensitive Data Selection (SDS), which can also be used in BiSAM. When these two tricks
are combined with BiSAM we refer to it as Efficient BiSAM (E-BiSAM) in Algorithm 3.

Algorithm 3 Efficient BiSAM (E-BiSAM)

Input: Initialization w0 ∈ Rd, iterations T , batch size b, step sizes {ηt}T−1
t=0 , neighborhood

size ρ > 0, µ > 0, lower bound ϕ, SWP hyperparameter β, SDS hyperparameter γ.
1 for t = 0 to T − 1 do
2 Sample minibatch B = {(x1, y1), . . . , (xb, yb)}.
3 for i = 0 to d− 1 do
4 if wt[i] is chosen by probability β then
5 ϵt[i] =

ρ
1−β∇w[i]Q(wt)

6 else
7 ϵt[i] = 0
8 Compute the perturbation loss Q(wt + ϵt) and construct B+ with selection ratio γ:

B+ = {(xi, yi) ∈ B : Q(wt + ϵt)−Q(wt) > a}, where a controls γ =
|B+|
|B|

9 Compute gradient gt = ∇wLB+(wt + ϵt).
10 Update weights wt+1 = wt − ηtgt.

To compare E-BiSAM with ESAM, we use the same experimental setting as in Section 4.1.
For hyperparameter β and γ for SWP and SDS respectively, we choose 0.5 for both which is
same as Du et al. (2022). We compare two variants of E-BiSAM against ESAM:

ESAM: The original Efficient Sharpness-Aware Minimization (ESAM) algorithm from Du
et al. (2022)

E-BiSAM (tanh): Algorithm 3 using (17) as the lower bound

E-BiSAM (-log): Algorithm 3 using (18) as the lower bound

We report the test accuracy of the model with the highest validation accuracy across the
training with mean and standard deviations computed over 5 independent executions. The
results can be found in Table 8.

Table 8: Test accuracies of E-(Bi)SAM on CIFAR-10 dataset.

Model ESAM E-BiSAM (-log) E-BiSAM (tanh)

DenseNet-121 96.30±0.22 96.35±0.12 96.32±0.11

Resnet-56 94.21±0.38 94.60±0.24 94.32±0.34

VGG19-BN 94.16±0.09 94.43±0.14 94.31±0.12

WRN-28-2 95.95±0.08 96.00±0.04 95.95±0.09

WRN-28-10 97.17±0.09 97.18±0.05 97.14±0.07

We observe that E-BiSAM (-log) outperformances ESAM across all models and E-BiSAM
(tanh) has same or better performance except for on WRN-18-10. As a result, E-BiSAM
combined with SWP and SDS improves the efficiency of BiSAM meanwhile keeping good
performance.
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A.3 Noisy labels task

We test on a task outside the i.i.d. setting that the method was designed for. Following Foret
et al. (2021) we consider label noise, where a fraction of the labels in the training set are
corrupted to another label sampled uniformly at random. Apart from the label perturbation,
the experimental setup is otherwise the same as in Section 4.1, except for adjusting ρ = 0.01
for SAM and BiSAM when noise rate is 80%, as the original ρ = 0.05 causes failure for both
methods. We find that BiSAM enjoys similar robustness to label noise as SAM despite not
being specifically designed for the setting.

Table 9: Test accuracies of ResNet-32 models trained on CIFAR-10 with label noise.

Noise rate SGD SAM
BiSAM
(-log)

BiSAM
(tanh)

0% 94.76±0.14 94.95±0.13 94.98±0.17 95.01±0.08

20% 88.65±1.75 92.57±0.24 92.59±0.11 92.35±0.29

40% 84.24±0.25 89.03±0.09 88.71±0.23 88.86±0.18

60% 76.29±0.25 82.77±0.29 82.91±0.46 82.87±0.71

80% 44.44±1.20 44.68±4.01 50.00±1.96 48.57±0.64

B Computational complexity

We claim that BiSAM has the same computational complexity as SAM. This can be seen
from the fact that the only change in BiSAM is the loss function used for the ascent step. By
visual inspection of such loss function, its forward pass has the same complexity as that of
vanilla SAM: we use the same logits but change the final loss function. Hence, the complexity
should remain the same. We report timings of each epoch on CIFAR10 in our experiments.
Note that time of training on CIFAR10 and CIFAR100 are roughly same.

Table 10: Time of each epoch.

Model
SAM

(cross-entropy)
BiSAM

(logsumexp)

DenseNet-121 58s 64s
Resnet-56 23s 30s
VGG19-BN 10s 16s
WRN-28-2 19s 21s
WRN-28-10 65s 71s

The relatively small computational overhead (10% in the best cases) is most likely due
to cross entropy being heavily optimized in Pytorch. There is no apparent reason why
logsumexp should be slower so we expect that the gap can be made to effectively disappear if
logsumexp is given similar attention. In fact, it has been pointed out before that logsumexp
in particular is not well-optimized in Pytorch (Bolte, 2020).

To provide further evidence that the computation overhead can be removed, we time the
forward/backward of the ascent loss in both Pytorch and TensorFlow with batch size=128
and number of class=100 for 10k repetitions. We find that in tensorflow BiSAM would even
enjoy a speedup over SAM.

Table 11: Compare Pytorch with TensorFlow.

Model
SAM

(cross-entropy)
BiSAM

(logsumexp)

Pytorch 2.40s 3.96s
Tensorflow 3.25s 2.34s

15


	Introduction
	Preliminaries and Problem Setup
	Bilevel Sharpness-aware Minimization (BiSAM)
	Experiments
	Image classification on CIFAR-10/100 and ImageNet-1K
	Finetuning on Oxford Flowers and Pets
	Incorporation with variants of SAM

	Related Work
	Conclusions and Future Work
	Complete experiments
	Adaptive BiSAM
	Efficient BiSAM
	Noisy labels task

	Computational complexity

