

# 000 PROOF-AUGMENTED RETRIEVAL AND REASONING: 001 SUPERVISING LANGUAGE MODEL FOR KNOWLEDGE 002 GRAPH COMPLETION WITH INTERPRETABLE LINK PRE- 003 DICTORS 004

005 **Anonymous authors**  
006 Paper under double-blind review  
007

## 012 ABSTRACT 013

014 We propose Proof-Augmented Retrieval and Reasoning (PARR), a general frame-  
015 work for training language models for Knowledge Graph Completion (KGC).  
016 PARR leverages proof paths sampled from interpretable link predictors (1) to aug-  
017 ment retrieval database for enhanced sub-graph retrieval, (2) as ground-truth signals  
018 to train a REWRITER LLM for KG-based query rewritings, and (3) as a mean to  
019 “distill” the structural knowledge captured from pre-trained link predictors with  
020 structural prior to a REASONER LLM through chain-of-thoughts. PARR achieves  
021 state-of-the-art performance across multiple KGC datasets under both transductive  
022 and inductive settings, while being generative, scalable, and interpretable.  
023

## 024 1 INTRODUCTION 025

027 Knowledge Graph Completion (KGC) is a fundamental task in machine learning that seeks to  
028 infer missing relations between entities in large-scale knowledge graphs. KGC enables downstream  
029 applications in diverse domains such as recommendation systems, scientific discovery, and healthcare.

030 Most traditional KGC methods fall into two categories. Knowledge graph embedding (KGE) mod-  
031 els (Bordes et al., 2013; Trouillon et al., 2016; Sun et al., 2019) learn vector representations of  
032 entities and relations for efficient link prediction. GNN-based approaches (Vashisht et al., 2020;  
033 Zhu et al., 2021; 2023) leverage message passing to capture local graph structure. These models  
034 are lightweight and effective, but real-world knowledge-intensive domains often prioritize accuracy,  
035 interpretability, and interactive reasoning over raw inference latency. Moreover, both KGE and GNN  
036 models are inherently discriminative: predictions are made by scoring candidate entities, offering  
037 limited explainability and weaker generalization outside training distributions.

038 Large Language Models (LLMs) (Ila, 2024; Yang et al., 2024) offer appealing generative and  
039 conversational abilities, but they do not naturally excel at KGC. Unlike KGE or GNN models built  
040 around structural priors, LLMs operate in the much larger space of natural language. Despite their  
041 internal knowledge, augmenting KGs with LLM-generated background information yields little  
042 improvement (Jiang et al., 2024). By contrast, methods such as NBFNet and ULTRA (Zhu et al.,  
043 2021; Galkin et al., 2024) achieve strong link prediction solely by modeling relational and structural  
044 patterns, without explicit entity embeddings. This suggests that background knowledge of entities is  
045 not the key ingredient for KGC. Prior attempts to directly fine-tune LLMs on KGC also underperform  
046 traditional link predictors significantly. (Yao et al., 2025; Zhu et al., 2024). Another line of work  
047 repurposes LLMs as discriminative encoders, trained with standard KGE objectives such as binary  
048 cross-entropy loss and negative sampling (Yao et al., 2019; Guo et al., 2024). While these methods  
049 improve accuracy, they reduce LLMs to specialized link predictors, sacrificing the generative and  
050 interactive capabilities that make them attractive for explainable KGC.

051 In this work, we identify three key challenges that have limited prior LLM-based approaches:

052 (1) *Retrieval*. Unlike natural language retrieval, where information is naturally grouped into para-  
053 graphs or documents, knowledge graphs lack inherent clustering patterns. Moreover, as there is  
054 no ground-truth retrieval labels for KGs, prior LLM-based link predictors often rely on simple

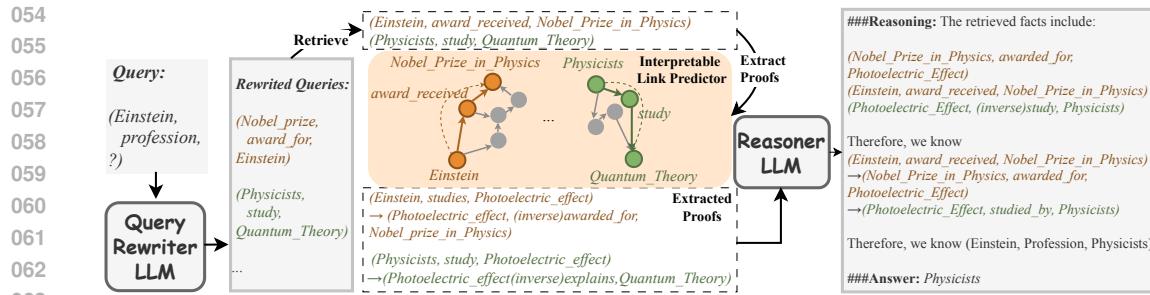


Figure 1: Overall pipeline of PARR. Given a query such as  $(Einstein, \text{profession}, ?)$ , the Rewriter LLM produces a set of semantically varied yet logically related sub-queries (e.g.,  $(\text{Nobel\_prize}, \text{award\_for}, Einstein)$ ) and  $(\text{Physicists}, \text{study}, \text{Quantum\_Theory})$  to broaden retrieval. Pre-trained interpretable link predictors (e.g., NBFNet (Zhu et al., 2021)) then provide proofs for retrieved facts, enabling targeted subgraph retrieval. The collected evidence is passed to the REASONER LLM to derive the final answer.

similarity-based strategies. For example, KICGPT (Wei et al., 2023) retrieves all triplets sharing the same head or tail entity, which is constrained to local neighbors while missing global context.

(2) *Reasoning*. Although LLMs demonstrate strong general reasoning ability, they are prone to hallucination in KG reasoning when exposed to noisy or irrelevant retrievals. As shown in Figure 3, LLM performance drops sharply as irrelevant context accumulates, highlighting the need for more robust reasoning mechanisms that can operate under imperfect retrieval.

(3) *Structural understanding*. Existing LLM-based KGC methods (Yao et al., 2025; Zhu et al., 2024) often reduce link prediction to a one-step task: given a subject and relation, directly predict the object. However, this formulation makes it difficult for LLMs to capture the underlying relational and structural patterns of the graph.

To address these challenges, we introduce Proof-Augmented Retrieval and Reasoning (PARR). PARR leverages proof supervision from interpretable link predictors to fine-tune native LLM-based generative link predictors, enhancing both retrieval and reasoning in three complementary ways:

(1) *Proof-augmented retrievals*. At retrieval time, we retrieve not only relevant triplets but also their associated proofs. Proofs serve as natural clusters that capture both local and global subgraph structure, yielding more comprehensive yet compact retrievals.

(2) *Proof-guided Query Rewriting*. Proofs could also act as pseudo ground-truth signals for retrieval. Inspired by query rewriting in natural language RAG (Ma et al., 2023), we fine-tune a REWRITER LLM to decompose queries into sub-queries, improving non-local retrieval and recall.

(3) *Proof-guided reasoning*. Finally, we fine-tune a REASONER LLM with Chain-of-Thought (CoT) supervision derived from proofs. This improves robustness to noisy retrievals and distills the structural knowledge of pre-trained link predictors into the LLM. The REASONER can be seen as performing graph traversal in the language space, with the next node determined by token probabilities.

The overall PARR framework is illustrated in Figure 1. Through extensive experiments, we show PARR achieves SOTA H@1 performance across all tested datasets, under both transductive and inductive settings. To our knowledge, this is the first native, fully generative LLM-based KGC framework to match the accuracy of discriminative link predictors.

The rest of the paper is organized as follows: Section 3 introduces background on link prediction and proof extraction. Section 4 presents the PARR framework. Section 5.2 reports experimental results across benchmark datasets and settings. Section 5.3 provides detailed ablation studies on each component of our framework. More results and ablations are provided in the appendix.

## 2 RELATED WORK

### 2.1 LINK PREDICTION ON KNOWLEDGE GRAPHS

Knowledge graph completion (KGC) is a long-standing task that seeks to infer missing links between entities. Knowledge Graph Embedding (KGE) (Bordes et al., 2013; Trouillon et al., 2016; Balazevic

108 et al., 2019) is an effective method for KGC. These models embed entities and relations into  
 109 continuous spaces, but typically operate as black-box functions without interpretability.  
 110

111 **Interpretable link prediction.** Another line of works explored KG reasoning via GNN-based or rule-  
 112 based methods. Notably, NBFNet (Zhu et al., 2021) solves link prediction as a shortest path finding  
 113 problem and parametrize Bellman-Ford algorithm with GNN. A\*Net (Zhu et al., 2023) improves the  
 114 scalability of NBFNet by incorporating A\* algorithm to select important nodes and edges. Neural  
 115 Theorem Provers (Rocktäschel & Riedel, 2017; Cui et al., 2025) are rule-based neuro-symbolic  
 116 methods that extends backward chaining algorithm into continuous space.  
 117

118 **Link prediction with Language Models** Leveraging pre-trained language models for link predictions  
 119 has been explored for years. Earlier works leverage BERT as GNN encoder to encode triplets (Guo  
 120 et al., 2022; Chen et al., 2021), while others use BERT to encode textual information of KG entities  
 121 and relations (Yao et al., 2019; Wang et al., 2021; Lin et al., 2023; Youn & Tagkopoulos, 2023).  
 122 These works mostly follow the same training regime used in KGE methods.  
 123

124 Recent works have explored LLMs for link prediction through fine-tuning (Yao et al., 2025; Zhu  
 125 et al., 2024), but their performance often lags behind traditional KGE methods. On the other hand,  
 126 KICGPT (Wei et al., 2023) achieves strong results by using a KGE model to generate candidate  
 127 entities and asking an LLM to rerank them. However, it depends on proprietary models (ChatGPT),  
 128 external KGE systems, and costly multi-round QA. MKGL (Guo et al., 2024) modifies the embedding  
 129 and output spaces of LLMs to act as specialized link predictors. While effective, this approach  
 130 reduces the LLM to a task-specific discriminative model, sacrificing its generative capacity.  
 131

132 In contrast, PARR is a fully generative, LLM-native framework that preserves the conversational  
 133 ability of LLMs while achieving competitive link prediction accuracy. This generality also makes it  
 134 easily adaptable to broader KG tasks such as node classification or complex KG-based QA.  
 135

## 136 2.2 RETRIEVAL-AUGMENTED KG REASONING

137 **Retrieval-Augmented Generation.** Retrieval-augmented generation (RAG) (Lewis et al., 2021)  
 138 equips LLMs with external memory by retrieving relevant facts to support reasoning in knowledge-  
 139 intensive tasks. Works focus on jointly pre-training or fine-tuning LLMs with retrieval modules to  
 140 boost accuracy (Guu et al., 2020; Izacard & Grave, 2021; Borgeaud et al., 2022; Izacard et al., 2022).  
 141

142 **Query rewriting for RAG.** Query rewriting improves retrieval by transforming complex queries into  
 143 simpler sub-queries, or to incorporate more information to bridge retrieval asymmetry. **HyDE** (Gao  
 144 et al., 2022) uses LLMs to generate synthetic document for document retrieval. Ma et al. (2023); Mao  
 145 et al. (2024) train query rewriters on top of retrieve-then-read systems with preference fine-tuning,  
 146 while LeRet (Hsu et al., 2025) introduces an iterative rewriting strategy for multi-hop QA.  
 147

148 **Retrieval-Augmented KGQA.** A related line of work comes from knowledge graph question  
 149 answering (KGQA), where models answer complex natural-language questions over a KG. (Das  
 150 et al., 2022) retrieves nearest-neighbor subgraphs and transfers their latent reasoning patterns to new  
 151 questions via a GNN, enabling efficient multi-hop reasoning without explicit supervision. RoG (Luo  
 152 et al., 2024) supervises its planning and reasoning modules using retrieved paths, while GNN-  
 153 RAG (Mavromatis & Karypis, 2024) uses a GNN retriever to gather subgraphs and verbalized paths  
 154 as evidence for an LLM. Although these approaches share a retrieve–reason intuition, they rely on  
 155 supervision such as complete paths and ground-truth retrieval, that are not available in KGC datasets.  
 156 In contrast, PARR obtains the necessary structural supervision from interpretable link predictors.  
 157

## 158 3 PRELIMINARIES

### 159 3.1 KNOWLEDGE GRAPH AND LINK PREDICTION

160 **Knowledge Graph.** A Knowledge Graphs (KG) is a directed, multi-relation graph expressed as a  
 161 set of triplets  $(s, r, o) \subseteq \mathcal{E} \times \mathcal{R} \times \mathcal{E}$ , where  $\mathcal{E}$  and  $\mathcal{R}$  denote the set of entities and relations in the  
 162 KG. Link prediction is one of the most important task in the domain of KG, whose goal is to predict  
 163 missing object(subject) given subject(object) entity and relation, i.e.  $(s, r, ?)$  or  $(?, r, o)$ .  
 164

162 **Proofs.** For simple link prediction tasks, given any pair of entities  $(s, o)$ , its proof  $p(s, o)$  can  
 163 be defined as chain-like logical rules in the form of:  $p(s, o) \leftarrow r_1(s, z_1) \wedge r_2(z_1, z_2) \wedge \dots \wedge$   
 164  $r_n(z_n, o)$ , where  $r_1, \dots, r_n$  are relations in the given KG. For path-based link predictors, the proofs  
 165 can be reformulated as the paths take to reach object  $o$  from subject  $s$ , i.e.  $p(s, o) = r_1(s, z_1) \rightarrow$   
 166  $r_2(z_1, z_2) \rightarrow \dots \rightarrow r_n(z_n, o)$ .

### 168 3.2 PROOF EXTRACTIONS WITH INTERPRETABLE LINK PREDICTORS

170 We consider two SOTA link prediction models with interpretable path formulation: NBFNet (Zhu  
 171 et al., 2021) and A\*Net (Zhu et al., 2023). Below we briefly describe how proofs can be extracted.

172 **NBFNet** parametrize Bellman-Ford path-finding algorithm with GNN. Given a triplet  $(s, r, o)$ , we can  
 173 sample top- $k$  proofs  $P_1, P_2, \dots, P_k$  from a pre-trained NBFNet through a linear model( (Baehrens  
 174 et al., 2009)) (i.e. 1st order Taylor expansion), where each proof's score can be modeled by the partial  
 175 derivative of the prediction  $p(s, r, o)$  w.r.t. the proof path (Zhu et al., 2021):

$$176 P_1, P_2, \dots, P_k = \underset{P \in \mathcal{P}_{(s, o)}}{\text{top-}k} \frac{\partial p(s, r, o)}{P}$$

179 In practice we use the average edge importance to approximate path score, which can be efficiently  
 180 computed by auto differentiation.

181 **A\*Net** learns a neural priority function to select a subset of nodes and edges on top of NBFNet to  
 182 improve scalability. The A\* algorithm provides a natural and distinct way of extracting proofs (Zhu  
 183 et al., 2023). Given a triplet  $(s, r, o)$  and the pre-trained node priority function  $s_{(s, r)}^t(x)$ , we can  
 184 sample top- $k$  proofs by their average node importance  $s(P)$ :

$$186 s(P) = \frac{1}{|P|} \sum_{t=1, P^{(t)}=(x, r, y)}^{|P|} \frac{s_{s, r}^{(t-1)}(x)}{S_{s, r}^{(t-1)}}, \quad S_{s, r}^{(t-1)} = \max_{x \in \mathcal{E}^{(t-1)}} s_{s, r}^{(t-1)}(x).$$

## 190 4 PROOF-AUGMENTED RETRIEVAL AND REASONING

192 We introduce Proof-Augmented Retrieval and Reasoning (PARR), a native LLM-based framework  
 193 for link prediction. PARR is composed of three modules: a REWRITER, a REASONER, and a non-  
 194 trainable RETRIEVER. We leverage proofs extracted from pre-trained interpretable link predictors to  
 195 supervise the REWRITER LLM for KG query rewriting, and the REASONER LLM for structure-aware  
 196 reasoning given large retrieved context. Figure 1 provides an overview of our framework.

### 197 4.1 PROOF EXTRACTION

199 We start off by extracting top- $k$  proofs for each triplet using pre-trained link predictors. To avoid  
 200 model bias from the pre-trained link predictor, we sample proofs using a mixture of experts (MoE) of  
 201 different models (NBFNet and A\*Net), where each model has a distinct method on proof extraction 3.  
 202 We further train each link predictors several times with different configurations and random seeds,  
 203 and aggregate the resulting proofs. Finally, we filter out proofs with duplications or cycles. For  
 204 triplets in the training set, we also filter out proofs containing the triplet itself, as it represents an  
 205 existing edge for which the model is likely to give the highest score. The resulting RAG database  $\mathcal{D}$   
 206 is then a set of triplet-proofs pairs:  $\mathcal{D} = \{(s, r, o), \mathcal{P}_{s, r}\}$ , where  $\mathcal{P}_{s, r} = \{p_1, \dots, p_k\}$  denotes a  
 207 set of proofs that deduce the triplet. For visualized dataset samples, please refer to Appendix E.

### 208 4.2 RETRIEVER

210 We consider three types of fixed, non-trainable retrieval interfaces. **(1) Sparse retrieval.** Similar  
 211 to KICGPT, we consider triplets that share the same subject/object with the query. To constrain  
 212 retrieval size, we only select top- $k$  triplets based on the degree of their entities. **(2) Dense retrieval.**  
 213 We encode triplets with text embedding models. We consider two embedding approaches: separate  
 214 entity/relation embedding followed by principal neighborhood aggregation, and sentence embedding  
 215 by converting triplets to natural language sentences. **(3) Hybrid retrieval.** We first perform dense  
 retrieval, then run breadth-first-search with a predefined depth on each of retrieved proofs.

216 4.3 REWRITER  
217

218 **Problem Statement.** To improve KG retrieval, we aim to train a REWRITER LLM to decompose  
219 the original query  $(s, r)$  into a set of sub-queries whose individual retrievals collectively cover the  
220 triplets in ground-truth proof. Formally, let  $f_\theta$  be the REWRITER that maps the query  $(s, r)$  into a set  
221 of rewritten triplets:

$$223 \quad \mathcal{Q} = f_\theta(s, r) = \{(s^{(1)}, r^{(1)}, o^{(1)}), \dots, (s^{(m)}, r^{(m)}, o^{(m)})\}.$$

225 For each rewritten triplet  $q_i = (s^{(i)}, r^{(i)}, o^{(i)}) \in \mathcal{Q}$ , we retrieve the top- $k$  most similar KG triplets  
226 using the fixed retrieval interface detailed in Sec. 4.2, denoted as  $\text{Retrieve}(\cdot, \cdot)$ :

$$227 \quad \mathcal{G} = \bigcup_{i=1}^m \mathcal{G}_i, \quad \mathcal{G}_i = \text{Retrieve}(q_i, k).$$

230 We say the rewriting  $\mathcal{Q}$  successfully covers the ground-truth if there exists *at least* one proof path  
231  $p \in \mathcal{P}$  such that  $p \subseteq \mathcal{G}$ . That is, all triplets in some valid proofs are retrieved by the composed  
232 sub-queries  $\mathcal{G}$ . This forms our retrieval success criterion.

233 **Constructing minimal rewriting sets.** To generate rewriting data for finetuning the REWRITER, we  
234 extract Minimal Rewriting Sets (MRS) that satisfy the proof coverage constraint discussed above.  
235 The extraction algorithm is provided in Appendix 1. For each proof path  $p_j \in \mathcal{P}$ , we solve a set-cover  
236 problem to find a minimal set of rewritten queries  $\mathcal{Q}$  such that:

$$238 \quad p_j \subseteq \operatorname{argmin}_{|\mathcal{Q}|} \bigcup_{q \in \mathcal{Q}} \text{Retrieve}(q, k).$$

241 Since there may exist multiple possible rewriting combinations that fully cover a given proof path, we  
242 run a beam-search style iteration on top of the set-cover algorithm to obtain top- $n$  MRS  $\mathcal{Q}^*$  for each  
243 proof. We are therefore able to obtain a much larger training dataset (as compared to the original  
244 training set size for link prediction) for REWRITER of size  $|N| \cdot |\mathcal{P}| \cdot |\mathcal{Q}^*|$ , where  $|N|$  is the number of  
245 training triplets,  $|\mathcal{P}|$  is the number of proofs per triplet, and  $|\mathcal{Q}^*|$  is the number of minimal rewriting  
246 sets per proof. The resulting dataset is composed by query-rewriting pairs  $((s, r), \mathcal{Q})$ . This expanded  
247 training set allows the REWRITER to learn a more comprehensive mapping between the query and  
248 the rewriting sets. The detailed statistics for the resulting dataset can be found in Appendix F.

249 **Finetuning REWRITER.** Given a query  $(s, r)$ , we want to model the space of all valid query  
250 decompositions that lead to a successful coverage. Formally, let  $\mathcal{Q}^*$  denote the set of all valid rewrite  
251 sets  $\mathcal{Q} = \{q_1, \dots, q_m\}$  such that the retrieval result  $\mathcal{G}(\mathcal{Q})$  covers at least one proof path in  $\mathcal{P}_{s,r}$ , that  
252 is  $\mathcal{Q}^* = \{\mathcal{Q} : \exists p \in \mathcal{P} \text{ s.t. } p \subseteq \mathcal{G}(\mathcal{Q})\}$ . We want to maximize the conditional distribution:

$$254 \quad \mathcal{L}_f(\theta) = -\log \sum_{\mathcal{Q} \in \mathcal{Q}^*} f_\theta(\mathcal{Q}|s, r).$$

256 which is optimized with standard negative log-likelihood (NLL) loss in LLM finetuning. Sample  
257 prompt and LLM output can be found in Appendix F.

259 4.4 REASONER  
260

261 While modern LLMs are trained on vast amounts of reasoning data, they remain ineffective for  
262 link prediction due to two factors: (1) limited robustness when retrievals contain irrelevant or  
263 noisy context (Fig. 3), and (2) insufficient understanding of the structural and relational patterns in  
264 knowledge graphs. To address both issues, we fine-tune the REASONER with Chain-of-Thought  
265 (CoT) supervision using retrieved context and extracted proofs.

266 **Problem Statement.** Given a link prediction query  $(s, r)$ , and the retrieved set  $\mathcal{G}$ , REASONER  $g_\phi$   
267 predicts the missing object  $o$  after producing an intermediate CoT:

$$269 \quad g_\phi : ((s, r), \mathcal{G}) \mapsto (p, o), p = [(s, r^{(1)}, o^{(1)}), (o^{(1)}, r^{(2)}, o^{(2)}), \dots, (o^{(n-1)}, r^{(n)}, o)].$$

270 During inference, the finetuned REASONER is essentially performing graph traversal over the sub-  
 271 graph provided by the RETRIEVER, by predicting the next most probable token (node).  
 272

273 **Constructing reasoning dataset.** Since each fact can be proved in multiple ways, and each proof  
 274 can be supported by different rewriting sets, we expand the training data analogously to the rewriting  
 275 dataset (Sec. 4.3). The resulting dataset consists of quadruplets  $((s, r), \mathcal{G}, p, o)$ , with size  $|N| \cdot |\mathcal{P}| \cdot$   
 276  $|\mathcal{Q}^*|$ , matching that of the rewriting training set. Since retrieval is often imperfect, we randomly drop  
 277 a portion of ground-truth retrievals during REASONER fine-tuning. This encourages the model to  
 278 infer missing facts from incomplete context, improving robustness to noisy or partial retrievals.  
 279

#### 280 4.5 EXTENDING TO MULTI-ANSWER LINK PREDICTION

281 The framework described so far addresses single-answer link prediction, where the model is trained  
 282 to retrieve and reason towards a single correct object  $o$  for a query  $(s, r)$ . To align with the standard  
 283 evaluation setting, which considers top- $k$  answers (e.g.,  $k = 10$ ), we extend both retrieval and  
 284 reasoning to support multi-answer supervision. This contrasts with prior LLM-based approaches (Yao  
 285 et al., 2025), which are restricted to top-1 prediction.

286 **Sampling top- $k$  answers and proofs.** Since for each  $(s, r)$  pair, there may be less than  $k$  ground-truth  
 287 tail entity  $t$ , we use the score distribution from interpretable link predictors (the same models that  
 288 generate proofs) to obtain additional candidate  $ts$  with scores above a preset threshold. Specifically,  
 289 given a query  $(s, r)$ , the link predictor returns a ranked list  $\mathcal{O}_{\text{top-}k} = o_1, \dots, o_k$ . For each candidate  
 290  $o_i$ , we extract an associated proof set  $\mathcal{P}_i = p_1^i, \dots, p_m^i$ .  
 291

292 **Extending rewriter and reasoner.** In the multi-answer setting, REWRITER outputs a set of sub-  
 293 queries such that the resulting retrieved triplets  $\mathcal{G}(Q)$  cover at least one proof path for each candidate:  
 294

$$295 \quad \forall i \in \{1, \dots, k\}, \exists p \in \mathcal{P}_i \text{ s.t. } p \subseteq \mathcal{G}(Q).$$

297 Similarly, the REASONER is trained not only to produce a single object but to output a ranked list of  
 298 candidates, each accompanied by its proof as chain-of-thought (CoT).  
 299

## 300 5 EXPERIMENTS

### 303 5.1 EXPERIMENT SETUP

305 **Datasets.** We evaluate PARR on FB15k-237 (Toutanova & Chen, 2015) and WN18RR (Dettmers  
 306 et al., 2018), two major datasets for link prediction. We consider both transductive and inductive  
 307 setting, following standard splits in (Trouillon et al., 2016) and (Teru et al., 2020). Dataset statistics  
 308 can be found in Appendix E.1.

309 **Evaluation.** We evaluate with the standard HITS@ $k$  metrics: HITS@1, HITS@3 and HITS@10. We  
 310 do not consider mean reciprocal recall (MRR) because we do not produce the full score distribution.

311 **Implementation Details.** We employ Llama3-8B Instruct (Ila, 2024) (abbr. as Llama3) and Qwen3-  
 312 8B (Yang et al., 2024) (abbr. as Qwen3) as the base LLM. We finetune using LoRA (Hu et al.,  
 313 2021) with rank and alpha being 32 for one epoch. By default we use dense retrieving and sentence  
 314 embedding with Jina V3 (Sturua et al., 2024) embedding model as the fixed RETRIEVER for our  
 315 REWRITER model. We employ NBFNet (Zhu et al., 2021) and A\*Net (Zhu et al., 2023) as the  
 316 interpretable expert models. For each model, we train separately twice with different message  
 317 functions and random seeds. Please refer to Appendix E.1 for full implementation details.  
 318

319 **Baselines.** We compare PARR against embedding based models such as TransE (Bordes et al.,  
 320 2013), RotatE (Sun et al., 2019), ComplEx (Trouillon et al., 2016), and TuckER (Balazevic et al.,  
 321 2019); GNN-based methods like CompGCN (Vashishth et al., 2020) and NBFNet (Zhu et al., 2021);  
 322 path-based methods such including NeuralLP (Yang et al., 2017) and A\*Net (Zhu et al., 2023); and  
 323 methods that utilize pre-trained language models including KG-BERT (Yao et al., 2019), STAR (Wang  
 et al., 2021), KGLM (Youn & Tagkopoulos, 2023), FTL-LM (Lin et al., 2023), DET (Guo et al.,  
 2022), KG-Llama (Yao et al., 2025), KICGPT (Wei et al., 2023) and MKGL (Guo et al., 2024).

324 Table 1: Transductive link prediction on FB15K-237, WN18RR and NELL995. We use Llama3/Qwen3 to refer  
 325 to Llama3-8B-instruct/Qwen3-8B throughout the rest of the paper. Best/2nd-best results are in **Bold**/underlined.  
 326

| Model              | FB15K-237    |              |              | WN18RR       |              |              | NELL995      |              |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                    | HITS@1       | HITS@3       | HITS@10      | HITS@1       | HITS@3       | HITS@10      | HITS@1       | HITS@10      |
| TransE             | 0.218        | 0.345        | 0.495        | 0.061        | 0.366        | 0.522        | -            | -            |
| RotatE             | 0.241        | 0.375        | 0.533        | 0.428        | 0.492        | 0.571        | 0.448        | 0.608        |
| ComplEx+RP         | 0.298        | 0.425        | 0.568        | 0.443        | 0.505        | 0.578        | -            | -            |
| TuckER             | 0.266        | 0.394        | 0.544        | 0.443        | 0.526        | 0.526        | -            | -            |
| CompGCN            | 0.264        | 0.39         | 0.535        | 0.443        | 0.494        | 0.546        | 0.257        | 0.544        |
| NeuralLP           | -            | -            | 0.362        | 0.371        | 0.434        | 0.566        | -            | -            |
| Red-GNN            | 0.283        | -            | 0.558        | 0.485        | -            | 0.624        | 0.476        | 0.651        |
| NBFNet             | 0.321        | 0.454        | <b>0.599</b> | 0.497        | 0.573        | 0.666        | 0.485        | 0.655        |
| A*Net              | 0.321        | 0.453        | 0.586        | 0.495        | 0.573        | 0.659        | 0.479        | 0.652        |
| KG-BERT            | -            | -            | 0.420        | 0.041        | 0.302        | 0.524        | -            | -            |
| StAR               | 0.205        | 0.322        | 0.482        | 0.243        | 0.491        | 0.709        | -            | -            |
| KGLM               | 0.200        | 0.314        | 0.468        | 0.330        | 0.538        | <u>0.741</u> | -            | -            |
| FTL-LM             | 0.253        | 0.386        | 0.521        | 0.452        | 0.637        | <b>0.773</b> | -            | -            |
| MKGL               | 0.325        | <u>0.454</u> | <u>0.591</u> | <u>0.500</u> | 0.577        | 0.656        | -            | -            |
| KG-Llama-7b        | -            | -            | -            | 0.242        | -            | -            | -            | -            |
| GPT 3.5 Turbo      | 0.267        | -            | -            | 0.212        | -            | -            | -            | -            |
| KICGPT             | 0.327        | 0.448        | 0.554        | 0.474        | <b>0.585</b> | 0.641        | -            | -            |
| PARR-Llama3 (ours) | <u>0.344</u> | 0.453        | 0.588        | 0.496        | 0.573        | 0.641        | <u>0.514</u> | <u>0.655</u> |
| PARR-Qwen3 (ours)  | <b>0.352</b> | <b>0.465</b> | 0.593        | <b>0.513</b> | 0.584        | 0.653        | <b>0.519</b> | <b>0.658</b> |

344 Table 2: Transductive setting on YAGO3-10  
 345 dataset. Baselines are from Zhu et al. (2023).  
 346

| Method       | YAGO3-10     |              |              |
|--------------|--------------|--------------|--------------|
|              | HITS@1       | HITS@3       | HITS@10      |
| DistMult     | 0.24         | 0.38         | 0.54         |
| ComplEx      | 0.26         | 0.40         | 0.55         |
| RotatE       | 0.402        | <u>0.550</u> | 0.670        |
| BoxE         | 0.400        | 0.472        | 0.541        |
| HAKE         | 0.452        | 0.516        | 0.582        |
| NFBNet       | <u>0.480</u> | <u>0.612</u> | <b>0.708</b> |
| A*Net        | 0.470        | 0.611        | <u>0.707</u> |
| KG-LLaMA-13B | 0.133        | -            | -            |
| PARR-Qwen3   | <b>0.494</b> | <b>0.620</b> | 0.691        |

344 Table 3: Performance on inductive KG reasoning on FB15k-  
 345 237-ind (v1) and WN18RR-ind (v1). Baseline results are  
 346 from (Zhu et al., 2021; Guo et al., 2024).

| Model        | FB15K-237-ind |              | WN18RR-ind   |              |
|--------------|---------------|--------------|--------------|--------------|
|              | H@1           | H@10         | H@1          | H@10         |
| NeuralLP     | 0.243         | 0.468        | 0.592        | 0.772        |
| DRUM         | 0.247         | 0.474        | 0.613        | 0.777        |
| GraIL        | 0.302         | 0.483        | 0.653        | 0.769        |
| RED-GNN      | 0.302         | 0.483        | 0.653        | 0.8          |
| NBFNet       | 0.335         | <u>0.574</u> | 0.695        | <b>0.826</b> |
| MKGL         | <u>0.400</u>  | <b>0.595</b> | 0.700        | 0.822        |
| ChatGPT [42] | 0.288         | -            | 0.279        | -            |
| PARR-Llama3  | 0.394         | 0.541        | <u>0.711</u> | 0.813        |
| PARR-Qwen3   | <b>0.412</b>  | 0.566        | <b>0.718</b> | <u>0.824</u> |

## 5.2 MAIN RESULTS

360 Table 1 summarizes the results on KG link prediction under the transductive setting. PARR shows  
 361 competitive performance against existing methods on both datasets. Particularly, PARR-Qwen3  
 362 outperforms previous SOTA (MKGL) on HITS@1 for both FB15K-237 and WN18RR. For instance,  
 363 PARR-Qwen3 achieves 0.348 HITS@1 on FB15K-237, 2.3% above the previous SOTA (MKGL).

364 Table 3 shows results under the inductive setting. PARR-Qwen3 noticeably outperforms all the  
 365 other methods under HITS@1 for both datasets. For example, PARR-Qwen3 scores 0.412 HITS@1  
 366 on FB15K-237-ind, surpassing previous SOTA by 1.2%. In Table 2 we show additional results on  
 367 YAGO3-10 Mahdisoltani et al. (2015) with PARR-Qwen3. We can observe PARR achieves better  
 368 performance on HITS@1 and HITS@3, and is comparable to SOTA methods on HITS@10.

369 In both transductive and inductive settings, we observe PARR achieves stronger performance on  
 370 metrics with small  $k$ s, such as HITS@1 and HITS@3, while relatively fall short on HITS@10 as  
 371 compared to SOTA methods such as NBFNet and MKGL. This is due to existing methods such  
 372 as NBFNet and MKGL directly learn a score distribution over all entities, which is in turn more  
 373 advantageous when considering large  $k$ s.

## 5.3 ABLATION STUDIES

374 **Evaluating Retrieval.** In Figure 2 we show average recall and different number of retrievals per  
 375 sample (controlled by top- $k$  retrieval). We can see the REWRITER outperforms all other retrieving

378  
 379  
 380  
 381  
 382  
 383  
 384  
 385  
 386  
 387  
 388  
 389  
 390  
 391  
 392  
 393  
 394  
 395  
 396  
 397  
 398  
 399  
 400  
 401  
 402  
 403  
 404  
 405  
 406  
 407  
 408  
 409  
 410  
 411  
 412  
 413  
 414  
 415  
 416  
 417  
 418  
 419  
 420  
 421  
 422  
 423  
 424  
 425  
 426  
 427  
 428  
 429  
 430  
 431  
 Table 4: Retrieval performance of PARR REWRITER under different top- $k$ , and their effect on the downstream REASONER’s performance. The recall is calculated as the highest among  $n$  ground-truth paths. top- $k$  for REWRITER refers to top- $k$  retrievals given each rewrited sub-queries. Avg. Retr. refers to average number of retrievals per sample; Avg. Rew. refers to the average number of rewrited sub-queries per sample. Avg. Retr. is calculated from Avg. Rew.  $\times k \times$  Path-Lengths. Best/2nd-best results are in **Bold**/underlined.

| top- $k$  | Base LLM | Avg. Retr. | Avg. Rew. | Recall( $\uparrow$ ) | HITS@1       | HITS@3       | HITS@10      |
|-----------|----------|------------|-----------|----------------------|--------------|--------------|--------------|
| FB15K-237 |          |            |           |                      |              |              |              |
| 2         | Llama3   | 23         | 4         | 0.452                | 0.288        | 0.288        | 0.371        |
| 2         | Qwen3    | 20         | 4         | 0.485                | 0.319        | 0.413        | 0.406        |
| 5         | Llama3   | 26         | 2         | 0.741                | 0.341        | 0.449        | <u>0.579</u> |
| 5         | Qwen3    | 25         | 2         | <b>0.758</b>         | <b>0.348</b> | <b>0.460</b> | <b>0.586</b> |
| 15        | Llama3   | 48         | 1         | 0.724                | 0.312        | 0.426        | 0.534        |
| 15        | Qwen3    | 50         | 1         | <u>0.743</u>         | 0.325        | 0.437        | 0.548        |
| WN18RR    |          |            |           |                      |              |              |              |
| 2         | Llama3   | 27         | 5         | 0.388                | 0.251        | 0.352        | 0.325        |
| 2         | Qwen3    | 26         | 5         | 0.395                | 0.262        | 0.378        | 0.403        |
| 5         | Llama3   | 29         | 2         | <u>0.706</u>         | <b>0.488</b> | <b>0.566</b> | <u>0.632</u> |
| 5         | Qwen3    | 30         | 2         | <b>0.713</b>         | <b>0.507</b> | <b>0.581</b> | <b>0.644</b> |
| 15        | Llama3   | 44         | 1         | 0.662                | 0.462        | 0.514        | 0.541        |
| 15        | Qwen3    | 44         | 1         | 0.683                | 0.476        | 0.533        | 0.590        |

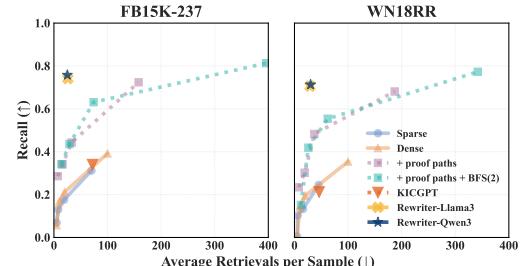
methods significantly in terms of Recall, while requiring much fewer number of retrievals, for both base LLMs and datasets. Meanwhile, Dense + proof paths noticeably outperform Dense without proof paths in all scenarios, demonstrating the effect of augmenting proof paths into retrieval. On the other hand, KICGPT’s retrieval shows similar performance to the baseline sparse/dense RETRIEVER under our implementation, but falls significantly behind Dense + proof paths and REWRITER. In case of the non-trainable RETRIEVER, we observe dense mode to slightly outperform sparse retrieval, and hybrid RETRIEVER being marginally better than dense RETRIEVER.

**Effect of Retrieval Performance on Reasoner.** In Table 4 we show ablations on the effect of top- $k$  on our REWRITER, and the effect of the retrieval performance on the REASONER LLM. We can observe best retrieval performance are achieved at  $k = 5$  under all scenarios, with  $k = 2$ ’s recall lags significantly behind. We conjecture this is because when  $k$  is low, the number of rewrited sub-queries are noticeably increased. This imposes a harder task on the REWRITER, which has to learn a much more complex mapping between the query and the rewrited sub-queries, leading to low recall. On the other hand, we can also observe the downstream REASONER’s performance is directly tied to the quality of the retrieval.

**Ablations on Reasoner.** We start by evaluating the inherent logical reasoning ability of LLMs. In Figure 3 we show zero-shot performance on link prediction, where ground-truth retrievals (grounding paths extracted from pretrained link predictors) are provided. To simulate noisy retrievals with false positives, we randomly sample and inject irrelevant triplets. We can see the model’s performance lags largely behind traditional link predictors, even with ground-truth retrieval and no false positives (*i.e.* recall=precision=1). The model performance quickly degrade as the number of injected irrelevant triplets increase. For FB15K-237, both LLMs’s HITS@1 quickly drop to near 0 with 16 false positives. This shows the need for a model with better and more robust logical reasoning capacity.

In Table 5 we show the impact of each component on the performance of the REASONER. We consider two LLM-based baselines: (1) LLM with naive finetuning (without CoT and retrieval). Similar to KG-Llama, we perform finetuning to predict missing entities, without retrieval. (2) LLM with RETRIEVER. In this setting we use the fixed RETRIEVER (Sec. 4.1).

Figure 2: Retrieval performance on FB15K-237 and WN18RR as a function of Average Retrievals per Sample ( $x$ -axis) and Average Recall( $\uparrow$ -y-axis). + proof paths denotes dense RETRIEVER with proofs included in the retrieval. + proof paths + BFS(2) refers to the hybrid RETRIEVER with Breadth-First-Search depth of 2.



432  
 433 Table 5: Ablations on the performance of REASONER with respect to each component: Chain of Thought (**CoT**),  
 434 retrieval method (**Retr.**), and **Retr. Dropout**: whether to apply random dropout on ground-truth retrievals while  
 435 finetuning the REASONER. Dense refers to fixed dense retrieval with  $k = 50$ . REW refers to our fine-tuned  
 436 REWRITER. H@ $k$  refers to HITS@ $k$ .

| 437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451 | 437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451 | 437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451 | 437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451 | FB15K-237                                                                                             |                                                                                                       |                                                                                                       | WN18RR                                                                                                |                                                                                                       |              |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                       |                                                                                                       |                                                                                                       |                                                                                                       | 437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451 | 437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451 | 437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451 | 437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451 | 437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451 |              |
| NBFNet                                                                                                | -                                                                                                     | -                                                                                                     | -                                                                                                     | 0.321                                                                                                 | 0.454                                                                                                 | <b>0.599</b>                                                                                          | 0.497                                                                                                 | 0.573                                                                                                 | <b>0.666</b> |
| KICGPT                                                                                                | -                                                                                                     | -                                                                                                     | -                                                                                                     | 0.327                                                                                                 | 0.448                                                                                                 | 0.554                                                                                                 | 0.474                                                                                                 | <b>0.585</b>                                                                                          | 0.641        |
| KG-Llama-7B                                                                                           | -                                                                                                     | -                                                                                                     | -                                                                                                     | -                                                                                                     | -                                                                                                     | 0.242                                                                                                 | -                                                                                                     | -                                                                                                     | -            |
| Llama3                                                                                                | ×                                                                                                     | ×                                                                                                     | -                                                                                                     | 0.077                                                                                                 | -                                                                                                     | -                                                                                                     | 0.171                                                                                                 | -                                                                                                     | -            |
| Qwen3                                                                                                 | ×                                                                                                     | ×                                                                                                     | -                                                                                                     | 0.085                                                                                                 | -                                                                                                     | -                                                                                                     | 0.184                                                                                                 | -                                                                                                     | -            |
| Llama3                                                                                                | ×                                                                                                     | Dense                                                                                                 | -                                                                                                     | 0.143                                                                                                 | -                                                                                                     | -                                                                                                     | 0.279                                                                                                 | -                                                                                                     | -            |
| Qwen3                                                                                                 | ×                                                                                                     | Dense                                                                                                 | -                                                                                                     | 0.155                                                                                                 | -                                                                                                     | -                                                                                                     | 0.285                                                                                                 | -                                                                                                     | -            |
| PARR-Llama3                                                                                           | ×                                                                                                     | REW                                                                                                   | ×                                                                                                     | 0.293                                                                                                 | 0.395                                                                                                 | 0.412                                                                                                 | 0.451                                                                                                 | 0.413                                                                                                 | 0.479        |
| PARR-Qwen3                                                                                            | ×                                                                                                     | REW                                                                                                   | ×                                                                                                     | 0.302                                                                                                 | 0.388                                                                                                 | 0.48                                                                                                  | 0.467                                                                                                 | 0.499                                                                                                 | 0.544        |
| PARR-Llama3                                                                                           | ✓                                                                                                     | REW                                                                                                   | ×                                                                                                     | 0.316                                                                                                 | 0.405                                                                                                 | 0.534                                                                                                 | 0.479                                                                                                 | 0.491                                                                                                 | 0.538        |
| PARR-Qwen3                                                                                            | ✓                                                                                                     | REW                                                                                                   | ×                                                                                                     | 0.335                                                                                                 | 0.413                                                                                                 | 0.521                                                                                                 | 0.493                                                                                                 | 0.524                                                                                                 | 0.603        |
| PARR-Llama3                                                                                           | ✓                                                                                                     | REW                                                                                                   | ✓                                                                                                     | <u>0.341</u>                                                                                          | 0.449                                                                                                 | 0.579                                                                                                 | 0.488                                                                                                 | 0.566                                                                                                 | 0.632        |
| PARR-Qwen3                                                                                            | ✓                                                                                                     | REW                                                                                                   | ✓                                                                                                     | <b>0.348</b>                                                                                          | <b>0.460</b>                                                                                          | <u>0.586</u>                                                                                          | <b>0.507</b>                                                                                          | <u>0.581</u>                                                                                          | 0.644        |

452 Table 6: Ablation on MoE effect for RETRIEVER recall and  
 453 REASONER’s HITS@1 on FB15k-237 and WN18RR.

| 454<br>455<br>456<br>457<br>458 | Retriever (Recall) |           | Reasoner (HITS@1) |           |        |
|---------------------------------|--------------------|-----------|-------------------|-----------|--------|
|                                 | w/ MoE             | FB15K-237 | WN18RR            | FB15K-237 | WN18RR |
| ×                               | 0.683              | 0.629     | 0.324             | 0.456     |        |
| ✓                               | 0.741              | 0.706     | 0.341             | 0.488     |        |

459 We can first observe that naive finetuning (*i.e.* directly  
 460 finetuning using training triplets without retrieval or CoT)  
 461 results in significantly lower accuracy in all scenarios. For  
 462 instance, Llama3 only achieves 0.077 HITS@1 on FB15K-  
 463 237, and 0.171 on WN18RR. With dense RETRIEVER  
 464 included, the accuracy for both datasets are considerably  
 465 improved, but still noticeably lag behind other models.

466 At the bottom of Table 5 we show each component’s effect  
 467 on the performance of REASONER. We observe improved  
 468 performance with CoT and retrieval dropout included during training. The full PARR performs  
 469 significantly better than LLM baselines, and is on par or better with existing SOTA methods.

#### 470 5.4 ABLATION ON MOE LINK PREDICTORS

472 To understand the effect of sampling proofs from MoE link predictors (Sec. 4.1), we conduct ablation  
 473 study on the effect of using MoE-sampled proofs versus proof sampled from a single link predictor.  
 474 As shown in Tab. 6, we can observe that with MoE we can achieve notable improvement for both  
 475 retrieval and link prediction accuracy, with over 6% improvement on recall, and 2% on HITS@1.

## 477 6 CONCLUSION

479 In this paper we introduce Proof-Augmented Retrieval and Reasoning (PARR) for KG completion.  
 480 We effectively leverage proofs extracted from interpretable link predictors such as NBFNet and  
 481 A\*Net to (1) augment the RAG database for better sub-graph retrieval, (2) serve as golden retrieval  
 482 for supervising a REWRITER LLM for query rewriting, and (3) supervise a REASONER LLM as CoT  
 483 data. By experimenting on different datasets and task settings, we show PARR achieves competitive  
 484 performance compared to SOTA link prediction models. Finally, we conduct extensive ablations to  
 485 examine the effect and performance of each component of PARR.

Figure 3: Zero-Shot performance on FB15k-237 and WN18RR. We provide ground-truth retrievals in the context with varying amount of randomly sampled irrelevant triplets, simulating the false positive retrievals.



486 ETHICS STATEMENT  
487488 We reviewed the ICLR Code of Ethics carefully and do not observe potential concerns for our work.  
489490 REPRODUCIBILITY STATEMENT  
491492 We made our best efforts to comprehensively document the implementation details. Training hyper-  
493 parameters and model architectures are discussed in Section 5.1. We include the dataset construction  
494 details including all the example prompts we used in Section E.1 and Section F.  
495496 REFERENCES  
497498 The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.  
499500 David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-  
501 Robert Mueller. How to explain individual classification decisions, 2009. URL <https://arxiv.org/abs/0912.1128>.  
502503 Ivana Balazevic, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for knowledge  
504 graph completion. In *Proceedings of the 2019 Conference on Empirical Methods in Natural*  
505 *Language Processing and the 9th International Joint Conference on Natural Language Processing*  
506 *(EMNLP-IJCNLP)*. Association for Computational Linguistics, 2019. doi: 10.18653/v1/d19-1522.  
507 URL <http://dx.doi.org/10.18653/v1/D19-1522>.  
508509 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana Yakhnenko.  
510 Translating embeddings for modeling multi-relational data. In *Proceedings of the 27th International*  
511 *Conference on Neural Information Processing Systems - Volume 2*, NIPS’13, pp. 2787–2795, Red  
512 Hook, NY, USA, 2013. Curran Associates Inc.  
513513 Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-  
514 can, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego  
515 de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang,  
516 Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irv-  
517 ing, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Lau-  
518 rent Sifre. Improving language models by retrieving from trillions of tokens, 2022. URL  
519 <https://arxiv.org/abs/2112.04426>.  
520520 Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and Yangfeng Ji. Hitter:  
521 Hierarchical transformers for knowledge graph embeddings, 2021. URL <https://arxiv.org/abs/2008.12813>.  
522523 Xuanming Cui, Chionh Wei Peng, Adriel Kuek, and Ser-Nam Lim. Improving soft unification with  
524 knowledge graph embedding methods, 2025. URL <https://openreview.net/forum?id=O0qvY9yvVG>.  
525526 Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot Tower, Robin Jia, Manzil Zaheer, Hannaneh  
527 Hajishirzi, and Andrew McCallum. Knowledge base question answering by case-based reasoning  
528 over subgraphs, 2022. URL <https://arxiv.org/abs/2202.10610>.  
529530 Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d  
531 knowledge graph embeddings, 2018. URL <https://arxiv.org/abs/1707.01476>.  
532533 Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards founda-  
534 tion models for knowledge graph reasoning, 2024. URL <https://arxiv.org/abs/2310.04562>.  
535536 Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without  
537 relevance labels, 2022. URL <https://arxiv.org/abs/2212.10496>.  
538539 Lingbing Guo, Qiang Zhang, and Huajun Chen. Unleashing the power of transformer for graphs,  
2022. URL <https://arxiv.org/abs/2202.10581>.  
540

540 Lingbing Guo, Zhongpu Bo, Zhuo Chen, Yichi Zhang, Jiaoyan Chen, Yarong Lan, Mengshu Sun,  
 541 Zhiqiang Zhang, Yangyifei Luo, Qian Li, Qiang Zhang, Wen Zhang, and Huajun Chen. Mkgl:  
 542 Mastery of a three-word language, 2024. URL <https://arxiv.org/abs/2410.07526>.  
 543

544 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-  
 545 augmented language model pre-training, 2020. URL <https://arxiv.org/abs/2002.08909>.  
 546

547 Sheryl Hsu, Omar Khattab, Chelsea Finn, and Archit Sharma. Grounding by trying: LLMs with  
 548 reinforcement learning-enhanced retrieval. In *The Thirteenth International Conference on Learning  
 549 Representations*, 2025. URL <https://openreview.net/forum?id=BPAZ6yW3K7>.  
 550

551 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 552 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.  
 553

554 Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open  
 555 domain question answering, 2021. URL <https://arxiv.org/abs/2007.01282>.  
 556

557 Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane  
 558 Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning  
 559 with retrieval augmented language models, 2022. URL <https://arxiv.org/abs/2208.03299>.  
 560

561 Pengcheng Jiang, Lang Cao, Cao Xiao, Parminder Bhatia, Jimeng Sun, and Jiawei Han. KG-  
 562 FIT: Knowledge graph fine-tuning upon open-world knowledge. In *The Thirty-eighth Annual  
 563 Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=rDoPMODpki>.  
 564

565 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE  
 566 Transactions on Big Data*, 7(3):535–547, 2019.  
 567

568 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,  
 569 Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe  
 570 Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL <https://arxiv.org/abs/2005.11401>.  
 571

572 Qika Lin, Rui Mao, Jun Liu, Fangzhi Xu, and Erik Cambria. Fusing topology contexts and logical  
 573 rules in language models for knowledge graph completion. *Inf. Fusion*, 90(C):253–264, February  
 574 2023. ISSN 1566-2535. doi: 10.1016/j.inffus.2022.09.020. URL <https://doi.org/10.1016/j.inffus.2022.09.020>.  
 575

576 Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and  
 577 interpretable large language model reasoning, 2024. URL <https://arxiv.org/abs/2310.01061>.  
 578

579 Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting for retrieval-  
 580 augmented large language models, 2023. URL <https://arxiv.org/abs/2305.14283>.  
 581

582 Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. Yago3: A knowledge base  
 583 from multilingual wikipedias. In *Conference on Innovative Data Systems Research*, 2015. URL  
 584 <https://api.semanticscholar.org/CorpusID:6611164>.  
 585

586 Shengyu Mao, Yong Jiang, Boli Chen, Xiao Li, Peng Wang, Xinyu Wang, Pengjun Xie, Fei Huang,  
 587 Huajun Chen, and Ningyu Zhang. RaFe: Ranking feedback improves query rewriting for RAG.  
 588 In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for  
 589 Computational Linguistics: EMNLP 2024*, pp. 884–901, Miami, Florida, USA, November 2024.  
 590 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.49. URL  
 591 <https://aclanthology.org/2024.findings-emnlp.49/>.  
 592

593 Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for large language model  
 reasoning, 2024. URL <https://arxiv.org/abs/2405.20139>.

594 Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving, 2017. URL <https://arxiv.org/abs/1705.11040>.  
 595  
 596

597 Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel,  
 598 Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, and Han Xiao. jina-embeddings-  
 599 v3: Multilingual embeddings with task lora, 2024. URL <https://arxiv.org/abs/2409.10173>.  
 600

601 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by  
 602 relational rotation in complex space, 2019. URL <https://arxiv.org/abs/1902.10197>.  
 603

604 Komal K. Teru, Etienne Denis, and William L. Hamilton. Inductive relation prediction by subgraph  
 605 reasoning, 2020. URL <https://arxiv.org/abs/1911.06962>.  
 606

607 Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text in-  
 608 ference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle, and  
 609 Scott Wen-tau Yih (eds.), *Proceedings of the 3rd Workshop on Continuous Vector Space Models and*  
 610 *their Compositionality*, pp. 57–66, Beijing, China, July 2015. Association for Computational Lin-  
 611 guistics. doi: 10.18653/v1/W15-4007. URL <https://aclanthology.org/W15-4007/>.  
 612

613 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-  
 614 plex embeddings for simple link prediction, 2016. URL <https://arxiv.org/abs/1606.06357>.  
 615

616 Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-  
 617 relational graph convolutional networks. In *International Conference on Learning Representations*,  
 618 2020. URL [https://openreview.net/forum?id=By1A\\_C4tPr](https://openreview.net/forum?id=By1A_C4tPr).  
 619

620 Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, and Yi Chang. Structure-augmented  
 621 text representation learning for efficient knowledge graph completion. In *Proceedings of the Web  
 Conference 2021*, WWW ’21, pp. 1737–1748. ACM, April 2021. doi: 10.1145/3442381.3450043.  
 622 URL <http://dx.doi.org/10.1145/3442381.3450043>.  
 623

624 Yanbin Wei, Qiushi Huang, Yu Zhang, and James Kwok. Kicgpt: Large language model with knowl-  
 625 edge in context for knowledge graph completion. In *Findings of the Association for Computational  
 626 Linguistics: EMNLP 2023*, pp. 8667–8683. Association for Computational Linguistics, 2023. doi:  
 627 10.18653/v1/2023.findings-emnlp.580. URL <http://dx.doi.org/10.18653/v1/2023.findings-emnlp.580>.  
 628

629 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,  
 630 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin  
 631 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,  
 632 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,  
 633 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu  
 634 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,  
 635 2024.

636 Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowledge  
 637 base reasoning, 2017. URL <https://arxiv.org/abs/1702.08367>.  
 638

639 Liang Yao, Chengsheng Mao, and Yuan Luo. Kg-bert: Bert for knowledge graph completion, 2019.  
 640 URL <https://arxiv.org/abs/1909.03193>.  
 641

642 Liang Yao, Jiazen Peng, Chengsheng Mao, and Yuan Luo. Exploring large language models for  
 643 knowledge graph completion, 2025. URL <https://arxiv.org/abs/2308.13916>.  
 644

645 Jason Youn and Ilias Tagkopoulos. Kglm: Integrating knowledge graph structure in language models  
 646 for link prediction, 2023. URL <https://arxiv.org/abs/2211.02744>.  
 647

648 Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng, Hua-  
 649 jun Chen, and Ningyu Zhang. Llms for knowledge graph construction and reasoning: Recent  
 650 capabilities and future opportunities, 2024. URL <https://arxiv.org/abs/2305.13168>.  
 651

648 Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford  
649 networks: A general graph neural network framework for link prediction. *Advances in Neural*  
650 *Information Processing Systems*, 34, 2021.

651

652 Zhaocheng Zhu, Xinyu Yuan, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau, and  
653 Jian Tang. A\*net: A scalable path-based reasoning approach for knowledge graphs, 2023. URL  
654 <https://arxiv.org/abs/2206.04798>.

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702  
703  
704 Table 7: Training time comparison using default settings for each model.  
705  
706  
707  
708  
709

| Model            | WN18RR    |             | FB15k-237 |             | YAGO      |             |
|------------------|-----------|-------------|-----------|-------------|-----------|-------------|
|                  | Time (hr) | Max GPU (G) | Time (hr) | Max GPU (G) | Time (hr) | Max GPU (G) |
| NBFNet           | 21        | 27          | 32        | 19          | 1141      | 27          |
| AstarNet         | 15        | 5           | 29        | 14          | 503       | 15          |
| MKG (Llama2-7B)  | 20        | 58          | 60        | 67          | 3789      | 54          |
| PARR (Llama3-8B) | 73        | 75          | 126       | 68          | 923       | 72          |

710  
711 Table 8: Evaluation throughput (seconds per batch) and maximum GPU memory allocation (in GB).  
712  
713  
714  
715  
716  
717  
718  
719

| Model                   | WN18RR  |             | FB15k-237 |             | YAGO    |             |
|-------------------------|---------|-------------|-----------|-------------|---------|-------------|
|                         | s/batch | Max GPU (G) | s/batch   | Max GPU (G) | s/batch | Max GPU (G) |
| NBFNet                  | 1.3     | 1           | 1.4       | 0.6         | 3.2     | 5           |
| AstarNet                | 1.3     | 0.4         | 1.4       | 0.6         | 1.7     | 4           |
| MKG                     | 3.1     | 39          | 4.6       | 28          | 5.6     | 31          |
| KICGPT                  | 158     | —           | 176       | —           | —       | —           |
| PARR (Llama3-8B) + vLLM | 3.2     | 74          | 3.5       | 74          | 3.3     | 74          |

720 A COMPUTATION ANALYSIS  
721

722 Here we profile the training/evaluation’s peak GPU memory consumption and time spent for PARR  
723 and SOTA methods. All experiments are run on the same compute node with one Nvidia A100 GPU.  
724 Due to time limit, we estimate training time by average time per step  $\times$  steps per epoch  $\times$  n epochs  
725 using parameters from models’ default configs. For evaluation, we measure the average time (in  
726 second) spent for one batch with batch size equals to 8.

727 **Justification on the system complexity.** While the overall PARR framework exhibits more complexity  
728 than traditional link predictors, we would like to note:

729 (1) PARR targets a fundamentally different use case than traditional link predictors. While  
730 traditional link predictors such as KGE models are discriminative classifiers, PARR is built towards a  
731 generative, conversational KG agent. This means PARR must model the full distribution of the KG  
732 over natural language’s space, which is substantially more challenging than training a discriminative  
733 KGE with a binary classification loss.

734 (2) PARR offers significantly better inference efficiency than prompt-based LLM approaches.  
735 Unlike recent SOTA prompt-based LLM KGC method such as KICGPT (Wei et al., 2023), which  
736 require repeated calls to large proprietary LLMs, PARR is much more efficient at inference time. As  
737 shown in Table 8, on FB15k-237, KICGPT takes 176 seconds to evaluate 8 samples, whereas PARR  
738 takes only 3.5 seconds—with better accuracy.

739 (3) PARR is scalable. GNN-based link predictors often incur at least polynomial (exponential for  
740 exhaustive path search algorithms like PathCon) time/memory complexity w.r.t. to the number of  
741 entities, edges, and embedding dimensions. In contrast, both REWRITER and REASONER in PARR  
742 have near constant time and memory consumption, irrespective of graph size. The RETRIEVER can  
743 also achieve constant or logarithmic time complexity via precomputed retrieval tables or fast retrieval  
744 libraries like FAISS (Johnson et al., 2019). As shown in Tab. 7, on YAGO3-10, MKGL requires 3700  
745 GPU hours, while PARR achieves better performance with only 920 GPU hours.

746 (4) Heavy data curation, straightforward deployment. Despite the complexity of PARR, more than  
747 half of the efforts are for data curation. This, however, has become a normal practice in the era of  
748 LLMs, where data curation has become the most important and time-consuming process. On the  
749 other hand, PARR is straightforward to deploy in real-world, thanks to the development in LLM  
750 acceleration tools (e.g. vLLM) and scalable retrieval index (e.g. FAISS).

751  
752  
753  
754  
755

756 Table 9: Training with Llama3-8B (total hours spent).  
757

| Dataset   | Rewriter | Retriever | Reasoner |
|-----------|----------|-----------|----------|
| WN18RR    | 15       | –         | 58       |
| FB15k-237 | 23       | –         | 103      |
| YAGO3-10  | 88       | –         | 835      |

758 Table 10: Evaluation with Llama3-8B (seconds per  
759 batch, with vLLM).  
760

| Dataset   | Rewriter | Retriever | Reasoner |
|-----------|----------|-----------|----------|
| WN18RR    | 1.3      | –         | 1.9      |
| FB15k-237 | 1.3      | –         | 2.2      |
| YAGO3-10  | 1.3      | –         | 2.0      |

761 Table 11: Performance on inductive knowledge graph reasoning. V1-v4 refer to the 4 standard splits.  
762

| Method           | v1           |              | v2           |              | v3           |              | v4           |              |
|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                  | HITS@1       | HITS@10      | HITS@1       | HITS@10      | HITS@1       | HITS@10      | HITS@1       | HITS@10      |
| <b>FB15k-237</b> |              |              |              |              |              |              |              |              |
| GraIL            | 0.205        | 0.429        | 0.202        | 0.424        | 0.165        | 0.424        | 0.143        | 0.389        |
| NeuralLP         | 0.243        | 0.468        | 0.286        | 0.586        | 0.309        | 0.571        | 0.289        | 0.593        |
| DRUM             | 0.247        | 0.474        | 0.284        | 0.595        | 0.308        | 0.571        | 0.309        | 0.593        |
| NBFNet           | 0.335        | 0.574        | 0.421        | 0.685        | 0.384        | 0.637        | 0.360        | 0.627        |
| RED-GNN          | 0.302        | 0.483        | 0.381        | 0.629        | 0.351        | 0.603        | 0.340        | 0.621        |
| A*Net            | 0.381        | 0.589        | 0.419        | 0.672        | 0.389        | 0.629        | 0.365        | <b>0.645</b> |
| MKGL             | 0.400        | <b>0.595</b> | 0.417        | 0.681        | 0.392        | <b>0.643</b> | 0.374        | <b>0.645</b> |
| PARR-Qwen3       | <b>0.412</b> | 0.586        | <b>0.433</b> | <b>0.688</b> | <b>0.397</b> | 0.633        | <b>0.386</b> | 0.633        |
| <b>WN18RR</b>    |              |              |              |              |              |              |              |              |
| GraIL            | 0.554        | 0.760        | 0.542        | 0.776        | 0.278        | 0.409        | 0.443        | 0.687        |
| NeuralLP         | 0.592        | 0.772        | 0.575        | 0.749        | 0.304        | 0.476        | 0.583        | 0.706        |
| DRUM             | 0.613        | 0.777        | 0.595        | 0.747        | 0.330        | 0.477        | 0.586        | 0.702        |
| NBFNet           | 0.695        | <b>0.826</b> | 0.651        | 0.798        | 0.392        | <b>0.568</b> | 0.608        | 0.694        |
| RED-GNN          | 0.653        | 0.799        | 0.633        | 0.780        | 0.368        | 0.524        | 0.606        | 0.721        |
| A*Net            | 0.682        | 0.810        | 0.649        | <b>0.803</b> | 0.386        | 0.544        | 0.616        | <b>0.743</b> |
| MKGL             | 0.700        | 0.822        | <u>0.662</u> | 0.799        | 0.406        | 0.559        | <b>0.620</b> | 0.741        |
| PARR-Qwen3       | <b>0.718</b> | 0.824        | <b>0.675</b> | 0.788        | <b>0.414</b> | <b>0.572</b> | <b>0.627</b> | 0.725        |

785 

## B MORE RESULTS

786 In Table 11 we show full results on the inductive settings for FB15k-237 and WN18RR. Given the  
787 better performance of Qwen3 over Llama3, we only run experiments based on Qwen3. We can see  
788 PARR achieves better or comparable performance on all the splits for both FB15k-237 and WN18RR,  
789 demonstrating its strong generalizability over unseen entities.  
790791 We further evaluate PARR on ogbl-wikikg2, a large-scale knowledge graph derived from Wikidata.  
792 The results, reported in terms of MRR, are shown in Table 12. Notably, PARR attains the strongest  
793 overall performance, despite representing a lower bound on MRR (because PARR predicts only  
794 the top-10 candidate entities, any correct entity ranked outside the top-10 receives zero reciprocal  
795 rank). Still, PARR surpasses all baselines, demonstrating the effectiveness and scalability of our  
796 proof-augmented retrieval and reasoning framework on large KGs.  
797798 To further demonstrate robustness across graph sizes and relational structures, we also evaluate on  
799 three small but widely used KGs—Kinship, Nations, and UMLS. As shown in Table 13, PARR  
800 consistently outperforms all existing systems, achieving new state-of-the-art results on all datasets  
801 across both HITS@1 and HITS@10 metrics.  
802803 Table 12: MRR results on ogbl-wikikg2. PARR achieves the best performance despite representing a lower  
804 bound, as it only predicts top-10 entities.  
805

| PARR-Qwen3    | TransE | ComplEx | RotatE | PairRE | ComplEx+RP | A*Net  |
|---------------|--------|---------|--------|--------|------------|--------|
| <b>0.7013</b> | 0.4256 | 0.4027  | 0.4332 | 0.5208 | 0.6392     | 0.6767 |

810 Table 13: Results on three small, statistical KGs: Kinship, UMLS, and Nations. PARR achieves state-of-the-art  
 811 performance across all datasets.

| Method            | Kinship      |              | UMLS         |              | Nations      |              |
|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                   | H@1          | H@10         | H@1          | H@10         | H@1          | H@10         |
| NeuralLP          | 0.475        | 0.912        | 0.643        | 0.862        | —            | —            |
| MINERVA           | 0.605        | 0.924        | 0.728        | 0.968        | —            | —            |
| DRUM              | 0.367        | 0.885        | 0.546        | 0.935        | —            | —            |
| NBFNet            | 0.632        | 0.966        | 0.721        | 0.971        | 0.633        | 0.951        |
| LERP              | 0.500        | 0.931        | 0.646        | 0.942        | —            | —            |
| <b>PARR-Qwen3</b> | <b>0.656</b> | <b>0.973</b> | <b>0.748</b> | <b>0.983</b> | <b>0.672</b> | <b>0.960</b> |

## C MORE ANALYSIS

### C.1 ABLATION ON THE ROBUSTNESS OF PARR ON NOISY PROOFS

825 Here we conduct a robustness analysis on how variations in proof quality (e.g., using weaker or partial proofs) could affect end-to-end link prediction  
 826 performance. To do so, we add  $n\%$  of noisy proof  
 827 (proofs with bottom 5% path scores) to the retrieval.  
 828 In Tab. 14 we show the performance (HIT@1) of  
 829 Reasoner (LLama3-8B) during inference time, where  
 830 the retrieval is randomly perturbed by  $n\%$ . We can  
 831 see the Reasoner maintains decent performance (e.g. less than 0.015% drop) even when perturbation  
 832 rate is 25% for both datasets.

Table 14: Reasoner performance (HITS@1) under different perturbation ratios.

| Dataset   | 0%    | 5%    | 10%   | 25%   | 50%   |
|-----------|-------|-------|-------|-------|-------|
| FB15k-237 | 0.341 | 0.340 | 0.334 | 0.325 | 0.296 |
| WN18RR    | 0.488 | 0.487 | 0.482 | 0.476 | 0.436 |

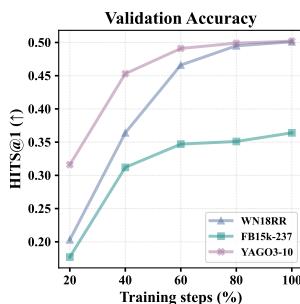
### C.2 DECOUPLING PRETRAINED LINK PREDICTORS FROM INFERENCE

835 To further improve test-time efficiency, we evaluate a  
 836 variant of PARR in which no proofs are used during  
 837 retrieval (PARR-Qwen3 w/o proofs). This removes  
 838 all dependence on pre-trained link predictors during  
 839 inference, making PARR lighter while preserving  
 840 the training benefits of proof supervision. As shown  
 841 in Table 15, this variant yields only a minor drop  
 842 in performance on both FB15k-237 and WN18RR,  
 843 demonstrating that PARR remains highly effective  
 844 even without proof-based retrieval at test time.

Table 15: Ablation on test-time proof usage. Removing proofs during retrieval (PARR-Qwen3 w/o proofs) leads to only minimal degradation.

| Method                         | FB15k-237    | WN18RR       |
|--------------------------------|--------------|--------------|
| ComplEx+RP                     | 0.298        | 0.443        |
| NBFNet                         | 0.321        | 0.497        |
| MKG                            | 0.325        | 0.500        |
| PARR-Qwen3                     | <b>0.352</b> | <b>0.513</b> |
| <b>PARR-Qwen3 (w/o proofs)</b> | 0.346        | 0.508        |

### C.3 CONVERGENCE OF PARR



859 Figure 4: Validation accuracy  
 860 (HITS@1) on 100 samples sam-  
 861 pled from the validation set.

862 As shown in Figure 4, we observe that the PARR reasoner  
 863 converges rapidly, particularly on larger KGs such as YAGO3-10, where  
 864 substantial overlap arises between the constructed rewriting and rea-  
 865 soning sets. This property enables an efficient trade-off between  
 866 training time and final performance: the model can be trained for  
 867 significantly fewer steps with only minimal degradation.

864 D CONSTRUCTING MINIMAL REWRITING SETS  
865

866 Given a proof and a fixed retrieval interface RETRIEVER, we want to find a minimal set of rewrited  
867 sub-queries that, after each individual retrieval, can cover the proof. We solve this with a set-cover  
868 algorithm. Moreover, since there may exist multiple (semi-)minimal rewriting sets that cover a proof,  
869 we apply a beam-search style iteration on top of the set-cover algorithm. Algorithm 1 shows the  
870 detailed procedure.

871  
872 **Algorithm 1** Find N Minimal Rewriting Sets  
873

874 **Require:** Target triplet  $\mathcal{T}$ ; target proof  $p$ ; precomputed retrievals mapping given triplets:  $\mathcal{M}$ ; inverse  
875 of retrieval mapping  $\mathcal{M}^{-1}$ ; maximum number of solutions  $n$ ; beam width  $w$   
876 **Ensure:** A set of rewriting sets  $\{\mathcal{Q}_1, \dots, \mathcal{Q}_n\}$ , each of which covers  $p$

877 1: Initialize beam list:  $\mathcal{B} \leftarrow \{(\emptyset, p)\}$   
878 2: Initialize solution set:  $\mathcal{S} \leftarrow []$   
879 3: Initialize seen set:  $s \leftarrow \emptyset$   
880 4: **while**  $\mathcal{B} \neq \emptyset$  and  $|\mathcal{S}| < n$  **do**  
881 5:      $\mathcal{B} \leftarrow []$   
882 6:     **for all**  $(\mathcal{Q}, \mathcal{U}) \in \mathcal{B}$  **do**  
883 7:         **if**  $\mathcal{U} = \emptyset$  **then**  
884 8:              $k \leftarrow \text{sorted}(\mathcal{Q})$   
885 9:             **if**  $k \notin s$  **then**  
886 10:                  $s \leftarrow s \cup \{k\}$   
887 11:                  $\mathcal{S} \leftarrow s \cup \{\mathcal{Q}\}$   
888 12:             **end if**  
889 13:             **continue**  
890 14:     **end if**  
891 15:      $r \leftarrow \emptyset$              ▷ Gather relevant triplets  $r$  that will cover part of the remaining proof  
892 16:     **for all**  $q \in \mathcal{U}$  **do**  
893 17:          $r \leftarrow r \cup \mathcal{M}^{-1}[q]$   
894 18:     **end for**  
895 19:      $r \leftarrow r \setminus \mathcal{Q} \setminus \{\mathcal{T}\}$   
896 20:     **Scored**  $\leftarrow []$              ▷ Greedily score candidate queries by how many remaining they cover  
897 21:     **for all**  $q \in r$  **do**  
898 22:          $\mathcal{C}_q \leftarrow \mathcal{M}[q] \cap \mathcal{U}$   
899 23:         **if**  $\mathcal{C}_q \neq \emptyset$  **then**  
900 24:             Append  $(|\mathcal{C}_q|, q, \mathcal{C}_q)$  to **Scored**  
901 25:         **end if**  
902 26:     **end for**  
903 27:     **Scored**  $\leftarrow \text{sorted}(\text{Scored}, \text{reverse=True})$   
904 28:     **for**  $i = 1$  **to**  $\min(w, |\text{Scored}|)$  **do**  
905 29:          $(\_, q, \mathcal{C}_q) \leftarrow \text{Scored}[i]$   
906 30:          $\mathcal{Q}_{\text{new}} \leftarrow \mathcal{Q} \cup \{q\}$   
907 31:          $\mathcal{U}_{\text{new}} \leftarrow \mathcal{U} \setminus \mathcal{C}_q$   
908 32:         Append  $(\mathcal{Q}_{\text{new}}, \mathcal{U}_{\text{new}})$  to  $\mathcal{B}$              ▷ Extend query set  
909 33:     **end for**  
910 34:     **end for**  
911 35:      $\mathcal{B} \leftarrow \mathcal{B}$   
912 36: **end while**  
913 37: **return**  $\mathcal{S}$

914  
915 E DATASETS AND IMPLEMENTATIONS DETAILS  
916

## 917 E.1 DATASET STATISTICS

In Table 16 and 17 we show dataset statistics for the transductive and inductive setting. We follow the standard splits in their original works.

918

919  
920  
Table 16: Dataset statistics for the transductive setting. # Rewriter Train denotes the number of training samples  
used for training REWRITER (and the REASONER).

| Dataset   | #Entity | #Relation | # Train   | # Validation | # Test | # Rewriter Train | Avg. Rewrites |
|-----------|---------|-----------|-----------|--------------|--------|------------------|---------------|
| FB15k-237 | 14,541  | 237       | 272,115   | 17,535       | 20,466 | 3,682,046        | 4             |
| WN18RR    | 40,943  | 11        | 86,835    | 3,034        | 3,134  | 1,149,304        | 2             |
| YAGO3-10  | 123,182 | 37        | 1,079,040 | 5000         | 5000   | 16,628,192       | 5             |

925

926

927

928  
Table 17: Dataset statistics for the inductive setting.

| Dataset          | # Relation | Train    |           | Valid    |              |        | Test     |              |        |
|------------------|------------|----------|-----------|----------|--------------|--------|----------|--------------|--------|
|                  |            | # Entity | # Triplet | # Entity | # Evaluation | # Fact | # Entity | # Evaluation | # Fact |
| FB15k-237-ind-v1 | 180        | 1,594    | 4,245     | 1,594    | 489          | 4,245  | 1,093    | 205          | 1,993  |
| FB15k-237-ind-v2 | 200        | 2,608    | 9,739     | 2,608    | 1,166        | 9,739  | 1,660    | 478          | 4,145  |
| FB15k-237-ind-v3 | 215        | 3,668    | 17,986    | 3,668    | 2,194        | 17,986 | 2,501    | 865          | 7,406  |
| FB15k-237-ind-v4 | 219        | 4,707    | 27,203    | 4,707    | 3,352        | 27,203 | 3,051    | 1,424        | 11,714 |
| WN18RR-ind-v1    | 9          | 2,746    | 5,410     | 2,746    | 630          | 5,410  | 922      | 188          | 1,618  |
| WN18RR-ind-v2    | 10         | 6,954    | 15,262    | 6,954    | 1,838        | 15,262 | 2,757    | 441          | 4,011  |
| WN18RR-ind-v3    | 11         | 12,078   | 25,901    | 12,078   | 3,097        | 25,901 | 5,084    | 605          | 6,327  |
| WN18RR-ind-v4    | 9          | 3,861    | 7,940     | 3,861    | 934          | 7,940  | 7,084    | 1,429        | 12,334 |

937

938

939

940  
Table 18: Dataset samples of the rewriting training dataset for WN18RR. Entity in red refers to the target entity,  
941 which is missing from the query.

| Query                                              | Rewritten sub-queries                                                                                                       |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| (subdivision pinophytina, hypernym, <b>class</b> ) | (order coniferales, (inverse) member meronym, subdivision coniferophytina), (subdivision coniferophytina, hypernym, class)  |
| (nippon, has part, <b>nagasaki</b> )               | (volcano islands, instance hypernym, archipelago), (kyushu, has part, nagasaki), (pacific ocean, has part, volcano islands) |
| (enfeeble, hypernym, <b>weaken</b> )               | (weaken, (inverse) hypernym, nullify), (enfeeble, drf, exhaustion)                                                          |

951

952

953  
Table 19: Dataset samples of the REASONERS training dataset for WN18RR. drf refers to *Derivationally Related Form*.

| Query                                                                                                                                    | Retrievals                                                                                                                         | Target              | Proof                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------|
| (screen, hypernym, ?)                                                                                                                    | (hood, hypernym, protective covering), (motorcar, has part, hood), (plane, has part, hood)                                         | protective covering | (hood, hypernym, protective covering)<br>→ (hood, (inverse) has part, motorcar)                                      |
| (inclosure, (inverse) drf, shut in), (stick in, (inverse) drf, inclosure), (inclosure, drf, stick in), ...)                              | (windshield, (inverse) has part, plane), (screen, (inverse) hypernym, windshield), ...                                             | inset               | → (screen, (inverse) hypernym, windshield)<br>→ (windshield, (inverse) has part, plane)<br>→ (plane, has part, hood) |
| (carry, hypernym, make up), (make up, (inverse) hypernym, carry), (carry, (inverse) verb group, carry), (right, also see, make up), ...) | (carry, hypernym, make up), (make up, (inverse) hypernym, carry), (carry, (inverse) verb group, carry), (right, also see, make up) | carry               | → (make up, (inverse) hypernym, carry)<br>→ (carry, (inverse) verb group, carry)<br>→ (right, also see, make up)     |
| (make up, (inverse) also see, right)                                                                                                     |                                                                                                                                    |                     | → (make up, (inverse) also see, right)                                                                               |

972 Table 20: Hyper-parameters for supervised finetuning on REWRITER and REASONER, for both Llama3-8B  
 973 Instruct and Qwen3-8B.

|          | Dataset   | LoRA Rank/Alpha | Epochs | Learning Rate | Batch Size | Gradient Accumulation Steps | Optimizer |
|----------|-----------|-----------------|--------|---------------|------------|-----------------------------|-----------|
| REWRITER | FB15k-237 | 32              | 1      | $1e^{-5}$     | 8          | 2                           | AdamW     |
|          | WN18RR    | 32              | 1      | $1e^{-5}$     | 8          | 2                           | AdamW     |
|          | YAGO3-10  | 32              | 1      | $1e^{-5}$     | 8          | 2                           | AdamW     |
| REASONER | FB15k-237 | 32              | 1      | $1e^{-5}$     | 2          | 8                           | AdamW     |
|          | WN18RR    | 32              | 1      | $1e^{-5}$     | 2          | 8                           | AdamW     |
|          | YAGO3-10  | 32              | 1      | $1e^{-5}$     | 2          | 8                           | AdamW     |

## 982 E.2 DATASET SAMPLES

984 In Table 18 and 19 we show sample data from the rewriting dataset and reasoning dataset from  
 985 WN18RR Dettmers et al. (2018).

## 987 E.3 IMPLEMENTATION DETAILS

989 Table 21: Hyperparameters for NBFNet and A\*Net on all datasets. We use the same set of hyper-parameters for  
 990 NBFNet Zhu et al. (2021) and A\*Net Zhu et al. (2023), except for parameters **Priority Function**, which are  
 991 only used for A\*Net.

| Hyperparameter    | FB15k-237            |                 | WN18RR          |                 | YAGO3-10        |                 |
|-------------------|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                   | transductive         | inductive       | transductive    | inductive       | transductive    |                 |
| Message Passing   | #step ( $T$ )        | 6               | 6               | 6               | 6               | 6               |
|                   | hidden dim.          | 32              | 32              | 32              | 32              | 32              |
|                   | message aggregation  | DistMult<br>PNA | DistMult<br>sum | DistMult<br>PNA | DistMult<br>sum | DistMult<br>PNA |
| Priority Function | $g(\cdot)$ #layer    | 1               | 1               | 1               | 1               | 1               |
|                   | $f(\cdot)$ #layer    | 2               | 2               | 2               | 2               | 2               |
|                   | hidden dim.          | 64              | 64              | 64              | 64              | 64              |
|                   | node ratio $\alpha$  | 10%             | 50%             | 10%             | 5%              | 10%             |
|                   | degree ratio $\beta$ | 100%            | 100%            | 100%            | 100%            | 100%            |
| Learning          | optimizer            | Adam            | Adam            | Adam            | Adam            | Adam            |
|                   | batch size           | 256             | 256             | 256             | 256             | 40              |
|                   | learning rate        | $5e^{-3}$       | $5e^{-3}$       | $5e^{-3}$       | $5e^{-3}$       | $5e^{-3}$       |
|                   | #epoch               | 20              | 20              | 20              | 20              | 0.4             |
|                   | adv. temperature     | 0.5             | 0.5             | 1               | 1               | 0.5             |
|                   | #negative            | 32              | 32              | 32              | 32              | 32              |

1009 **Proof Extraction.** We utilize NBFNet and A\*Net in this work to extract proofs. Hyperparameters  
 1010 are shown in Table 21. By default we adopt the same hyperparameters as original works.

1011 **RETRIEVER.** For dense and hybrid retriever, we use Jina-V3 Sturua et al. (2024) text embedding  
 1012 model to compute and store the normalized embeddings, and retrieve using FAISS Johnson  
 1013 et al. (2019) with IndexFlatIP index, which is equivalent to the cosine-similarity metric given pre-  
 1014 normalized embeddings. For dense retrieval, we observe similar performance when using Principle  
 1015 Neighboring Aggregation (PNA) and sentence embedding for triplet embedding calculation. For  
 1016 consistency, we use the latter throughout the paper.

1017 **Supervised Finetuning.** We conduct experiments on Llama3-8B Instruct Ila (2024) and Qwen3-  
 1018 8B Yang et al. (2024), two state-of-the-art LLMs. We show hyper-parameters in Table 20. We use  
 1019 the same set of hyper-parameters between Llama3-8B and Qwen3-8B. Experiments for FB15K-237  
 1020 and WN18RR are run on 4 Nvidia H100 GPUs, and experiments for YAGO3-10 are run on 8 Nvidia  
 1021 H100 GPUs.

```

1026 <|begin_of_text|><|start_header_id|>system<|end_header_id|>
1027
1028 You are a knowledgeable assistant that performs query rewriting for retrieving
1029 relevant context for knowledge graph completion tasks. Given a query in the
1030 form of a partially missing triplet (subject, relation,?), you will rewrite (expand)
1031 the query into a list of triplets. Each of the expanded triplets is then used to
1032 retrieve relevant triplets from a database. Your goal is to provide a list of rewritten
1033 triplets that, after retrieval, will provide complete information needed for proving
1034 the original query, while keeping the number of rewritten triplets minimum.
1035 <|eot_id|><|start_header_id|>user<|end_header_id|>
1036
1037 Query:
1038 (veratrum, hypernym,?)
1039
1040 Please expand the query into a python list of triplets in the form of [(head,
1041 relation, tail)...]. Please strictly follow the format of the output as it will be
1042 parsed by a program.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
1043
1044 ### Answer:[('polianthes', 'hypernym', 'liliid monocot genus'), ('hellebore',
1045 '(inverse) member meronym', 'veratrum')]<|eot_id|>
1046
1047
1048 <|begin_of_text|><|start_header_id|>system<|end_header_id|>
1049
1050 You are a knowledgeable assistant that performs link prediction for knowledge
1051 graph completion tasks. Given a query in the form of a partially missing triplet
1052 (subject, relation, ?), and a retrieved set of relevant triplets, each with the
1053 corresponding reasoning steps that prove the triplet using other triplets from the
1054 database, you will first provide the reasoning step by step based on the retrieved
1055 triplets, and provide the appropriate object entity that completes the query.
1056 <|eot_id|><|start_header_id|>user<|end_header_id|>
1057
1058 Query:
1059 (carry, verb group, ?)
1060
1061 Retrieved triplets:
1062 ('land reform', 'also see', 'land reform'), ('psychopathology', '(inverse) synset
1063 domain topic of', 'defense reaction'), ('offset', 'derivationally related form', 'make
1064 up'), ('make up', '(inverse) also see', 'even out'), ('compensation', 'derivationally
1065 related form', 'overcompensate'), ('carry', 'hypernym', 'make up'), ('trim',
1066 'hypernym', 'equilibrate'), ('carry', 'verb group', 'carry'), ('make up', 'hypernym',
1067 'equilibrate'), ('make up', '(inverse) hypernym', 'carry'), ('even out', 'also see',
1068 'make up'), ('carry', '(inverse) verb group', 'carry'), ('equalizer', 'derivationally
1069 related form', 'make up'), ('defense reaction', '(inverse) hypernym',
1070 'compensation'), ('make up', '(inverse) derivationally related form', 'equalizer'),
1071 ('overcompensation', 'synset domain topic of', 'psychopathology').
1072 ('overcompensate', 'derivationally related form', 'overcompensation'), ('right', 'also
1073 see', 'make up'), ('overcompensate', 'hypernym', 'make up'), ('right', 'derivationally
1074 related form', 'recompense'), ('make up', '(inverse) also see', 'right'), ('make up',
1075 '(inverse) hypernym', 'overcompensate'), ('make up', '(inverse) derivationally
1076 related form', 'offset'), ('recompense', '(inverse) derivationally related form',
1077 'make up')
1078
1079 What is an appropriate object entity that completes the query? Please provide a
1080 rigorous reasoning process before the final answer.<|eot_id|>
1081 <|start_header_id|>assistant<|end_header_id|>
1082
1083 ### Reasoning:
1084 Based on the retrieved context, we have:
1085 ('carry', 'hypernym', 'make up') -> ('make up', '(inverse) hypernym', 'carry') ->
1086 ('carry', '(inverse) verb group', 'carry') -> ('right', 'also see', 'make up') -> ('make
1087 up', '(inverse) also see', 'right')
1088
1089 Therefore, we know:
1090 ('carry', 'verb group', 'carry')
1091
1092 ### Answer:carry<|eot_id|>
1093
1094
1095 <|begin_of_text|><|start_header_id|>system<|end_header_id|>
1096
1097 You are a knowledgeable assistant that performs query rewriting for retrieving
1098 relevant context for knowledge graph completion tasks. Given a query in the
1099 form of a partially missing triplet (subject, relation,?), you will rewrite (expand)
1100 the query into a list of triplets. Each of the expanded triplets is then used to
1101 retrieve relevant triplets from a database. Your goal is to provide a list of rewritten
1102 triplets that, after retrieval, will provide complete information needed for proving
1103 the original query, while keeping the number of rewritten triplets minimum.
1104 <|eot_id|><|start_header_id|>user<|end_header_id|>
1105
1106 Query:
1107 ( family compositae, member meronym,?)
1108
1109 Please expand the query into a python list of triplets in the form of [(head,
1110 relation, tail)...]. Please strictly follow the format of the output as it will be
1111 parsed by a program.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
1112
1113 ### Answer:[('vegetable oyster', 'has part', 'vegetable oyster'), ('genus ageratum',
1114 '(inverse) member meronym', 'family compositae')]<|eot_id|>

```

Figure 5: Sample prompt and answer(in dark green) for Llama3-based REWRITER.

## F PROMPT SAMPLES

In Figure 5 and 7 we show sample prompt and answer from REWRITER LLM for WN18RR. In Figure 6 and Figure 9 we show sample inputs and generated outputs from REASONER LLMs, respectively.

```

1048 <|begin_of_text|><|start_header_id|>system<|end_header_id|>
1049
1050 You are a knowledgeable assistant that performs link prediction for knowledge
1051 graph completion tasks. Given a query in the form of a partially missing triplet
1052 (subject, relation, ?), and a retrieved set of relevant triplets, each with the
1053 corresponding reasoning steps that prove the triplet using other triplets from the
1054 database, you will first provide the reasoning step by step based on the retrieved
1055 triplets, and provide the appropriate object entity that completes the query.
1056 <|eot_id|><|start_header_id|>user<|end_header_id|>
1057
1058 Query:
1059 (carry, verb group, ?)
1060
1061 Retrieved triplets:
1062 ('land reform', 'also see', 'land reform'), ('psychopathology', '(inverse) synset
1063 domain topic of', 'defense reaction'), ('offset', 'derivationally related form', 'make
1064 up'), ('make up', '(inverse) also see', 'even out'), ('compensation', 'derivationally
1065 related form', 'overcompensate'), ('carry', 'hypernym', 'make up'), ('trim',
1066 'hypernym', 'equilibrate'), ('carry', 'verb group', 'carry'), ('make up', 'hypernym',
1067 'equilibrate'), ('make up', '(inverse) hypernym', 'carry'), ('even out', 'also see',
1068 'make up'), ('carry', '(inverse) verb group', 'carry'), ('equalizer', 'derivationally
1069 related form', 'make up'), ('defense reaction', '(inverse) hypernym',
1070 'compensation'), ('make up', '(inverse) derivationally related form', 'equalizer'),
1071 ('overcompensation', 'synset domain topic of', 'psychopathology').
1072 ('overcompensate', 'derivationally related form', 'overcompensation'), ('right', 'also
1073 see', 'make up'), ('overcompensate', 'hypernym', 'make up'), ('right', 'derivationally
1074 related form', 'recompense'), ('make up', '(inverse) also see', 'right'), ('make up',
1075 '(inverse) hypernym', 'overcompensate'), ('make up', '(inverse) derivationally
1076 related form', 'offset'), ('recompense', '(inverse) derivationally related form',
1077 'make up')
1078
1079 What is an appropriate object entity that completes the query? Please provide a
1080 rigorous reasoning process before the final answer.<|eot_id|>
1081 <|start_header_id|>assistant<|end_header_id|>
1082
1083 ### Reasoning:
1084 Based on the retrieved context, we have:
1085 ('carry', 'hypernym', 'make up') -> ('make up', '(inverse) hypernym', 'carry') ->
1086 ('carry', '(inverse) verb group', 'carry') -> ('right', 'also see', 'make up') -> ('make
1087 up', '(inverse) also see', 'right')
1088
1089 Therefore, we know:
1090 ('carry', 'verb group', 'carry')
1091
1092 ### Answer:run<|eot_id|>
1093
1094
1095 <|begin_of_text|><|start_header_id|>system<|end_header_id|>
1096
1097 You are a knowledgeable assistant that performs link prediction for knowledge
1098 graph completion tasks. Given a query in the form of a partially missing triplet
1099 (subject, relation, ?), and a retrieved set of relevant triplets, each with the
1100 corresponding reasoning steps that prove the triplet using other triplets from the
1101 database, you will first provide the reasoning step by step based on the retrieved
1102 triplets, and provide the appropriate object entity that completes the query.
1103 <|eot_id|><|start_header_id|>user<|end_header_id|>
1104
1105 Query:
1106 ( thread, hypernym, ? )
1107
1108 Retrieved triplets:
1109 ('threader', 'derivationally related form', 'thread'), ('run', '(inverse) verb group',
1110 'thread')
1111 {('yarn', 'derivationally related form', 'thread'), ('thread', 'verb group', 'run'), ('run',
1112 'also see', 'wipe'), ('run', 'verb group', 'run'), ('thread', '(inverse) derivationally
1113 related form', 'threader'), ('threader', 'derivationally related form', 'thread'),
1114 ('thread', '(inverse) derivationally related form', 'yarn'), ('threader', '(inverse)
1115 derivationally related form', 'thread'), ('thread', 'derivationally related form',
1116 'threader'), ('run', '(inverse) verb group', 'thread'), ('wipe', '(inverse) also see',
1117 'run'), ('thread', 'derivationally related form', 'yarn'), ('run', 'verb group', 'thread'),
1118 ('thread', '(inverse) verb group', 'run'), ('run', '(inverse) verb group', 'run')
1119
1120 What is an appropriate object entity that completes the query? Please provide a
1121 rigorous reasoning process before the final answer.<|eot_id|>
1122 <|start_header_id|>assistant<|end_header_id|>
1123
1124 ### Reasoning:
1125 Based on the retrieved context, we have:
1126 ('thread', 'hypernym', 'run') -> ('thread', '(inverse) derivationally related form', 'thread') ->
1127 ('thread', 'verb group', 'run') -> ('right', 'also see', 'run') -> ('run', '(inverse) verb group',
1128 'run') -> ('run', '(inverse) verb group', 'run')
1129
1130 Therefore, we know:
1131 ('run', 'verb group', 'run')
1132
1133 ### Answer:run<|eot_id|>

```

Figure 6: Sample prompt and answer(in dark green) for Llama3-based REASONER.

1080  
 1081  
 1082  
 1083 <|im\_start|>system  
 1084 You are a knowledgeable assistant that performs query rewriting for retrieving  
 1085 relevant context for knowledge graph completion tasks. Given a query in the  
 1086 form of a partially missing triplet (subject, relation, ?), you will rewrite (expand)  
 1087 the query into a list of triplets. Each of the expanded triplets is then used to  
 1088 retrieve relevant triplets from a database. Your goal is to provide a list of rewrited  
 1089 triplets that, after retrieval, will provide complete information needed for proving  
 1090 the original query, while keeping the number of rewrited triplets minimum.  
 1091 <|im\_end|>  
 1092 <|im\_start|>user  
 1093 Query:  
 1094 (capitalization, (inverse) derivationally related form, ? )  
 1095 Please expand the query into a python list of triplets in the form of [(head,  
 1096 relation, tail), ...]. Please strictly follow the format of the output as it will be  
 1097 parsed by a program.<|im\_end|>  
 1098 <|im\_start|>assistant  
 1099 <think>  
 1100 </think>  
 1101 <|im\_end|>  
 1102 <|im\_start|>user  
 1103 Query:  
 1104 Please expand the query into a python list of triplets in the form of [(head,  
 1105 relation, tail), ...]. Please strictly follow the format of the output as it will be  
 1106 parsed by a program.<|im\_end|>  
 1107 <|im\_start|>assistant  
 1108 <think>  
 1109 </think>  
 1110 <|im\_end|>  
 1111 <|im\_start|>user  
 1112 Query:  
 1113 (medicine, 'synset domain topic of', 'practice of medicine')  
 1114 ('therapeutic', 'derivationally related form', 'heal')  
 1115 ('practice of medicine', 'derivationally related form', 'medical')  
 1116 <|im\_end|>

<|im\_start|>system  
 You are a knowledgeable assistant that performs query rewriting for retrieving  
 relevant context for knowledge graph completion tasks. Given a query in the  
 form of a partially missing triplet (subject, relation, ?), you will rewrite (expand)  
 the query into a list of triplets. Each of the expanded triplets is then used to  
 retrieve relevant triplets from a database. Your goal is to provide a list of rewrited  
 triplets that, after retrieval, will provide complete information needed for proving  
 the original query, while keeping the number of rewrited triplets minimum.  
<|im\_end|>  
<|im\_start|>user  
Query:  
(therapeutic, (inverse) derivationally related form, ? )  
Please expand the query into a python list of triplets in the form of [(head,  
relation, tail), ...]. Please strictly follow the format of the output as it will be  
parsed by a program.<|im\_end|>  
<|im\_start|>assistant  
<think>  
</think>  
<|im\_end|>  
<|im\_start|>user  
Query:  
Please expand the query into a python list of triplets in the form of [(head,  
relation, tail), ...]. Please strictly follow the format of the output as it will be  
parsed by a program.<|im\_end|>  
<|im\_start|>assistant  
<think>  
</think>  
<|im\_end|>  
<|im\_start|>user  
Query:  
Please expand the query into a python list of triplets in the form of [(head,  
relation, tail), ...]. Please strictly follow the format of the output as it will be  
parsed by a program.<|im\_end|>  
<|im\_start|>assistant  
<think>  
</think>  
<|im\_end|>

Figure 7: Sample prompt and answer(in dark green) for Qwen3-based REWRITER.

1098  
 1099  
 1100  
 1101  
 1102  
 1103  
 1104 <|im\_start|>system  
 1105 You are a knowledgeable assistant that performs link prediction for knowledge  
 1106 graph completion tasks. Given a query in the form of a partially missing triplet  
 1107 (subject, relation, ?), and a retrieved set of relevant triplets, each with the  
 1108 corresponding reasoning steps that prove the triplet using other triplets from the  
 1109 database, you will first provide the reasoning step by step based on the retrieved  
 1110 triplets, and provide the appropriate object entity that completes the query.  
 1111 <|im\_end|>  
 1112 <|im\_start|>user  
 1113 Query:  
 1114 (carry, verb group, ? )  
 1115 Retrieved triplets:  
 1116 (land reform', 'also see', 'land reform'). ('psychopathology', '(inverse) synset  
 1117 domain topic of', 'defense reaction'), ('offset', 'derivationally related form', 'make  
 1118 up'), ('make up', '(inverse) also see', 'even out'), ('compensation', 'derivationally  
 1119 related form', 'overcompensate'), ('carry', 'hypernym', 'make up'), ('trim',  
 1120 'hypernym', 'equilibrate'), ('carry', 'verb group', 'carry'), ('make up', 'hypernym',  
 1121 'equilibrate'), ('make up', '(inverse) hypernym', 'carry'), ('even out', 'also see',  
 1122 'make up'), ('carry', '(inverse) verb group', 'carry'), ('equalizer', 'derivationally  
 1123 related form', 'make up'), ('defense reaction', '(inverse) hypernym',  
 1124 'compensation'), ('make up', '(inverse) derivationally related form', 'equalizer').  
 1125 ('overcompensate', 'synset domain topic of', 'psychopathology').  
 1126 ('overcompensate', 'derivationally related form', 'overcompensation'), ('right', 'also  
 1127 see', 'make up'), ('overcompensate', 'hypernym', 'make up'), ('right', 'derivationally  
 1128 related form', 'recompense'), ('make up', '(inverse) also see', 'right'), ('make up',  
 1129 '(inverse) hypernym', 'overcompensate'), ('make up', '(inverse) derivationally  
 1130 related form', 'offset'), ('recompense', '(inverse) derivationally related form',  
 'make up')  
 1131 What is an appropriate object entity that completes the query? Please provide a  
 1132 rigorous reasoning process before the final answer.<|im\_end|>  
 1133 <|im\_start|>assistant  
 1134 <think>  
 Based on the retrieved context, we have:  
 ('carry', 'hypernym', 'make up') -> ('make up', '(inverse) hypernym', 'carry') ->  
 ('carry', '(inverse) verb group', 'carry') -> ('right', 'also see', 'make up') -> ('make  
 up', '(inverse) also see', 'right')  
 Therefore, we know:  
 ('carry', 'verb group', 'carry')  
 </think>  
 <|im\_end|>  
 <|im\_start|>user  
 Query:  
 Please provide a rigorous reasoning process before the final answer.  
 <|im\_end|>

<|im\_start|>system  
 You are a knowledgeable assistant that performs link prediction for knowledge  
 graph completion tasks. Given a query in the form of a partially missing triplet  
 (subject, relation, ?), and a retrieved set of relevant triplets, each with the  
 corresponding reasoning steps that prove the triplet using other triplets from the  
 database, you will first provide the reasoning step by step based on the retrieved  
 triplets, and provide the appropriate object entity that completes the query.  
<|im\_end|>  
<|im\_start|>user  
Query:  
(thread, hypernym, ? )  
Retrieved triplets:  
('thread', 'derivationally related form', 'thread'), ('run', '(inverse) verb group',  
'thread')  
{('yarn', 'derivationally related form', 'thread'), ('thread', 'verb group', 'run'), ('run',  
'also see', 'wipe'), ('run', 'verb group', 'run'), ('thread', '(inverse) derivationally  
related form', 'thread'), ('thread', 'derivationally related form', 'thread'),  
('thread', '(inverse) derivationally related form', 'yarn'), ('thread', '(inverse)  
derivationally related form', 'thread'), ('thread', 'derivationally related form',  
'thread'), ('run', '(inverse) verb group', 'thread'), ('wipe', '(inverse) also see',  
'run'), ('thread', 'derivationally related form', 'yarn'), ('run', 'verb group', 'thread'),  
('thread', '(inverse) verb group', 'run'), ('run', '(inverse) verb group', 'run')  
<|im\_end|>  
<|im\_start|>user  
Query:  
What is an appropriate object entity that completes the query? Please provide a  
rigorous reasoning process before the final answer.<|im\_end|>  
<|im\_start|>assistant  
<think>  
Based on the retrieved context, we have:  
('thread', '(inverse) derivationally related form', 'thread') -> ('thread', '(inverse)  
verb group', 'run') -> ('thread', 'derivationally related form', 'thread')  
Therefore, we know:  
('thread', 'hypernym', 'run')  
</think>  
<|im\_end|>  
<|im\_start|>user  
Query:  
Please provide a rigorous reasoning process before the final answer.  
<|im\_end|>

Figure 8: Sample prompt and answer(in dark green) for Qwen3-based REASONER.

1134  
 1135  
 1136  
 1137  
 1138  
 1139  
 1140  
 1141  
 1142  
 1143  
 1144  
 1145  
 1146 <|im\_start|>system  
 1147 You are a knowledgeable assistant that performs multi-answer link prediction for  
 1148 knowledge graph completion tasks. Given a query in the form of a partially  
 1149 missing triplet (subject, relation, ?), and a retrieved set of relevant triplets, each  
 1150 with the corresponding reasoning steps that prove the triplet using other triplets  
 1151 from the database, you will first provide top-10 most probable reasoning step by  
 1152 step based on the retrieved triplets, and provide the corresponding top-10  
 1153 appropriate object entity that completes the query.<|im\_end|>  
 1154 <|im\_start|>user  
 1155 Query:  
 1156 (carry, verb group, ?)  
 1157 Retrieved triplets:  
 1158 ('land reform', 'also see', 'land reform'), ('psychopathology', '(inverse) synset  
 1159 domain topic of', 'defense reaction'), ('offset', 'derivationally related form', 'make  
 1160 up'), ('make up', '(inverse) also see', 'even out'), ('compensation', 'derivationally  
 1161 related form', 'overcompensate'), ('carry', 'hypernym', 'make up'), ('trim',  
 1162 'hypernym', 'equilibrate'), ('carry', 'verb group', 'carry'), ('make up', 'hypernym',  
 1163 'equilibrate'), ('make up', '(inverse) hypernym', 'carry'), ('even out', 'also see',  
 1164 'make up'), ('carry', '(inverse) verb group', 'carry'), ('equalizer', 'derivationally  
 1165 related form', 'make up'), ('defense reaction', '(inverse) hypernym',  
 1166 'compensation'), ('make up', '(inverse) derivationally related form', 'equalizer'),  
 1167 ('overcompensation', 'synset domain topic of', 'psychopathology'),  
 1168 ('overcompensate', 'derivationally related form', 'overcompensation'), ('right', 'also  
 1169 see', 'make up'), ('overcompensate', 'hypernym', 'make up'), ('right', 'derivationally  
 1170 related form', 'recompense'), ('make up', '(inverse) also see', 'right'), ('make up',  
 1171 '(inverse) hypernym', 'overcompensate'), ('make up', '(inverse) derivationally  
 1172 related form', 'offset'), ('recompense', '(inverse) derivationally related form',  
 1173 'make up'), ...  
 1174 What are the top-10 appropriate object entities that completes the query? Please  
 1175 provide a rigorous reasoning process for each before the final answer.<|im\_end|>  
 1176 <|im\_start|>assistant  
 1177 <|think|>  
 1178 Based on the retrieved context, we can deduce below top-10 proofs:  
 1179 Proof 1: ('carry', 'hypernym', 'make up') -> ('make up', '(inverse) hypernym',  
 1180 'carry') -> ('carry', '(inverse) verb group', 'carry') -> ('right', 'also see', 'make up') ->  
 1181 ('make up', '(inverse) also see', 'right')  
 1182 Proof 2: ...  
 1183 Therefore, we know:  
 1184 Answer 1: ('carry', 'verb group', 'carry')  
 1185 Answer 2: ...  
 1186 ...  
 1187 <|think|>  
 1188 ### Answer:[carry,...]<|im\_end|>

1189 <|im\_start|>system  
 1190 You are a knowledgeable assistant that performs multi-answer link prediction for  
 1191 knowledge graph completion tasks. Given a query in the form of a partially  
 1192 missing triplet (subject, relation, ?), and a retrieved set of relevant triplets, each  
 1193 with the corresponding reasoning steps that prove the triplet using other triplets  
 1194 from the database, you will first provide top-10 most probable reasoning step by  
 1195 step based on the retrieved triplets, and provide the corresponding top-10  
 1196 appropriate object entity that completes the query.<|im\_end|>  
 1197 <|im\_start|>user  
 1198 Query:  
 1199 (thread, hypernym, ?)  
 1200 Retrieved triplets:  
 1201 ('threader', 'derivationally related form', 'thread'), ('run', '(inverse) verb group',  
 1202 'thread')  
 1203 {'yarn', 'derivationally related form', 'thread'}, ('thread', 'verb group', 'run'), ('run',  
 1204 'also see', 'wipe'), ('run', 'verb group', 'run'), ('thread', '(inverse) derivationally  
 1205 related form', 'threader'), ('threader', 'derivationally related form', 'thread'),  
 1206 ('thread', '(inverse) derivationally related form', 'yarn'), ('threader', '(inverse)  
 1207 derivationally related form', 'thread'), ('thread', 'derivationally related form',  
 1208 'threader'), ('run', '(inverse) verb group', 'thread'), ('wipe', '(inverse) also see',  
 1209 'run'), ('thread', 'derivationally related form', 'yarn'), ('run', 'verb group', 'thread'),  
 1210 ('thread', '(inverse) verb group', 'run'), ('run', '(inverse) verb group', 'run')...  
 1211 What is an appropriate object entity that completes the query? Please provide a  
 1212 rigorous reasoning process before the final answer.<|im\_end|>  
 1213 <|im\_start|>assistant  
 1214 <|think|>  
 1215 Based on the retrieved context, we have:  
 1216 Proof 1: ('thread', '(inverse) derivationally related form', 'threader') -> ('thread',  
 1217 '(inverse) verb group', 'run') -> ('threader', 'derivationally related form', 'thread')  
 1218 Proof 2: ...  
 1219 Therefore, we know:  
 1220 Answer 1: ('thread', 'hypernym', 'run')  
 1221 Answer 2: ...  
 1222 <|think|>  
 1223 ### Answer:[run,...]<|im\_end|>

Figure 9: Sample prompt and answer(in dark green) for Qwen3-based REASONER with multi-answer extension.