
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROOF-AUGMENTED RETRIEVAL AND REASONING:
SUPERVISING LANGUAGE MODEL FOR KNOWLEDGE
GRAPH COMPLETION WITH INTERPRETABLE LINK PRE-
DICTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Proof-Augmented Retrieval and Reasoning (PARR), a general frame-
work for training language models for Knowledge Graph Completion (KGC).
PARR leverages proof paths sampled from interpretable link predictors (1) to aug-
ment retrieval database for enhanced sub-graph retrieval, (2) as ground-truth signals
to train a REWRITER LLM for KG-based query rewritings, and (3) as a mean to
“distill” the structural knowledge captured from pre-trained link predictors with
structural prior to a REASONER LLM through chain-of-thoughts. PARR achieves
state-of-the-art performance across multiple KGC datasets under both transductive
and inductive settings, while being generative, scalable, and interpretable.

1 INTRODUCTION

Knowledge Graph Completion (KGC) is a fundamental task in machine learning that seeks to
infer missing relations between entities in large-scale knowledge graphs. KGC enables downstream
applications in diverse domains such as recommendation systems, scientific discovery, and healthcare.

Most traditional KGC methods fall into two categories. Knowledge graph embedding (KGE) mod-
els (Bordes et al., 2013; Trouillon et al., 2016; Sun et al., 2019) learn vector representations of
entities and relations for efficient link prediction. GNN-based approaches (Vashishth et al., 2020;
Zhu et al., 2021; 2023) leverage message passing to capture local graph structure. These models
are lightweight and effective, but real-world knowledge-intensive domains often prioritize accuracy,
interpretability, and interactive reasoning over raw inference latency. Moreover, both KGE and GNN
models are inherently discriminative: predictions are made by scoring candidate entities, offering
limited explainability and weaker generalization outside training distributions.

Large Language Models (LLMs) (lla, 2024; Yang et al., 2024) offer appealing generative and
conversational abilities, but they do not naturally excel at KGC. Unlike KGE or GNN models built
around structural priors, LLMs operate in the much larger space of natural language. Despite their
internal knowledge, augmenting KGs with LLM-generated background information yields little
improvement (Jiang et al., 2024). By contrast, methods such as NBFNet and ULTRA (Zhu et al.,
2021; Galkin et al., 2024) achieve strong link prediction solely by modeling relational and structural
patterns, without explicit entity embeddings. This suggests that background knowledge of entities is
not the key ingredient for KGC. Prior attempts to directly fine-tune LLMs on KGC also underperform
traditional link predictors significantly. (Yao et al., 2025; Zhu et al., 2024). Another line of work
repurposes LLMs as discriminative encoders, trained with standard KGE objectives such as binary
cross-entropy loss and negative sampling (Yao et al., 2019; Guo et al., 2024). While these methods
improve accuracy, they reduce LLMs to specialized link predictors, sacrificing the generative and
interactive capabilities that make them attractive for explainable KGC.

In this work, we identify three key challenges that have limited prior LLM-based approaches:

(1) Retrieval. Unlike natural language retrieval, where information is naturally grouped into para-
graphs or documents, knowledge graphs lack inherent clustering patterns. Moreover, as there is
no ground-truth retrieval labels for KGs, prior LLM-based link predictors often rely on simple

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Query
Rewriter
LLM

 Query:

(Einstein,
 profession,
?)

Reasoner
LLM

 ###Reasoning: The retrieved facts include:

 (Nobel_Prize_in_Physics, awarded_for,
 Photoelectric_Effect)
 (Einstein, award_received, Nobel_Prize_in_Physics)
 (Photoelectric_Effect, (inverse)study, Physicists)

 Therefore, we know
 (Einstein, award_received, Nobel_Prize_in_Physics)
 →(Nobel_Prize_in_Physics, awarded_for,
 Photoelectric_Effect)
 →(Photoelectric_Effect, studied_by, Physicists)

 Therefore, we know (Einstein, Profession, Physicists)

 ###Answer: Physicists

 Rewrited Queries:

 (Nobel_prize,
 award_for,
 Einstein)

 (Physicists,
 study,
 Quantum_Theory)

...

(Einstein, award_received, Nobel_Prize_in_Physics)
Retrieve

Interpretable
Link Predictor

Extract
Proofs

(Einstein, studies, Photoelectric_effect)
→ (Photoelectric_effect, (inverse)awarded_for,
Nobel_prize_in_Physics)

 (Physicists, study, Photoelectric_effect)
→(Photoelectric_effect(inverse)explains,Quantum_Theory)

(Physicists, study, Quantum_Theory)

award_received

Einstein

Nobel_Prize_in_Physics

... study

Physicists

Quantum_Theory
Extracted

Proofs

Figure 1: Overall pipeline of PARR. Given a query such as (Einstein, profession, ?), the Rewriter LLM
produces a set of semantically varied yet logically related sub-queries (e.g., (Nobel_prize, award_for, Einstein))
and (Physicists, study, Quantum_Theory) to broaden retrieval. Pre-trained interpretable link predictors (e.g.,
NBFNet (Zhu et al., 2021)) then provide proofs for retrieved facts, enabling targeted subgraph retrieval. The
collected evidence is passed to the REASONER LLM to derive the final answer.

similarity-based strategies. For example, KICGPT (Wei et al., 2023) retrieves all triplets sharing the
same head or tail entity, which is constrained to local neighbors while missing global context.

(2) Reasoning. Although LLMs demonstrate strong general reasoning ability, they are prone to
hallucination in KG reasoning when exposed to noisy or irrelevant retrievals. As shown in Figure 3,
LLM performance drops sharply as irrelevant context accumulates, highlighting the need for more
robust reasoning mechanisms that can operate under imperfect retrieval.

(3) Structural understanding. Existing LLM-based KGC methods (Yao et al., 2025; Zhu et al., 2024)
often reduce link prediction to a one-step task: given a subject and relation, directly predict the
object. However, this formulation makes it difficult for LLMs to capture the underlying relational
and structural patterns of the graph.

To address these challenges, we introduce Proof-Augmented Retrieval and Reasoning (PARR).
PARR leverages proof supervision from interpretable link predictors to fine-tune native LLM-based
generative link predictors, enhancing both retrieval and reasoning in three complementary ways:

(1) Proof-augmented retrievals. At retrieval time, we retrieve not only relevant triplets but also
their associated proofs. Proofs serve as natural clusters that capture both local and global subgraph
structure, yielding more comprehensive yet compact retrievals.

(2) Proof-guided Query Rewriting. Proofs could also act as pseudo ground-truth signals for retrieval.
Inspired by query rewriting in natural language RAG (Ma et al., 2023), we fine-tune a REWRITER
LLM to decompose queries into sub-queries, improving non-local retrieval and recall.

(3) Proof-guided reasoning. Finally, we fine-tune a REASONER LLM with Chain-of-Thought (CoT)
supervision derived from proofs. This improves robustness to noisy retrievals and distills the structural
knowledge of pre-trained link predictors into the LLM. The REASONER can be seen as performing
graph traversal in the language space, with the next node determined by token probabilities.

The overall PARR framework is illustrated in Figure 1. Through extensive experiments, we show
PARR achieves SOTA H@1 performance across all tested datasets, under both transductive and
inductive settings. To our knowledge, this is the first native, fully generative LLM-based KGC
framework to match the accuracy of discriminative link predictors.

The rest of the paper is organized as follows: Section 3 introduces background on link prediction
and proof extraction. Section 4 presents the PARR framework. Section 5.2 reports experimental
results across benchmark datasets and settings. Section 5.3 provides detailed ablation studies on each
component of our framework. More results and ablations are provided in the appendix.

2 RELATED WORK

2.1 LINK PREDICTION ON KNOWLEDGE GRAPHS

Knowledge graph completion (KGC) is a long-standing task that seeks to infer missing links between
entities. Knowledge Graph Embedding (KGE) (Bordes et al., 2013; Trouillon et al., 2016; Balazevic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2019) is an effective method for KGC. These models embed entities and relations into
continuous spaces, but typically operate as black-box functions without interpretability.

Interpretable link prediction. Another line of works explored KG reasoning via GNN-based or rule-
based methods. Notably, NBFNet (Zhu et al., 2021) solves link prediction as a shortest path finding
problem and parametrize Bellman-Ford algorithm with GNN. A*Net (Zhu et al., 2023) improves the
scalability of NBFNet by incorporating A* algorithm to select important nodes and edges. Neural
Theorem Provers (Rocktäschel & Riedel, 2017; Cui et al., 2025) are rule-based neuro-symbolic
methods that extends backward chaining algorithm into continuous space.

Link prediction with Language Models Leveraging pre-trained language models for link predictions
has been explored for years. Earlier works leverage BERT as GNN encoder to encode triplets (Guo
et al., 2022; Chen et al., 2021), while others use BERT to encode textual information of KG entities
and relations (Yao et al., 2019; Wang et al., 2021; Lin et al., 2023; Youn & Tagkopoulos, 2023).
These works mostly follow the same training regime used in KGE methods.

Recent works have explored LLMs for link prediction through fine-tuning (Yao et al., 2025; Zhu
et al., 2024), but their performance often lags behind traditional KGE methods. On the other hand,
KICGPT (Wei et al., 2023) achieves strong results by using a KGE model to generate candidate
entities and asking an LLM to rerank them. However, it depends on proprietary models (ChatGPT),
external KGE systems, and costly multi-round QA. MKGL (Guo et al., 2024) modifies the embedding
and output spaces of LLMs to act as specialized link predictors. While effective, this approach
reduces the LLM to a task-specific discriminative model, sacrificing its generative capacity.

In contrast, PARR is a fully generative, LLM-native framework that preserves the conversational
ability of LLMs while achieving competitive link prediction accuracy. This generality also makes it
easily adaptable to broader KG tasks such as node classification or complex KG-based QA.

2.2 RETRIEVAL-AUGMENTED KG REASONING

Retrieval-Augmented Generation. Retrieval-augmented generation (RAG) (Lewis et al., 2021)
equips LLMs with external memory by retrieving relevant facts to support reasoning in knowledge-
intensive tasks. Works focus on jointly pre-training or fine-tuning LLMs with retrieval modules to
boost accuracy (Guu et al., 2020; Izacard & Grave, 2021; Borgeaud et al., 2022; Izacard et al., 2022).

Query rewriting for RAG. Query rewriting improves retrieval by transforming complex queries into
simpler sub-queries, or to incorporate more information to bridge retrieval asymmetry. HyDE (Gao
et al., 2022) uses LLMs to generate synthetic document for document retrieval. Ma et al. (2023); Mao
et al. (2024) train query rewriters on top of retrieve-then-read systems with preference fine-tuning,
while LeRet (Hsu et al., 2025) introduces an iterative rewriting strategy for multi-hop QA.

Retrieval-Augmented KGQA. A related line of work comes from knowledge graph question
answering (KGQA), where models answer complex natural-language questions over a KG. (Das
et al., 2022) retrieves nearest-neighbor subgraphs and transfers their latent reasoning patterns to new
questions via a GNN, enabling efficient multi-hop reasoning without explicit supervision. RoG (Luo
et al., 2024) supervises its planning and reasoning modules using retrieved paths, while GNN-
RAG (Mavromatis & Karypis, 2024) uses a GNN retriever to gather subgraphs and verbalized paths
as evidence for an LLM. Although these approaches share a retrieve–reason intuition, they rely on
supervision such as complete paths and ground-truth retrieval, that are not available in KGC datasets.
In contrast, PARR obtains the necessary structural supervision from interpretable link predictors.

3 PRELIMINARIES

3.1 KNOWLEDGE GRAPH AND LINK PREDICTION

Knowledge Graph. A Knowledge Graphs (KG) is a directed, multi-relation graph expressed as a
set of triplets (s, r, o) ⊆ E × R × E , where E and R denote the set of entities and relations in the
KG. Link prediction is one of the most important task in the domain of KG, whose goal is to predict
missing object(subject) given subject(object) entity and relation, i.e. (s, r, ?) or (?, r, o).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Proofs. For simple link prediction tasks, given any pair of entities (s, o), its proof p(s, o) can
be defined as chain-like logical rules in the form of: p(s, o) ← r1(s, z1) ∧ r2(z1, z2) ∧ · · · ∧
rn(zn, o), where r1, · · · rn are relations in the given KG. For path-based link predictors, the proofs
can be reformulated as the paths take to reach object o from subject s, i.e. p(s, o) = r1(s, z1) →
r2(z1, z2)→ · · · → rn(zn, o).

3.2 PROOF EXTRACTIONS WITH INTERPRETABLE LINK PREDICTORS

We consider two SOTA link prediction models with interpretable path formulation: NBFNet (Zhu
et al., 2021) and A*Net (Zhu et al., 2023). Below we briefly describe how proofs can be extracted.

NBFNet parametrize Bellman-Ford path-finding algorithm with GNN. Given a triplet (s, r, o), we can
sample top-k proofs P1, P2, · · · , Pk from a pre-trained NBFNet through a linear model((Baehrens
et al., 2009)) (i.e. 1st order Taylor expansion), where each proof’s score can be modeled by the partial
derivative of the prediction p(s, r, o) w.r.t. the proof path (Zhu et al., 2021):

P1, P2, · · · , Pk = top-k
P∈P(s,o)

∂p(s, r, o)

P

In practice we use the average edge importance to approximate path score, which can be efficiently
computed by auto differentiation.

A*Net learns a neural priority function to select a subset of nodes and edges on top of NBFNet to
improve scalability. The A* algorithm provides a natural and distinct way of extracting proofs (Zhu
et al., 2023). Given a triplet (s, r, o) and the pre-trained node priority function st(s,r)(x), we can
sample top-k proofs by their average node importance s(P):

s(P) =
1

|P |

|P |∑
t=1,P (t)=(x,r,y)

s
(t−1)
s,r (x)

S
(t−1)
s,r

, S(t−1)
s,r = max

x∈E(t−1)
s(t−1)
s,r (x).

4 PROOF-AUGMENTED RETRIEVAL AND REASONING

We introduce Proof-Augmented Retrieval and Reasoning (PARR), a native LLM-based framework
for link prediction. PARR is composed of three modules: a REWRITER, a REASONER, and a non-
trainable RETRIEVER. We leverage proofs extracted from pre-trained interpretable link predictors to
supervise the REWRITER LLM for KG query rewriting, and the REASONER LLM for structure-awared
reasoning given large retrieved context. Figure 1 provides an overview of our framework.

4.1 PROOF EXTRACTION

We start off by extracting top-k proofs for each triplet using pre-trained link predictors. To avoid
model bias from the pre-trained link predictor, we sample proofs using a mixture of experts (MoE) of
different models (NBFNet and A*Net), where each model has a distinct method on proof extraction 3.
We further train each link predictors several times with different configurations and random seeds,
and aggregate the resulting proofs. Finally, we filter out proofs with duplications or cycles. For
triplets in the training set, we also filter out proofs containing the triplet itself, as it represents an
existing edge for which the model is likely to give the highest score. The resulting RAG database D
is then a set of triplet-proofs pairs: D =

{(
(s, r, o),Ps,r

)}
, where Ps,r = {p1, · · · , pk} denotes a

set of proofs that deduce the triplet. For visualized dataset samples, please refer to Appendix E.

4.2 RETRIEVER

We consider three types of fixed, non-trainable retrieval interfaces. (1) Sparse retrieval. Similar
to KICGPT, we consider triplets that share the same subject/object with the query. To constrain
retrieval size, we only select top-k triplets based on the degree of their entities. (2) Dense retrieval.
We encode triplets with text embedding models. We consider two embedding approaches: separate
entity/relation embedding followed by principal neighborhood aggregation, and sentence embedding
by converting triplets to natural language sentences. (3) Hybrid retrieval. We first perform dense
retrieval, then run breadth-first-search with a predefined depth on each of retrieved proofs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.3 REWRITER

Problem Statement. To improve KG retrieval, we aim to train a REWRITER LLM to decompose
the original query (s, r) into a set of sub-queries whose individual retrievals collectively cover the
triplets in ground-truth proof. Formally, let fθ be the REWRITER that maps the query (s, r) into a set
of rewritten triplets:

Q = fθ(s, r) =
{
(s(1), r(1), o(1)), · · · , (s(m), r(m), o(m))

}
.

For each rewrited triplet qi = (s(i), r(i), o(i)) ∈ Q, we retrieve the top-k most similar KG triplets
using the fixed retrieval interface detailed in Sec. 4.2, denoted as Retrieve(·, ·):

G =

m⋃
i=1

Gi, Gi = Retrieve(qi, k).

We say the rewriting Q successfully covers the ground-truth if there exists at least one proof path
p ∈ P such that p ⊆ G. That is, all triplets in some valid proofs are retrieved by the composed
sub-queries G. This forms our retrieval success criterion.

Constructing minimal rewriting sets. To generate rewriting data for finetuning the REWRITER, we
extract Minimal Rewriting Sets (MRS) that satisfy the proof coverage constraint discussed above.
The extraction algorithm is provided in Appendix 1. For each proof path pj ∈ P , we solve a set-cover
problem to find a minimal set of rewritten queries Q such that:

pj ⊆ argmin|Q|
⋃
q∈Q

Retrieve(q, k).

Since there may exist multiple possible rewriting combinations that fully cover a given proof path, we
run a beam-search style iteration on top of the set-cover algorithm to obtain top-n MRS Q∗ for each
proof. We are therefore able to obtain a much larger training dataset (as compared to the original
training set size for link prediction) for REWRITER of size |N | · |P| · |Q∗|, where |N | is the number of
training triplets, |P| is the number of proofs per triplet, and |Q∗| is the number of minimal rewriting
sets per proof. The resulting dataset is composed by query-rewriting pairs

(
(s, r),Q

)
. This expanded

training set allows the REWRITER to learn a more comprehensive mapping between the query and
the rewriting sets. The detailed statistics for the resulting dataset can be found in Appendix F.

Finetuning REWRITER. Given a query (s, r), we want to model the space of all valid query
decompositions that lead to a successful coverage. Formally, let Q∗ denote the set of all valid rewrite
sets Q = {q1, · · · , qm} such that the retrieval result G(Q) covers at least one proof path in Ps,r, that
is Q∗ =

{
Q : ∃p ∈ P s.t. p ⊆ G(Q)

}
. We want to maximize the conditional distribution:

Lf (θ) = − log
∑

Q∈Q∗

fθ(Q|s, r).

which is optimized with standard negative log-likelihood (NLL) loss in LLM finetuning. Sample
prompt and LLM output can be found in Appendix F.

4.4 REASONER

While modern LLMs are trained on vast amounts of reasoning data, they remain ineffective for
link prediction due to two factors: (1) limited robustness when retrievals contain irrelevant or
noisy context (Fig. 3), and (2) insufficient understanding of the structural and relational patterns in
knowledge graphs. To address both issues, we fine-tune the REASONER with Chain-of-Thought
(CoT) supervision using retrieved context and extracted proofs.

Problem Statement. Given a link prediction query (s, r), and the retrieved set G, REASONER gϕ
predicts the missing object o after producing an intermediate CoT:

gϕ :
(
(s, r),G

)
7→

(
p, o

)
, p = [(s, r(1), o(1)), (o(1), r(2), o(2)), · · · , (o(n−1), r(n), o)].

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

During inference, the finetuned REASONER is essentially performing graph traversal over the sub-
graph provided by the RETRIEVER, by predicting the next most probable token (node).

Constructing reasoning dataset. Since each fact can be proved in multiple ways, and each proof
can be supported by different rewriting sets, we expand the training data analogously to the rewriting
dataset (Sec. 4.3). The resulting dataset consists of quadruplets

(
(s, r),G, p, o

)
, with size |N | · |P| ·

|Q∗|, matching that of the rewriting training set. Since retrieval is often imperfect, we randomly drop
a portion of ground-truth retrievals during REASONER fine-tuning. This encourages the model to
infer missing facts from incomplete context, improving robustness to noisy or partial retrievals.

4.5 EXTENDING TO MULTI-ANSWER LINK PREDICTION

The framework described so far addresses single-answer link prediction, where the model is trained
to retrieve and reason towards a single correct object o for a query (s, r). To align with the standard
evaluation setting, which considers top-k answers (e.g., k = 10), we extend both retrieval and
reasoning to support multi-answer supervision. This contrasts with prior LLM-based approaches (Yao
et al., 2025), which are restricted to top-1 prediction.

Sampling top-k answers and proofs. Since for each (s, r) pair, there may be less than k ground-truth
tail entity t, we use the score distribution from interpretable link predictors (the same models that
generate proofs) to obtain additional candidate ts with scores above a preset threshold. Specifically,
given a query (s, r), the link predictor returns a ranked list Otop-k = o1, . . . , ok. For each candidate
oi, we extract an associated proof set Pi = pi1, . . . , p

i
m.

Extending rewriter and reasoner. In the multi-answer setting, REWRITER outputs a set of sub-
queries such that the resulting retrieved triplets G(Q) cover at least one proof path for each candidate:

∀i ∈ {1, · · · , k},∃p ∈ Pi s.t. p ⊆ G(Q).

Similarly, the REASONER is trained not only to produce a single object but to output a ranked list of
candidates, each accompanied by its proof as chain-of-thought (CoT).

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. We evaluate PARR on FB15k-237 (Toutanova & Chen, 2015) and WN18RR (Dettmers
et al., 2018), two major datasets for link prediction. We consider both transductive and inductive
setting, following standard splits in (Trouillon et al., 2016) and (Teru et al., 2020). Dataset statistics
can be found in Appendix E.1.

Evaluation. We evaluate with the standard HITS@k metrics: HITS@1, HITS@3 and HITS@10. We
do not consider mean reciprocal recall (MRR) because we do not produce the full score distribution.

Implementation Details. We employ Llama3-8B Instruct (lla, 2024) (abbr. as Llama3) and Qwen3-
8B (Yang et al., 2024) (abbr. as Qwen3) as the base LLM. We finetune using LoRA (Hu et al.,
2021) with rank and alpha being 32 for one epoch. By default we use dense retrieving and sentence
embedding with Jina V3 (Sturua et al., 2024) embedding model as the fixed RETRIEVER for our
REWRITER model. We employ NBFNet (Zhu et al., 2021) and A*Net (Zhu et al., 2023) as the
interpretable expert models. For each model, we train separately twice with different message
functions and random seeds. Please refer to Appendix E.1 for full implementation details.

Baselines. We compare PARR against embedding based models such as TransE (Bordes et al.,
2013), RotatE (Sun et al., 2019), ComplEx (Trouillon et al., 2016), and TuckER (Balazevic et al.,
2019); GNN-based methods like CompGCN (Vashishth et al., 2020) and NBFNet (Zhu et al., 2021);
path-based methods such including NeuralLP (Yang et al., 2017) and A*Net (Zhu et al., 2023); and
methods that utilize pre-trained language models including KG-BERT (Yao et al., 2019), StAR (Wang
et al., 2021), KGLM (Youn & Tagkopoulos, 2023), FTL-LM (Lin et al., 2023), DET (Guo et al.,
2022), KG-Llama (Yao et al., 2025), KICGPT (Wei et al., 2023) and MKGL (Guo et al., 2024).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Transductive link prediction on FB15K-237, WN18RR and NELL995. We use Llama3/Qwen3 to refer
to Llama3-8B-instruct/Qwen3-8B throughout the rest of the paper. Best/2nd-best results are in Bold/underlined.

Model FB15K-237 WN18RR NELL995

HITS@1 HITS@3 HITS@10 HITS@1 HITS@3 HITS@10 HITS@1 HITS@10

TransE 0.218 0.345 0.495 0.061 0.366 0.522 - -
RotatE 0.241 0.375 0.533 0.428 0.492 0.571 0.448 0.608
ComplEx+RP 0.298 0.425 0.568 0.443 0.505 0.578 - -
TuckER 0.266 0.394 0.544 0.443 0.526 0.526 - -

CompGCN 0.264 0.39 0.535 0.443 0.494 0.546 0.257 0.544
NeuralLP - - 0.362 0.371 0.434 0.566 - -
Red-GNN 0.283 - 0.558 0.485 - 0.624 0.476 0.651
NBFNet 0.321 0.454 0.599 0.497 0.573 0.666 0.485 0.655
A*Net 0.321 0.453 0.586 0.495 0.573 0.659 0.479 0.652

KG-BERT - - 0.420 0.041 0.302 0.524 - -
StAR 0.205 0.322 0.482 0.243 0.491 0.709 - -
KGLM 0.200 0.314 0.468 0.330 0.538 0.741 - -
FTL-LM 0.253 0.386 0.521 0.452 0.637 0.773 - -
MKGL 0.325 0.454 0.591 0.500 0.577 0.656 - -
KG-Llama-7b - - - 0.242 - - - -
GPT 3.5 Turbo 0.267 - - 0.212 - - - -
KICGPT 0.327 0.448 0.554 0.474 0.585 0.641 - -

PARR-Llama3 (ours) 0.344 0.453 0.588 0.496 0.573 0.641 0.514 0.655
PARR-Qwen3 (ours) 0.352 0.465 0.593 0.513 0.584 0.653 0.519 0.658

Table 2: Transductive setting on YAGO3-10
dataset. Baselines are from Zhu et al. (2023).

Method YAGO3-10
HITS@1 HITS@3 HITS@10

DistMult 0.24 0.38 0.54
ComplEx 0.26 0.40 0.55
RotatE 0.402 0.550 0.670
BoxE 0.400 0.472 0.541
HAKE 0.452 0.516 0.582

NFBNet 0.480 0.612 0.708
A*Net 0.470 0.611 0.707
KG-LLaMA-13B 0.133 - -

PARR-Qwen3 0.494 0.620 0.691

Table 3: Performance on inductive KG reasoning on FB15k-
237-ind (v1) and WN18RR-ind (v1). Baseline results are
from (Zhu et al., 2021; Guo et al., 2024).

Model FB15K-237-ind WN18RR-ind

H@1 H@10 H@1 H@10

NeuralLP 0.243 0.468 0.592 0.772
DRUM 0.247 0.474 0.613 0.777
GraIL 0.302 0.483 0.653 0.769
RED-GNN 0.302 0.483 0.653 0.8
NBFNet 0.335 0.574 0.695 0.826
MKGL 0.400 0.595 0.700 0.822
ChatGPT [42] 0.288 - 0.279 -

PARR-Llama3 0.394 0.541 0.711 0.813
PARR-Qwen3 0.412 0.566 0.718 0.824

5.2 MAIN RESULTS

Table 1 summarizes the results on KG link prediction under the transductive setting. PARR shows
competitive performance against existing methods on both datasets. Particularly, PARR-Qwen3
outperforms previous SOTA (MKGL) on HITS@1 for both FB15K-237 and WN18RR. For instance,
PARR-Qwen3 achieves 0.348 HITS@1 on FB15K-237, 2.3% above the previous SOTA (MKGL).

Table 3 shows results under the inductive setting. PARR-Qwen3 noticeably outperforms all the
other methods under HITS@1 for both datasets. For example, PARR-Qwen3 scores 0.412 HITS@1
on FB15K-237-ind, surpassing previous SOTA by 1.2%. In Table 2 we show additional results on
YAGO3-10 Mahdisoltani et al. (2015) with PARR-Qwen3. We can observe PARR achieves better
performance on HITS@1 and HITS@3, and is comparable to SOTA methods on HITS@10.

In both transductive and inductive settings, we observe PARR achieves stronger performance on
metrics with small ks, such as HITS@1 and HITS@3, while relatively fall short on HITS@10 as
compared to SOTA methods such as NBFNet and MKGL. This is due to existing methods such
as NBFNet and MKGL directly learn a score distribution over all entities, which is in turn more
advantageous when considering large ks.

5.3 ABLATION STUDIES

Evaluating Retrieval. In Figure 2 we show average recall and different number of retrievals per
sample (controlled by top-k retrieval). We can see the REWRITER outperforms all other retrieving

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Retrieval performance of PARR REWRITER under different top-k, and their effect on the downstream
REASONER’s performance. The recall is calculated as the highest among n ground-truth paths. top-k for
REWRITER refers to top-k retrievals given each rewrited sub-queries. Avg. Retr. refers to average number of
retrievals per sample; Avg. Rew. refers to the average number of rewrited sub-queries per sample. Avg. Retr. is
caluculated from Avg. Rew. × k × Path-Lengths. Best/2nd-best results are in Bold/underlined.

top-k Base LLM Avg. Retr. Avg. Rew. Recall(↑) HITS@1 HITS@3 HITS@10

FB15K-237
2 Llama3 23 4 0.452 0.288 0.288 0.371
2 Qwen3 20 4 0.485 0.319 0.413 0.406
5 Llama3 26 2 0.741 0.341 0.449 0.579
5 Qwen3 25 2 0.758 0.348 0.460 0.586
15 Llama3 48 1 0.724 0.312 0.426 0.534
15 Qwen3 50 1 0.743 0.325 0.437 0.548

WN18RR
2 Llama3 27 5 0.388 0.251 0.352 0.325
2 Qwen3 26 5 0.395 0.262 0.378 0.403
5 Llama3 29 2 0.706 0.488 0.566 0.632
5 Qwen3 30 2 0.713 0.507 0.581 0.644
15 Llama3 44 1 0.662 0.462 0.514 0.541
15 Qwen3 44 1 0.683 0.476 0.533 0.590

methods significantly in terms of Recall, while requiring much fewer number of retrievals, for both
base LLMs and datasets. Meanwhile, Dense + proof paths noticeably outperform Dense without
proof paths in all scenarios, demonstrating the effect of augmenting proof paths into retrieval. On the
other hand, KICGPT’s retrieval shows similar performance to the baseline sparse/dense RETRIEVER
under our implementation, but falls significantly behind Dense + proof paths and REWRITER. In
case of the non-trainable RETRIEVER, we observe dense mode to slightly outperform sparse retrieval,
and hybrid RETRIEVER being marginally better than dense RETRIEVER.

Figure 2: Retrieval performance on FB15K-237 and
WN18RR as a function of Average Retrievals per Sample
(x-axis) and Average Recall(y-axis. + proof paths denotes
dense RETRIEVER with proofs included in the retrieval. +
proof paths + BFS(2) refers to the hybrid RETRIEVER with
Breadth-First-Search depth of 2.

0 100 200 300 4000.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l (

)

FB15K-237

0 100 200 300 400

WN18RR

Sparse
Dense
+ proof paths
+ proof paths + BFS(2)
KICGPT
Rewriter-Llama3
Rewriter-Qwen3

Average Retrievals per Sample ()

Effect of Retrieval Performance on Rea-
soner. In Table 4 we show ablations on the
effect of top-k on our REWRITER, and the ef-
fect of the retrieval performance on the REA-
SONER LLM. We can observe best retrieval
performance are achieved at k = 5 under
all scenarios, with k = 2’s recall lags sig-
nificantly behind. We conjecture this is be-
cause when k is low, the number of rewrited
sub-queries are noticeably increased. This
imposes a harder task on the REWRITER,
which has to learn a much more complex
mapping between the query and the rewrited
sub-queries, leading to low recall. On the
other hand, we can also observe the down-
stream REASONER’s performance is directly
tied to the quality of the retrieval.

Ablations on Reasoner. We start by evaluating the inherent logical reasoning ability of LLMs. In
Figure 3 we show zero-shot performance on link prediction, where ground-truth retrievals (grounding
paths extracted from pretrained link predictors) are provided. To simulate noisy retrievals with false
positives, we randomly sample and inject irrelevant triplets. We can see the model’s performance lags
largely behind traditional link predictors, even with ground-truth retrieval and no false positives (i.e.
recall=precision=1). The model performance quickly degrade as the number of injected irrelevant
triplets increase. For FB15K-237, both LLMs’s HITS@1 quickly drop to near 0 with 16 false
positives. This shows the need for a model with better and more robust logical reasoning capacity.

In Table 5 we show the impact of each component on the performance of the REASONER. We
consider two LLM-based baselines: (1) LLM with naive finetuning (without CoT and retrieval).
Similar to KG-Llama, we perform finetuning to predict missing entities, without retrieval. (2) LLM
with RETRIEVER. In this setting we use the fixed RETRIEVER (Sec. 4.1).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Ablations on the performance of REASONER with respect to each component: Chain of Thought (CoT),
retrieval method (Retr.), and Retr. Dropout: whether to apply random dropout on ground-truth retrievals while
finetuning the REASONER. Dense refers to fixed dense retrieval with k = 50. REW refers to our fine-tuned
REWRITER. H@k refers to HITS@k.

Method CoT Retr. Retr.
Dropout

FB15K-237 WN18RR
H@1 H@3 H@10 H@1 H@3 H@10

NBFNet - - - 0.321 0.454 0.599 0.497 0.573 0.666
KICGPT - - - 0.327 0.448 0.554 0.474 0.585 0.641
KG-Llama-7B - - - - - - 0.242 - -

Llama3 × × - 0.077 - - 0.171 - -
Qwen3 × × - 0.085 - - 0.184 - -
Llama3 × Dense - 0.143 - - 0.279 - -
Qwen3 × Dense - 0.155 - - 0.285 - -

PARR-Llama3 × REW × 0.293 0.395 0.412 0.451 0.413 0.479
PARR-Qwen3 × REW × 0.302 0.388 0.48 0.467 0.499 0.544
PARR-Llama3 ✓ REW × 0.316 0.405 0.534 0.479 0.491 0.538
PARR-Qwen3 ✓ REW × 0.335 0.413 0.521 0.493 0.524 0.603
PARR-Llama3 ✓ REW ✓ 0.341 0.449 0.579 0.488 0.566 0.632
PARR-Qwen3 ✓ REW ✓ 0.348 0.460 0.586 0.507 0.581 0.644

Table 6: Ablation on MoE effect for RETRIEVER recall and
REASONER’s HITS@1 on FB15k-237 and WN18RR.

Retriever (Recall) Reasoner (HITS@1)
w/ MoE FB15k-237 WN18RR FB15k-237 WN18RR
× 0.683 0.629 0.324 0.456
✓ 0.741 0.706 0.341 0.488

Figure 3: Zero-Shot performance on FB15k-
237 and WN18RR. We provide ground-truth
retrievals in the context with varying amount
of randomly sampled irrelevant triplets, sim-
ulating the false positive retrievals.

0 25 50 75 100 125
Irrelevant triplets injected

0.0

0.1

0.2

0.3

0.4

H
IT

S@
1

(
)

Llama3-FB15K-237
Qwen3-FB15K-237
Llama3-WN18RR
Qwen3-WN18RR

We can first observe that naive finetuning (i.e. directly
finetuning using training triplets without retrieval or CoT)
results in significantly lower accuracy in all scenarios. For
instance, Llama3 only achieves 0.077 HITS@1 on FB15K-
237, and 0.171 on WN18RR. With dense RETRIEVER
included, the accuracy for both datasets are considerably
improved, but still noticeably lag behind other models.

At the bottom of Table 5 we show each component’s effect
on the performance of REASONER. We observe improved
performance with CoT and retrieval dropout included during training. The full PARR performs
significantly better than LLM baselines, and is on par or better with existing SOTA methods.

5.4 ABLATION ON MOE LINK PREDICTORS

To understand the effect of sampling proofs from MoE link predictors (Sec. 4.1), we conduct ablation
study on the effect of using MoE-sampled proofs versus proof sampled from a single link predictor.
As shown in Tab. 6, we can observe that with MoE we can achieve notable improvement for both
retrieval and link prediction accuracy, with over 6% improvement on recall, and 2% on HITS@1.

6 CONCLUSION

In this paper we introduce Proof-Augmented Retrieval and Reasoning (PARR) for KG completion.
We effectively leverage proofs extracted from interpretable link predictors such as NBFNet and
A*Net to (1) augment the RAG database for better sub-graph retrieval, (2) serve as golden retrieval
for supervising a REWRITER LLM for query rewriting, and (3) supervise a REASONER LLM as CoT
data. By experimenting on different datasets and task settings, we show PARR achieves competitive
performance compared to SOTA link prediction models. Finally, we conduct extensive ablations to
examine the effect and performance of each component of PARR.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We reviewed the ICLR Code of Ethics carefully and do not observe potential concerns for our work.

REPRODUCIBILITY STATEMENT

We made our best efforts to comprehensively document the implementation details. Training hyper-
parameters and model architectures are discussed in Section 5.1. We include the dataset construction
details including all the example prompts we used in Section E.1 and Section F.

REFERENCES

The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert Mueller. How to explain individual classification decisions, 2009. URL https://
arxiv.org/abs/0912.1128.

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Association for Computational Linguistics, 2019. doi: 10.18653/v1/d19-1522.
URL http://dx.doi.org/10.18653/v1/D19-1522.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’13, pp. 2787–2795, Red
Hook, NY, USA, 2013. Curran Associates Inc.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang,
Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irv-
ing, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Lau-
rent Sifre. Improving language models by retrieving from trillions of tokens, 2022. URL
https://arxiv.org/abs/2112.04426.

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and Yangfeng Ji. Hitter:
Hierarchical transformers for knowledge graph embeddings, 2021. URL https://arxiv.
org/abs/2008.12813.

Xuanming Cui, Chionh Wei Peng, Adriel Kuek, and Ser-Nam Lim. Improving soft unification with
knowledge graph embedding methods, 2025. URL https://openreview.net/forum?
id=OOqvY9yvVG.

Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot Tower, Robin Jia, Manzil Zaheer, Hannaneh
Hajishirzi, and Andrew McCallum. Knowledge base question answering by case-based reasoning
over subgraphs, 2022. URL https://arxiv.org/abs/2202.10610.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings, 2018. URL https://arxiv.org/abs/1707.01476.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards founda-
tion models for knowledge graph reasoning, 2024. URL https://arxiv.org/abs/2310.
04562.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels, 2022. URL https://arxiv.org/abs/2212.10496.

Lingbing Guo, Qiang Zhang, and Huajun Chen. Unleashing the power of transformer for graphs,
2022. URL https://arxiv.org/abs/2202.10581.

10

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/0912.1128
https://arxiv.org/abs/0912.1128
http://dx.doi.org/10.18653/v1/D19-1522
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2008.12813
https://arxiv.org/abs/2008.12813
https://openreview.net/forum?id=OOqvY9yvVG
https://openreview.net/forum?id=OOqvY9yvVG
https://arxiv.org/abs/2202.10610
https://arxiv.org/abs/1707.01476
https://arxiv.org/abs/2310.04562
https://arxiv.org/abs/2310.04562
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2202.10581

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lingbing Guo, Zhongpu Bo, Zhuo Chen, Yichi Zhang, Jiaoyan Chen, Yarong Lan, Mengshu Sun,
Zhiqiang Zhang, Yangyifei Luo, Qian Li, Qiang Zhang, Wen Zhang, and Huajun Chen. Mkgl:
Mastery of a three-word language, 2024. URL https://arxiv.org/abs/2410.07526.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training, 2020. URL https://arxiv.org/abs/2002.
08909.

Sheryl Hsu, Omar Khattab, Chelsea Finn, and Archit Sharma. Grounding by trying: LLMs with
reinforcement learning-enhanced retrieval. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=BPAZ6yW3K7.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering, 2021. URL https://arxiv.org/abs/2007.01282.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models, 2022. URL https://arxiv.org/abs/2208.
03299.

Pengcheng Jiang, Lang Cao, Cao Xiao, Parminder Bhatia, Jimeng Sun, and Jiawei Han. KG-
FIT: Knowledge graph fine-tuning upon open-world knowledge. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=rDoPMODpki.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Qika Lin, Rui Mao, Jun Liu, Fangzhi Xu, and Erik Cambria. Fusing topology contexts and logical
rules in language models for knowledge graph completion. Inf. Fusion, 90(C):253–264, February
2023. ISSN 1566-2535. doi: 10.1016/j.inffus.2022.09.020. URL https://doi.org/10.
1016/j.inffus.2022.09.020.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning, 2024. URL https://arxiv.org/abs/2310.
01061.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting for retrieval-
augmented large language models, 2023. URL https://arxiv.org/abs/2305.14283.

Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. Yago3: A knowledge base
from multilingual wikipedias. In Conference on Innovative Data Systems Research, 2015. URL
https://api.semanticscholar.org/CorpusID:6611164.

Shengyu Mao, Yong Jiang, Boli Chen, Xiao Li, Peng Wang, Xinyu Wang, Pengjun Xie, Fei Huang,
Huajun Chen, and Ningyu Zhang. RaFe: Ranking feedback improves query rewriting for RAG.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 884–901, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.49. URL
https://aclanthology.org/2024.findings-emnlp.49/.

Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for large language model
reasoning, 2024. URL https://arxiv.org/abs/2405.20139.

11

https://arxiv.org/abs/2410.07526
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://openreview.net/forum?id=BPAZ6yW3K7
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2208.03299
https://arxiv.org/abs/2208.03299
https://openreview.net/forum?id=rDoPMODpki
https://openreview.net/forum?id=rDoPMODpki
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.1016/j.inffus.2022.09.020
https://doi.org/10.1016/j.inffus.2022.09.020
https://arxiv.org/abs/2310.01061
https://arxiv.org/abs/2310.01061
https://arxiv.org/abs/2305.14283
https://api.semanticscholar.org/CorpusID:6611164
https://aclanthology.org/2024.findings-emnlp.49/
https://arxiv.org/abs/2405.20139

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving, 2017. URL https:
//arxiv.org/abs/1705.11040.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel,
Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, and Han Xiao. jina-embeddings-
v3: Multilingual embeddings with task lora, 2024. URL https://arxiv.org/abs/2409.
10173.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space, 2019. URL https://arxiv.org/abs/1902.10197.

Komal K. Teru, Etienne Denis, and William L. Hamilton. Inductive relation prediction by subgraph
reasoning, 2020. URL https://arxiv.org/abs/1911.06962.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text in-
ference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle, and
Scott Wen-tau Yih (eds.), Proceedings of the 3rd Workshop on Continuous Vector Space Models and
their Compositionality, pp. 57–66, Beijing, China, July 2015. Association for Computational Lin-
guistics. doi: 10.18653/v1/W15-4007. URL https://aclanthology.org/W15-4007/.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction, 2016. URL https://arxiv.org/abs/1606.
06357.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BylA_C4tPr.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, and Yi Chang. Structure-augmented
text representation learning for efficient knowledge graph completion. In Proceedings of the Web
Conference 2021, WWW ’21, pp. 1737–1748. ACM, April 2021. doi: 10.1145/3442381.3450043.
URL http://dx.doi.org/10.1145/3442381.3450043.

Yanbin Wei, Qiushi Huang, Yu Zhang, and James Kwok. Kicgpt: Large language model with knowl-
edge in context for knowledge graph completion. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 8667–8683. Association for Computational Linguistics, 2023. doi:
10.18653/v1/2023.findings-emnlp.580. URL http://dx.doi.org/10.18653/v1/2023.
findings-emnlp.580.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowledge
base reasoning, 2017. URL https://arxiv.org/abs/1702.08367.

Liang Yao, Chengsheng Mao, and Yuan Luo. Kg-bert: Bert for knowledge graph completion, 2019.
URL https://arxiv.org/abs/1909.03193.

Liang Yao, Jiazhen Peng, Chengsheng Mao, and Yuan Luo. Exploring large language models for
knowledge graph completion, 2025. URL https://arxiv.org/abs/2308.13916.

Jason Youn and Ilias Tagkopoulos. Kglm: Integrating knowledge graph structure in language models
for link prediction, 2023. URL https://arxiv.org/abs/2211.02744.

Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng, Hua-
jun Chen, and Ningyu Zhang. Llms for knowledge graph construction and reasoning: Recent
capabilities and future opportunities, 2024. URL https://arxiv.org/abs/2305.13168.

12

https://arxiv.org/abs/1705.11040
https://arxiv.org/abs/1705.11040
https://arxiv.org/abs/2409.10173
https://arxiv.org/abs/2409.10173
https://arxiv.org/abs/1902.10197
https://arxiv.org/abs/1911.06962
https://aclanthology.org/W15-4007/
https://arxiv.org/abs/1606.06357
https://arxiv.org/abs/1606.06357
https://openreview.net/forum?id=BylA_C4tPr
http://dx.doi.org/10.1145/3442381.3450043
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.580
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.580
https://arxiv.org/abs/1702.08367
https://arxiv.org/abs/1909.03193
https://arxiv.org/abs/2308.13916
https://arxiv.org/abs/2211.02744
https://arxiv.org/abs/2305.13168

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 34, 2021.

Zhaocheng Zhu, Xinyu Yuan, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau, and
Jian Tang. A*net: A scalable path-based reasoning approach for knowledge graphs, 2023. URL
https://arxiv.org/abs/2206.04798.

13

https://arxiv.org/abs/2206.04798

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 7: Training time comparison using default settings for each model.

Model WN18RR FB15k-237 YAGO

Time (hr) Max GPU (G) Time (hr) Max GPU (G) Time (hr) Max GPU (G)

NBFNet 21 27 32 19 1141 27
AstarNet 15 5 29 14 503 15
MKGL (Llama2-7B) 20 58 60 67 3789 54
PARR (Llama3-8B) 73 75 126 68 923 72

Table 8: Evaluation throughput (seconds per batch) and maximum GPU memory allocation (in GB).

Model WN18RR FB15k-237 YAGO

s/batch Max GPU (G) s/batch Max GPU (G) s/batch Max GPU (G)

NBFNet 1.3 1 1.4 0.6 3.2 5
AstarNet 1.3 0.4 1.4 0.6 1.7 4
MKGL 3.1 39 4.6 28 5.6 31
KICGPT 158 – 176 – – –
PARR (Llama3-8B) + vLLM 3.2 74 3.5 74 3.3 74

A COMPUTATION ANALYSIS

Here we profile the training/evaluation’s peak GPU memory consumption and time spent for PARR
and SOTA methods. All experiments are run on the same compute node with one Nvidia A100 GPU.
Due to time limit, we estimate training time by average time per step× steps per epoch× n epochs
using parameters from models’ default configs. For evaluation, we measure the average time (in
second) spent for one batch with batch size equals to 8.

Justification on the system complexity. While the overall PARR framework exhibits more complex-
ity than traditional link predictors, we would like to note:

(1) PARR targets a fundamentally different use case than traditional link predictors. While
traditional link predictors such as KGE models are discriminative classifiers, PARR is built towards a
generative, conversational KG agent. This means PARR must model the full distribution of the KG
over natural language’s space, which is substantially more challenging than training a discriminative
KGE with a binary classification loss.

(2) PARR offers significantly better inference efficiency than prompt-based LLM approaches.
Unlike recent SOTA prompt-based LLM KGC method such as KICGPT (Wei et al., 2023), which
require repeated calls to large proprietary LLMs, PARR is much more efficient at inference time. As
shown in Table 8, on FB15k-237, KICGPT takes 176 seconds to evaluate 8 samples, whereas PARR
takes only 3.5 seconds—with better accuracy.

(3) PARR is scalable. GNN-based link predictors often incur at least polynomial (exponential for
exhaustive path search algorithms like PathCon) time/memory complexity w.r.t. to the number of
entities, edges, and embedding dimensions. In contrast, both REWRITER and REASONER in PARR
have near constant time and memory consumption, irrespective of graph size. The RETRIEVER can
also achieve constant or logarithmic time complexity via precomputed retrieval tables or fast retrieval
libraries like FAISS (Johnson et al., 2019). As shown in Tab. 7, on YAGO3-10, MKGL requires 3700
GPU hours, while PARR achieves better performance with only 920 GPU hours.

(4) Heavy data curation, straightforward deployment. Despite the complexity of PARR, more than
half of the efforts are for data curation. This, however, has become a normal practice in the era of
LLMs, where data curation has become the most important and time-consuming process. On the
other hand, PARR is straightforward to deploy in real-world, thanks to the development in LLM
acceleration tools (e.g. vLLM) and scalable retrieval index (e.g. FAISS).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 9: Training with Llama3-8B (total hours spent).

Dataset Rewriter Retriever Reasoner

WN18RR 15 – 58
FB15k-237 23 – 103
YAGO3-10 88 – 835

Table 10: Evaluation with Llama3-8B (seconds per
batch, with vLLM).

Dataset Rewriter Retriever Reasoner

WN18RR 1.3 – 1.9
FB15k-237 1.3 – 2.2
YAGO3-10 1.3 – 2.0

Table 11: Performance on inductive knowledge graph reasoning. V1-v4 refer to the 4 standard splits.

Method v1 v2 v3 v4
HITS@1 HITS@10 HITS@1 HITS@10 HITS@1 HITS@10 HITS@1 HITS@10

FB15k-237

GraIL 0.205 0.429 0.202 0.424 0.165 0.424 0.143 0.389
NeuralLP 0.243 0.468 0.286 0.586 0.309 0.571 0.289 0.593
DRUM 0.247 0.474 0.284 0.595 0.308 0.571 0.309 0.593
NBFNet 0.335 0.574 0.421 0.685 0.384 0.637 0.360 0.627
RED-GNN 0.302 0.483 0.381 0.629 0.351 0.603 0.340 0.621
A*Net 0.381 0.589 0.419 0.672 0.389 0.629 0.365 0.645
MKGL 0.400 0.595 0.417 0.681 0.392 0.643 0.374 0.645

PARR-Qwen3 0.412 0.586 0.433 0.688 0.397 0.633 0.386 0.633

WN18RR

GraIL 0.554 0.760 0.542 0.776 0.278 0.409 0.443 0.687
NeuralLP 0.592 0.772 0.575 0.749 0.304 0.476 0.583 0.706
DRUM 0.613 0.777 0.595 0.747 0.330 0.477 0.586 0.702
NBFNet 0.695 0.826 0.651 0.798 0.392 0.568 0.608 0.694
RED-GNN 0.653 0.799 0.633 0.780 0.368 0.524 0.606 0.721
A*Net 0.682 0.810 0.649 0.803 0.386 0.544 0.616 0.743
MKGL 0.700 0.822 0.662 0.799 0.406 0.559 0.620 0.741

PARR-Qwen3 0.718 0.824 0.675 0.788 0.414 0.572 0.627 0.725

B MORE RESULTS

In Table 11 we show full results on the inductive settings for FB15k-237 and WN18RR. Given the
better performance of Qwen3 over Llama3, we only run experiments based on Qwen3. We can see
PARR achieves better or comparable performance on all the splits for both FB15k-237 and WN18RR,
demonstrating its strong generalizability over unseen entities.

We further evaluate PARR on ogbl-wikikg2, a large-scale knowledge graph derived from Wikidata.
The results, reported in terms of MRR, are shown in Table 12. Notably, PARR attains the strongest
overall performance, despite representing a lower bound on MRR (because PARR predicts only
the top-10 candidate entities, any correct entity ranked outside the top-10 receives zero reciprocal
rank). Still, PARR surpasses all baselines, demonstrating the effectiveness and scalability of our
proof-augmented retrieval and reasoning framework on large KGs.

To further demonstrate robustness across graph sizes and relational structures, we also evaluate on
three small but widely used KGs—Kinship, Nations, and UMLS. As shown in Table 13, PARR
consistently outperforms all existing systems, achieving new state-of-the-art results on all datasets
across both HITS@1 and HITS@10 metrics.

Table 12: MRR results on ogbl-wikikg2. PARR achieves the best performance despite representing a lower
bound, as it only predicts top-10 entities.

PARR-Qwen3 TransE ComplEx RotatE PairRE ComplEx+RP A*Net

MRR 0.7013 0.4256 0.4027 0.4332 0.5208 0.6392 0.6767

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 13: Results on three small, statistical KGs: Kinship, UMLS, and Nations. PARR achieves state-of-the-art
performance across all datasets.

Method Kinship UMLS Nations

H@1 H@10 H@1 H@10 H@1 H@10

NeuralLP 0.475 0.912 0.643 0.862 – –
MINERVA 0.605 0.924 0.728 0.968 – –
DRUM 0.367 0.885 0.546 0.935 – –
NBFNet 0.632 0.966 0.721 0.971 0.633 0.951
LERP 0.500 0.931 0.646 0.942 – –
PARR-Qwen3 0.656 0.973 0.748 0.983 0.672 0.960

C MORE ANALYSIS

C.1 ABLATION ON THE ROBUSTNESS OF PARR ON NOISY PROOFS

Table 14: Reasoner performance (HITS@1) under
different perturbation ratios.

Dataset 0% 5% 10% 25% 50%

FB15k-237 0.341 0.340 0.334 0.325 0.296
WN18RR 0.488 0.487 0.482 0.476 0.436

Here we conduct a robustness analysis on how vari-
ations in proof quality (e.g., using weaker or par-
tial proofs) could affect end-to-end link prediction
performance. To do so, we add n% of noisy proof
(proofs with bottom 5% path scores) to the retrieval.
In Tab. 14 we show the performance (HIT@1) of
Reasoner (LLama3-8B) during inference time, where
the retrieval is randomly perturbed by n%. We can
see the Reasoner maintains decent performance (e.g. less than 0.015% drop) even when perturbation
rate is 25% for both datasets.

C.2 DECOUPLING PRETRAINED LINK PREDICTORS FROM INFERENCE

Table 15: Ablation on test-time proof usage. Re-
moving proofs during retrieval (PARR-Qwen3 w/o
proofs) leads to only minimal degradation.

Method FB15k-237 WN18RR

ComplEx+RP 0.298 0.443
NBFNet 0.321 0.497
MKGL 0.325 0.500
PARR-Qwen3 0.352 0.513
PARR-Qwen3 (w/o proofs) 0.346 0.508

To further improve test-time efficiency, we evaluate a
variant of PARR in which no proofs are used during
retrieval (PARR-Qwen3 w/o proofs). This removes
all dependence on pre-trained link predictors during
inference, making PARR lighter while preserving
the training benefits of proof supervision. As shown
in Table 15, this variant yields only a minor drop
in performance on both FB15k-237 and WN18RR,
demonstrating that PARR remains highly effective
even without proof-based retrieval at test time.

C.3 CONVERGENCE OF PARR

20 40 60 80 100
Training steps (%)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

H
IT

S@
1

(
)

Validation Accuracy

WN18RR
FB15k-237
YAGO3-10

Figure 4: Validation accuracy
(HITS@1) on 100 samples sam-
pled from the validation set.

As shown in Figure 4, we observe that the PARR reasoner con-
verges rapidly, particularly on larger KGs such as YAGO3-10, where
substantial overlap arises between the constructed rewriting and rea-
soning sets. This property enables an efficient trade-off between
training time and final performance: the model can be trained for
significantly fewer steps with only minimal degradation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D CONSTRUCTING MINIMAL REWRITING SETS

Given a proof and a fixed retrieval interface RETRIEVER, we want to find a minimal set of rewrited
sub-queries that, after each individual retrieval, can cover the proof. We solve this with a set-cover
algorithm. Moreover, since there may exist multiple (semi-)minimal rewriting sets that cover a proof,
we apply a beam-search style iteration on top of the set-cover algorithm. Algorithm 1 shows the
detailed procedure.

Algorithm 1 Find N Minimal Rewriting Sets

Require: Target triplet T ; target proof p; precomputed retrievals mapping given triplets:M; inverse
of retrieval mappingM−1; maximum number of solutions n; beam width w

Ensure: A set of rewriting sets {Q1, . . . ,Qn}, each of which covers p
1: Initialize beam list: B ← {(∅, p)}
2: Initialize solution set: S ← []
3: Initialize seen set: s← ∅
4: while B ̸= ∅ and |S| < n do
5: B ← []
6: for all (Q,U) ∈ B do
7: if U = ∅ then
8: k ← sorted(Q)
9: if k /∈ s then

10: s← s ∪ {k}
11: S ← s ∪ {Q}
12: end if
13: continue
14: end if
15: r ← ∅ ▷ Gather relevant triplets r that will cover part of the remaining proof
16: for all q ∈ U do
17: r ← r ∪M−1[q]
18: end for
19: r ← r \ Q \ {T }
20: Scored← [] ▷ Greedily score candidate queries by how many remaining they cover
21: for all q ∈ r do
22: Cq ←M[q] ∩ U
23: if Cq ̸= ∅ then
24: Append (|Cq|, q, Cq) to Scored
25: end if
26: end for
27: Scored← sorted(Scored, reverse=True)
28: for i = 1 to min(w, |Scored|) do
29: (_, q, Cq)← Scored[i]
30: Qnew ← Q∪ {q} ▷ Extend query set
31: Unew ← U \ Cq
32: Append (Qnew,Unew) to B
33: end for
34: end for
35: B ← B
36: end while
37: return S

E DATASETS AND IMPLEMENTATIONS DETAILS

E.1 DATASET STATISTICS

In Table 16 and 17 we show dataset statistics for the transductive and inductive setting. We follow
the standard splits in their original works.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 16: Dataset statistics for the transductive setting. # Rewriter Train denotes the number of training samples
used for training REWRITER (and the REASONER).

Dataset #Entity #Relation # Train # Validation # Test # Rewriter Train Avg. Rewrites

FB15k-237 14,541 237 272,115 17,535 20,466 3,682,046 4
WN18RR 40,943 11 86,835 3,034 3,134 1,149,304 2
YAGO3-10 123,182 37 1,079,040 5000 5000 16,628,192 5

Table 17: Dataset statistics for the inductive setting.

Dataset # Relation Train Valid Test

Entity # Triplet # Entity # Evaluation # Fact # Entity # Evaluation # Fact

FB15k-237-ind-v1 180 1,594 4,245 1,594 489 4,245 1,093 205 1,993
FB15k-237-ind-v2 200 2,608 9,739 2,608 1,166 9,739 1,660 478 4,145
FB15k-237-ind-v3 215 3,668 17,986 3,668 2,194 17,986 2,501 865 7,406
FB15k-237-ind-v4 219 4,707 27,203 4,707 3,352 27,203 3,051 1,424 11,714
WN18RR-ind-v1 9 2,746 5,410 2,746 630 5,410 922 188 1,618
WN18RR-ind-v2 10 6,954 15,262 6,954 1,838 15,262 2,757 441 4,011
WN18RR-ind-v3 11 12,078 25,901 12,078 3,097 25,901 5,084 605 6,327
WN18RR-ind-v4 9 3,861 7,940 3,861 934 7,940 7,084 1,429 12,334

Table 18: Dataset samples of the rewriting training dataset for WN18RR. Entity in red refers to the target entity,
which is missing from the query.

Query Rewrited sub-queries

(subdivision pinophytina,
hypernym, class)

(order coniferales, (inverse) member meronym, subdivision coniferophytina),
(subdivision coniferophytina, hypernym, class)

(nippon,
has part, nagasaki)

(volcano islands, instance hypernym, archipelago),
(kyushu, has part, nagasaki),
(pacific ocean, has part, volcano islands)

(enfeeble,
hypernym, weaken)

(weaken, (inverse) hypernym, nullify),
(enfeeble, drf, exhaustion)

Table 19: Dataset samples of the REASONERs training dataset for WN18RR. drf refers to Derivationally Related
Form.

Query Retrievals Target Proof

(screen,
hypernym, ?)

(hood, hypernym, protective covering),
(motorcar, has part, hood),
(plane, has part, hood)
(windshield, (inverse) has part, plane),
(screen, (inverse) hypernym, windshield),
...,
(hood, (inverse) has part, motorcar)

protective
covering

(hood, hypernym, protective covering)
→ (hood, (inverse) has part, motorcar)
→ (screen, (inverse) hypernym, windshield)
→ (windshield, (inverse) has part, plane)
→ (plane, has part, hood)
→ (motorcar, has part, hood)

(stick in,
drf, ?)

(inclosure, (inverse) drf, shut in),
(stick in, (inverse) drf, inclosure),
(inclosure, drf, stick in),
...,
(stick in, (inverse) drf, inset)

inset
(stick in, (inverse) drf, inclosure)
→(inclosure, drf, stick in)
→(stick in, (inverse) drf, inset)

(carry,
verb group, ?)

(carry, hypernym, make up),
(make up, (inverse) hypernym, carry),
(carry, (inverse) verb group, carry),
(right, also see, make up),
...,
(make up, (inverse) also see, right)

carry

(carry, hypernym, make up)
→(make up, (inverse) hypernym, carry)
→(carry, (inverse) verb group, carry)
→(right, also see, make up)
→(make up, (inverse) also see, right)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 20: Hyper-parameters for supervised finetuning on REWRITER and REASONER, for both Llama3-8B
Instruct and Qwen3-8B.

Dataset LoRA Rank/Alpha Epochs Learning Rate Batch Size Gradient Accumulation Steps Optimizer

REWRITER
FB15k-237 32 1 1e−5 8 2 AdamW
WN18RR 32 1 1e−5 8 2 AdamW

YAGO3-10 32 1 1e−5 8 2 AdamW

REASONER
FB15k-237 32 1 1e−5 2 8 AdamW
WN18RR 32 1 1e−5 2 8 AdamW

YAGO3-10 32 1 1e−5 2 8 AdamW

E.2 DATASET SAMPLES

In Table 18 and 19 we show sample data from the rewriting dataset and reasoning dataset from
WN18RR Dettmers et al. (2018).

E.3 IMPLEMENTATION DETAILS

Table 21: Hyperparameters for NBFNet and A*Net on all datasets. We use the same set of hyper-parameters for
NBFNet Zhu et al. (2021) and A*Net Zhu et al. (2023), except for parameters Priority Function, which are
only used for A*Net.

Hyperparameter FB15k-237 WN18RR YAGO3-10
transductive inductive transductive inductive transductive

Message Passing

#step (T) 6 6 6 6 6
hidden dim. 32 32 32 32 32

message DistMult DistMult DistMult DistMult DistMult
aggregation PNA sum PNA sum PNA

Priority Function

g(·) #layer 1 1 1 1 1
f(·) #layer 2 2 2 2 2
hidden dim. 64 64 64 64 64
node ratio α 10% 50% 10% 5% 10%

degree ratio β 100% 100% 100% 100% 100%

Learning

optimizer Adam Adam Adam Adam Adam
batch size 256 256 256 256 40

learning rate 5e−3 5e−3 5e−3 5e−3 5e−3

#epoch 20 20 20 20 0.4
adv. temperature 0.5 0.5 1 1 0.5

#negative 32 32 32 32 32

Proof Extraction. We utilize NBFNet and A*Net in this work to extract proofs. Hyperparameters
are shown in Table 21. By default we adopt the same hyperparameters as original works.

RETRIEVER. For dense and hybrid retriever, we use Jina-V3 Sturua et al. (2024) text embed-
ding model to compute and store the normalized embeddings, and retrieve using FAISS Johnson
et al. (2019) with IndexFlatIP index, which is equivalent to the cosine-similarity metric given pre-
normalized embeddings. For dense retrieval, we observe similar performance when using Principle
Neighboring Aggregation (PNA) and sentence embedding for triplet embedding calculation. For
consistency, we use the latter throughout the paper.

Supervised Finetuning. We conduct experiments on Llama3-8B Instruct lla (2024) and Qwen3-
8B Yang et al. (2024), two state-of-the-art LLMs. We show hyper-parameters in Table 20. We use
the same set of hyper-parameters between Llama3-8B and Qwen3-8B. Experiments for FB15K-237
and WN18RR are run on 4 Nvidia H100 GPUs, and experiments for YAGO3-10 are run on 8 Nvidia
H100 GPUs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a knowledgeable assistant that performs query rewriting for retrieving
relevant context for knowledge graph completion tasks. Given a query in the
form of a partially missing triplet (subject, relation,?), you will rewrite (expand)
the query into a list of triplets. Each of the expanded triplets is then used to
retrieve relevant triplets from a database. Your goal is to provide a list of rewrited
triplets that, after retrieval, will provide complete information needed for proving
the original query, while keeping the number of rewrited triplets minimum.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Query:
(veratrum, hypernym,?)

Please expand the query into a python list of triplets in the form of [(head,
relation, tail),...]. Please strictly follow the format of the output as it will be
parsed by a program.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Answer:[('polianthes', 'hypernym', 'liliid monocot genus'), ('hellebore',
'(inverse) member meronym','veratrum')]<|eot_id|>

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a knowledgeable assistant that performs query rewriting for retrieving
relevant context for knowledge graph completion tasks. Given a query in the
form of a partially missing triplet (subject, relation,?), you will rewrite (expand)
the query into a list of triplets. Each of the expanded triplets is then used to
retrieve relevant triplets from a database. Your goal is to provide a list of rewrited
triplets that, after retrieval, will provide complete information needed for proving
the original query, while keeping the number of rewrited triplets minimum.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Query:
(family compositae, member meronym,?)

Please expand the query into a python list of triplets in the form of [(head,
relation, tail),...]. Please strictly follow the format of the output as it will be
parsed by a program.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Answer:[('vegetable oyster', 'has part','vegetable oyster'), ('genus ageratum',
'(inverse) member meronym', 'family compositae')]<|eot_id|>

Figure 5: Sample prompt and answer(in dark green) for Llama3-based REWRITER.

F PROMPT SAMPLES

In Figure 5 and 7 we show sample prompt and answer from REWRITER LLM for WN18RR. In
Figure 6 and Figure 9 we show sample inputs and generated outputs from REASONER LLMs,
respectively.

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a knowledgeable assistant that performs link prediction for knowledge
graph completion tasks. Given a query in the form of a partially missing triplet
(subject, relation, ?), and a retrieved set of relevant triplets, each with the
corresponding reasoning steps that prove the triplet using other triplets from the
database, you will first provide the reasoning step by step based on the retrieved
triplets, and provide the appropriate object entity that completes the query.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Query:
(carry, verb group, ?)

Retrieved triplets:
('land reform', 'also see', 'land reform'), ('psychopathology', '(inverse) synset
domain topic of', 'defense reaction'), ('offset', 'derivationally related form', 'make
up'), ('make up', '(inverse) also see', 'even out'), ('compensation', 'derivationally
related form', 'overcompensate'), ('carry', 'hypernym', 'make up'), ('trim',
'hypernym', 'equilibrize'), ('carry', 'verb group', 'carry'), ('make up', 'hypernym',
'equilibrize'), ('make up', '(inverse) hypernym', 'carry'), ('even out', 'also see',
'make up'), ('carry', '(inverse) verb group', 'carry'), ('equalizer', 'derivationally
related form', 'make up'), ('defense reaction', '(inverse) hypernym',
'compensation'), ('make up', '(inverse) derivationally related form', 'equalizer'),
('overcompensation', 'synset domain topic of', 'psychopathology'),
('overcompensate', 'derivationally related form', 'overcompensation'), ('right', 'also
see', 'make up'), ('overcompensate', 'hypernym', 'make up'), ('right', 'derivationally
related form', 'recompense'), ('make up', '(inverse) also see', 'right'), ('make up',
'(inverse) hypernym', 'overcompensate'), ('make up', '(inverse) derivationally
related form', 'offset'), ('recompense', '(inverse) derivationally related form',
'make up')

What is an appropriate object entity that completes the query? Please provide a
rigorous reasoning process before the final answer.<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

Reasoning:
Based on the retrieved context, we have:
('carry', 'hypernym', 'make up') -> ('make up', '(inverse) hypernym', 'carry') ->
('carry', '(inverse) verb group', 'carry') -> ('right', 'also see', 'make up') -> ('make
up', '(inverse) also see', 'right')

Therefore, we know:
('carry', 'verb group', 'carry')

Answer:carry<|eot_id|>

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a knowledgeable assistant that performs link prediction for knowledge
graph completion tasks. Given a query in the form of a partially missing triplet
(subject, relation, ?), and a retrieved set of relevant triplets, each with the
corresponding reasoning steps that prove the triplet using other triplets from the
database, you will first provide the reasoning step by step based on the retrieved
triplets, and provide the appropriate object entity that completes the query.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Query:
(thread, hypernym, ?)

Retrieved triplets:
('threader', 'derivationally related form', 'thread'), ('run', '(inverse) verb group',
'thread')]
{('yarn', 'derivationally related form', 'thread'), ('thread', 'verb group', 'run'), ('run',
'also see', 'wipe'), ('run', 'verb group', 'run'), ('thread', '(inverse) derivationally
related form', 'threader'), ('threader', 'derivationally related form', 'thread'),
('thread', '(inverse) derivationally related form', 'yarn'), ('threader', '(inverse)
derivationally related form', 'thread'), ('thread', 'derivationally related form',
'threader'), ('run', '(inverse) verb group', 'thread'), ('wipe', '(inverse) also see',
'run'), ('thread', 'derivationally related form', 'yarn'), ('run', 'verb group', 'thread'),
('thread', '(inverse) verb group', 'run'), ('run', '(inverse) verb group', 'run')

What is an appropriate object entity that completes the query? Please provide a
rigorous reasoning process before the final answer.<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

Reasoning:
Based on the retrieved context, we have:
('thread', '(inverse) derivationally related form', 'threader') -> ('thread', '(inverse)
verb group', 'run') -> ('threader', 'derivationally related form', 'thread')

Therefore, we know:
('thread', 'hypernym', 'run')
</think>

Answer:run<|eot_id|>

Figure 6: Sample prompt and answer(in dark green) for Llama3-based REASONER.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

<|im_start|>system
You are a knowledgeable assistant that performs query rewriting for retrieving
relevant context for knowledge graph completion tasks. Given a query in the
form of a partially missing triplet (subject, relation, ?), you will rewrite (expand)
the query into a list of triplets. Each of the expanded triplets is then used to
retrieve relevant triplets from a database. Your goal is to provide a list of rewrited
triplets that, after retrieval, will provide complete information needed for proving
the original query, while keeping the number of rewrited triplets minimum.
<|im_end|>
<|im_start|>user
Query:
(capitalization, (inverse) derivationally related form, ?)

Please expand the query into a python list of triplets in the form of [(head,
relation, tail), ...]. Please strictly follow the format of the output as it will be
parsed by a program.<|im_end|>
<|im_start|>assistant
<think>

</think>

Answer:[('win', '(inverse) hypernym', 'steal'), ('profits', 'derivationally related
form', 'turn a profit')]<|im_end|>

<|im_start|>system
You are a knowledgeable assistant that performs query rewriting for retrieving
relevant context for knowledge graph completion tasks. Given a query in the
form of a partially missing triplet (subject, relation, ?), you will rewrite (expand)
the query into a list of triplets. Each of the expanded triplets is then used to
retrieve relevant triplets from a database. Your goal is to provide a list of rewrited
triplets that, after retrieval, will provide complete information needed for proving
the original query, while keeping the number of rewrited triplets minimum.
<|im_end|>
<|im_start|>user
Query:
(therapeutic, (inverse) derivationally related form, ?)

Please expand the query into a python list of triplets in the form of [(head,
relation, tail), ...]. Please strictly follow the format of the output as it will be
parsed by a program.<|im_end|>
<|im_start|>assistant
<think>

</think>

Answer:[('medicine', 'synset domain topic of', 'practice of medicine'),
('therapeutic', 'derivationally related form', 'heal'), ('practice of medicine',
'derivationally related form', 'medical')]<|im_end|>

Figure 7: Sample prompt and answer(in dark green) for Qwen3-based REWRITER.

<|im_start|>system
You are a knowledgeable assistant that performs link prediction for knowledge
graph completion tasks. Given a query in the form of a partially missing triplet
(subject, relation, ?), and a retrieved set of relevant triplets, each with the
corresponding reasoning steps that prove the triplet using other triplets from the
database, you will first provide the reasoning step by step based on the retrieved
triplets, and provide the appropriate object entity that completes the query.
<|im_end|>
<|im_start|>user
Query:
(carry, verb group, ?)

Retrieved triplets:
('land reform', 'also see', 'land reform'), ('psychopathology', '(inverse) synset
domain topic of', 'defense reaction'), ('offset', 'derivationally related form', 'make
up'), ('make up', '(inverse) also see', 'even out'), ('compensation', 'derivationally
related form', 'overcompensate'), ('carry', 'hypernym', 'make up'), ('trim',
'hypernym', 'equilibrize'), ('carry', 'verb group', 'carry'), ('make up', 'hypernym',
'equilibrize'), ('make up', '(inverse) hypernym', 'carry'), ('even out', 'also see',
'make up'), ('carry', '(inverse) verb group', 'carry'), ('equalizer', 'derivationally
related form', 'make up'), ('defense reaction', '(inverse) hypernym',
'compensation'), ('make up', '(inverse) derivationally related form', 'equalizer'),
('overcompensation', 'synset domain topic of', 'psychopathology'),
('overcompensate', 'derivationally related form', 'overcompensation'), ('right', 'also
see', 'make up'), ('overcompensate', 'hypernym', 'make up'), ('right', 'derivationally
related form', 'recompense'), ('make up', '(inverse) also see', 'right'), ('make up',
'(inverse) hypernym', 'overcompensate'), ('make up', '(inverse) derivationally
related form', 'offset'), ('recompense', '(inverse) derivationally related form',
'make up')

What is an appropriate object entity that completes the query? Please provide a
rigorous reasoning process before the final answer.<|im_end|>
<|im_start|>assistant
<think>
Based on the retrieved context, we have:
('carry', 'hypernym', 'make up') -> ('make up', '(inverse) hypernym', 'carry') ->
('carry', '(inverse) verb group', 'carry') -> ('right', 'also see', 'make up') -> ('make
up', '(inverse) also see', 'right')

Therefore, we know:
('carry', 'verb group', 'carry')
</think>

Answer:carry<|im_end|>

<|im_start|>system
You are a knowledgeable assistant that performs link prediction for knowledge
graph completion tasks. Given a query in the form of a partially missing triplet
(subject, relation, ?), and a retrieved set of relevant triplets, each with the
corresponding reasoning steps that prove the triplet using other triplets from the
database, you will first provide the reasoning step by step based on the retrieved
triplets, and provide the appropriate object entity that completes the query.
<|im_end|>
<|im_start|>user
Query:
(thread, hypernym, ?)

Retrieved triplets:
('threader', 'derivationally related form', 'thread'), ('run', '(inverse) verb group',
'thread')]
{('yarn', 'derivationally related form', 'thread'), ('thread', 'verb group', 'run'), ('run',
'also see', 'wipe'), ('run', 'verb group', 'run'), ('thread', '(inverse) derivationally
related form', 'threader'), ('threader', 'derivationally related form', 'thread'),
('thread', '(inverse) derivationally related form', 'yarn'), ('threader', '(inverse)
derivationally related form', 'thread'), ('thread', 'derivationally related form',
'threader'), ('run', '(inverse) verb group', 'thread'), ('wipe', '(inverse) also see',
'run'), ('thread', 'derivationally related form', 'yarn'), ('run', 'verb group', 'thread'),
('thread', '(inverse) verb group', 'run'), ('run', '(inverse) verb group', 'run')

What is an appropriate object entity that completes the query? Please provide a
rigorous reasoning process before the final answer.<|im_end|>
<|im_start|>assistant
<think>
Based on the retrieved context, we have:
('thread', '(inverse) derivationally related form', 'threader') -> ('thread', '(inverse)
verb group', 'run') -> ('threader', 'derivationally related form', 'thread')

Therefore, we know:
('thread', 'hypernym', 'run')
</think>

Answer:run<|im_end|>

Figure 8: Sample prompt and answer(in dark green) for Qwen3-based REASONER.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

<|im_start|>system
You are a knowledgeable assistant that performs multi-answer link prediction for
knowledge graph completion tasks. Given a query in the form of a partially
missing triplet (subject, relation, ?), and a retrieved set of relevant triplets, each
with the corresponding reasoning steps that prove the triplet using other triplets
from the database, you will first provide top-10 most probable reasoning step by
step based on the retrieved triplets, and provide the corresponding top-10
appropriate object entity that completes the query.<|im_end|>
<|im_start|>user
Query:
(carry, verb group, ?)

Retrieved triplets:
('land reform', 'also see', 'land reform'), ('psychopathology', '(inverse) synset
domain topic of', 'defense reaction'), ('offset', 'derivationally related form', 'make
up'), ('make up', '(inverse) also see', 'even out'), ('compensation', 'derivationally
related form', 'overcompensate'), ('carry', 'hypernym', 'make up'), ('trim',
'hypernym', 'equilibrize'), ('carry', 'verb group', 'carry'), ('make up', 'hypernym',
'equilibrize'), ('make up', '(inverse) hypernym', 'carry'), ('even out', 'also see',
'make up'), ('carry', '(inverse) verb group', 'carry'), ('equalizer', 'derivationally
related form', 'make up'), ('defense reaction', '(inverse) hypernym',
'compensation'), ('make up', '(inverse) derivationally related form', 'equalizer'),
('overcompensation', 'synset domain topic of', 'psychopathology'),
('overcompensate', 'derivationally related form', 'overcompensation'), ('right', 'also
see', 'make up'), ('overcompensate', 'hypernym', 'make up'), ('right', 'derivationally
related form', 'recompense'), ('make up', '(inverse) also see', 'right'), ('make up',
'(inverse) hypernym', 'overcompensate'), ('make up', '(inverse) derivationally
related form', 'offset'), ('recompense', '(inverse) derivationally related form',
'make up'), ...

What are the top-10 appropriate object entities that completes the query? Please
provide a rigorous reasoning process for each before the final answer.<|im_end|>
<|im_start|>assistant
<think>
Based on the retrieved context, we can deduce below top-10 proofs:
Proof 1:('carry', 'hypernym', 'make up') -> ('make up', '(inverse) hypernym',
'carry') -> ('carry', '(inverse) verb group', 'carry') -> ('right', 'also see', 'make up') -
> ('make up', '(inverse) also see', 'right')
Proof 2: ...

Therefore, we know:
Answer 1: ('carry', 'verb group', 'carry')
Answer 2: ...
...
</think>

Answer:[carry, ...]<|im_end|>

<|im_start|>system
You are a knowledgeable assistant that performs multi-answer link prediction for
knowledge graph completion tasks. Given a query in the form of a partially
missing triplet (subject, relation, ?), and a retrieved set of relevant triplets, each
with the corresponding reasoning steps that prove the triplet using other triplets
from the database, you will first provide top-10 most probable reasoning step by
step based on the retrieved triplets, and provide the corresponding top-10
appropriate object entity that completes the query.<|im_end|>
<|im_start|>user
Query:
(thread, hypernym, ?)

Retrieved triplets:
('threader', 'derivationally related form', 'thread'), ('run', '(inverse) verb group',
'thread')]
{('yarn', 'derivationally related form', 'thread'), ('thread', 'verb group', 'run'), ('run',
'also see', 'wipe'), ('run', 'verb group', 'run'), ('thread', '(inverse) derivationally
related form', 'threader'), ('threader', 'derivationally related form', 'thread'),
('thread', '(inverse) derivationally related form', 'yarn'), ('threader', '(inverse)
derivationally related form', 'thread'), ('thread', 'derivationally related form',
'threader'), ('run', '(inverse) verb group', 'thread'), ('wipe', '(inverse) also see',
'run'), ('thread', 'derivationally related form', 'yarn'), ('run', 'verb group', 'thread'),
('thread', '(inverse) verb group', 'run'), ('run', '(inverse) verb group', 'run'),...

What is an appropriate object entity that completes the query? Please provide a
rigorous reasoning process before the final answer.<|im_end|>
<|im_start|>assistant
<think>
Based on the retrieved context, we have:
Proof 1: ('thread', '(inverse) derivationally related form', 'threader') -> ('thread',
'(inverse) verb group', 'run') -> ('threader', 'derivationally related form', 'thread')
Proof 2: ...

Therefore, we know:
Answer 1: ('thread', 'hypernym', 'run')
Answer 2: ...
</think>

Answer:[run,...]<|im_end|>

Figure 9: Sample prompt and answer(in dark green) for Qwen3-based REASONER with multi-answer extension.

22

	Introduction
	Related work
	Link Prediction on Knowledge Graphs
	Retrieval-Augmented KG Reasoning

	Preliminaries
	Knowledge Graph and Link Prediction
	Proof extractions with Interpretable Link Predictors

	Proof-Augmented Retrieval and Reasoning
	Proof Extraction
	Retriever
	Rewriter
	Reasoner
	Extending to Multi-Answer Link Prediction

	Experiments
	Experiment Setup
	Main Results
	Ablation Studies
	Ablation on MoE Link Predictors

	Conclusion
	Computation Analysis
	More results
	More Analysis
	Ablation on the robustness of PARR on Noisy Proofs
	Decoupling Pretrained Link Predictors from Inference
	Convergence of PARR

	Constructing Minimal Rewriting Sets
	Datasets and Implementations details
	Dataset statistics
	Dataset samples
	Implementation details

	Prompt Samples

