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Abstract

While recent multimodal large language models (MLLMs) have advanced auto-
mated ECG interpretation, they still face two key limitations: (1) insufficient multi-
modal synergy between ECG time series and ECG images, and (2) limited explain-
ability in linking diagnoses to granular waveform evidence. We introduce GEM, the
first MLLM unifying ECG time series, 12-lead ECG images and text for grounded
and clinician-aligned ECG interpretation. GEM enables feature-grounded analysis,
evidence-driven reasoning, and a clinician-like diagnostic process through three
core innovations: a dual-encoder framework extracting complementary time series
and image features, cross-modal alignment for effective multimodal understanding,
and knowledge-guided instruction data generation for generating high-granularity
grounding data (ECG-Grounding) linking diagnoses to measurable parameters
(e.g., QRS/PR Intervals). Additionally, we propose the Grounded ECG Under-
standing task, a clinically motivated benchmark designed to comprehensively assess
the MLLM’s capability in grounded ECG understanding. Experimental results
on both existing and our proposed benchmarks show GEM significantly improves
predictive performance (CSN 7.4% ↑), explainability (22.7% ↑), and grounding
(25.3% ↑), making it a promising approach for real-world clinical applications.
Codes, model, and data are available at https://github.com/lanxiang1017/GEM.

1 Introduction

Electrocardiography (ECG), a cornerstone of cardiac diagnostics, captures the heart’s electrical
activity through body-surface electrodes, enabling non-invasive assessment of cardiac physiology
and pathology [Berkaya et al., 2018, Hannun et al., 2019]. Clinical ECG interpretation synergizes
computational and clinical expertise: automated algorithms process raw signals to detect fiducial
points (e.g., R-wave peaks) and generate diagnostic hypotheses, while clinicians validate these
findings through 12-lead waveform analysis [Smulyan, 2019]. By contextualizing algorithmic outputs
with patient-specific factors, clinicians resolve ambiguities, detect subtle anomalies, and formulate
diagnoses. This synergy between computational precision and expert judgment ensures reliable and
holistic diagnoses in clinical practice.

Deep learning models have achieved promising results in cardiac anomalies detection [Hong et al.,
2020, Zhu et al., 2021, Kiyasseh et al., 2021, Lan et al., 2022, Yang et al., 2023, Zhao et al., 2024a,
Li et al., 2024, Lan et al., 2024, McKeen et al., 2024] yet lack language capability and model
explainability. While recent MLLMs like PULSE [Liu et al., 2024b] have advanced language-based
ECG interpretation via large-scale instruction tuning (e.g., ECG-Instruct’s 1M+ samples), they
primarily focus on static image inputs and predefined diagnostic tasks, leaving two critical gaps:
Limited Modality Exploration. Current models typically process only one non-text modality,
overlooking the benefits of a synergistic approach that combining time series and image-based
modeling. For example, time series models capture dynamic changes but may overlook spatial
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Findings: previous lateral infarct (infarcted 
myocardial tissue)
Evidence: small q waves in I and aVL with persistent 
ST-T abnormalities

1⃣

Findings: sinus rhythm with occasional premature 
ventricular contractions (PVCs)
Evidence: irregular RR intervals, particularly the 
shorter interval at 255 ms and the compensatory pause 
following it at 517 ms

2⃣

Findings: left axis deviation
Evidence: predominantly negative QRS complex in leads 
II, III, and aVF

3⃣
Findings: myocardial injury or prior infarction
Evidence: ST-T changes across multiple leads, 
particularly in the lateral precordial leads (V5, V6, 
I, aVL)

4⃣

Findings: right bundle branch block (RBBB) with left 
anterior fascicular block (LAFB) 
Evidence: prolonged QRS duration across multiple leads 
(>120 ms, particularly in leads I, aVL, and V6), rsR' 
pattern in V1 and deep S waves in leads V5-V6
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Conclusions: overall, this is an abnormal ECG with a 
combination of conduction disturbances, PVCs, and 
evidence of prior myocardial infarction, warranting 
further clinical correlation and possibly additional 
cardiac evaluation.

💡

Can you interpret my ECG tracing?

User
Upon analyzing the provided ECG tracing, several key features and abnormalities are evident:

Sinus rhythm with PVC(s), Left axis 
deviation, RBBB with left anterior 
fascicular block, Lateral infarct - 
age undetermined, Abnormal ECG.

The electrocardiogram (ECG) reveals a sinus rhythm, indicating a normal heart rate and rhythm, although it is 
interrupted by premature ventricular contractions (PVCs). The ECG also exhibits left axis deviation, a right 
bundle branch block (RBBB), and a left anterior fascicular block, suggesting conduction abnormalities in the 
heart's electrical system. Additionally, the ECG shows evidence of a lateral infarct, or myocardial infarction, of 
undetermined age, contributing to the overall abnormality of the ECG.

State-of-the-art MLLM: Human:

Figure 1: GEM offers superior granularity in ECG interpretation compared to state-of-the-art models
and human-written reports.

patterns, while image-based models detect global structures but may miss subtle temporal details.
This limits their ability to replicate clinicians’ holistic reasoning, which integrates both machine-
measured temporal signals and waveform patterns from 12-lead plots. Insufficient Explainability
and Grounding. Most existing models designed for ECG provides limited explainability, failing to
explicitly connect diagnoses to granular waveform evidence and provide insight into their diagnostic
reasoning. A trustworthy ECG model should not only predict cardiac conditions but also explicitly
highlight which ECG features led to those conclusions. Such grounded explanations enhance
transparency and make model outputs more reliable and actionable for clinical decision-making.

In this work, we introduce GEM, a multimodal large language model designed for grounded ECG
understanding by integrating time series, image, and text data. As a conversational cardiology AI
assistant, GEM differs from other MLLMs through three key features. First, it provides feature-
grounded analysis, ensuring that its findings are explicitly tied to detailed ECG features. Second, it
offers evidence-driven diagnosis, where its conclusions are supported by clear and logical reasoning
directly linked to ECG findings. Lastly, GEM simulates a realistic interpretation process, mimicking
how a clinician analyzes ECGs and arrive at a diagnosis.

Achieving these capabilities entails challenges in two key dimensions. On the modeling side, it
is crucial to effectively integrate information from different modalities to support accurate ECG
understanding. On the data side, there is currently no available instruction data designed for training
LLMs on high-granularity ECG interpretation.

We tackle these challenges through three novel approaches. Multimodal Encoding allows GEM
to extract and integrate complementary features from raw ECG time series and their transformed
images. It employs a dual-encoder architecture, with each encoder specialized in its respective
modality using established models from the time series and vision domains. This design leverages the
unique strengths of both modalities. Cross-modal Alignment Learning facilitates the interpretation
of multimodal ECG data by the LLM. Time series representations are first projected to image
representations dimensionality, followed by a shared projector that transforms both into language-
like embeddings that are comprehensible to LLM. These aligned embeddings are then fused with
textual instruction embeddings, enabling effective multimodal understanding through next-token
prediction training. Knowledge-guided Instruction Data Generation supports the construction of
high-granularity instruction data annotated with heartbeat-level physiological features, without the
need for manual annotation. This methodology integrates a grounding feature extractor, which
derives precise physiological features from ECG time series, and a cardiology-specific diagnosis
guider, which processes these features into structured prompts to more effectively leverage GPT-4o’s
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latent medical knowledge for generating clinically detailed and feature-grounded ECG instruction
data. Ultimately, GEM delivers significantly more detailed and informative interpretations than both
human-written reports and leading MLLMs, as shown in Figure 1.

The main contributions of this work are three-folds:

1.First Unified Multimodal ECG Model. We present GEM, the first multimodal framework to
synergistically integrate raw ECG time seriesa, 12-lead ECG plots, and textual instructions, leveraging
their complementary strengths to advance grounded ECG understanding.

2.First High-granularity ECG Grounding Dataset. We propose a novel knowledge-guided instruction
data generation method, resulting in ECG-Grounding, a dataset comprising 30,000 instruction pairs
annotated with heartbeat-level physiological features. This is the first high-granularity ECG grounding
dataset, enabling evidence-based diagnosis and improving the trustworthiness of medical AI.

3.Clinically Oriented Diagnostic System. We introduce the Grounded ECG Understanding task, a
clinically motivated benchmark designed to comprehensively assess a model’s ECG interpretation
capability. Experimental results demonstrate that GEM not only excels in predictive performance but
also significantly enhances explainability and grounding, making it more applicable for real-world
clinical settings while fostering greater trust among medical professionals.

2 Related Work

2.1 Multimodal Large Language Models

Large Language Models (LLMs), such as GPTs [Achiam et al., 2023], LLaMA [Touvron et al., 2023],
have made significant advancements in artificial intelligence. Despite their superior performance
on numerous natural language processing tasks, LLMs are inherently limited to the text modality,
making them "blind" to other modalities such as images, audio and video. To mitigate this constraint,
Multimodal Large Language Models have been recently developed to extend the ability of LLMs
in comprehending multiple modalities [Liu et al., 2024a, Zhang et al., 2024, 2025, Huang et al.,
2025]. By integrating LLMs with various data sources, MLLMs enable the handling of diverse
information beyond text. For example, LLaVA [Liu et al., 2024a] enables LLMs to comprehend
visual inputs by adopting a learnable projector to map image features into the word embedding
space. Video-LLaMA [Zhang et al., 2023] further enhances LLMs by enabling video perception
and understanding. Qwen-Audio [Chu et al., 2023] introduces an audio-language model capable of
processing various audio types, including human speech, natural sounds, and music. Medical data, by
nature, are inherently multimodal, encompassing diverse formats such as images, physiological time
series, and textual reports. These modalities collectively form the foundation for clinical decision-
making, driving the advancement of AI in medical applications [Li et al., 2023, Moor et al., 2023,
Radhakrishnan et al., 2023, Liu et al., 2023, Hong and Hong, 2023, Zhu et al., 2024, Ren et al., 2024,
Sellergren et al., 2025, Yang et al., 2025, Jin et al., 2025, He et al., 2025]. Different from these works,
our focus is on empowering MLLMs with the grounded ECG understanding capability.

2.2 Language-based ECG Analysis

Language-based ECG diagnosis and interpretation is still in its early stages of development. Only
a few recent studies have explored LLM-based approaches for ECG analysis. For instance, Yu
et al. [2023] proposes a zero-shot retrieval-augmented diagnosis technique, embedding domain
knowledge from textbooks and research papers into a vector database to improve zero-shot diagnostic
accuracy. Cai et al. [2023] proposes JoLT, a framework that jointly models ECG time series and
text using a Querying Transformer to align their representations. Liu et al. [2024b] introduces
PULSE, an LLM-based framework designed to enhance ECG image understanding for diagnosis and
report generation. PULSE synthesizes realistic ECG images from raw ECG signals, enabling better
utilization of image-based LLaVA models. Zhao et al. [2024b] develops ECG-CoCa, an ECG encoder
trained on ECG-text pairs, alongside ECG-Chat, a modified LLaVA model capable of processing
ECG time series. Chan et al. [2024] proposes an analytical framework integrating time series data
with LLMs, combining physiological signal analysis with contextual textual information. Wan et al.
[2024] designs an instruction-tuning framework for automated ECG report generation, converting
ECG-text pairs into chatbot-style instructions and fine-tuning the LLM’s linear layers.
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raw signal

<TS> embeds

transformed image

TS-Image-Text Projector

<Image> embeds

🔥

Grounding Feature Extractor

TS-Image Projector🔥

Lead I: "QRS_dura/ons": "92, 104, 132, …”
"ST_form": "declina/on, upslope, …" 
…
Lead V6: "…"

…

…

…

……

Query: “Interpret the provided ECG data <Image> <TS>, identify key features and 
abnormalities in each lead, and generate a clinical diagnosis that is supported by the 
observed evidence. When analyzing the ECG image, carefully analyze each lead. Lead I: 
Examine the QRS amplitude and duration, along with ST segment and T wave morphology…”
Target Answer: “The ECG demonstrates sinus rhythm with occasional premature 
ventricular contractions (PVCs), as evidenced by irregular RR intervals, particularly the 
shorter interval at 255 ms and the compensatory pause following it at 517 ms …”

Large Language Model🔥

Language Responses

❄❄
Diagnosis Guider

GPT-4o

Figure 2: GEM’s Architecture. Multimodal Encoding: Separate encoders process ECG time series
and images to generate modality-specific representations, enabling a holistic analysis of ECG data.
Cross-modal Alignment Learning: Time series and image representations are first aligned and then
mapped to a textual space using a shared projector, ensuring coherent understanding for the LLM.
Knowledge-guided Instruction Data Generation: Physiological features extracted from all 12 leads
are sequenced and structured using a diagnosis guider, which prompts GPT-4o with domain-specific
instructions to generate high-granularity instructional data.

GEM distinguishes itself from existing language-based ECG models in two key aspects. First, in
model architecture, unlike existing methods that limit analysis to isolated modalities (either ECG
signals or transformed ECG images) with text, GEM introduces a unified architecture that integrates
both time series data and 12-lead images. This approach mirrors a clinician’s natural workflow, where
dynamic signal trends and spatial waveform patterns are jointly analyzed for a more comprehensive
interpretation. Second, in ECG understanding, GEM establishes a new paradigm for evidence-driven
diagnosis. While current models often lack grounded understanding, GEM enables heartbeat-level
interpretability by directly linking each diagnostic conclusion to quantifiable physiological evidence,
enhancing explainability and clinical reliability. By combining the two paradigm-shifting innovations,
GEM addresses fundamental limitations in existing models and advances language-based ECG
analysis, setting a new standard for conversational AI-assisted cardiac diagnostics.

3 Method

3.1 Overview

GEM’s training primarily relies on three key components: the multimodal encoding, the cross-modal
alignment learning, and the knowledge-guided instruction data generation. Figure 2 provides an
overview of the GEM model. We will elaborate on each components in the following sections.

3.2 Multimodal Encoding

We represent the ECG time series as xts ∈ RC×L, where C is the number of leads in multi-lead ECG
and L is the length of the signal. The transformed ECG image derived from the time series is denoted
as ximg ∈ RH×W×3, where H and W are the height and width of the image, respectively. For
ECG time series encoder Ets(θts), we adopt the pre-trained ECG-CoCa model [Zhao et al., 2024b],
which has been extensively trained on a large number of ECG-Text pairs with contrastive learning to
effectively capture the intricate patterns within the ECG time series:

ets ∈ Rns×ds = Ets(xts|θEts
), (1)
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where ns is the number of time series feature patches and ds is the dimension of time series features.
For ECG image encoder Eimg(θimg), we utilize the pre-trained CLIP encoder from LLaVA [Liu
et al., 2024a]. This model is adept at understanding and processing visual information, making it
suitable for extracting features from the ECG images:

eimg ∈ Rnm×dm = Eimg(ximg|θEimg ), (2)

where nm is the number of image feature patches and dm is the dimension of image features. These
two encoders enable the separate extraction of features from time series and images. This dual-
encoder approach allows us to harness the distinct advantages of each data type, enhancing the overall
interpretative power of our model.

3.3 Cross-modal Alignment Learning

Considering that the time series and image encoders are trained independently, their generated
representations often show inconsistencies within the representation space. Meanwhile, to ensure that
the LLM can interpret ECG time series and images effectively, it is essential that these multimodal
inputs are rendered as comprehensible as textual data. Therefore, aligning these diverse modality
inputs within a unified representation space becomes crucial.

In our approach, the ECG time series representation is first mapping to the same dimensionality as
the ECG image representation. This is accomplished using a multi-layer perceptron (MLP) projector:

êts ∈ Rns×dm = MLPts(ets|θMts
). (3)

Subsequently, we employ an additional projector to map both the time series and image representations
into a consistent textual space:

hts ∈ Rns×dt = MLP (êts|θM ), (4)

himg ∈ Rnm×dt = MLP (eimg|θM ), (5)
where dt is the dimension of the text embeddings. This step is for ensuring that the features extracted
from both modalities are not only aligned dimensionally but are also interpretable in a LLM-friendly
format.

Once we have obtained the features from both the time series and image modalities, we integrate
these with the embeddings of the textual query xq:

x = Concatenate(hts, himg,Embeded(xq)). (6)

The integration is crucial for creating a cohesive representation that encapsulates the full spectrum of
information from the multimodal inputs.

3.4 Knowledge-guided Instruction Data Generation

Instruction data forms the foundation of multimodal training, directly shaping how the MLLM
generates responses for given queries. This is because the language response θLLM (x) is optimized
to match the target answer y for each multimodal input (xts,ximg,xq). Here, we introduce two key
mechanisms to guarantee that y aligns with feature-grounded analysis, evidence-driven diagnosis,
and a realistic interpretation process, thereby empowering GEM with a grounded understanding of
ECG data.

Grounding Feature Extractor. To enable the feature-grounded analysis, we propose to further
excavate more detailed information from raw ECG time series. We begin by extracting universal
elements, including waveforms, amplitudes of fiducial points, and intervals, from each heartbeat
in each lead. These elements are then structured into a time-ordered sequence for further analysis.
For instance, an ECG time series with ten visible heartbeats allows us to construct a QRS duration
sequence as [QRS1, QRS2, ..., QRS10], where each element precisely represents the QRS duration
for a specific heartbeat. These sequences provide a fine grade description of the physiological features
of the ECG, enabling the model to assess heart conditions at the level of individual heartbeats. In
our implementation, we incorporate 14 feature sequences for each of the 12 ECG leads, covering:
Heart Rate, RR Interval 1, RR Interval 2, P Amplitude, P Duration, PR Interval, QRS Amplitude,
QRS Duration, T Amplitude, T Duration, ST Duration, ST Form, QT Interval, and QTc Interval.
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Target Answer: The ECG demonstrates sinus rhythm with 
occasional premature ventricular contractions (PVCs), as 
evidenced by irregular RR intervals, particularly the shorter 
interval at 255 ms and the compensatory pause following it at 
517 ms. The left axis deviation is suggested by a predominantly 
negative QRS complex in leads II, III, and aVF, indicating an 
abnormal leftward orientation of ventricular depolarization. A 
right bundle branch block (RBBB) with left anterior fascicular 
block (LAFB) is present, as seen in the prolonged QRS duration 
across multiple leads (>120 ms, particularly in leads I, aVL, 
and V6), along with an rsR' pattern in V1 and deep S waves in 
leads V5-V6, characteristic of RBBB. The presence of small q 
waves in I and aVL with persistent ST-T abnormalities suggests 
a previous lateral infarct of undetermined age, which is 
consistent with infarcted myocardial tissue. Furthermore, ST-T 
changes across multiple leads, particularly in the lateral 
precordial leads (V5, V6, I, aVL), indicate myocardial injury 
or prior infarction. Overall, this is an abnormal ECG with a 
combination of conduction disturbances, PVCs, and evidence of 
prior myocardial infarction, warranting further clinical 
correlation and possibly additional cardiac evaluation.

Query: What is the axis of the QRS complex in this ECG?

A. Normal axis B. Right axis deviation C. Left axis 
deviation D. Indeterminate axis

Target Answer: The ECG shows a left axis deviation, 
which is characterized by a predominantly negative QRS 
complex in lead I and a positive QRS complex in lead II. 
This indicates that the electrical axis of the heart is 
deviated to the left, away from the normal axis. The 
correct option is C. Left axis deviation

Query: Investigate the ECG results and compile a thorough 
report.

Target Answer: The electrocardiogram (ECG) reveals a 
sinus rhythm, indicating a normal heart rate and rhythm, 
although it is interrupted by premature ventricular 
contractions (PVCs). The ECG also exhibits left axis 
deviation, a right bundle branch block (RBBB), and a left 
anterior fascicular block, suggesting conduction 
abnormalities in the heart's electrical system. 
Additionally, the ECG shows evidence of a lateral 
infarct, or myocardial infarction, of undetermined age, 
contributing to the overall abnormality of the ECG.

Query: Interpret the provided ECG image, identify key features 
and abnormalities in each lead, and generate a clinical 
diagnosis that is supported by the observed evidence.

ECG-Instruct data (PULSE) ECG-Grounding data (Ours)

Limitations
1.Occasionally inaccurate (red text) when LLM lacks 
reference information.
2.Lack of detailed explanations that explicitly connect 
diagnoses to granular waveform evidence.

Advantages
1.Feature-Grounded Analysis: The analysis is based on specific 
ECG features and explicitly reference these features as evidence.
2.Evidence-Driven Diagnosis: The diagnosis is supported by clear, 
logical reasoning tied to the ECG findings.
3.Simulate a Realistic Intepretation Process: The interpretation 
reflect how a doctor would analyze an ECG and arrive at a 
diagnosis.

Note: Criterial to identify Left Axis Deviation: 
• QRS is positive in lead I 
• QRS is negative in lead II, III and aVF

Figure 3: Comparison of ECG-Instruct and our ECG-Grounding.

This comprehensive set of sequences captures the temporal evolution of key physiological features,
enabling granular analysis of cardiac activity. The feature extraction process is formulated as:

xfs = FeatureDB(xts), (7)

where xfs is a dictionary in which the keys represent feature names and the values correspond
to their respective feature values. FeatureDB(xts) represents the function that extracts structured
physiological features from the ECG time series xts. Note that there is no trainable parameters in
FeatureDB.

Diagnosis Guider. With the feature sequences xfs extracted, the challenge lies in generating high-
granularity y without relying on costly human-expert annotation. To address this, we design a
diagnosis guider that constructs a prompt xp to effectively guide GPT-4o in generating accurate and
clinically grounded responses y for each sample:

xp = DiagnosisGuider(xfs). (8)

The diagnosis guider provides cardiology-specific instructions for detailed analysis of each aspects of
ECG data (e.g., instruct GPT-4o to assess the P wave amplitude and duration in Lead II to evaluate
atrial enlargement) and incorporates guidance reflecting real-world clinical diagnostic processes. As
a result, each sample receives a unique xp tailored to its xfs, ensuring precise activation of GPT-4o’s
latent medical knowledge for accurate and personalized analysis. See Appendix A.1 for more details
of the diagnosis guider.

ECG-Grounding Data. Using the knowledge-guided instruction data generation method, we employ
GPT-4o to curate 30,000 fine-grained instruction-response pair (xq,y) from the MIMIV-IV-ECG
[Gow et al., 2023] database:

y = GPT-4o(xp). (9)

A comparison illustrating the advantages of our instruction data is shown in Figure 3. Instruction data
from PULSE, primarily derived from the original report, occasionally provides incorrect explanations
due to hallucinations, which can arise when LLM has limited reference information. In contrast, our
ECG-Grounding provides more accurate, holistic, and evidence-driven interpretations with diagnoses
grounded in measurable ECG features. Training with these fine-grained instructional data, GEM
significantly enhances its explainability and grounding capabilities, making it a promising approach
for clinical applications and fostering greater trust among medical professionals.
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3.5 Training

Unlike conventional multi-step training pipelines for most MLLMs, which first train a linear projector
using brief image captions for cross-modal alignment and subsequently fine-tune the LLM with
instruction data, we adopt an one-step training approach for GEM. In this approach, we freeze θts
and θimg for feature extraction, while jointly training θMts

, θM , and θLLM . This one-step process
enhances the consistency in training multiple modalities with limited data and improves the efficiency
of the training phase.

The training objective is formulated as minimizing the negative log-likelihood of the target answer y
and the LLM response θLLM (x), given the embedding of multimodal input x:

L(y; θLLM (x)) = −
N∑
i=1

logP (yj |x, θLLM ), (10)

where N represents the number of tokens in y and yj is the j-th token in y. We train two foundational
LLMs for the GEM framework. The first, LLaVA, is the unmodified version of the original LLaVA-
7B model, which has not undergone training on any ECG data. The second, referred to as PULSE,
represents state-of-the-art LLMs specifically trained on millions of ECG images. For both models, we
implement supervised fine-tuning (SFT) for a single epoch. We use 8 A100 GPUs for the training.

4 Experiments

4.1 Training Data

The training of GEM involves two datasets: the ECG-Instruct data from PULSE [Liu et al., 2024b],
which includes 1,156,110 conversations, and our generated ECG-Grounding data, comprising 30,000
conversations. The ECG-Grounding data is sampled from MIMIC-IV-ECG [Gow et al., 2023],
selecting only samples that have not been used in training models such as PULSE. We use the
ECG-image-kit [Shivashankara et al., 2024] for the generation of ECG images from the original ECG
signal, and use the FeatureDB [Hong et al., 2017, 2019] to extract ECG features. To facilitate further
research and benefit the community, we have publicly released ECG-Grounding data.

4.2 Evaluation Tasks and Metrics

Grounded ECG Understanding. To comprehensively evaluate whether the model achieves clinically
grounded ECG interpretation capabilities comparable to cardiologists, we introduce the Grounded
ECG Understanding task. This task is developed based on cardiologist guidelines and evaluates the
MLLM’s ability to identify detailed diagnostic clues in ECG analysis, requiring it to provide specific
details and relevant clinical knowledge to support its interpretation.

We utilize GPT-4o to score the responses of the MLLM using a predefined set of metrics that
measures the accuracy and comprehensiveness of the details provided. Specifically, these metrics
include: DiagnosisAccuracy, AnalysisCompleteness, AnalysisRelevance, LeadAssessmentCoverage,
LeadAssessmentAccuracy, ECGFeatureGrounding, EvidenceBasedReasoning, and ClinicalDiagnos-
ticFidelity. The definitions and interpretations of each metric are provided in Appendix A.2, and
further details on the scoring methodology for each criterion are outlined in Appendix A.3.

The evaluation is conducted on the test sets of two datasets: MIMIC-IV-ECG (2,381 samples) and
PTB-XL[Wagner et al., 2020] (2,041 samples). For the grounded ECG understanding task, MIMIC-
IV-ECG serves as the in-domain dataset, while PTB-XL represents an out-domain dataset, with test
samples drawn from a different data distribution.

ECG-Bench. In addition, we use the ECG-Bench [Liu et al., 2024b] to assess our model’s capability
in cardiac abnormality detection and report generation. ECG-Bench is a comprehensive benchmark
for evaluating MLLMs on ECG understanding. It incorporates several datasets including the PTB-XL
dataset, CPSC2018 dataset [Liu et al., 2018], G12EC dataset [Alday et al., 2020], CODE-15%
dataset [Ribeiro et al., 2021], and CSN dataset [Zheng et al., 2020]. ECG-Bench contains two main
tasks: abnormality detection and report generation. For the abnormality detection task, it uses AUC,
F1, and Hamming Loss (HL) as metrics for multi-label datasets, and accuracy for others. In the
report generation task, it employs GPT-4o to evaluate the reports based on their accuracy in rhythms,
waveform descriptions, and diagnoses, with a maximum score of 100.
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Table 1: Grounded ECG Understanding results on MIMIC-IV-ECG and PTB-XL.

Metric Diagnosis
Accuracy

Analysis
Completeness

Analysis
Relevance

Lead
Assessment
Coverage

Lead
Assessment
Accuracy

ECG
Feature

Grounding

Evidence
Based

Reasoning

Clinical
Diagnostic

Fidelity

MIMIC-IV-ECG (in-domain)
PULSE 81.14 2.37 2.39 7.11 2.95 50.18 52.40 51.63
GEM (Ours)

SFT LLaVA 87.24 4.41 5.01 71.07 46.44 75.48 75.09 75.28
SFT PULSE 86.49 4.43 4.91 69.80 45.33 74.95 74.70 74.87

PTB-XL (out-domain)
PULSE 59.24 2.20 2.06 11.20 6.27 52.52 55.48 53.85
GEM (Ours)

SFT LLaVA 73.53 4.19 2.96 79.54 49.01 74.48 74.61 73.84
SFT PULSE 73.59 4.19 3.00 78.86 47.96 74.97 75.41 74.24

Table 2: ECG-Bench abnormality detection results.
Datasets PTB-XL Super CODE-15% CPSC 2018 CSN G12EC
Metric AUC F1 HL AUC F1 HL AUC F1 HL ACC ACC
Random 50.3 33.2 50.1 48.8 15.0 32.1 51.2 15.1 28.8 11.6 12.1
GPT-4o 55.6 28.3 26.2 59.9 24.9 15.7 50.9 10.6 18.2 57.5 49.2
PULSE 82.4 74.8 11.0 90.7 85.4 5.0 76.9 57.6 8.6 85.2 78.2

GEM (Ours)
SFT LLaVA 81.8 73.6 11.6 90.5 84.8 5.1 74.1 52.0 9.0 92.6 81.8
SFT PULSE 83.4 75.8 11.0 91.5 86.4 4.7 79.1 61.1 8.1 86.2 80.5

Ablations
TS only 81.2 72.5 11.9 90.8 84.9 5.0 76.3 54.0 8.5 91.6 81.4
TS+IMG 82.7 74.8 11.1 91.3 86.3 4.6 74.4 51.5 8.8 90.1 81.1

4.3 Results

Table 1 summarizes the performance of GEM on the Grounded ECG Understanding task across
both in-domain (MIMIC-IV-ECG) and out-domain (PTB-XL) datasets. The proposed GEM models
consistently outperform the state-of-the-art PULSE model across all evaluation metrics. For diagnosis
accuracy, GEM achieves 87.24% on MIMIC-IV-ECG, surpassing PULSE (81.14%) by over 6%. On
the out-domain dataset, GEM maintains robust generalization with an accuracy of 73.59%, again
outperforming PULSE (59.24%) by a notable margin of 14.35%. This remarkable performance on the
out-domain dataset highlights GEM’s strong reasoning capability, enabling it to generalize effectively
and make accurate diagnoses across diverse data distributions. In analysis completeness and relevance,
GEM demonstrates substantial gains. On MIMIC-IV-ECG, it improves completeness from 2.37
to 4.43 and relevance from 2.39 to above 5.01. Similar trends are observed on PTB-XL, where
GEM doubles the PULSE’s completeness and improves relevance by over 45%. This substantial
performance gap indicates that GEM not only identifies and interprets a greater number of critical
ECG components (with an average two-fold increase in feature coverage) but also maintains stronger
clinical relevance by effectively connecting these observations to the diagnostic reasoning process.
Lead assessment coverage and accuracy also improve significantly. On the in-domain dataset, GEM
increases coverage from 7.11% to over 71% and accuracy from 2.95% to above 46%. Improvements
on the out-domain dataset rising from 11.20% to over 79% for coverage and from 6.27% to over 49%
for accuracy. These gains verify GEM’s ability to perform structured and precise evaluation across
multiple ECG leads, an essential skill for cardiologist-level reasoning.

Regarding ECG feature grounding, GEM achieves scores around 75 on both datasets, indicating that
a large portion of diagnostic conclusions are explicitly linked to measurable ECG parameters. This is
a significant advancement over PULSE, which achieves scores only around 50. Furthermore, GEM
outperforms PULSE in evidence-based reasoning and clinical diagnostic fidelity, with both metrics
exceeding 74 across datasets. These results show GEM’s ability to construct clinically coherent
justifications and align with structured diagnostic processes, key for real-world clinical integration.

In the ECG-Bench task, Table 2 offers a detailed examination of the models’ performance on cardiac
abnormality detection across a variety of datasets.
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Table 3: ECG-Bench report generation and QA results.
Datasets PTB-XL Report ECG-QA
Metric Report Score Accuracy
Random 0 16.2
GPT-4o 50.2 35.2
PULSE 61.3 73.8
GEM (Ours)

SFT LLaVA 65.0 71.0
SFT PULSE 67.1 73.6

The results clearly show that our GEM
(SFT PULSE) model consistently outper-
forms other models. Furthermore, the
GEM (SFT LLaVA) version, which has
not been previously trained on ECG data,
still manages to achieve comparable, and
in some cases superior (e.g., 7.4% in CSN
and 3.6% in G12EC), performance across
most datasets, despite being trained for
only a single epoch. These results highlight
the robustness and efficacy of the GEM
framework, demonstrating its capacity to deliver substantial performance gains even with minimal
domain-specific training. Ablation studies further highlight the critical role of multimodal inputs in
achieving efficient training and superior classification performance. We assess two model variants:
TS-only, which is trained exclusively on ECG time series, and TS+IMG, which incorporates both
time series and image data. Notably, the TS+IMG model surpasses PULSE on PTB-XL Super
and CODE-15% datasets, despite being trained for only one epoch. In Table 3, GEM showcases
exceptional report generation capabilities, achieving a substantial 5.8% improvement over PULSE in
the PTB-XL Report while maintaining comparable performance in ECG-QA. These results further
evident GEM’s capability in delivering holistic, accurate, and clinically-aligned ECG interpretations.

Collectively, GEM demonstrates superior performance in both Grounded ECG Understanding and
ECG Bench tasks, establishing its effectiveness in ECG interpretation across multiple dimensions.

4.4 Cardiologist Evaluation

We conduct a structured cardiologist evaluation covering three sources of outputs: GPT-4o generated
training data, Deepseek-R1 generated training data, and GEM generated interpretations.

In total, 400 ECG-Grounding data (200 from GPT-4o and 200 from Deepseek-R1 Guo et al. [2025])
and 200 GEM’s interpretation were independently reviewed by eight board-certified cardiologists,
using seven predefined clinical criteria designed to assess both real-world reliability and usefulness.
This unified evaluation protocol allows us to (1) verify the quality of GPT-4o generated training data,
(2) test the effectiveness of open-source substitutes, and (3) confirm the clinical utility of the GEM
model. See Appendix A.4 for detailed scoring criteria.

We report the evaluation results in Table 4 and 5 below. The expert evaluation shows that GPT-4o
consistently achieves high scores across both reliability and clinical usefulness, with particularly
strong performance in analytical completeness and reasoning quality. These results demonstrate
that, when using our knowledge-guided instruction data generation, GPT-4o is capable of generating
high-quality ECG interpretations that are both clinically reliable and practically valuable.

Deepseek-R1 is also capable of generating clinically acceptable, high-quality ECG interpretations
with our methods. This demonstrates that our method is adaptable to alternative LLM backbones and
remains applicable in settings without commercial API access.

The expert evaluation results also demonstrate that GEM consistently achieves high scores across
both reliability and usefulness dimensions, with most metrics rated above 4 out of 5. These findings
indicate that GEM is capable of producing clinically meaningful and accurate interpretations that
align well with cardiologists’ expectations. High scores in reliability-related metrics reflect the factual
correctness and clinical grounding of its outputs, while strong performance in usefulness metrics
suggests that GEM is not only technically sound but also practically helpful in supporting diagnostic
decision-making. Collectively, these results support GEM’s potential as a trustworthy assistant for
real-world cardiology applications.

In Appendix A.5, we showcase six representative cases involving complex cardiac conditions, in
which GEM’s interpretations exceeded expert expectations. In these cases, cardiologists highlight
two types of findings: (1) those they have not noticed during their own ECG examination, which
exceed their expectations for a cardiology AI assistant in real-world settings, and (2) those where
they hold differing opinions.
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Table 4: Evaluation of reliability metrics by cardiologists (Mean and STD).

Model Analytical
Relevance

Analytical
Accuracy

Analytical
Completeness

GPT-4o 4.7/5 (0.66) 4.6/5 (0.82) 4.7/5 (0.65)
Deepseek-R1 4.8/5 (0.57) 4.7/5 (0.78) 4.9/5 (0.42)
GEM 4.6/5 (0.60) 4.4/5 (0.80) 4.6/5 (0.57)

Table 5: Evaluation of usefulness metrics by cardiologists (Mean and STD).

Model Reasoning
Quality

Findings
Novelty

Clinical
Value

Overall
Satisfaction

GPT-4o 4.7/5 (0.67) 4.4/5 (1.18) 4.7/5 (0.73) 4.5/5 (0.87)
Deepseek-R1 4.8/5 (0.62) 4.5/5 (0.91) 4.6/5 (0.82) 4.7/5 (0.77)
GEM 4.6/5 (0.64) 3.9/5 (1.25) 4.3/5 (0.89) 4.4/5 (0.82)

Overall, GEM demonstrated its capability to generate clinically insightful findings, often surpassing
expert expectations by identifying details that cardiologists have not noticed, suggesting its potential
for real-world clinical applications. It is noteworthy that cardiologists also highlights certain cases
where their interpretations diverged from GEM or GPT-4o. Although our knowledge-guided instruc-
tion data generation approach avoids costly expert annotations while producing high-quality target
answers, GPT-4o still occasionally generates target answers that may be misaligned with cardiologist
interpretations. For example, in Figure 5, the GPT-4o suggest no evidence ischemia or infarction,
while cardiologist suspects there are ischemia in the precordial leads. These deviations highlight
opportunities for future refinement of model reasoning with human feedback to better align with
cardiologist level clinical judgment.

4.5 Failure Case Analysis

We also conduct an analysis of failure cases informed by expert feedback from the human evaluation.
The main errors fall into two categories. The first is incorrect diagnosis, often caused by limitations
in the representation stage. Subtle morphological patterns such as ST-segment changes or P-wave
abnormalities were occasionally missed by the encoders, likely due to feature representation defi-
ciencies or insufficient training data coverage of diverse ECG variations. The second is overstating
the severity of findings. GEM occasionally exaggerated the severity of certain cardiac conditions,
which cardiologists noted could lead to unnecessary patient concern. This tendency may result from
the absence of patient context, as the model interprets ECGs without access to clinical history that
physicians would normally consider. These findings help clarify the current limitations and inform
future directions to enhance model safety, reliability, and clinical alignment.

5 Conclusion

In this work, we present GEM, the first MLLM for grounded ECG interpretation, integrating ECG
time series, 12-lead ECG images, and textual instructions. GEM achieves feature-grounded analysis,
evidence-driven diagnosis, and clinician-style diagnostic workflows through three core technical
innovations: multimodal encoding, cross-modal alignment learning, and knowledge-guided instruc-
tion data generation. The multimodal encoding and cross-modal alignment learning allow the LLM
to simultaneously process ECG time series and image representations, effectively leveraging the
complementary strengths of both modalities for interpretation. The knowledge-guided instruction
data generation addresses the lack of high-granularity instruction data for ECG understanding.
The developed ECG-Grounding dataset comprises 30,000 fine-grained instruction pairs annotated
with heartbeat-level physiological features, which establishes the first high-resolution resource for
grounded ECG understanding. We also introduce the Grounded ECG Understanding task, a clinically
motivated benchmark that comprehensively assesses models’ grounded ECG understanding through
multi-dimensional metrics. Together, these contributions establish a solid foundation for future works
in conversational diagnostic AI for ECG interpretation.
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A.1 Diagnosis Guider Prompt

# Your task: Interpret the provided ECG image, identify key features
and abnormalities in each lead, and generate a clinical diagnosis that is
supported by the observed evidence.

## Key objectives:
1. Simulate a Realistic Diagnostic Process: The interpretation should
reflect how a doctor would analyze an ECG, ask clarifying questions, and
arrive at a diagnosis.
2. Grounded ECG Understanding: The analysis should be based on specific
ECG features and explicitly reference these features as evidence.
3. Evidence-Based Reasoning: The diagnosis should be supported by clear,
logical reasoning tied to the ECG findings.

## Guidelines for the ECG analysis:
1. Data:
ECG image: an image that display the 12-lead ECG tracings. Make the task
centered on the ECG image, assuming direct ECG image analysis.
Machine measurements: A time-ordered list of ECG features computed for
each heartbeat in every lead. Each entry in the list corresponds to the
features calculated for a single heartbeat.

2. Act as a cardiologist and use medical knowledge to analyze the provided
ECG image step-by-step:
Initial Analysis: Analyze the provided ECG image to identify key features
such as rhythm, intervals, and any apparent abnormalities.
Detailed Reasoning: Explain your thought process step-by-step, referencing
specific ECG features (e.g., "The ST segment is elevated in leads V1-V4,
which suggests anterior myocardial infarction").
Evidence-Based Diagnosis: Propose a diagnosis or differential diagnoses,
justifying your conclusions with explicit ECG data.

3. When analyzing the ECG image, carefully analyze each lead:
Lead I: Examine the QRS amplitude and duration, along with ST segment
and T wave morphology. Abnormalities may indicate lateral wall issues
such as left ventricular hypertrophy, bundle branch block, or lateral
ischemia/infarction.
Lead II: Look at the P wave amplitude and duration to assess right or left
atrial enlargement; the PR interval can reveal conduction delays. ST and T
wave changes here suggest inferior wall ischemia or infarction.
Leads III and aVF: Primarily reflect inferior wall status. Abnormal Q
waves, along with ST segment and T wave changes, point toward inferior
infarction or ischemia.
Lead aVL: Focuses on the high lateral region; QRS, ST, and T wave
abnormalities here suggest high lateral ischemia or infarction.
Lead aVR: ST elevation may indicate left main or multivessel disease, and T
wave inversion can be associated with ventricular arrhythmia.
Lead V1: An increased R wave, a characteristic rsR pattern, and ST-T
changes help identify right ventricular hypertrophy, right bundle branch
block, or ischemia.
Leads V2-V4: Assessing the anterior or anteroseptal regions. The presence
of Q waves, along with ST segment and T wave deviations, suggests anterior
wall infarction or ischemia.
Leads V5-V6: Focus on the lateral wall, where similar QRS, ST, and T wave
changes can indicate lateral ischemia or infarction.

4. When analyzing the machine measurements, you should aware that:
a. If any abnormalities appear in the computed measurements that are not
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mentioned in the report, you must strictly follow and trust the report.
b. Evaluate and interpret the machine measurements as if you had computed
them yourself. In your analysis, refer to these values as your own
computed measurements rather than using phrases like "machine measurements
provided".

## Guidelines for the response generation:
1. Synthesize your findings to deduce a likely diagnosis or set of
diagnoses. Clearly explain how the evidence supports your conclusion.
2. Ensure your diagnosis is comprehensive and strictly based on the report.
Do not include diagnosis that not mentioned in the report.
3. Make sure your diagnosis are grounded in the given ECG image and
machine measurements, and you should explicitly reference (e.g., specify
lead and the position of the abnormal heartbeat).
4. Strictly follow the output format and requirements specified in your
task instructions.
5. The given report only served as the ground truth for you to analyze
the ECG image. The generated text must not show that you are aware of the
existence of the report.
6. Never make up explanations.

## ECG Report:
{{report}}

## ECG Machine Measurements:
{{machine_measurements}}

## Generation rule The generated text must not show that you are aware
of the existence of the report. Do not include phrases like "Based the
report", or "Given the ECG report". The primary objective is to analyze
the ECG and identify evidence that supports the results. The analysis
should focus solely on the ECG itself, never analyze the report.

## Present your work in this format:

**Response:** [Comprehensive response following the task’s guidelines,
strictly based on the report. Using a complete paragraph with more natural
expression. Do not use a list format. Limit your responses within 300
words.]

A.2 Grounded ECG Understanding Metrics

DiagnosisAccuracy evaluates whether the generated diagnosis is correct, specific, and supported by
ECG findings. Results are expressed as a percentage, indicating the average accuracy across identified
key diagnoses.

AnalysisCompleteness checks if all key ECG components (e.g., rhythm, intervals, waveforms, and
lead-specific findings) are discussed. Results are provided in absolute terms, indicating the average
number of correctly addressed key ECG features for each sample.

AnalysisRelevance assesses whether each explanation directly supports the diagnosis, with results
showing on average how many points support the diagnosis with clear ECG evidence for each sample.

LeadAssessmentCoverage evaluates how many of the 12 ECG leads are analyzed. Results indicate
the average percentage of leads analyzed per sample, providing insight into the comprehensiveness of
the ECG assessment.

LeadAssessmentAccuracy verifies the accuracy of described lead findings (e.g., QRS, ST, T waves,
amplitude, intervals, ST segments) against the ground truth interpretation. The result reflects the
average percentage of accurately identified findings across the 12 ECG leads.
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ECGFeatureGrounding determines if the interpretation references actual ECG features (e.g., QRS
amplitude, PR interval) instead of generic terms. Results are scaled from 0 to 100.

EvidenceBasedReasoning evaluates whether the diagnosis follows logical, evidence-supported steps.
Results range from 0 to 100.

ClinicalDiagnosticFidelity assesses if the model mimics how a clinician interprets ECG data, consid-
ering all relevant factors. Results are scaled from 0 to 100.

A.3 GPT-4o Evaluation Prompt

# Your task: Evaluate the alignment and quality of a generated
ECG interpretation by comparing it to a ground truth clinician’s
interpretation.

## Evaluation Criteria:

1. DiagnosisAccuracy: Evaluates whether the generated diagnosis is
correct, specific, and supported by ECG findings.
- Scoring
+2 per diagnosis: Each correctly identified key diagnosis with supporting
ECG features.
+1 per diagnosis: Each mostly correct diagnosis but lacking key supporting
details.
+0 per diagnosis: Each incorrect or vague diagnosis not supported by ECG
features.

2. AnalysisCompleteness: Checks if all key ECG components (rhythm,
intervals, waveforms, and lead-specific findings) are discussed.
- Scoring
+1 per feature: For each correctly addressed key ECG feature (e.g., rhythm,
PR interval, QRS duration, ST segment, T wave morphology).
+0 per missing feature: For each key feature omitted or inaccurately
described.

3. AnalysisRelevance: Assesses whether each provided explanation directly
supports the diagnosis.
- Scoring
+2 per feature or per lead: Each point that strongly supports the
diagnosis with clear ECG evidence.
+1 per feature or per lead: Some points are relevant but not fully
justified.
+0: Includes unrelated or misleading explanations.

4. LeadAssessmentCoverage: Evaluates how many of the 12 ECG leads are
analyzed.
- Scoring
+1 per lead: For each lead adequately assessed.
+0 per missing lead: For each lead omitted or inaccurately described.

5. LeadAssessmentAccuracy: Checks if the described lead findings (e.g.,
QRS, ST, T waves, amplitude, intervals, ST segments) match standard ECG
interpretation.
- Scoring
+2 per lead: Findings closely match expected values.
+1 per lead: Findings are somewhat accurate but have minor
inconsistencies.
+0 per lead: Findings contradict ECG norms.

6. ECGFeatureGrounding: Determines if the interpretation references
actual ECG features (e.g., QRS amplitude, PR interval) instead of generic
terms.
- Scoring (0-100)
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100: ECG findings are comprehensively cited, linked to diagnoses, and
cover all relevant ECG features.
80: ECG findings are explicitly cited and linked to diagnoses.
50: Some ECG references exist but are incomplete.
0: Lacks specific waveform references.

7. EvidenceBasedReasoning: Evaluates whether the diagnosis follows
logical, evidence-supported steps.
- Scoring (0-100)
100: Findings logically progress to diagnosis with thorough and clear
justifications covering all necessary steps.
80: Findings logically progress to diagnosis with clear justifications.
50: Some reasoning exists but lacks complete step-by-step analysis.
0: Reasoning is unclear or not derived from ECG findings.

8. ClinicalDiagnosticFidelity: Assesses if the model mimics how a
clinician interprets an ECG, considering all relevant factors.
- Scoring (0-100)
100: The analysis follows a structured clinical approach and considers all
relevant clinical factors.
80: The analysis follows a structured clinical approach.
50: Some clinical reasoning is present but incomplete.
0: The approach lacks structured clinical reasoning.

NOTE: Each score must be calculated based on strict criteria to ensure
objective evaluation.

## Generated ECG Interpretation:
{{model_generated}}

## Ground Truth Clinician’s Interpretation:
{{groundtruth}}

## Response Format:

Provide your evaluation strictly in the JSON format below. For any
criterion with multiple elements (e.g., multiple diagnoses or leads),
list each one as a separate "Score": X, "Explanation": "Y" entry. Use
a single entry for criteria with aggregate scores (e.g., 0–100 scores).

{ "DiagnosisAccuracy": [ "Score": 2, "Explanation": "Sinus tachycardia
correctly identified and supported by short PR interval.", "Score": 1,
"Explanation": "Left ventricular hypertrophy is mostly correct but lacks
QRS amplitude detail." ],

"AnalysisCompleteness": [ "Score": 1, "Explanation": "PR interval
is correctly described.", "Score": 1, "Explanation": "QRS duration
assessed.", "Score": 0, "Explanation": "ST segment not addressed." ],

"AnalysisRelevance": [ "Score": 2, "Explanation": "QRS prolongation
supports diagnosis of bundle branch block." ],

"LeadAssessmentCoverage": [ "Score": 1, "Explanation": "Lead I
assessed.", "Score": 1, "Explanation": "Lead II assessed.", "Score": 0,
"Explanation": "Leads V4–V6 omitted." ],

"LeadAssessmentAccuracy": [ "Score": 2, "Explanation": "Findings in Lead
II match standard interpretation.", "Score": 1, "Explanation": "Lead III
slightly misinterpreted but largely accurate." ],

"ECGFeatureGrounding": [ "Score": 80, "Explanation": "Most findings cite
ECG features like QRS and T wave, but some are vague." ],

"EvidenceBasedReasoning": [ "Score": 100, "Explanation": "Diagnosis is
built on step-wise reasoning with reference to all major findings." ],
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"ClinicalDiagnosticFidelity": [ "Score": 80, "Explanation": "Analysis
mimics clinician structure but misses minor clinical context." ] }

A.4 Scoring Criteria for Cardiologist Evaluation

Table 6: Reliability metrics.

Criterion Description and Scale
Analytical
Relevance

(1–5)
Does the model’s analysis closely support the diagnosis and provide corre-
sponding ECG evidence?
5 – Every analysis point is highly relevant to the diagnosis, with clear sup-
porting evidence.
4 – Most analyses are strongly relevant, with minor insufficiencies.
3 – Some analyses are relevant, but there is clear irrelevant content.
2 – Most analyses are weakly relevant.
1 – The analysis is unrelated to the diagnosis.

Analytical
Accuracy

(1–5)
Are there any medical factual errors in the model’s output?
5 – Completely accurate.
4 – Mostly accurate.
3 – Some errors.
2 – Obvious errors.
1 – Severe errors.

Analytical
Completeness

(1–5)
Does the model comprehensively discuss key ECG components relevant to
the diagnosis, including rhythm, intervals, and waveforms?
5 – All relevant ECG features (rhythm, PR, QRS, ST, T waves, intervals,
etc.) are accurately discussed.
4 – Most key ECG features are covered, with minor omissions.
3 – Only some features are covered, with significant gaps.
2 – Only a few ECG features are mentioned.
1 – ECG components are largely missing, with severe omissions.
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Table 7: Usefulness metrics.

Criterion Description and Scale
Reasoning

Quality
(1–5)

Does the model provide a clear, evidence-based reasoning process similar to
that of a clinician, logically deriving the diagnosis from ECG features?
5 – Clear and coherent reasoning structure, explaining each step from ECG
to diagnosis causally.
4 – Overall reasonable reasoning, but some steps lack detail.
3 – Partial reasoning present, but incomplete or logically weak.
2 – Disjointed reasoning with major gaps.
1 – No logical reasoning, only a stack of conclusions.

Findings
Novelty

(1–5)
Does the model provide insights or findings not noticed by the clinician?
5 – Important new diagnoses or findings.
4 – Novel and somewhat insightful content.
3 – Some new findings, but of limited value.
2 – Conventional content, not particularly insightful.
1 – No new information.

Clinical
Value
(1–5)

Does the model output help in clinical decision-making?
5 – Direct and significant support for clinical judgment; content is clear and
reliable.
4 – Most content is helpful and practically useful.
3 – Somewhat informative, but basic or unclear.
2 – Partially suggestive, with limited decision support.
1 – No value for clinical judgment; not informative.

Overall
Satisfaction

(1–5)
Subjective rating of the overall output quality.
5 – Very satisfied.
4 – Satisfied.
3 – Neutral.
2 – Dissatisfied.
1 – Very dissatisfied.
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A.5 Case Studies by Cardiologist

GEM Interpretation: Upon analyzing the provided ECG image and computed measurements, several key 
features and abnormalities are evident. The heart rate is elevated at 121 bpm, indicating a rapid ventricular 
response. The rhythm appears irregular, consistent with atrial fibrillation, as seen by the absence of distinct P 
waves and the presence of irregular RR intervals. In the precordial leads, particularly V1 through V4, there are
low QRS voltages, which could suggest conditions such as pericardial effusion or obesity. The QRS complexes
in these leads are notably diminished, which aligns with the low voltage finding. Furthermore, the presence of 
premature ventricular contractions (PVCs) is suggested by the irregular RR intervals and the occasional 
absence of preceding P waves. The ST-T changes observed in the anterolateral leads, particularly V2 to V6, are
nonspecific but could indicate ischemic changes or other cardiac conditions. The QTc intervals are prolonged
in several leads, which may suggest a risk for arrhythmias. The combination of these findings, including the 
rapid ventricular response, irregular rhythm, low QRS voltages, and nonspecific ST-T changes, supports a 
diagnosis of atrial fibrillation with rapid ventricular response and PVCs. The low QRS voltages in the precordial 
leads add another layer of complexity, potentially indicating underlying cardiac conditions. The ECG is 
classified as abnormal due to these findings, which warrant further clinical correlation and possibly additional 
diagnostic testing to determine the underlying cause of these abnormalities.

PULSE Interpretation: The electrocardiogram (ECG) reveals atrial fibrillation with a rapid ventricular response, 
accompanied by premature ventricular contractions (PVCs) or aberrant ventricular conduction, indicating 
irregular heart rhythm. Additionally, the ECG suggests possible anterior myocardial infarction, although the 
age of the infarct cannot be determined. The inferior and lateral ST-T changes are nonspecific, and the QRS 
voltages are low in the precordial leads, contributing to an overall abnormal ECG pattern.

Target Answer (GPT-4o): Upon examining the provided ECG, we identify several critical features and 
abnormalities. The first notable observation is the presence of atrial fibrillation, characterized by an irregular 
rhythm and lack of distinct P waves in the ECG tracings. This is supported by the irregular RR intervals, which 
vary significantly between heartbeats. The heart rate is elevated at 132 bpm, indicative of a rapid ventricular 
response. Additionally, the ECG reveals frequent premature ventricular contractions, or multifocal PVCs, with 
varying QRS complex morphologies, suggesting aberrant ventricular conduction or possible ventricular 
ectopy. Lead I and precordial leads demonstrate low QRS voltages, which can correlate with various 
conditions, including myocardial infarction or myopathies. In terms of ST-T changes, the anterior leads (V1-V4) 
may suggest possible anterior myocardial infarction, as evidenced by QRS amplitude and morphology 
abnormalities. Moreover, inferior and lateral leads, particularly lead aVL, display nonspecific ST-T changes, 
which could indicate ischemia or other pathological processes. A comprehensive review of the QT interval 
reveals prolonged QTc intervals particularly in the precordial leads, reflecting altered repolarization processes. 
Furthermore, no distinct high, lateral, or inferior lead pattern suggests definitive infarction, but the changes are 
significant enough to warrant further clinical investigation and correlation with clinical symptoms and history. 
Conclusively, the ECG findings strongly support a diagnosis of atrial fibrillation with rapid ventricular response, 
accompanied by frequent multifocal PVCs or aberrant ventricular conduction. The anterior region's ST-T 
changes and precordial low QRS voltages emphasize the need for further assessment, possibly indicating a 
previous or ongoing ischemic event. However, additional clinical context and investigations are essential to 
corroborate these findings and formulate a complete treatment strategy.
Ground-truth Report: Atrial fibrillation with rapid ventricular response with frequent multifocal PVCs or 
aberrant ventricular conduction; Possible anterior infarct; Inferior/lateral ST-T changes are nonspecific; Low 
QRS voltages in precordial leads; Abnormal ECG.

Figure 4: Cardiologist Evaluations. Blue: Findings exceeding expert expectations. Yellow: Findings
with differing expert opinions.
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GEM Interpretation: Upon analyzing the provided ECG image and computed measurements, several key 
features and abnormalities are evident. The rhythm is irregular, with a heart rate of 102 bpm, which is 
consistent with atrial fibrillation. This is supported by the absence of distinct P waves across multiple leads,
such as Lead I and Lead II, and the presence of irregular RR intervals, as seen in the measurements. The QRS 
complexes are generally narrow, indicating a supraventricular origin, which aligns with atrial fibrillation. In Lead 
I, the QRS amplitude and duration are within normal limits, but the irregular rhythm is evident. Lead II shows a 
similar pattern with absent P waves and irregular intervals, further supporting atrial fibrillation. Leads III and 
aVF, which reflect the inferior wall, do not show significant Q waves or ST segment changes that would suggest 
acute ischemia or infarction. Lead aVL, focusing on the high lateral region, also does not exhibit significant 
abnormalities in the QRS, ST, or T wave morphology. Lead aVR, often used to assess global ischemic changes,
does not show significant ST elevation or T wave inversion, which might have indicated more severe conditions
like left main coronary artery disease. In the precordial leads V1 through V6, the QRS complexes are narrow, 
and there are no significant ST segment elevations or depressions that would suggest acute myocardial 
infarction. Overall, the ECG findings are consistent with atrial fibrillation, characterized by the absence of 
distinct P waves and irregular RR intervals. The lack of significant ST segment changes or pathological Q waves 
across the leads suggests that there is no acute ischemic event present. This analysis supports the diagnosis of 
atrial fibrillation as the primary abnormality, with no evidence of acute myocardial infarction or other significant 
ischemic changes.

PULSE Interpretation: The electrocardiogram (ECG) reveals atrial fibrillation, characterized by an irregular 
heart rhythm with no discernible P waves, indicating a lack of coordinated atrial contraction. Additionally, the 
ECG shows a repolarization abnormality, suggesting a potential issue with the heart's recovery phase after 
contraction. The probable rate-related abnormality implies that the repolarization abnormality may be related 
to the atrial fibrillation, which is causing an irregular heart rate.

Target Answer (GPT-4o): Upon examining the provided ECG image, several key features indicate the 
presence of atrial fibrillation (AF). The irregularly irregular rhythm, as evidenced by varying RR intervals, 
supports this observation. Notably, the RR intervals range widely, which is a hallmark of AF due to inconsistent 
atrial impulses reaching the ventricles. Additionally, the absence of distinct P waves on leads with traditionally 
observable P waves is another pivotal indicator; this suggests a loss of organized atrial electrical activity, 
consistent with AF. The heart rate approximates 107 bpm, indicative of a moderate ventricular rate, aligning 
with a presentation of AF with a controlled rate. No consistent pattern in the PR interval is observed, further 
corroborating the diagnosis of AF, as atrial activity is chaotic and not leading to a predictable conduction 
pattern through the AV node. Analyzing leads such as lead II, where P wave characteristics are more 
observable under normal conditions, we see minimal or absent P wave formations. The variability and 
inconsistency of PR intervals signify typical conduction during AF episodes, contributing to its erratic rhythm. In 
terms of additional abnormalities, minor QRS and T wave deviations across various leads were noted, but they 
did not form a pathological pattern significant enough to suggest additional diagnoses such as ischemia or
infarction. The ST segment and QTc intervals are within normal limits given the context of AF. This ECG analysis 
supports a diagnosis of atrial fibrillation, underpinning the clinical picture with evidenced irregular RR intervals 
and absent P waves. My interpretation remains focused on the features aligning with AF without assuming 
further conditions not supported by the ECG findings.
Ground-truth Report: Atrial fibrillation.

Figure 5: Cardiologist Evaluations. Blue: Findings exceeding expert expectations. Yellow: Findings
with differing expert opinions.
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GEM Interpretation: Upon analyzing the provided ECG image and computed measurements, several key 
features and abnormalities are evident. The rhythm is sinus, as indicated by the consistent P wave morphology 
across leads and a regular heart rate of 75 bpm. In Lead I, the QRS complex shows a prolonged duration, 
which is consistent with a right bundle branch block (RBBB). This is further supported by the characteristic rsR'
pattern in Lead V1, a hallmark of RBBB. The QRS duration in Lead I is notably prolonged, ranging from 134 to 
150 ms, which is indicative of this conduction delay. In Lead II, the PR interval is within normal limits, but the 
QRS duration is slightly prolonged, further supporting the presence of RBBB. The ST segment and T wave 
morphology in Lead II do not show significant deviations, suggesting no acute ischemic changes. Leads III and 
aVF, which reflect the inferior wall, do not exhibit pathological Q waves or significant ST segment changes, 
ruling out inferior wall ischemia or infarction. Lead aVL shows no significant abnormalities in the QRS complex 
or ST segment, which suggests no high lateral ischemia. Lead aVR does not show ST elevation, which would 
have indicated left main coronary artery disease. In the precordial leads V2-V4, the QRS complexes are 
widened, consistent with RBBB, and there are no significant ST segment elevations or depressions to suggest 
anterior wall ischemia. Overall, the ECG findings are consistent with a right bundle branch block, as evidenced 
by the prolonged QRS duration and characteristic patterns in the precordial leads. The sinus rhythm and 
absence of acute ischemic changes suggest that the conduction abnormality is the primary finding. This 
analysis aligns with the diagnosis of an abnormal ECG due to the presence of RBBB.

PULSE Interpretation: The electrocardiogram (ECG) reveals a sinus tachycardia, characterized by a rapid heart 
rate with a normal P-wave axis, indicating that the sinus node is functioning normally but at an accelerated 
pace. Additionally, the ECG shows a right bundle branch block (RBBB), which is a conduction abnormality 
affecting the right ventricle, resulting in a delayed activation of the right ventricle. Overall, the ECG suggests a 
diagnosis of sinus tachycardia with right bundle branch block.

Target Answer (GPT-4o): The 12-lead ECG image reveals key characteristics supporting the diagnosis of a 
right bundle branch block (RBBB) in the context of sinus rhythm. In Lead I, the QRS duration extends to 
approximately 134 milliseconds, coupled with a notable upslope in the ST segment across multiple heartbeats. 
The amplitude of the QRS complex peaks at approximately 2.463 mV, which might suggest normal conduction 
patterns as the lead does not display criteria typical of a RBBB. Lead V1, however, showcases the classic 
features of RBBB with an RsR' pattern evidenced by a marginally increased QRS duration and the presence of a 
characteristic \"rabbit ears\" morphology, as indicated by significant amplitudes and uniform morphology, 
compatible with RBBB diagnostics. Furthermore, different elevations and variations, including notable upslope
ST segments observed in leads V1 to V3, can further affirm the presence of bundle branch blocks without overt
ischemic patterns. Additional leads such as II, III, aVR, and aVF do not exhibit significant anomalies, aside from 
mild ST variations, which are consistent across these leads without inferring significant ischemia or infarction. 
The computed average heart rate is normal, around 73 bpm, with consistent RR intervals suggesting regular
sinus rhythm. Although the overall ECG demonstrates sinus rhythm, the broad QRS complexes and rightward 
axis deviation are hallmarks of a right bundle branch block. These observations, together with consistent 
measurements, fully support the diagnosis of RBBB. No acute ischemic changes are discerned based on ST 
segment and T wave morphology across most of the ECG leads, correlating with the absence of acute 
myocardial infarction signs. The ECG also appears abnormal due to the prolonged QRS complex duration, 
supporting the finding of a RBBB when considered in conjunction with the specific electrocardiographic 
patterns observed.
Ground-truth Report: Sinus rhythm; Right bundle branch block; Abnormal ECG.

Figure 6: Cardiologist Evaluations. Blue: Findings exceeding expert expectations. Yellow: Findings
with differing expert opinions.
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GEM Interpretation: Upon analyzing the provided ECG image and computed measurements, several key 
features and abnormalities are evident. The rhythm is sinus, as indicated by the regular P waves preceding 
each QRS complex. However, the QT interval is prolonged across multiple leads, with QTc values exceeding
500 ms in several instances, suggesting a risk for arrhythmias. In leads II, III, and aVF, there are notable changes 
consistent with an inferior infarct, including abnormal Q waves and ST segment deviations. Additionally, leads
V2 to V4 show ST segment elevation and T wave inversion, which are indicative of anterior wall ischemia or
infarction. The lateral leads, particularly I, aVL, V5, and V6, exhibit ST-T changes, such as ST segment depression 
and T wave inversion, which may suggest lateral myocardial ischemia. The presence of these changes in 
multiple leads supports the diagnosis of myocardial ischemia. The combination of these findings, including the 
prolonged QT interval and the ST-T changes, suggests a complex cardiac condition involving both ischemic 
and infarct patterns. The ECG is abnormal, with evidence pointing towards an inferior infarct, anterior and 
lateral ischemia, and a prolonged QT interval, all of which require further clinical correlation and management.

PULSE Interpretation: The electrocardiogram (ECG) reveals a sinus rhythm, indicating a normal heart rate and 
rhythm. However, it also shows an intraventricular conduction defect, which suggests a delay in the electrical 
conduction system of the heart. Furthermore, the ECG indicates evidence of a previous inferior myocardial 
infarction, although the age of the infarct cannot be determined. Additionally, there are ST-T changes observed 
in the anterior, septal, and lateral leads, which may be indicative of myocardial ischemia. Overall, the ECG is 
abnormal, suggesting cardiac disease. Clinical Diagnosis: Abnormal ECG with evidence of previous inferior 
myocardial infarction and possible myocardial ischemia.

Target Answer (GPT-4o): Analyzing the provided 12-lead ECG shows evidence of an inferior myocardial 
infarction, as evidenced by significant deviations in the leads primarily reflective of the inferior wall, such as 
leads II, III, and aVF, which exhibit abnormalities in ST segments and T wave morphology. The QRS complexes 
and ST segment changes suggest an old or acute inferior infarct. Additionally, ST-T changes are notable in the 
anterior leads (V2-V4), indicating anterior or anteroseptal myocardial ischemia. The presence of significant ST 
elevation or depression, coupled with T wave inversion in these leads, corroborates the potential for ischemia 
in the anterior regions of the heart. In the lateral leads (I, aVL, V5, and V6), the presence of ST segment and T 
wave changes could indicate lateral wall ischemia or infarction. Specifically, notable changes in ST form and T 
wave morphology support this suspicion, which aligns with the observed abnormalities. The heart rate, 
computed at an average of 70 beats per minute, appears normal as it shows regular RR intervals, supporting a 
sinus rhythm without apparent rhythm disturbances. The computed PR intervals and QRS durations in different 
leads suggest no significant atrioventricular or bundle branch blocks, except for possible localized conduction 
delays that contribute to the differential ECG patterns observed. Collectively, these ECG findings demonstrate 
a combination of inferior infarct with the potential for ischemia notable in both anterior and lateral regions. This 
pattern of changes, particularly the ST-T variations across multiple leads, supports the likelihood of broadened 
myocardial involvement. The diagnosis aligns with the classification of an abnormal ECG, confirming 
myocardial ischemia and infarction.
Ground-truth Report: Sinus rhythm; Inferior infarct; Ant/septal and lateral ST-T changes may be due to 
myocardial ischemia; Abnormal ECG.

Figure 7: Cardiologist Evaluations. Blue: Findings exceeding expert expectations. Yellow: Findings
with differing expert opinions.
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GEM Interpretation: Upon analyzing the provided ECG image and computed measurements, several key 
features and abnormalities are evident. The heart rate is elevated at 101 bpm, indicating sinus tachycardia. In 
Lead I, the QRS amplitude is notably high, suggesting left ventricular hypertrophy (LVH), which is further 
supported by the increased QRS amplitude in Leads V5 and V6. The presence of secondary repolarization
abnormalities is suggested by the ST segment changes and T wave morphology in these leads. In Lead II, the P 
wave amplitude and duration are within normal limits, but the PR interval is slightly prolonged, which could 
indicate a first-degree AV block. The QRS complexes in Leads III and aVF are diminished, which might suggest 
an inferior wall issue, but the lack of significant Q waves or ST segment changes makes this less likely. Lead aVL 
shows a high QRS amplitude, consistent with LVH, and the T wave morphology is abnormal, which could
indicate lateral ischemia. Lead aVR does not show significant ST elevation, reducing the likelihood of left main 
coronary artery disease. In Lead V1, the absence of an rsR' pattern and the lack of significant ST-T changes 
suggest that right ventricular hypertrophy or right bundle branch block is unlikely. Leads V2 to V4 show no 
significant Q waves or ST segment elevation, reducing the likelihood of an anterior myocardial infarction. 
Overall, the ECG findings are consistent with sinus tachycardia, probable left atrial enlargement, and left 
ventricular hypertrophy with secondary repolarization abnormalities. The absence of significant ST segment 
elevation or depression in the anterior leads suggests that acute ischemia or infarction is unlikely. The findings 
are consistent with chronic changes rather than acute pathology.

PULSE Interpretation: The electrocardiogram (ECG) reveals a sinus tachycardia, characterized by a rapid heart 
rate with a normal P-wave axis, indicating that the sinus node is functioning normally but at an accelerated 
pace. Additionally, the ECG shows evidence of biatrial enlargement, suggesting that both the left and right 
atria are enlarged, which can be a sign of cardiac chamber dilation or hypertrophy. Furthermore, the ECG 
demonstrates left ventricular hypertrophy (LVH) with secondary repolarization abnormality, indicating that the 
left ventricle is thickened, leading to abnormal electrical conduction and repolarization patterns.

Target Answer (GPT-4o): In analyzing the ECG image, several key features and abnormalities are identified 
that support the clinical findings. The rhythm across leads is sinus, as observed from the consistent P wave 
morphology, notably prominent in Lead II, indicating a regular atrial rhythm. In Lead II, the P wave amplitude 
varies, but the durations range around 92 to 104 ms, suggesting left atrial enlargement. This enlargement is 
further evidenced by the increased P wave amplitude in several leads, including V1, where the amplitude is 
significantly high. The QRS complexes show increased amplitudes across multiple leads, particularly in V3 and 
V4, with corresponding secondary ST-T changes. This pattern of high voltage QRS complexes and secondary 
repolarization abnormalities is indicative of left ventricular hypertrophy (LVH). The computer measurements 
confirm increased QRS amplitude in these leads, supporting the presence of LVH. Additionally, there is anterior 
ST segment elevation seen in leads V2-V4, which can be attributed to the strain pattern associated with LVH 
rather than acute myocardial infarction, as it correlates with the presence of LVH. There is no significant Q wave 
development or evidence of acute ischemic injury that suggests an infraction. Overall, the ECG findings 
collectively indicate sinus rhythm with left atrial enlargement and left ventricular hypertrophy with secondary 
repolarization abnormalities. The anterior ST elevation observed is likely a consequence of LVH, consistent with 
a LVH strain pattern. These interpretations align with the clinical manifestations of a patient with left heart strain 
and structural changes, corroborated by the data synthesis from both visual ECG interpretation and detailed 
interval measurements.
Ground-truth Report: Sinus rhythm; Left atrial enlargement; LVH with secondary repolarization abnormality; 
Anterior ST elevation, probably due to LVH.

Figure 8: Cardiologist Evaluations. Blue: Findings exceeding expert expectations. Yellow: Findings
with differing expert opinions.
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GEM Interpretation: Upon analyzing the provided ECG image and computed measurements, several key 
features and abnormalities are evident. The rhythm is sinus, as indicated by the consistent P wave morphology 
across leads, but there is a borderline first-degree A-V block, suggested by the prolonged PR intervals, 
particularly noticeable in leads I and II. The QRS complexes exhibit a right bundle branch block pattern, 
characterized by a widened QRS duration, particularly in lead V1, where an rsR' pattern is observed. The axis is 
rightward, which is consistent with the right bundle branch block. In the inferior leads (II, III, and aVF), there are 
nonspecific T wave changes, which could indicate ischemia or other non-specific changes. The QRS amplitude 
in lead III is notably low, which might suggest an inferior wall issue, although the changes are not definitive for 
infarction. The lateral leads (I, aVL, V5, and V6) show some T wave changes, but these are nonspecific and do
not clearly indicate lateral ischemia or infarction. The QTc intervals are prolonged in several leads, which could 
be a concern for potential arrhythmogenic risk. The overall ECG is abnormal, with the combination of these 
findings suggesting a complex cardiac conduction issue. The rightward axis and right bundle branch block are 
significant, and the nonspecific T wave changes in the inferior and lateral leads warrant further clinical 
correlation and possibly additional diagnostic testing to rule out underlying ischemic heart disease or other 
cardiac conditions.

PULSE Interpretation: The electrocardiogram (ECG) reveals a sinus rhythm, indicating a normal heart rate and 
rhythm. However, the ECG also exhibits several abnormalities, including a prolonged QT interval, which may 
indicate a prolonged repolarization phase, and a right axis deviation, suggesting an abnormal orientation of 
the heart's electrical axis. Additionally, the ECG shows signs of right ventricular hypertrophy, low QRS voltages 
in the limb leads, and extensive ST-T changes, which may be attributed to either hypertrophy or ischemia, 
leading to an overall abnormal ECG.

Target Answer (GPT-4o): Upon reviewing the 12-lead ECG image, the diagnosis reveals a sinus rhythm with a 
rightward axis and the presence of a right bundle branch block. The rhythm is consistent with a heart rate 
around 70 bpm, indicated by relatively regular RR intervals. The rightward axis is evident as lead I shows a 
smaller QRS amplitude compared to lead aVF, which reflects more positive deflections. A right bundle branch 
block is supported by the widened QRS complexes, particularly evident in leads V1 and V2, where an rsR' 
pattern could be observed, consistent with this conduction abnormality. Examination of the lateral leads (I, aVL, 
V5, V6) reveals mild T wave abnormalities, which are noted as nonspecific changes. In these leads, the 
morphology of the T waves shows slight variations that do not definitively point to ischemia but suggest some 
lateral wall changes. Despite these T wave changes being nonspecific, they may warrant further clinical 
correlation given the right bundle branch block already present. In summary, the ECG findings primarily 
indicate a right bundle branch block with a rightward axis. The T wave changes noted in the lateral leads are 
nonspecific and should be clinically correlated to assess their significance. These findings characterize the ECG 
as abnormal, and the conduction delay could suggest underlying pathology that may require additional testing 
or clinical evaluation to rule out underlying cardiac conditions. This evaluation is critical to ensure 
comprehensive cardiovascular assessment and appropriate subsequent management.
Ground-truth Report: Sinus rhythm; Rightward axis; Right bundle branch block; Lateral T wave changes are 
nonspecific; Abnormal ECG.

Figure 9: Cardiologist Evaluations. Blue: Findings exceeding expert expectations. Yellow: Findings
with differing expert opinions.
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A.6 Broader Impacts and Limitations

Broader Impacts. This work explores the potential of leveraging large language models to generate
high-granularity ECG interpretations without the need for manual annotation. It contributes to the
medical AI community in three key aspects: First, GEM is the first multimodal large language
model that unifies time series, images, and text to enable feature-grounded analysis, evidence-
based diagnosis, and clinician-like diagnostic workflows. This opens new avenues for research on
multimodal alignment in ECG interpretation. Second, the proposed data generation methodology and
the resulting ECG-Grounding dataset establish the first high-resolution resource for grounded ECG
understanding. This dataset can support future research aimed at developing clinically applicable
conversational ECG models. Third, the introduction of the Grounded ECG Understanding task
provides a comprehensive and fine-grained evaluation protocol, helping future models to be assessed
more thoroughly and precisely in terms of clinical reasoning and interpretability. By bridging
computational precision with clinician-level reasoning, GEM represents a step toward more reliable,
explainable, and clinically applicable AI-assisted ECG analysis, with potential for broader integration
into real-world healthcare workflows.

On the other hand, it is important to acknowledge that the techniques explored in this study are
intended for research purposes. Therefore, the proposed GEM model should not be directly used
to make critical clinical decisions. Despite its strong performance in ECG interpretation, GEM is
designed to serve as an assistive tool rather than a standalone solution for high-stakes clinical use.

Limitations. As discussed in Section 4.4, although our knowledge-guided instruction data generation
approach avoids costly expert annotations while producing high-quality target answers, GPT-4o still
occasionally generates responses that may not fully align with cardiologist interpretations. This
limitation could be addressed by incorporating expert feedback into the data generation loop, which
we identify as an important direction for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section A.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Source codes are provided with instructions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

30



Answer: [Yes]
Justification: Source codes are provided with instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The full details are provided with the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We have conducted a comprehensive evaluation of our proposed methods across
a wide range of tasks and models. The results consistently demonstrate the effectiveness of
our approach. Given the breadth and robustness of these findings, we have chosen not to
include formal significance testing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide these information in Section 3.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are discussed in Section A.6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

32

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets are publicly available and properly cited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the documentation along with the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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