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Abstract

Previous attempts to build effective seman-001
tic parsers for Wizard-of-Oz (WOZ) conversa-002
tions suffer from the difficulty in acquiring a003
high-quality, manually annotated training set.004
Approaches based only on dialogue synthesis005
are insufficient as dialogues generated from006
state-machine based models are poor approx-007
imations of real-life conversations. Further-008
more, previously proposed dialogue state rep-009
resentations are ambiguous and lack the preci-010
sion necessary for building an effective agent.011

This paper proposes a new dialogue represen-012
tation and a sample-efficient methodology that013
can predict precise dialogue states in WOZ014
conversations. We propose a precise, com-015
plete, and executable dialogue representation016
called ThingTalk+, which captures all informa-017
tion an agent needs to respond properly. Our018
training strategy is sample-efficient: we com-019
bine (1) few-shot data sparsely sampling the020
full dialogue space and (2) synthesized data021
covering a subset space of dialogues generated022
by a succinct state-based dialogue model. The023
completeness of the ThingTalk+ language is024
demonstrated with a fully operational agent,025
which is also used in training data synthesis.026

We demonstrate the effectiveness of our027
methodology on MultiWOZ 3.0, a rean-028
notation of the MultiWOZ 2.1 dataset in029
ThingTalk+. ThingTalk+ can represent 98% of030
the test turns, while the simulator can emulate031
85% of the validation set. We train a contex-032
tual semantic parser using our strategy, and ob-033
tain 79% turn-by-turn exact match accuracy on034
the reannotated test set.035

1 Introduction036

Virtual assistants and task-oriented dialogue agents037

are transforming how consumers interact with com-038

puters. This has led to active research on dialogue039

state tracking networks (Ren et al., 2019; Zhou and040

Small, 2019; Zhang et al., 2019; Chen et al., 2020;041

Heck et al., 2020), and even full neural networks042

SearchQuestion: area;
Restaurant, food = “indian” && price == cheap
{ name = “Kohinoor”, area = centre, ... }
{ name = “Royal Spice”, area = north, ... }

“Do you have anything 
with Indian food?”

user utterance RecommendMany;
Restaurant, price == cheap
{ name = “Pizza Hut City Centre”, area = centre, ... }
{ name = “The Missing Sock”, area = east, ... }

input formal dialogue

CSP Model

Exec: Restaurant, food = “indian”
&& price == cheap

user state

Agent

“Do you have a specific 
part of town in mind?”

agent utterance

output formal dialogue

...

...

Figure 1: The inference-time flow of a dialogue
agent with a contextual semantic parser based on the
ThingTalk+ representation.

that track dialogue states, implement dialogue poli- 043

cies, and generate agent utterances (Williams and 044

Zweig, 2016; Eric and Manning, 2017; Zhang et al., 045

2019; Peng et al., 2020; Hosseini-Asl et al., 2020). 046

Dialogue state tracking on Wizard-of-Oz task- 047

oriented conversations, where humans are asked to 048

simulate both the agent and the user, has proven 049

to be challenging. For example, despite multiple 050

rounds of manual annotation, the MultiWOZ multi- 051

domain task-oriented dataset still contains signif- 052

icant errors which hamper the development of ac- 053

curate semantic parsers (Zang et al., 2020; Han 054

et al., 2020; Ye et al., 2021). An approach to by- 055

pass manual annotations is to generate dialogues 056

using a simulator and then manually paraphrase 057

them (Shah et al., 2018). Unfortunately, as we 058

shall show in this paper, such dialogue simulators 059

do not exercise many of the possible dialogue flows 060

seen in Wizard-of-Oz conversations. This gap is 061

likely to widen with real-life conversations. 062

Given the many attempts to creating accurate 063

semantic parsers for the MultiWOZ data set, this 064

paper takes a fresh look at the problem of under- 065

standing Wizard-of-Oz conversations. We observe 066
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two fundamental flaws with the current approach.067

Previously proposed state representations such as068

slot-value pairs and the recently proposed hierar-069

chical forms (Cheng et al., 2020) do not capture070

critical details in the user utterances, such as logical071

“or” and negation. Even if the semantic parser is072

100% accurate, the agent will not be able to satisfy073

the user’s request. Second, it is easy to make errors.074

The existing slot representation is ambiguous, so075

it is not possible to be consistently correct. This076

leads to poor quality of annotation.077

This paper shows that it is possible to create a078

precise and accurate semantic parser for Wizard-079

of-Oz conversations in a sample-efficient manner.080

We introduce the MultiWOZ 3.0 dataset, a reanno-081

tation of the full test set and partial validation set082

of MultiWOZ 2.1 (Eric et al., 2019), using a new,083

more precise formal representation. The contribu-084

tions of this paper include:085

1. A precise, complete, executable086

ThingTalk+ representation for dialogues.087

Whereas the ThingTalk programming language088

was previously proposed to represent just a single089

utterance (Campagna et al., 2019), ThingTalk+ is a090

full formal representation of a dialogue, including091

multiple turns of user input, results from the092

user request (such as a database lookup or API093

invocation), and the agent’s response. We show094

that it is precise enough to capture 98% of the095

turns in MultiWOZ 3.0.096

We also demonstrate that ThingTalk+ is a com-097

plete representation for dialogues. The agent com-098

ponent of the dialogue simulator directly executes099

the ThingTalk+ representation, without referring100

to any of the user utterances, to retrieve the results101

from the databases and APIs. In fact, the same102

agent code can be used both during simulation and103

in a real agent deployment.104

2. We show that we can obtain a high-quality105

synthetic training data set with a simulator that106

adopts the ThingTalk+ representation. The pre-107

cision of ThingTalk+ makes it possible to generate108

the many distinctively different dialogue paths that109

mirror those in the WOZ conversation. Our exper-110

iment shows that our simulator can generate 85%111

of the user turns.112

3. We show that by leveraging synthesized113

dialogues represented in ThingTalk+, we can114

train an effective semantic parser for WOZ con-115

versations. This is significant since it is difficult116

to annotate dialogues accurately. ThingTalk+ does117

not make it easier to annotate, but it is unambigu- 118

ous. We annotate manually only a few-shot training 119

set, and rely on the synthesis for the rest. The few- 120

shot training data is 2% of the typical amount of 121

annotated data. 122

The few-shot training samples in ThingTalk+ 123

help the semantic parser generalize from the sim- 124

ulated dialogues to WOZ conversations. Whereas 125

the state-machine based simulator can only gen- 126

erate a subset of the states representable by 127

ThingTalk+, ThingTalk+ can precisely represent 128

nearly all WOZ data. 129

Our novel contextual semantic parser, described 130

in Section 5, obtains a turn-by-turn accuracy of 131

79% on MultiWOZ 3.0. Note that the model can 132

generalize to utterances that fall out of the realm of 133

simulation. 134

2 Related Work 135

State Representation for DST Dialogue State 136

Tracking is the task of predicting a formal repre- 137

sentation of a conversation. The standard repre- 138

sentation used in DST contains the values of all 139

slots mentioned in the dialogue (Asri et al., 2017; 140

Budzianowski et al., 2018). This is inadequate in 141

practice. First of all, the definition is ambiguous, 142

as it could mean “all slots mentioned by the user” 143

or “all slots mentioned by either the user or the 144

agent”. This has lead to inconsistency in annota- 145

tion. Second, the representation does not track the 146

comparison or logical operators in the request, so 147

it cannot model complex queries. 148

Recently, Cheng et al. (2020) proposed adopting 149

a formal representation for both the user and agent 150

state, using the TreeDST representation. TreeDST 151

was built to support only dialogues synthesized 152

and paraphrased from a compatible state machine, 153

while ThingTalk+ supports the full generality of 154

Wizard-of-Oz conversations. 155

Data Acquisition for DST In recent years, a 156

number of very large DST datasets have been re- 157

leased (Budzianowski et al., 2018; Byrne et al., 158

2019; Rastogi et al., 2019). The preferred tech- 159

nique to acquire such datasets is through Wizard- 160

of-Oz (Kelley, 1984), a technique in which two 161

humans are instructed to converse with each other, 162

with one person taking the role of the agent. WOZ 163

datasets are expensive, and the annotation quality 164

is poor. A different approach synthesizes a large 165

corpus of dialogues using a state machine, then em- 166

ploys crowdworkers to paraphrase them. Paraphras- 167

2



ing has been applied to semantic parsing (Wang168

et al., 2015) and dialogues (Shah et al., 2018;169

Rastogi et al., 2019; Cheng et al., 2020). Para-170

phrased datasets have less variety than WOZ, and171

crowdsourced paraphrases are also expensive. Our172

approach has a significant cost advantage, while173

matching the variety of WOZ dialogues.174

Campagna et al. (2020) found that using data175

synthesized from a small finite state machine, it176

is possible to increase the accuracy of DST in the177

transfer learning setting. Later, Yu et al. (2020)178

proposed using synthesized data to pre-train a DST179

model, using a different objective function. They180

showed modest improvements in MultiWOZ 2.1,181

using the full training set. We instead propose using182

the same fine-tuning objective for both synthesized183

and few-shot annotated data.184

3 The ThingTalk+ Dialogue Language185

The ThingTalk+ Dialogue Language is designed to186

capture formally all relevant information in task-187

oriented dialogues to interpret what the user says188

next. This includes the user utterances, the result189

of the user requests, as well as the agent’s replies.190

To see why the results and the agent’s reply191

are needed, consider the example in Fig. 1. The192

user has previously asked for a cheap restaurant,193

and now asks “Do you have anything with Indian194

food?”. In the example, the agent noted that there195

are many cheap restaurants available, so it is likely196

that the user wants both “Indian” and “cheap”. This197

is reflected in the query that the command maps198

to. Conversely, had the agent responded that there199

are no cheap restaurants, it is likely that the user no200

longer cares about finding a cheap and only wants201

Indian. The user query thus would be just:202

Exec : Restaurant, food = “indian”

This illustrates that the meaning of the user utter-203

ance depends on the result and the agent’s response,204

so we must include them in the formal dialogue.205

The previous slot-based representation captures206

only what is mentioned by the user; it is not precise207

enough to handle this example.208

Formally, ThingTalk+ represents (1) the user209

state u ∈ U with the semantics of a single user210

turn, (2) the agent state a ∈ A with the semantics211

of the single agent turn, and (3) the formal dia-212

logue d ∈ D to capture all information necessary213

to interpret the user utterance. In this section, we214

provide the detailed definition of each component.215

The formal syntax is included in the appendix.216

(a) Sorting and ranking in ThingTalk+
Agent: There are 14 trains that arrive by 12:45. What time

would you like to leave?
User: What’s the latest train i can take that will still get me

there by 12:45?
u1 = Exec : sort(arrive_by desc of Train,

arrive_by ≤ 12:45 && . . .)[1]

(b) Projection and logical operators in ThingTalk+
User: I think i would like to visit both churchill and

magdalene colleges. May I have their phone numbers?
u1 = Exec : [phone] of Attraction,

name = “churchill” || name = “magdalene”

Figure 2: ThingTalk+ representations of user utterance
examples in the MultiWOZ 3.0 validation set. u1 de-
notes the user state.

Agent: [. . . ] Would you like me to make you a reservation?
User: Yes, please make a reservation.
u1 = Exec : Restaurant.MakeReservation(name = “...”)

Agent: What day and time?
a1 = SlotFill: book_day, book_time

Restaurant.MakeReservation(name = “...”)
(a) User answers the question
User: At 17:30 on Friday.
u2 = Exec : Restaurant.MakeReservation(name = “...”,

book_time = 17:30, book_day = friday);
(b) Or, user switches to a new domain instead
User: Nevermind. Not at this time. Can you help me find

the postcode for the Holiday Inn Cambridge?
u2 = Exec : Hotel, name = “holiday inn cambridge”;

Figure 3: Examples of a user continuing or abandoning
a transaction, adapted from the MultiWOZ 3.0 valida-
tion set. The user state u2 denotes this fact by propa-
gating or discarding the action. a1 is the agent state.

User State. The formal semantics of a user turn 217

is represented by a user state u ∈ U , which con- 218

sists of an abstract dialogue act and, for dialogue 219

acts that provide or request information, a program 220

in the ThingTalk language. A program is a se- 221

quence of statements: either database queries, or 222

actions with side effects (such as making a reserva- 223

tion). Queries specify the domain of interest and 224

can use the standard relational operators: selection, 225

projection, aggregation, sorting. Actions specify 226

the domain, the action name, and the parameters 227

necessary for the action. Note that ThingTalk only 228

represents programs, while ThingTalk+ represents 229

user states including dialogue acts. User state ex- 230

amples in Figures 1 and 2 with abstract act “Exec” 231

are all queries, while the example in Fig. 3 uses the 232

action “Restaurant.MakeReservation”. 233

The user state includes new statements that are 234

implied by the current utterance and statements 235

that the user has previously mentioned and is still 236

interested in pursuing (Fig. 3). Note that a single 237

user utterance may map to multiple ThingTalk+ 238

statements, possibly in different domains. 239
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Agent State. Analogously, each agent turn has240

a formal agent state a ∈ A representation, which241

is computed by the agent policy. The agent state242

includes an abstract dialogue act, as well as an op-243

tional agent statement, which either requests some244

slots from the user, proposes a new statement to the245

user, or asks the user the confirm an action.246

Formal Dialogue Representation. A formal di-247

alogue d ∈ D captures all the information in248

the conversation needed to interpret the user ut-249

terance. Specifically, it contains the current agent250

state, the accumulated results of executing the user251

statements in previous turns, and the user state-252

ments that the user has asked to execute but that are253

missing some required parameters. The results for254

queries are the items retrieved from the database;255

the results for actions are returned by the API call.256

4 Simulator-Agent Architecture257

To synthesize data for training, we propose a258

simulator-agent architecture. The state-based sim-259

ulator takes the role of the human user. The same260

agent that would be used at deployment time is261

used during synthesis. The agent is built based on262

the semantics of ThingTalk+, not just the simulator.263

It can respond correctly to any dialogue d ∈ D rep-264

resentable in ThingTalk+. On the other hand, the265

simulator samples a subset space DSim ⊂ D. We266

refer to dialogues in DSim as in-simulation; other267

dialogues are out-of-simulation.268

Formally, the architecture has three components:269

Agent(d, u) : D × U → D: an agent that accepts270

a formal dialogue d ∈ D, and the user state271

u ∈ U representing the last user utterance, to272

produce a new dialogue d′ ∈ D. The agent273

guarantees that if d ∈ DSim then d′ ∈ DSim.274

Sim(d) : DSim → X × U : a simulator that ac-275

cepts an in-simulation dialogue d ∈ DSim,276

and creates non-deterministically a new user277

utterance x ∈ X and its user state u ∈ U .278

CSP(d, x) : D ×X → U , a contextual semantic279

parsing model that accepts a dialogue d ∈ D,280

which may not be in DSim, and a user utter-281

ance x ∈ X to predict the user state in U .282

In this section, we describe how the components283

are used to synthesize training data and build a284

functional dialogue agent.285

4.1 Training Data Synthesis 286

We synthesize training data for CSP as follows: 287

Syn(d) : DSim → DSim × X × U : the synthe- 288

sizer accepts a dialogue d ∈ DSim and returns 289

a training sample produced by using Sim to 290

generate a possible user utterance and a re- 291

sulting in-simulation dialogue to be predicted, 292

then applying the Agent to continue: 293

Syn(d) = (d′, x, u), where 294

(x, u) = Sim(d), d′ = Agent(d, u) 295

Starting with a null dialogue, we iteratively use Syn 296

to synthesize training samples. During synthesis, 297

the agent is called in a mock execution environment 298

with no side effects, and it uses a non-deterministic 299

policy that generates many possible agent behav- 300

iors. It is helpful to include many agent behaviors 301

because it helps model the human WOZ agent. 302

Following Campagna et al. (2020), both the sim- 303

ulator and the agent policy are implemented using a 304

domain-independent state machine which includes 305

many natural language templates for user and agent 306

utterances. Using the templates and a few natural 307

language phrases for each slot, we can quickly gen- 308

erate dialogues for any new domain. 309

4.2 Deployment 310

After training, the same agent can be used at deploy 311

time to reply to the real user. 312

Deploy(d, x) : D×X → D: given the current di- 313

alogue, a deployable system uses CSP to map 314

the next user utterance to a formal dialogue, 315

which is then used by Agent to continue the 316

dialogue. Let d0 be the empty dialogue and 317

user input x1, x2, . . . 318

di = Deploy(di−1, xi) 319

= Agent(di−1,CSP(di−1, xi)) 320

4.3 Out-of-simulation Dialogues 321

While the simulator can cover only the most com- 322

mon dialogue paths, ThingTalk+ is designed to be 323

general, covering many more possible dialogues. 324

To improve generality, the CSP is trained not only 325

with simulated dialogues but also few-shot data an- 326

notated with the full expressiveness of ThingTalk+. 327

Correspondingly, the agent is written to handle 328

the full representation of ThingTalk+. This de- 329

sign makes our parser and agent more robust than 330
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User: Please book a table for 5 at 14:30 on wednesday at
Royal Spice. I also need to find a place to stay.

u1 = Exec : Restaurant.MakeReservation(
name = “royal spice”, book_people = 5,
book_time = 14:30, book_day = wednesday);
Hotel;

Agent: I was able to book your table successfully.
Your reference number is kqmxil0z. Now, what
type of accommodations are you looking for today?

Figure 4: Example of out-of-simulation dialogue,
adapted from the MultiWOZ 3.0 test set, where the
same turn mentions two domains. The simulator never
generates such a turn but the agent can reply to it.

those that only train with simulated dialogues.331

Fig. 4 shows an out-of-simulation dialogue from332

the MultiWOZ test set. In the example, the agent333

must reply to two domains at once.334

We show below some of the out-of-simulation335

dialogue patterns handled by our agent.336

• Domain switch: the user switches to a new337

domain in the middle of a discussion about338

another; the simulator switches domains only339

after completing the action.340

• Multidomain: the user refers to two domains341

in the same utterance; the simulator only342

refers to one domain at a time.343

• Eager action parameters: the user specifies344

parameters for an action before completing345

the query, ignoring a prompt from the agent346

to refine the query.347

• Abandoning transactions: the user abandons348

a transaction after it has been initiated; the349

simulator never interrupts a transaction.350

These examples illustrate the many plausible ways351

in which the user can change the course of a di-352

alogue. Trying to simulate all these possibilities353

is infeasible, nor is it desirable, as it will worsen354

the distribution of the training data. At the same355

time, handling these cases is important; thus, we356

train with few-shot annotated data and rely on the357

model’s inherent generalization capability.358

5 Contextual Semantic Parsing Model359

5.1 Model Architecture360

Our CSP neural model is fine-tuned from the361

pre-trained BART model (Lewis et al., 2019).362

BART is a Transformer encoder-decoder neural363

network (Vaswani et al., 2017) pre-trained with the364

task of reconstructing noised inputs. Our model365

for the user encodes a concatenation of the formal366

dialogue and the user utterance, and is trained to367

generate the user state as its output.368

To reduce the length of the input, the formal di- 369

alogue is truncated before feeding to the model: 370

only the last executed query and action in each 371

domain are kept, and the rest is discarded. Previ- 372

ous statements are no longer relevant; information 373

that is still relevant is carried over in the last state- 374

ment. Additionally, we encode at most one result 375

per query. We observe that the user uses either 376

a coreference to refer to the only/first choice, or 377

uses the entity name. The model is trained to copy 378

entity names from the user utterance; the name is 379

normalized to the ontology in a subsequent step. 380

We use BART-Large, with about 400M parame- 381

ters. We train it with token-level cross-entropy loss 382

and teacher forcing. Hyperparameters are included 383

in the appendix. 384

5.2 Training Data 385

Data Synthesis. We use Syn to synthesize an ini- 386

tial set of training dialogues, covering all possible 387

combinations of slots at each turn, and many possi- 388

ble paths in DSim. 389

Automatic Paraphrasing. We apply automatic 390

paraphrasing to increase the variety of natural lan- 391

guage in each turn (Xu et al., 2020). We use a 392

pretrained BART model (Lewis et al., 2019), fine- 393

tuned on the ParaBank2 general-purpose paraphras- 394

ing dataset (Hu et al., 2019). Each user utterance 395

is paraphrased individually. We apply filtering to 396

ensure that the user state does not change for each 397

utterance: each paraphrased utterance, with its asso- 398

ciated formal dialogue, is passed to a model trained 399

on synthesized data; the utterance is discarded if 400

the model predicts a different user state than the 401

annotation before paraphrasing. 402

Few-Shot Fine-Tuning. To expose the model to 403

the variety in real-world data, we fine-tune the 404

model with a small number of manually annotated 405

dialogues. 406

Self-Training. Acquiring large fully-annotated 407

WOZ datasets is challenging, because annotations 408

are often erroneous. Acquiring unannotated WOZ 409

datasets, on the other hand, is easier. To use such 410

data, we propose using self-training (McClosky 411

et al., 2006; Einolghozati et al., 2019; Zoph et al., 412

2020). We apply the model fine-tuned on few- 413

shot data to unannotated input, create a training set 414

using the predicted result as annotations, and use 415

that to further fine-tune the model. 416
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Feature Supported Freq.
Slots TreeDST TT+

User
Executable Semantics × × 3 80.8%
Greetings × × 3 17.5%
Learn More, Ask Recomm. × × 3 0.9%
Multi-domain Turns × 3 3 1.1%
Request Features:

Slot Constraints 3 3 3 80.8%
Comparisons × 3 3 1.2%
Logical And 3 3 3 47.6%
Logical Or, Not × × 3 0.3%
Projection × 3 3 27.1%
Ranking × × 3 0.4%

Agent
Dialogue Acts × 3 3 83.8%
Requested Slots 3 3 3 27.1%
Proposed Slots × 3 3 13.1%

Table 1: Comparison of representation power for dif-
ferent lexical features of different formal dialogue lan-
guages, together with the frequency of that feature in
the MultiWOZ 3.0 test set. TT+ indicates ThingTalk+.

The annotation of WOZ dialogues requires pre-417

dictions of the agent state as well, unlike the simu-418

lated dialogues where the agent state is generated419

automatically. We apply the same methodology420

as for the user states to the agent state, so as to421

annotate the full dialogues for training.422

6 Evaluation423

Our evaluation attempts to answer these research424

questions:425

1. How well does our ThingTalk+ representation426

model Wizard-of-Oz conversations?427

2. What accuracy can a model achieve at the task428

of predicting ThingTalk+, given our training429

data acquisition strategy?430

3. How well do our dialogue simulator and our431

dialogue agent approximate real dialogues?432

6.1 Experimental Setting433

We conduct our experiments using the MultiWOZ434

dataset (Budzianowski et al., 2018; Eric et al.,435

2019). This dataset includes English task-oriented436

dialogues across five domains, Attraction, Hotel,437

Restaurant, Taxi, and Train.438

We reannotated parts of MultiWOZ 2.1 with439

ThingTalk+ annotations, and we name this version440

MultiWOZ 3.0. The authors of this paper reanno-441

tated the full test set and, due to a lack of time,442

36% of the validation set, discarding the rest. Our443

result is thus a lower-bound on the possible accu-444

racy: with more of the validation set annotated, we445

expect higher test accuracy.446

The slot values in our new test set differ from 447

the original annotations in 83% of the turns. This 448

is not surprising because others have already found 449

problems in MultiWOZ 2.1 (Zhou and Small, 2019; 450

Zang et al., 2020; Han et al., 2020), and because 451

ThingTalk+ and the existing annotations adopt dif- 452

ferent conventions for when a slot should be in- 453

cluded. We found mistakes in the annotations, in- 454

consistent normalization of names, and inconsis- 455

tent annotation of slots offered by the agent. We 456

dropped 1% of test turns due to unrecoverable hu- 457

man errors, such as the user acting as the agent. 458

We use four datasets for training: 459

• Synthesized dataset, generated using our state- 460

machine-based simulator and agent, consist- 461

ing of 1.5M dialogues across all five domains. 462

The state machine has 20 abstract transitions 463

for the agent, and 43 for the user. 464

• Paraphrase dataset, obtained by automatically 465

paraphrasing the synthesized data. 466

• Few-Shot dataset, a split of 168 dialogues 467

from the original validation set. This amounts 468

to 2% of the original training set. Another 469

265 dialogues in the original validation set are 470

used as the 3.0 validation set. 471

• Self-Trained dataset, obtained by self-training 472

on the MultiWOZ training set. 473

Dataset statistics are included in the appendix. 474

We use the Genie Toolkit for data synthesis 475

(Campagna et al., 2019) and the Huggingface 476

Transformers library for the model (Wolf et al., 477

2019). Code and data will be released open-source 478

upon publication. 479

6.2 Precision of ThingTalk+ 480

ThingTalk+ is designed to precisely cover the se- 481

mantics of Wizard-of-Oz dialogues. We first ob- 482

serve that ThingTalk+ captures the semantics of 483

the sentences well: it can represent the validation 484

set in its entirety, and 99.8% of the user utterances 485

and 97.6% of the agent utterances in the test set 486

are representable. Overall, that comprises 97.7% 487

of the test turns. ThingTalk+ cannot represent, for 488

example, out-of-domain questions, questions that 489

cannot be answered using the given database, and 490

agent utterances such as asking the users to wait. 491

User utterances in the test set that cannot be rep- 492

resented are simply counted as errors, while agent 493

utterances that cannot be represented as marked 494

with a single “invalid” dialogue act, which is given 495

as input to the neural model. The model can choose 496
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to ignore the invalid dialogue act and attempt to497

predict the correct user state regardless.498

Comparison with previous representations In499

Table 1 we compare ThingTalk+ with two existing500

state representation: the slots and values represen-501

tation used in MultiWOZ, and the TreeDST rep-502

resentation proposed by Cheng et al. (2020). For503

each feature, we also include the frequency the fea-504

ture is used in the MultiWOZ 3.0 test set. Note that505

MultiWOZ was constructed with slots and values506

in mind, and this is reflected in the crowdworkers507

instructions. Thus, the use of the more sophisti-508

cated features in MultiWOZ is a strong indication509

of their importance in natural conversations.510

ThingTalk+ is unique in representing user511

queries and commands as executable database512

queries and API calls. (1) It is easier to anno-513

tate manually. Other approaches require annota-514

tors to be familiar with the semantics of each do-515

main, whereas annotators just need to learn the516

database query syntax and can annotate for differ-517

ent domains. (2) The implementation of the agent518

needs only to execute ThingTalk+ statements; no519

custom per-domain logic is necessary.520

Additionally, ThingTalk+ can represent the full521

generality of WoZ conversations. For example,522

ThingTalk+ can represent turns that have no re-523

quest, at the beginning and end of the conversation,524

while TreeDST cannot. This oversight highlights525

the need to design the representation based on real526

conversations.527

One feature present in the previous representa-528

tion that we drop from ThingTalk+ is the precise529

slots mentioned by the agent. For example, in re-530

sponse to a user asking for a restaurant, the agent531

may mention the restaurant “name” and ”address.”532

Such slots do not affect the interpretation of the533

user utterance. Removing them from the agent534

state coalesces many more utterances into the same535

state, and allows to approximate more complex hu-536

man agent utterances, increasing the state coverage537

and boosting the accuracy of the semantic parser.538

6.3 Accuracy on the MultiWOZ 3.0 Test Set539

Our first experiment evaluates how well our CSP540

model can understand the user utterances in the541

MultiWOZ 3.0 dataset on four metrics.542

Exact match accuracy requires the predicted user543

state to match identically the annotation.544

Slot accuracy requires the slots provided by the545

user in the predicted user state to match the anno-546

Training Strategy Turn-by-Turn Dialogue
EM Slot EM Slot

Test Full training 79.2% 87.5% 44.1% 61.0%
Few-shot only 73.7% 81.6% 35.7% 46.3%

Dev

Full training 81.4% 88.7% 51.9% 67.2%
− self-training 81.0% 88.0% 50.9% 65.3%
Synth. only 61.8% 73.1% 29.1% 38.0%
Synth. + para. 61.9% 73.3% 29.5% 37.4%
Few-shot only 75.6% 81.7% 41.8% 51.6%

Table 2: Turn-by-turn and dialogue accuracy, both ex-
act match (EM) and slot, of the CSP model, on the
MultiWOZ 3.0 test and validation sets.

tation, ignoring comparison operators, requested 547

slots, and the dialogue act. 548

Turn-by-turn accuracy assumes that the gold dia- 549

logue up to the current turn is available as input. 550

Dialogue accuracy requires predicting the correct 551

state for all the previous and current turns of a 552

given dialogue. This is a challenging but meaning- 553

ful metric because in practice, once the model fails, 554

the conversation diverges from the WOZ dialogue. 555

We train our CSP model on the combination of 556

Synthesized and Paraphrased sets, fine-tune it on 557

the Few-Shot training set, and fine-tune it again on 558

the Self-Trained set. Our model achieves a 79.2% 559

turn-by-turn accuracy and 44.1% dialogue accuracy 560

in exact match (Table 2). 561

To understand the role of the synthesized data, 562

we removed all synthesized data, and train with 563

only the few-shot, manually annotated data. The 564

synthesized data improves the accuracy by 5.5% 565

turn-by-turn and 8.4% for dialogue accuracy. This 566

shows that the low-cost automatically generated 567

training data is effective. 568

We performed an ablation study on the valida- 569

tion set to evaluate the components of our training 570

strategy (Table 2). We first observe that the val- 571

idation accuracy is higher than the test accuracy, 572

because we used the validation set to refine our syn- 573

thesis. Training with only synthesized data already 574

delivers a respectable 61.8% turn-by-turn accuracy; 575

with the augmentation of auto-paraphrasing data, 576

turn-by-turn accuracy improves 0.1%, and dialogue 577

accuracy improves 0.4%. 578

The few-shot training alone delivers a high ac- 579

curacy of 75.6%. When the model trained on syn- 580

thesized and paraphrased data is fine-tuned with 581

few-shot data, the accuracy is 81.0%, showing that 582

these two approaches complement each other. Self- 583

training further improves the turn-by-turn accuracy 584

by 0.4%, with 1% better dialogue accuracy. 585
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Category % Turns Accuracy

Trained 15.5% 93.1%
In-simulation 69.7% 82.4%
Out-of-simulation 14.7% 62.7%

Unknown agent state 6.3% 66.0%
Domain switch 4.0% 84.0%
Eager action parameters 0.9% 73.3%
Multidomain 0.8% 16.7%
Abandon transaction 0.5% 25.0%

Table 3: Turn-by-turn exact match accuracy of valida-
tion set, categorized by whether each user utterance is
synthesizable by our simulator. For the unsynthesiz-
able category, we further divide in common classes of
user behavior not captured by the simulator.

6.4 Generalization of the Dialogue Model586

Our strategy is to handle the complexity of Wizard-587

of-Oz dialogues with a combination of simulated588

dialogues and few-shot training samples to teach589

generalization beyond simulated dialogues. We an-590

alyze the validation set to understand the difference591

between the simulated dialogues and the Wizard-592

of-Oz dialogues, and its effect on accuracy.593

The results are shown in Table 3. The validation594

set is divided in:595

1. Trained: 15.5% of the validation set turns596

share the same formal dialogue and user state597

with some sample in training (ignoring the598

slot values). Accuracy obtained: 93.1%.599

2. In-simulation: 69.7% of the validation set600

turns can be represented by the simulator: the601

formal context is contained in DSim, and the602

user state can be generated by the simulator.603

Accuracy obtained: 82.4%.604

3. Out-of-simulation: 14.7% of the validation605

turns require the model to generalize beyond606

DSim, either through few-shot or its own gen-607

eralization capabilities. Accuracy obtained:608

62.7%.609

Our synthesizer covers the Wizard-of-Oz610

conversations well. Even though our simulator611

and agent are built using a state machine with only612

54 user transitions and 24 agent transitions, 85.2%613

of the validation set is in-simulation.614

Research that trains and validates on simu-615

lated data is missing a non-trivial population of616

Wizard-of-Oz dialogues. We found that 14.7% of617

the validation turns are representable in ThingTalk+618

but are out-of-simulation.619

Our training strategy generalizes beyond the620

simulated dialogues. For the out-of-simulation621

turns, our model achieves an accuracy of 62.7%.622

The model can generalize well on validation turns623

where the agent state is unseen in training, achiev- 624

ing 66% accuracy. This result speaks to the strength 625

of using a formal representation of the agent, which 626

avoids interpreting untrained agent utterances. 627

The model also reacts well to strong signals in 628

the user utterance. The model achieves 84.1% accu- 629

racy when the user switches domains unexpectedly, 630

and 73.3% accuracy when the user starts issuing 631

slots for the action before completing the query. 632

Finally, when the user issues a command over 633

two domains at once, the model achieves 16.7% 634

accuracy. When the user abandons a booking trans- 635

action mid-way, the model achieves 25% accuracy. 636

These kinds of out-of-simulation states are also rare 637

in the few shot training set. The model can gener- 638

alize, but it is biased by the common case shown 639

by the training data. 640

7 Conclusion 641

This paper presents a sample-efficient methodol- 642

ogy, based on the new ThingTalk+ respresentation, 643

to predict precise dialogue states in Wizard-of-Oz 644

conversations. We achieve a turn-by-turn exact- 645

match accuracy of 79.2% on the MultiWOZ 3.0 646

dataset, with only a manually annotated data set 647

50x smaller than the original. 648

The proposed ThingTalk+ representation is pre- 649

cise, complete, and executable. It is precise enough 650

to cover 98% of the dialogue turns in MultiWOZ. 651

The precision enables automatic synthesis of dia- 652

logues covering 85% of the MultiWOZ data set. 653

ThingTalk+ is complete and executable, as evi- 654

denced by a fully working agent that can simply 655

execute ThingTalk+ queries without referring to 656

the usr input. Furthermore, the agent can handle 657

dialogue flows beyond those that can be simulated. 658

The accuracy is achieved with a contextual se- 659

mantic parser (CSP) where the dialogue context is 660

represented in ThingTalk+ rather than the natural 661

language dialogue history. It is trained first with 662

auto-paraphrased synthetic data, fine-tuned with 663

the few-shot annotated data, then self-trained. 664

In summary, this paper shows that with 665

ThingTalk+, we can predict WOZ dialogues ac- 666

curately with mostly training data generated from a 667

state machine. Our methodology thus combines the 668

best of the WOZ and M2M approaches, as it can 669

handle the more realistic WOZ dialogues, while 670

having a low data acquisition cost like M2M. 671
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8 Ethical Considerations672

We envision that our training strategy will broaden673

the availability of task-oriented agents for tasks674

and populations not currently covered by existing675

large-scale datasets, due to its low annotation re-676

quirement. We will open-source tool set designed677

around our representation for bootstrapping afford-678

able contextual semantic parsers for new domains.679

Our agent was tuned and evaluated on the Multi-680

WOZ benchmark. MultiWOZ is a crowdsourced681

Wizard-of-Oz dataset; WOZ datasets are known not682

to fully represent real-world conversations (Ganho-683

tra et al., 2020). Further research is needed before684

a dialogue agent based on our methodology can685

be deployed in the real world. Additionally, the686

current version of the agent was tuned for English;687

future work should investigate techniques to au-688

tomatically localize a contextual semantic parser,689

analogously to prior research done for single-turn690

semantic parsers (Moradshahi et al., 2020).691

Our training strategy replaces manual annotation692

of data with automatically obtained data, which693

requires some additional amount of computation694

time. The additional computation can be an en-695

vironmental concern. In practice, such additional696

compute is small: data synthesis runs in 5 hours697

on a single machine with no GPUs; the paraphrase698

dataset can be obtained in about 5 hours on a ma-699

chine with 4 Nvidia T4 GPUs; training completes700

within 8 hours on a machine with one Nvidia V100;701

self-training requires 2 hours on a single Nvidia702

T4 GPU, and fine-tuning is another 1.5 hours on703

one Nvidia V100. Overall, the whole process is704

done with about 22 hours of compute time, well705

below the cost of human annotation of equivalent706

amounts of data. We note that the large amount of707

synthetic data poses no challenge to convergence in708

practice, so increasing the amount of synthesized709

data has little effect on the compute cost.710

The manually annotated portion of our dataset711

was obtained from the previously released Multi-712

WOZ 2.1 dataset, a crowdsourced dataset. No713

crowdsourcing was employed in this paper; the714

data was annotated by the authors.715
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man, and Milica Gašić. 2018. MultiWOZ - a large- 724
scale multi-domain wizard-of-oz dataset for task- 725
oriented dialogue modelling. In Proceedings of the 726
2018 Conference on Empirical Methods in Natural 727
Language Processing (EMNLP). 728

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai 729
Sankar, Arvind Neelakantan, Ben Goodrich, Daniel 730
Duckworth, Semih Yavuz, Amit Dubey, Kyu-Young 731
Kim, and Andy Cedilnik. 2019. Taskmaster-1: To- 732
ward a realistic and diverse dialog dataset. In Pro- 733
ceedings of the 2019 Conference on Empirical Meth- 734
ods in Natural Language Processing and the 9th In- 735
ternational Joint Conference on Natural Language 736
Processing (EMNLP-IJCNLP), pages 4506–4517. 737

Giovanni Campagna, Agata Foryciarz, Mehrad Morad- 738
shahi, and Monica Lam. 2020. Zero-shot transfer 739
learning with synthesized data for multi-domain dia- 740
logue state tracking. In Proceedings of the 58th An- 741
nual Meeting of the Association for Computational 742
Linguistics, pages 122–132, Online. Association for 743
Computational Linguistics. 744

Giovanni Campagna, Silei Xu, Mehrad Moradshahi, 745
Richard Socher, and Monica S. Lam. 2019. Genie: 746
A generator of natural language semantic parsers for 747
virtual assistant commands. In Proceedings of the 748
40th ACM SIGPLAN Conference on Programming 749
Language Design and Implementation, PLDI 2019, 750
pages 394–410, New York, NY, USA. ACM. 751

Lu Chen, Boer Lv, Chi Wang, Su Zhu, Bowen Tan, 752
and Kai Yu. 2020. Schema-guided multi-domain di- 753
alogue state tracking with graph attention neural net- 754
works. AAAI. 755

Jianpeng Cheng, Devang Agrawal, Héctor 756
Martínez Alonso, Shruti Bhargava, Joris Driesen, 757
Federico Flego, Dain Kaplan, Dimitri Kartsaklis, 758
Lin Li, Dhivya Piraviperumal, Jason D. Williams, 759
Hong Yu, Diarmuid Ó Séaghdha, and Anders 760
Johannsen. 2020. Conversational semantic parsing 761
for dialog state tracking. In Proceedings of the 762
2020 Conference on Empirical Methods in Natural 763
Language Processing (EMNLP), pages 8107–8117, 764
Online. Association for Computational Linguistics. 765

Arash Einolghozati, Sonal Gupta, Mrinal Mohit, and 766
Rushin Shah. 2019. Improving robustness of 767
task oriented dialog systems. arXiv preprint 768
arXiv:1911.05153. 769

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, 770
Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani- 771
Tur. 2019. MultiWOZ 2.1: Multi-domain dialogue 772
state corrections and state tracking baselines. arXiv 773
preprint arXiv:1907.01669. 774

Mihail Eric and Christopher D Manning. 2017. Key- 775
value retrieval networks for task-oriented dialogue. 776
arXiv preprint arXiv:1705.05414. 777

9

https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://www.aclweb.org/anthology/2020.emnlp-main.651
https://www.aclweb.org/anthology/2020.emnlp-main.651
https://www.aclweb.org/anthology/2020.emnlp-main.651


Jatin Ganhotra, Robert Moore, Sachindra Joshi, and778
Kahini Wadhawan. 2020. Effects of naturalistic vari-779
ation in goal-oriented dialog. In Findings of the As-780
sociation for Computational Linguistics: EMNLP781
2020, pages 4013–4020, Online. Association for782
Computational Linguistics.783

Ting Han, Ximing Liu, Ryuichi Takanobu, Yixin784
Lian, Chongxuan Huang, Wei Peng, and Minlie785
Huang. 2020. Multiwoz 2.3: A multi-domain task-786
oriented dataset enhanced with annotation correc-787
tions and co-reference annotation. arXiv preprint788
arXiv:2010.05594.789

Michael Heck, Carel van Niekerk, Nurul Lubis, Chris-790
tian Geishauser, Hsien-Chin Lin, Marco Moresi, and791
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A ThingTalk Definition904

A.1 Syntax905

Formal Dialogue d : a r∗ s∗

User State u : ua s∗

Agent State a : aa as?

User Act ua : Greet | Exec | Cancel | Insist
|AskRecommend | LearnMore
|ActionQuestion | End | Invalid

Agent Act aa : Init | Greet | RecommendOne
| RecommendMany | Propose
| SearchQuestion | SlotFill
| LearnMoreWhat | EmptySearch
| Confirm | ActionSuccess
|ActionError | AnythingElse
| Invalid

User Statement s : q | ac
Result r : s

[
{[sn = v]+}

]
∗

Agent Statement as : Request sn+

| [Propose | Confirm] [q | ac]
Query q : <ThingTalk query>
Action ac : dn([sn = v]∗)
Domain Name dn : <identifier>
Slot Name sn : <identifier>
Value v : <constant>

A.2 Agent Definition906

The agent is a function Agent(d, u) = d′ that com-907

putes the new formal representation of the entire908

dialogue. The representation is constructed incre-909

mentally, starting from the initial dialogue d0 which910

is empty.911

Let d = (a, r, s) ∈ D and u = (ua, su) ∈ U be912

the two inputs to the agent. The agent computes913

the new agent state a as follows:914

(ru, isu) = Execute(su)915

a′ = Policy(ua, r||ru, isu)916

d′ = (a′, r||ru, isu)917

where || denotes concatenation. The Execute func-918

tion calls the ThingTalk runtime to execute the919

statements in the user state, su. It returns (1) the920

results ru by executing all statements in su whose921

required parameters are available, (2) the rest of the922

(incomplete) statements, isu. The Policy function923

determines the agent state a′ from the user state924

ua. all the results ru appended to previous results925

r, and isu. The agent returns the new dialogue d′926

with the new agent state, all the results and the new927

incomplete statements. The incomplete statements928

s in d are discarded. If the user has not changed929

topics, information in s is incorporated in su.930

B Training931

B.1 Preprocessing932

We apply the same preprocessing used by TRADE933

(Wu et al. 2019) to the input utterances. We also934

use a rule-based preprocessor to identify time ex- 935

pressions, and replace them with placeholder to- 936

kens. All slot values in the result and agent states 937

that have string or time type are replaced with a 938

placeholder when input to the model. 939

We normalize all slot values in the user state to 940

match the utterance, regardless of typos. When 941

comparing the slot values for equality, we normal- 942

ize entity names via a database lookup. 943

B.2 Hyperparameters 944

Our model uses a BART large model (with the 945

“bart-large” pretrained model) which has 400 mil- 946

lion trainable parameters. We use the Adam opti- 947

mizer, with the Transformer learning rate schedule 948

(800 iterations of warm-up, 0.04 multiplier). 949

We train our model for 50,000 gradient updates 950

on the synthesized data and choose the model with 951

the highest validation exact-match accuracy. We 952

then fine-tune that model with the few-shot training 953

set for 15,000 gradient updates, and again choose 954

the model with highest validation accuracy. We 955

repeat this process for another 15,000 updates on 956

the self-train set. Training is done on a single GPU 957

with 16GB memory and batch size is chosen based 958

on the length of the examples in each batch: we 959

choose as many examples as we can fit in the GPU 960

memory. Gradient accumulation is used to increase 961

the effective batch size by a factor of 20. 962

C Dataset Statistics 963

# dlgs # turns # words

Synthesized 968,007 830,792 11,390,957
Paraphrased 592,970 945,946 12,845,548
Few-Shot 168 1,061 14,669
Self-Training 8,420 56,546 760,927

Validation 265 1,582 21,256
Test 995 7,271 100,814

Table 4: Statistics of our training and evaluation sets:
number of dialogues, of turns, and of words. For the
synthesized dataset, we do not count turns that appear
identically in multiple dialogues.

D Annotated Example Dialogue 964

Here is an example of a dialogue generated by the 965

simulator, between the user U and the agent A. 966

US denotes the user state, D denotes the formal 967

dialogue. 968
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U: List good restaurants which offer Indian.
US: Exec: Restaurant, food = “Indian”;
A: Do you have a specific part of town in mind?
D: SearchQuestion: area;

Restaurant, food = “Indian”
[{ name = “Cocum”, area = west, ... },
{ name = “Rajmahal”, area = east, ... },
...];

U: Yes I’d like near the east.
US: Exec: Restaurant, food = “Indian” && area = east;
A: I have Rajmahal and Curry Prince.
D: RecommendTwo

Restaurant, food = “Indian”
[...];
Restaurant, food = “Indian” && area = east
[{ name = “Rajmahal”, area = east, ... },
{ name = “Curry Prince”, area = east, ... },
...];

U: Is Curry Prince a restaurant serving Indian?
US: Exec: [food] of Restaurant, food = “Indian” && area = east && name = “Curry Prince”;
A: Curry Prince serves Indian. Would you like me to book it?
D: RecommendOne: Propose Restaurant.MakeReservation(name=“Curry Prince”, book_people=6);

Restaurant, food = “Indian”
[...];
Restaurant, food = “Indian” && area = east
[...];
[food] of Restaurant, food = “Indian” && area = east && name = “Curry Prince”
[{ name = “Curry Prince”, food = “Indian” }];

U: I will take it. Please make a reservation at the restaurant on Monday at 13:00.
US: Exec: Restaurant.MakeReservation(name=“Curry Prince”, book_people=6, book_day=Sunday, book_time=13:00)
A: Alright, Consider your request done! Its confirmation number is ay05tzjq. Anything else for you today?
D: ActionSuccess;

Restaurant, food = “Indian”
[...];
Restaurant, food = “Indian” && area = east
[...];
[food] of Restaurant, food = “Indian” && area = east && name = “Curry Prince”
[...];
Restaurant.MakeReservation(name=“Curry Prince”, book_people=6, book_day=Sunday, book_time=13:00)
[{ reference_number = “ay05tzjq” }];

U: Thanks, this is good for now. Goodbye!
US: End
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