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ABSTRACT

In multi-agent systems, independent learners (IL) often show remarkable perfor-
mance and easily scale with the number of agents. Yet, training IL can sometimes
be inefficient particularly in states that require coordinated exploration. Using
observations of other agents’ actions through centralised learning (CL) enables
agents to quickly learn how to coordinate their behaviour but employing CL at all
states is prohibitively expensive in many real-world applications. Besides, applying
CL often needs strong representational constraints (such as individual-global-max
condition) that can lead to poor performance if violated. In this paper, we introduce
a novel IL framework named Multi-Agent Network Selection Algorithm (MANSA)
that selectively employs CL only at states that require coordination. Central to
MANSA is the additional reinforcement learning (RL) agent that uses switching
controls to quickly learn when and where to activate CL so as to boost the perfor-
mance (and using CL only where necessary) while using only IL everywhere else.
Our theory proves MANSA, which can seamlessly adopt any existing multi-agent
RL (MARL) algorithms, preserves MARL convergence properties in cooperative
settings. We prove MANSA can improve performance and maximise performance
given a limited budget of CL calls. We show empirically in Level-based Foraging
and StarCraft Multi-agent Challenge that MANSA achieves fast, superior training
performance through its minimal selective use of CL.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has emerged as a powerful tool to enable autonomous
agents to solve various tasks such as ride-sharing (Zhou et al., 2020) and swarm robotics (Mguni
et al., 2018). Among MARL methods are a class of algorithms known as independent learners (IL)
e.g. independent Q learning (Tan, 1993).

IL decomposes a MARL problem with N agents into N decentralised single-agent problems. In
this way, each agent treats other agents as part of the environment which provides a straightforward
method of performing decentralised learning. Since the agents ignore other agents, IL can induce
quick training since each agent’s training of its policy is contingent on its local observations and
own actions and not the actions of others. This approach is efficient in (sub-)systems in which the
interaction between agents is weak (Kok & Vlassis, 2004). However, ignoring other agents’ influence
on the system results in the loss of RL convergence guarantees and may produce in oscillatory
learning behaviour since from the agent’s perspective, the environment can appear non-stationary.
Secondly, IL is unable to distinguish randonmess due to systemic stochasticity and that produced
by other learning agents’ exploration further hindering learning in some environments. An issue
is that in multi-agent systems (MAS), agents are typically required to coordinate to solve the task.
This presents a difficulty for IL since random occurrences of successful coordination are improbable
without observations of other agents. These limitations mean IL can struggle to tackle scenarios
where coordination is required (Hernandez-Leal et al., 2017).

On the other hand, MARL learners are often trained in simulated environments. As such, MARL
agents can be provided with other agents’ observations and other state information during training.
With this added information, agents can condition their policies on other agents’ actions which
eradicates the appearance of non-stationarity.
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Centralised training and decentralised execution (CT-DE) (Kraemer & Banerjee, 2016; Foerster
et al., 2018) is a framework that uses a centralised critic for training while performing execution
in a decentralised fashion. This framework has become a central MARL paradigm and is the
basis of popular methods such as QMIX (Rashid et al., 2018), SPOT-AC (Mguni et al., 2021a)
and COMA (Foerster et al., 2018). Various studies have conjectured that CT-DE can speed up
training by fostering cooperative behaviour and stabilising training. This is useful when there exists
a tight coupling between agent interactions which necessitates global observations during training
(Sharma et al., 2021). Despite these apparent advantages, CT-DE suffers from an explosive growth
in computational burden since the joint action-state space grows exponentially with the number of
agents (Yang et al., 2020). As a consequence, CT-DE methods require large numbers of samples to
complete training. In (sub-)systems in which a tight coupling between agent interactions does not
exist everywhere, centralisation can introduce a computational burden without providing advantages
(Kok & Vlassis, 2004) (e.g. Fig. 1). To mitigate the explosive growth in complexity and enable
CT-DE to scale, various CT-DE algorithms such as QMIX (Rashid et al., 2018), VDN Sunehag
et al. (2017) decompose the joint value function into factors that depend only on individual agents.
The representational constraints needed to achieve such decompositions can lead to provably poor
exploration and suboptimality (Mahajan et al., 2019). For example, QMIX requires a monotonicity
constraint which can produce suboptimal value approximation.

Figure 1: In this driving scenario, the agents (shown as 1 - 4) only interact at the intersection and
need only coordinate there. Prior to arrival at the intersection, their actions do not affect other agents.

To tackle these issues, we introduce a general MARL framework, MANSA which optimally selects
when to call on centralised learners to boost training using IL. MANSA involves a decentralised critic
network Decentral, a centralised critic network, Central and, an adaptive RL agent Global. Global
determines at which states to activate Central while the decentralised network Decentral is used at
all other states. A key feature of MANSA is the novel combination of RL and switching controls
(Mguni, 2018) which enables Global’s to quickly tackle its task while the two networks are in training
concurrently. This enables the benefits of both algorithm classes to be leveraged while overcoming
some of the issues presented by any one algorithm class.

An integral component of MANSA is a novel combination of RL and switching controls (Mguni,
2018). This enables Global to determine useful states to learn to activate CL (for example the states
in which the agents are required to coordinate their actions) and minimise unnecessary CL calls
during training. This is in contrast to current MARL methods that use solely either CL or IL at all
states throughout training. The binary decision space for determining whether CL and IL should be
activated means that the Global agent can quickly determine the states where CL is beneficial while
the MARL agents learn.

Overall, MANSA has several advantages:
• By switching to a centralised critic only at the set of states in which CL is required while leveraging
the benefits of IL, MANSA increases the computational efficiency of CT-DE methods.
•MANSA activates CL when (and only when) required resulting in MANSA boosting IL performance
and enabling IL to tackle tasks which using IL would otherwise lead to coordination failures.
• MANSA minimises the number of times that CL is called (and hence the global information is
used during training) while either matching or improving the performance of fully CT methods.
Additionally, the MANSA framework allows for a fixed budget for calls of CL.
•MANSA is a plug & play framework which seamlessly adopts any MARL algorithm.

To enable the framework to perform successfully, we tackle several challenges. Firstly including
a new agent, Global that learns while the N MARL agents are training can occasion convergence
issues. Secondly, unlike standard RL, Global’s learning process uses a form of RL policy known as
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switching controls. We prove that MANSA, which now includes Global induces a learning process
that converges and preserves the MARL learners’ convergence properties.

Centralised Training (Fully) Decentralised Train-
ing

Convergence guarantees Yes No

Scalability Combinatorial (requires rep-
resentational constraints)

Constant

Required observation inputs Global Local

2 RELATED WORK

A key principle in the CT-DE framework is the Individual-Global-Max (IGM) principle (Son et al.,
2019) which ensures that CT-DE learning process generates policies that are consistent with the
desired system goal. In order to realise the IGM principle in the CT-DE framework, QMIX and
VDN propose two sufficient conditions of IGM to factorize the joint action-value function. Crucially
however, such decompositions and limited by the joint action-value function class they can represent
and can perform badly is systems that do not adhere to these conditions (Wang et al., 2020).

Several methods have been proposed to address this structural limitation. QPLEX (Wang et al., 2020)
uses a dueling network architecture to factor the joint action-value function avoiding representational
restrictions. Nevertheless, QPLEX has been shown to fail in simple tasks with non-monotonic value
functions (Rashid et al., 2020). QTRAN (Son et al., 2019) formulates the MARL problem as a
constrained optimisation problem with L2 penalties for decentralisation. Nevertheless, QTRAN has
been shown to scale poorly in complex MARL tasks such as SMAC (Peng et al., 2020). WQMIX
(Rashid et al., 2020) considers a weighted projection which is weighted towards better performing
joint actions. At the core of these techniques are heuristics that do not guarantee the IGM consistency.
Consequently, achieving full expressiveness of the IGM function class with scalability remains an
open challenge for MARL.

Actor-critic methods such as COMA (Foerster et al., 2018) and MADDPG (Lowe et al., 2017) are
popular methods within MARL. These methods involve a centralised critic but nonetheless do not
impose restrictions to represent the joint-action value function. Nevertheless, these methods are
significantly outperformed by value based methods such as QMIX on standard MARL benchmarks
e.g. StarCraft Multi-Agent Challenge (SMAC) (Peng et al., 2020). MAPPO (Yu et al., 2021) which
is a leading actor-critic method with a centralised value function, extends a popular single-agent RL
method, Proximal Policy Optimization (Schulman et al., 2017) to MARL. Nevertheless, MAPPO
has been shown in (de Witt et al., 2020) to be outperformed by single agent learners (and QMIX),
specifically PPO in some tasks while requiring modest hyperparameter tuning.

Several papers have explored the issue of exploiting localility of the agents’ interactions in different
ways. Early works such as (Kok & Vlassis, 2004) tackle the problem in learning in systems with
sparse subregions. Such works make stringent assumptions which require the global coordination
requirements of the system to be known beforehand. Moreover, other works centred on detecting
where in the state space global or extra information is required to obtain a good policy. These works
take the approach of detecting the influence of other agents on the reward signal. This approach is
highly limited in our setting where the reward signal is allowed to be subject to noise.

3 PRELIMINARIES

A fully cooperative MAS is modelled by a decentralised-Markov decision process (dec-DEC-
MDP) (Yang & Wang, 2020). A dec-DEC-MDP is an augmented MDP involving two or
more agents {1, . . . , N} =: N with a common goal that independently decide actions to take
which they do so simultaneously over many rounds. Formally, a dec-DEC-MDP is a tuple
M = 〈N ,S, (Ai)i∈N , P,R, γ〉 where S is the finite set of states, Ai is an action set for agent
i ∈ N and R : S ×A→ P(D) is the team reward function that all agents jointly seek to maximise
where D is a compact subset of R and lastly, P : S ×A× S → [0, 1] is the probability function de-
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scribing the system dynamics where A := ×Ni=1Ai. In this paper, we consider a partially observable
MAS so that given the system is in the state st ∈ S , each agent i ∈ N makes only local observations
τt,i = O(st, i) where O : S ×N → Zi is the observation function and Zi is the set of local observa-
tions for agent i. Each agent i ∈ N uses a Markov policy πi,θi : Zi×Ai → [0, 1] to decide its actions,
where the policy is parameterised by the vector θi ∈ Rd. Throughout the paper, we occasionally
drop the policy parameter and write πi,θi as πi. At each time t ∈ 0, 1, . . . , the system is in state
st ∈ S and each agent i ∈ N takes an action ait ∈ Ai. The joint action at = (a1

t , . . . , a
N
t ) ∈ A

produces an immediate reward ri ∼ R(st,at) for agent i ∈ N and influences the next-state transi-
tion which is chosen according to P . For each agent i ∈ {1, . . . , N}, the state value function vπ

and the state-action value function Qπ are given by: vπ(s) = E
[∑∞

t=0 γ
tR(s,a)

∣∣∣s0 = s,a ∼ π
]

and Qπ(s,a) = E
[∑∞

t=0 γ
tR(s,a)

∣∣∣s0 = s,a0 = a;a ∼ π
]

respectively. We denote by Πi each
agent’s compact Markov policy space and write Π := ×i∈NΠi.

4 THE MANSA FRAMEWORK

We now describe the details of the MANSA framework and how it learns to determine when to use a
centralised learning process and how it improves learning and performance. We then describe the
agents’ objectives and learning processes.

To tackle the challenges described above, we introduce to the system of N MARL agents Global, an
adaptive RL agent with its own objective. Global’s role is to determine at each state whether the N
MARL agents must use a centralised critic or a decentralised critic. Using observations of the joint
actions played by the N agents, the goal of Global is to improve the learning process and maximise
of the team performance by performing activations of the centralised critic. To do this, Global learns
how to select between two critics, Central and Decentral. Global’s policy space consists of a form of
policies known as switching controls (Mguni et al., 2021b) which enable Global to decide at which
states to activate CL. At each state Global first makes a binary decision to decide to activate Central.

Global  

 

sample action of 
switching control

θt ∼ g( ⋅ |st)

Choose IL or CL

IL

agents’ joint action at

Environment

state st

CL

Figure 2: MANSA schematic.

Algorithm 1 Multi Agent Network Selection Algorithm (MANSA)
Input: Initial agent policies π1

0 , . . . , π
N
0 , Global policies gc0 , g0, RL learning algorithm ∆

Output: Optimised agent joint policy π?
for t = 1, T do

Given environment state st evaluate gt ∼ g(·|st) if g = 1 then
at ∼ πc(·|st) Use Central

else
at ∼ πd(·|τt,i) Use Decentral

Apply action at to obtain st+1 and rt+1 :=
∑
i∈N ri,t+1 by applying at to environment.

Update (πi)i∈N , (g, g) using (st,at, ri, st+1) and (st,at, (ri)i∈N , st+1) resp. and ∆ // Learn
the individual policies
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To induce Global to selectively choose when to activate Central, each activation incurs a fixed cost
for Global. In this case, the objective for Global is: vπG(s) = Eπ

[∑∞
t=0 γ

tR(st,at)− c
∑
k≥1 δ

t
τk

]
,

where c ∈ R>0 is a fixed positive constant and δtτk is the Kronecker-delta function which is 1
whenever t = τk and 0 otherwise, assigns a (strictly negative) cost for each activation. The cost
ensures Global activates Central only when doing so delivers a performance improvement. With this
objective, Global seeks to maximise the system performance by activating CL at the required set of
states while, due to the cost of doing so, minimising the number of unnecessary CL calls.

We now describe how at each state the decision to activate Central is determined. At any state, the
decision to activate Central is decided by a (categorical) policy g : S → {0, 1} which acts according
to Global’s objective. In particular, during training, first, Global makes an observation of the state
sk ∈ S and the joint action ak and using g, Global decides whether or not to activate Central. We
denote by {τk} the times that an activation takes place, for example, if the activation of CL is first
made at state s5 then again at s7, then τ1 = 5 and τ2 = 7. Recalling the role of g, {τk} obey the
expression τk = inf{t > τk−1|st ∈ S, g(st) = 1} and are therefore1 rules that depend on the state.
Hence, by learning an optimal g, Global learns the optimal switching control policy.

MANSA’s components

We now describe MANSA’s core components which consists of CL, DL and the switching control
agent. Each component can be replaced by various other MARL algorithms.

• N MARL agents. Each agent has two value-based policies that is, each agent has (i) an action
policy with a critic that takes as input agent’s global observation which includes the joint action and
global state, and (ii) an action policy with a critic that takes as input only the agent’s local observation.

• Independent Q-Learning (IQL). In this paper, we use IQL (Tan, 1993) to learn the decentralised
critic policies. IQL is a popular RL algorithm which is off-policy.

• QMIX. For the CL, we use QMIX (Rashid et al., 2018) which is a multi-agent value-based method
that can train decentralised policies in a decentralised manner and guarantees consistency between
the centralised and decentralised policies.

• Switching Control Policy. A PPO agent called Global whose policy’s action set consists of two
actions: use centralised policy, do not use centralised policy. Global updates its policy g while the
agents {1, . . . , N} learn their individual policies {π1, . . . , πN}.
Discussion on Computational Aspect

The switching control mechanism results in a framework in which the problem facing Global has a
markedly reduced computational complexity as compared with that facing the Central and Decentral
(though the learners share the same experiences). Crucially, the decision space for Global is S×{0, 1}
i.e at each state it makes a binary decision. Consequently, the learning process for g is much quicker
than either Central or Decentral’s policy which must optimise over a decision space which is |S||A|
(choosing an action from its action space at every state) and |S||A|N respectively. This results in
Global rapidly learning its optimal policy (relative to the base MARL learners).

5 CONVERGENCE AND OPTIMALITY OF MANSA

The addition of Global’s RL switching control process during learning can produce convergence
issues (Zinkevich et al., 2006). We now show that MANSA converges. To do this we study the
problem for Global and show its problem admits a stable point that can be computed using standard
RL methods. We secondly show that the solution to MANSA ensures weakly higher performing agent
policies than what would be achieved by solving M directly. In particular, we prove the following:

1. MANSA converges to the system solution and does so with (linear) function approximators.

2. MANSA leads to higher overall return.

3. MANSA-B ensures maximal performance for a given number of CL calls (CL call budget).

1More precisely, {τk}k≥0 are stopping times (Øksendal, 2003).
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The results are built under Assumptions 1 - 7 (Sec. 12 of the Appendix) which are standard in RL
and stochastic approximation theory.

We now give our first result that shows that the solution of the system G can be computed as a limit
point of a sequence of Bellman operations. Second, the result shows the convergence of MANSA
and, it converges with (linear) function approximators. In what follows, we define a projection Π on
a function Λ by: ΠΛ := arg min

Λ̄∈{Ψr|r∈Rp}

∥∥Λ̄− Λ
∥∥:

Theorem 1. i) Let V : S → R then the solution of G is given by lim
k→∞

T kV π,g = max
π̂∈Π,ĝ

V π̂,ĝ =

V π
?,g∗ , where (π?, g∗) and T is a stable policy profile and the Bellman operator of G resp.

ii) MANSA converges to the stable point of G, moreover, given a set of linearly independent basis
functions Ψ = {ψ1, . . . , ψp} with ψk ∈ L2,∀k, MANSA converges to a limit point r? ∈ Rp which
is the unique solution to ΠF(Ψr?) = Ψr? where F is defined by: FΛ := R̂1 + γP max{MΛ,Λ}
where r? satisfies: ‖Ψr? −Q?‖ ≤ (1− γ2)−1/2 ‖ΠQ? −Q?‖.

Part i) of the Theorem proves the system in which Global and the N agents jointly learn has a
stable point which is the limit of a dynamic programming procedure. Crucially, the limit point
corresponds to the solution of the MDPM. Part ii) establishes the solution to G can be computed
using MANSA. The result also establishes the convergence of MANSA to the solution using (linear)
function approximators and that the approximation error is bounded by the smallest error achievable
given the basis functions.
Proposition 1. There exists some finite integer N such that vπ̃m(s) ≥ vπm(s), ∀s ∈ S for any
m ≥ N where π̃m and πm are the respective agent joint policies after the mth learning iteration
with and without Global’s influence.

Note that a fortiori Prop. 1 implies vπ̃(s) ≥ vπ(s), ∀s ∈ S. Prop. 1 shows that Global (weakly)
improves joint system outcomes. Additionally, the proposition indicates that the introduction of
Global never leads to a reduction to the total (environment) return.

Theorem 2. Consider the c-SG G̃ for the problem ?? then: a) The Bellman equation is satisfied that is
∃Ṽ ∗,π,gG such that Ṽ ∗,π,gG (z) = max

a∈A

(
R̃(z,a) + γE

[
Ṽ ∗,π,gG (z′)

])
, where Global’s optimal policy

takes the form g∗(·|z). b) Given a Ṽ : Z → R, the solution of G̃ is lim
k→∞

T̃ kṼ π = max
π̂∈Π,ĝ

Ṽ π̂,ĝ =

Ṽ ∗,π,g
∗
, where (π∗, g∗) and is a stable policy profile of G̃ and T̃ is the Bellman operator of G̃.

The result has several important implications. The first is that we can use our MARL based method,
MANSA to obtain the solution of Global’s problem while guaranteeing convergence (under standard
assumptions). Secondly, our state augmentation procedure admits a Markovian representation of
Global’s optimal policy.

6 EXPERIMENTS

We performed a series of experiments to test MANSA’s ability to successfully learn a switching
control policy between CL and IL that improves performance. Specifically, we tested if MANSA:
1. Performs CL calls less often in strongly decoupled settings. 2. preserves MARL convergence
properties. 3. Reduces the failure modes of each of these game classes. 4. Can improve overall
performance. For these experiments, we used Normal-form games, Level-based Foraging (LBF)
(Papoudakis et al., 2021) and StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019).
These environments have specific features which in some cases are advantageous to CL, and in some
cased to IL as we describe below.

We used the code accompanying the MARL benchmark study of Papoudakis et al. (2021) for the
baselines. We implemented MANSA on top QMIX (Rashid et al., 2018) (as the CL) and IQL (Tan,
1993) (as the IL). We used SAC (Haarnoja et al., 2018) to learn the switching control policy itself. In
all plots, the dark lines represent averages over three seeds and the shaded regions represent 95%
confidence intervals.

Normal Form Games
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Figure 3: Normal form games. The top row shows results on Team games and the bottom row shows
results on Prisoner’s dilemma. Right hand plot shows that when the rewards of the agents as the
rewards of the agents becomes more decoupled as α→ 1 i.e. the strategic interaction becomes weak,
MANSA reduces the number of CL calls it makes during training.

We tested two different examples of two-player normal form games (matrix games). We slightly
modified the standard normal form game set up by parameterising the reward functions of the game
by a parameter α ∈ [0, 1]: α quantifies how strongly coupled the interaction between the two agents
is. That is, the degree to which the actions of an agent affects the rewards of the other agent. For
α = 0, the games are strongly coupled and for α = 1, the games are completely decoupled. We
investigated the behaviour of MANSA for various values of α within the interval [0, 1], in particular,
we test how often MANSA calls on the CL class of learners for different values of α. These are
state-less environments, and precise details of the pay-off matrices are given in Appendix 8.

We test the following cases: (1) Team games Ri(ai, aj) = Rj(aj , ai) (Fig. 3 top row), and (2)
Nonzero-sum games with a strictly dominant strategy, namely,the prisoner’s dilemma (Fig. 3 bottom
row). Fig. 3 shows plots of return (left column), frequency of usage of IL (centre column), and
number of calls to CL (right column). As expected, as α increases and the reward function becomes
more decoupled, calls to the CL decrease in both environments. Similarly, in both environments,
as shown in the centre column, increasing α results in higher frequency of using "Action_0" of the
switching controller, i.e., IL. These plots show a smooth modulation of calls to CL and usage of IL
with respect to α. This suggests that MANSA is capable of picking the best of CL and IL with high
degree of of granularity. Furthermore, this experiment provides empirical evidence that MANSA can
identify and call CL less often as the environment becomes more decoupled.

Level-based Foraging (LBF). As depicted in Fig. 4, in LBF, an agent controls units of particular
levels (in the example, both units are level 1), and there are apples of particular levels (in the example,
all apples are level 2) scattered around the map. The agents goal is to collect as much food as possible.
Crucially, the agents can only collect a food if the cumulative level of the agents adjacent to the food
that are executing the "collect" action is greater than or equal to the level of the food. As the agent
levels and the food levels are randomly assigned, some food may be collectable by a single agent,
while some food may require the coordination of all agents. That is, LBF has attributes such that in
some circumstances coordination among the agents is required, while in some subregions the agents
sparsely interact. Finally, this environment gives us the option of enforcing coordination (these map
names are suffixed with "coop") by making the food level such that at least two agents are required to
coordinate to collect any food in the environment.

Fig. 4 shows performance curves of the tested algorithms. The implementation of MANSA in these
experiments uses QMIX for CL and IQL for IL (i.e., it uses the same baselines against which it is
compared). As can be seen, MANSA outperforms these baselines by a notable margin in almost
half the maps (four out of ten). This suggests MANSA, which identifies states that benefit from
centralised training (and the states that do not) yields significant performance gains in addition to
providing robustness against failure modes.
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Figure 4: Level Based Foraging Environment (top left) and Learning curves on LBF. MANSA
outperforms baselines and demonstrates strong robustness across the range of maps.
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Figure 5: Learning curves on SMAC. MANSA demonstrates robust performance across and is not
susceptible to failure cases unlike the base CL method (QMIX) or the base IL method (IQL).

Surprisingly the IL baseline (IQL) generally outperformed the CL baseline (QMIX), even in maps
that have reward structures that require strong coordination between agents: Foraging-5x5-2p-1f-v2,
Foraging-10x10-5p-1f-coop-v2, and Foraging-10x10-8p-1f-coop-v2. In particular, in these maps,
agents must coordinate to enact the "collect" action simultaneously in order to capture the food.
Despite this requirement, as the results show, contrary to assumptions, IL outperformed CL. The
benefit of MANSA is evident — by not requiring any a priori commitment to either CL or IL, MANSA
performs robustly in these maps. Our empirical results in LBF validate MANSA’s preservation of
the convergence properties of MARL and its ability to leverage both CL and IL to deliver higher
performance. In Section 9 of the appendix, we show that while the switching cost parameter does
impact MANSA’s performance, it is relatively easy to tune this parameter.

StarCraft Multi-Agent Challenge (SMAC). The goal in SMAC is for a team of units under the
control of the agent to defeat a team of units under an opponent’s control. Different maps available in
SMAC vary along several dimensions: number of units, diversity of units, degree of coordination re-
quired, and terrain, to name a few. In different SMAC maps (and indeed under different circumstances
within a map) varying levels of coordination are needed. For example, in the map so_many_baneling,
zealots under the agent’s control face off a larger army of enemy banelings. As banelings attack by
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exploding on contact with their opponents and cause significant "splash" damage, it is critical for
units under the agent’s control to space out so as to minimise the effects of "splash" damage. On
the other hand, in the map corridor, such coordination may not be needed. Here, a small army of
zealots under the agent’s control face off against a large army of zerglings. Ideally, the zealots ought
to wall-off a choke-point and take down the enemy and must avoid getting surrounded. While it
may seem like significant coordination is required to solve this map (i.e., all zealots converge to the
choke-point), in fact this is not necessary. Due to location of the choke-point, the optimal actions for a
zealot acting independently mirror those of the coordinated group. That is, IL is as good as CL in this
case. These two examples illustrate that SMAC is not a "one-algorithm-fits-all" environment. The
design of SMAC sometimes requires coordination and sometimes does not, and a robust algorithm is
one which is not impacted by this requirement for flexibility.

Fig. 5 shows ‘Test_battle_won_mean’, vs ‘Steps’ for a range of SMAC maps for MANSA and the
baselines. As can be seen, MANSA converges to performance that is as good as the top-performing
baseline in all maps except 3s5z_vs_3s6z. In particular, MANSA’s flexibility allows it to avoid the
failures of IQL in maps such as 1c3s5z, 3s5z, 2s3z, and MMM2 without resorting to using only CL
(we present tabulated % of calls to CL in Section 10). Similarly, it also avoids the failures of QMIX
(centralised policy) in 2m_vs_1z and corridor. Therefore, MANSA is robust to failures due to the
representational constraints of CL and the failure modes of IL.

7 CONCLUSION

In this paper, we presented MANSA, a novel framework to solve multi-agent systems. MANSA
combines IL and CL in a way such that it enables one to benefit from the "best-of-both-worlds". It
allows one to utilise the computational benefits of IL, while not suffering from convergence issues
due to its CL component. We proved that MANSA converges. Finally, we presented a detailed suite
of experimental results on normal form games, LBF, and SMAC. In all these domains, MANSA
performed robustly and had no failure modes, and indeed, to our surprise sometimes even strongly
out-performed the baselines (despite using them as its components). For future work, we are exploring
methods to develop versions of MANSA with an explicit budget for to CL.
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