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Abstract
In recent years, Reinforcement Learning (RL)
has shown great promise in session-based rec-
ommendation. Sequential models that use RL
have reached state-of-the-art performance for the
Next-item Prediction (NIP) task. This result is
intriguing, as the NIP task only evaluates how
well the system can correctly recommend the next
item to the user, while the goal of RL is to find
a policy that optimizes rewards in the long term
– sometimes at the expense of suboptimal short-
term performance. Then, how can RL improve
the system’s performance on short-term metrics?
This article investigates this question by exploring
proxy learning objectives, which we identify as
goals RL models might be following, and thus
could explain the performance boost. We found
that RL – when used as an auxiliary loss – pro-
motes the learning of embeddings that capture
information about the user’s previously interacted
items. Subsequently, we replaced the RL objec-
tive with a straightforward auxiliary loss designed
to predict the number of items the user interacted
with. This substitution results in performance
gains comparable to RL. These findings pave the
way to improve performance and understanding
of RL methods for recommender systems.

1. Introduction
Recommender Systems (RecSys) help us select the most
appropriate items or actions in the complexities of an
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information-saturated world (Jannach et al., 2010; Burke
et al., 2011; Parra & Sahebi, 2013). RecSys have achieved
their purpose by learning user preferences and thus suggest-
ing items in personalized and contextual ways (Karatzoglou
et al., 2010; Rendle et al., 2011; Villa et al., 2020; Ado-
mavicius et al., 2021). These approaches seek to learn
users’ static preferences, assuming each item in the users’
historical interactions is equally important. This, however,
does not always hold true. In some scenarios, the user’s
preferences are dynamic (Fang et al., 2020) or the recom-
mendations are based only on the user interactions during
a session, without any previous history (Xin et al., 2020).
Session-based recommendation is applied in several areas
(e-commerce, video, news, advertisement) and it is tradition-
ally addressed with sequence-aware recommender systems
(Quadrana et al., 2018), being Reinforcement Learning (RL)
one of the techniques gaining more traction in recent years
(Afsar et al., 2022).

For many years, recommendation systems have utilized
reinforcement learning through the application of multi-
armed bandits (MABs) (Li et al., 2010; Nguyen & Kofod-
Petersen, 2014; Li et al., 2016). These methods address the
interactive nature of recommendation systems and the cold-
start problem (Elena et al., 2021), but they tend to focus on
short-term preferences. More recently, deep reinforcement
learning (DRL) approaches, such as value-based methods
like Q-learning (Lei et al., 2019) and policy-based methods
like REINFORCE (Chen et al., 2021a) have been introduced
to model long-term preferences, which can translate into
better long-term user engagement (Zou et al., 2019).

However, RL-based methods are usually evaluated under
short-term metrics, such as next-item prediction (NIP) (Def-
fayet et al., 2023). Under this NIP evaluation protocol,
RL techniques have achieved promising results – often out-
performing traditional self-supervised methods (Lee et al.,
2022; Zhao et al., 2018b; Stamenkovic et al., 2022; Wang,
2020). This result, however, is counter-intuitive. Even
though RL has many characteristics that make it a good
alternative for sequential recommendation, as Deffayet et al.
(2023) pointed out, NIP cannot capture the potential benefits
introduced by the use of RL algorithms. NIP is a one-shot
accuracy-oriented protocol. The goal of RL is to maximize
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the long-term reward. As a result, RL will tend to make
poor short-term recommendations in order to make better
recommendations in the future. Then, why is RL improv-
ing the NIP performance across so many different works?
How does RL still manage to outperform self-supervised
sequential methods?

In this paper, we investigate those questions. We first for-
mally prove that the NIP performance of an optimal RL
policy can be arbitrarily worse than the performance of a
self-supervised model. This further shows that, in theory,
there are no reasons to expect that RL would improve the
performance of recommender systems under NIP metrics.

Then, we analyze the case of the Self-Supervised Q-learning
(SQN) framework proposed by Xin et al. (2020). SQN shows
that adding RL as an auxiliary loss to a self-supervised
model improves the model’s generalization performance
with respect to NIP metrics. We analyze this result and
show that learning an optimal policy with RL might not
be the reason why methods such as SQN improve the NIP
performance. Instead, RL seems to be implicitly learning to
encode information about the user’s past interactions. We
then replaced the RL objective with a simple auxiliary loss
that predicted the number of past interactions of the user,
and we observed similar performance gains to those seen
when using RL as an auxiliary loss.

Thus, we contribute to the research on RL recommenda-
tion systems by (i) formally analyzing the discrepancy be-
tween expected and obtained results with RL modeling for
sequence-aware RecSys, (ii) studying the mechanism that al-
lows RL to improve the NIP performance of self-supervised
methods, and (iii) showing that replacing RL with more
straightforward objectives can still achieve similar perfor-
mance gains.

2. Sequential Recommendation
Sequential recommendation refers to recommender systems
where the sequential nature of events (e.g., interactions,
sessions) is considered to model user preferences and make
recommendations (Hidasi & Czapp, 2023). This allows
models to capture sequential patterns in users’ short-term
and dynamic behaviors (Tang & Wang, 2018).

Sequential recommendation problems are typically defined
as a task of next item recommendation (Ludewig & Jan-
nach, 2018). Let I denote the item set and x1:t =
{x1, x2, . . . , xt−1, xt} denote a user-item interaction se-
quence up to time t, where xi ∈ I(1 ≤ i ≤ t) represents the
interacted item at time step i and x1:0 = ∅. Then the goal is
to recommend the most relevant next item xt+1 given the
user’s previous interactions x1:t.

Next-item Prediction (NIP) is an offline evaluation protocol

adopted in many sequential recommendation studies (Tang
& Wang, 2018; Zhao et al., 2018b; Xin et al., 2022a; Hidasi
et al., 2016). Deffayet et al. (2023) defined the NIP task
as ensuring that the next interacted item in the history log
is among the top items ranked by the model, given the
sequence of past interactions. For example, given a logged
interaction sequence {x1, x2, x3}, the goal of NIP is to
predict x1 given ∅, x2 given {x1}, and x3 given {x1, x2}.
Performance is then measured according to ranking metrics
concerning the next target item (e.g., hit rate, nDCG, etc).

The most common approach to tackle this problem is to train
a self-supervised model fθ(·|x1:t) that, given the user’s past
interactions x1:t, predicts the next item xt+1 that the user
is going to interact with (Kang & McAuley, 2018). Here,
fθ is a neural network with parameters θ. Its output is a
probability distribution over the possible items that might
be recommended to the user. This network is usually trained
using a cross-entropy loss:

Ls = −
∑
x∈D

|x|−1∑
t=0

log (fθ (xt+1|x1:t)) , (1)

where D is a set of training user-item interaction sequences.

3. Reinforcement Learning (RL)
RL agents learn optimal behavior by interacting with an
environment (Sutton & Barto, 2018). The environment is
usually modeled as a Markov Decision Problem (MDP). An
MDP is a tuple (S,A, p, r, ρ0, γ), where S is a finite set of
states, A is a finite set of actions, p : S × A × S → R
is the state transition probability, r : S × A → R is the
reward function, ρ0 is the initial state distribution, and γ is
the discount factor.

A policy π(a|s) is a probability distribution over actions
given a state. In episodic tasks, each episode begins by
sampling an initial state s0 ∼ ρ0 from the environment.
Then, at time step t, the agent observes the current state st
and selects an action at ∼ π(·|st) according to its current
policy. As a result, the next state st+1 ∼ p(·|st, at) and
immediate reward rt+1 = r(st, at) are obtained from the
environment. The process repeats from t+ 1 until reaching
a terminal state – which ends the episode.

The goal is to find an optimal policy π∗. That is, a policy
that maximizes the expected discounted return that the agent
gets while interacting with the environment:

π∗ = argmax
π

Eπ

[
H∑
t=1

γkRt

]
, (2)

where Eπ[·] represents the expected value of following pol-
icy π, H is the episode length, and Rt is a random variable
representing the immediate reward at time step t.

2



On the Unexpected Effectiveness of Reinforcement Learning for Sequential Recommendation

We can formulate the sequential recommendation problem
as a MDP (Shani et al., 2005; Xin et al., 2020), where the
agent looks to maximize the cumulative reward interacting
with the environment (users) by choosing actions (recom-
mendations) and receiving rewards. The reward signal is
typically defined in terms of the type of interaction with the
item. For instance, if the possible interactions are click and
buy, the reward signal could be high when the user buys the
recommended item, low when the user only clicks on the
item, and zero when the user does not interact with the item.

One way to learn optimal policies is by learning Q-functions.
The Q-function qπ(s, a) represents the expected discounted
return of taking action a in state s and following policy π
thereafter. We can use Temporal-Difference (TD) learning
to estimate Q-functions from experiences. An experience
is a tuple (s, a, r, s′, a′) where s is a state where the agent
performed action a and, as a result, reached state s′ and
received an immediate reward r. An experience might also
contain the next action a′ that the agent performed from s′.

Given a set of training experiences D, we can train the
parameters θ of a neural network Qθ to approximate qπ for
a given policy π by minimizing the following loss function:

Leval =
∑

(s,a,r,s′,a′)∈D

(r + γQθ′(s′, a′)−Qθ(s, a))
2
,

(3)
where θ′ are the parameters of a target network (Van Hasselt
et al., 2016). This problem is known as policy evaluation
since it evaluates how good a policy π is.

We could also estimate the optimal Q-function q∗. The
optimal Q-function is the Q-function of an optimal policy.
To do so, we just have to change the loss function by the
following loss (Mnih et al., 2015):

LDQN =
∑

(s,a,r,s′)∈D

(
r + γmax

a′
Qθ′(s′, a′)−Qθ(s, a)

)2

(4)
This is known as the control problem since if we learn Qθ ≈
q∗ then an optimal policy might be obtained by always
selecting the action with the highest Qθ(s, a) for all s ∈ S.

4. An Intriguing Result About RL in RecSys
Different works have shown that RL improves the NIP per-
formance of recommender systems (e.g., Xin et al., 2020;
Stamenkovic et al., 2022; Antaris & Rafailidis, 2021; Xiao
& Wang, 2021). However, from a theoretical point of view,
there is no reason to expect that. RL’s learning objective
is to find a policy that collects maximal cumulative reward
from the environment. Since this objective is defined in
terms of cumulative reward, an optimal policy might first
recommend niche items in order to discover what the user
likes and then exploit such knowledge to make excellent

long-term recommendations. Unfortunately, NIP metrics do
not evaluate performance in the long term. They purely eval-
uate the next item prediction over a fixed set of sequences
– penalizing the recommendation of niche items. And the
long-term advantages of RL do not compensate for that
because the testing sequences do not depend on previous
recommendations made by the agent (Deffayet et al., 2023).

Because of this misalignment, an optimal policy might per-
form arbitrarily worse than the self-supervised model from
Equation 1 according to NIP metrics. To prove this, we first
define a sequential recommender as any function that ranks
items given the user’s previous interactions.
Definition 4.1 (Sequential Recommender). Given a finite
set of items I, a sequential recommender R : I∗ × I →
{1, · · · , |I|} is any function that utilizes the user’s past
interactions u ∈ I∗ to rank the items I. That is, R(u, x) is
an integer between 1 and |I|, where R(u, x) is 1 when item
x is at the top of the ranking. In addition, every item must
be assigned a different position in the ranking: R(u, x) ̸=
R(u, x′) if x ̸= x′ for all u ∈ I∗ and x, x′ ∈ I.

We now define a NIP metric as a function that, given a set
of interaction sequences, assigns a score between zero and
one to sequential recommenders. This score is equal to
the average score of each next-item prediction. The NIP
metric is consistent if the score provided to each next-item
prediction is 1 when the next item is at the top of the ranking,
0 when the next item is at the bottom of the ranking, and the
scores are non-increasing in between.
Definition 4.2 (Consistency). Given a finite set of items I,
a sequential recommender R : I∗ × I → {1, · · · , |I|}, a
scoring function s : {1, · · · , |I|} → [0, 1], and a set of item
sequences D, a NIP metric is defined as the average score of
the position of the next items in D according to the scoring
function s and ranking defined by R:

N (D,R) =
1

N

∑
x∈D

|x|−1∑
t=0

s(R(x1:t, xt+1))

where N =
∑

x∈D |x| is the total number of next-step
recommendations. Moreover, we say that the NIP metric is
consistent if s(1) = 1, s(|I|) = 0, and s(i) ≥ s(i+ 1) for
all i ∈ {1, · · · , |I| − 1}.

Note that classic NIP metrics such as Hit Ratio (HR) (Zhang
et al., 2018) and normalized discounted cumulative gain
(nDCG) (Järvelin & Kekäläinen, 2002) are consistent. Fi-
nally, we show that the relative NIP performance of an opti-
mal policy might be arbitrarily worse than the performance
of an optimal cross-entropy solution.
Theorem 4.3. For any consistent NIP metric N and dis-
count factor γ > 0, the relative NIP performance of an opti-
mal policy π∗ can be arbitrarily worse than the performance
of an optimal solution f∗ according to Ls (Equation 1).
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Proof. In Appendix A, we show that for any natural number
n > 1, we can build a dataset D such that:

N (D, f∗)

N (D, π∗)
> n .

Then, as we increase the value of n, the ratio between the
performance of f∗ and π∗ can grow arbitrarily large.

Moreover, the NIP performance of an optimal policy is
bounded, up to some degree, by the performance of an
optimal cross-entropy solution f∗, as shown below:

Theorem 4.4. Let’s consider any consistent NIP metric N
and set of interaction sequences D. Let f∗ be an optimal
solution to the cross-entropy loss Ls from equation 1 assum-
ing f∗ has sufficient capacity. Let π be any optimal policy
with respect to D. Then, N (D, f∗) ≥ N (D, π∗).

Proof. See Appendix B.

Then, why is RL improving the NIP performance?

5. The SQN Learning Framework
To study why RL improves the performance in RecSys, we
analyze the Self-Supervised Q-learning (SQN) framework
(Xin et al., 2020). SQN was one of the first approaches
to demonstrate that, under identical conditions, adding RL
improves the generalization performance of sequential rec-
ommenders under NIP metrics. This result held across
different models and datasets. It also inspired a family of
RL+RecSys methods that follow the same learning principle
(e.g., Xin et al., 2022a; Stamenkovic et al., 2022; Gao et al.,
2022; Antaris & Rafailidis, 2021).

SQN augments standard sequential self-supervised models
with a second output layer for the RL implementation, as
shown in Figure 1(a). This model has two outputs. The
action logits output is a soft-max layer that decides which
item to recommend next. It is trained using the standard
cross-entropy loss from Equation 1. The second output is
the RL layer. It has one output per item and it estimates
the values of an optimal Q-function. This layer is trained
using the DQN loss from Equation 4. As such, the model’s
combined loss function is as follows:

LSQN = Ls + LDQN (5)

Note that RL acts as a regularizer in SQN. In fact, the
recommendations are selected according to the action logits.

Finally, it is worth discussing the reward function and dis-
count factor used in the experimental evaluation of SQN.
We believe that both – the selected rewards and discount –
played a crucial role in SQN’s good performance. In their
experimental setting, there were two types of interactions:

buy and click. When the user bought an item, the reward
was 5. When the user clicked on an item, the reward was 1.
The discount factor was set to 0.5.

6. Finding Proxy Learning Signals for NIP
Our hypothesis is that RL, by itself, is not responsible for
the performance improvements. We believe that a clever
combination of reward signals and discount factors entails
useful auxiliary losses for self-supervised models. But RL,
as the process of learning an optimal policy from data, might
not be needed to do so. If this were the case, we should
be able to replace RL with a simple auxiliary loss without
losing performance.

In this section, we explore this idea from two perspectives.
The top-down approach tries to understand how the LDQN
loss (Equation 4) behaves in sequential RecSys, given the
reward function and discount factor that are typically used.
The bottom-up approach follows an empirical methodology
to understand what features can better explain the embed-
dings learned when using RL as an auxiliary loss.

6.1. Top-Down Approach: Predict Types of Interactions

Analyzing the behavior of LDQN (Equation 4) in SQN is
challenging because of the maximization term. The term
maxa′ Qθ′(s′, a′) asks the network to predict how much ex-
pected return would be received if item a′ is recommended
from state s′. This could be an item that has never been
recommended to the user. As such, we don’t really know
its value. The user might buy the item or click on the item.
Depending on that, the reward would be 1 or 5.

As an alternative, we propose a variation of SQN where
LDQN is replaced by Leval (from Equation 3). In contrast
to LDQN, Leval doesn’t attempt to learn an optimal policy.
It simply evaluates the policy that was used to create the
dataset. As a result, the maximization term is replaced by
Qθ′(s′, a′). That is, how much expected return the agent
will receive if it recommends the next item in the sequence.
The key advantage is that, since we always recommend the
next item in the sequence, we know its real reward. This
makes analyzing Leval much simpler than analyzing LDQN.

We also note that the empirical performance of SQN does
not drop significantly when replacing LDQN by Leval. Table 1
compares the NIP performance of GRU, a standard self-
supervised model (Hidasi et al., 2016), with other methods
in RetailRocket. GRU-SQN is SQN when training the RL
head using LDQN. GRU-EVAL is our variation of SQN
that trains the RL head using Leval. As the table shows,
both versions of SQN outperform the self-supervised model,
and there is not much difference between GRU-SQN and
GRU-EVAL. Hence, we focus our analysis on GRU-EVAL.
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Figure 1. The SQN and proposed architectures

Recall that Leval finds a set of parameters θ such that the
model Qθ approximates the Q-function qπ of a policy π.
In this case, π is the policy used to create the training set.
That is, a policy that always recommends the next item that
appears in the training sequence. In the empirical evaluation
of SQN, Xin et al. (2020) used a discount factor of 0.5. This
is a fairly aggressive discount. Considering that the reward
was 1 for clicking and 5 for buying, the value of qπ will have
a lower bound of 1 and an upper bound of 10. Moreover,
only the first two or three immediate rewards account for
most of the value that we are trying to predict:

qπ(st, at) = rt+1 +
1

2
rt+2 +

1

4
rt+3 +

∞∑
k=3

1

2k
rt+k+1

≤ rt+1 +
1

2
rt+2 +

1

4
rt+3 + 1.25

Therefore, to correctly predict qπ(st, at), Qθ(st, at) must
implicitly learn to predict the type of interactions that the
user will have with the next two or three items. For instance,
predicting Qθ(st, at) = 1 means the user will click on the
next item and then the sequence ends. On the other hand,
predicting Qθ(st, at) = 7.5 means that the user will buy
two items, and then the session ends.

As a result, we believe that adding Leval as an auxiliary loss
encourages the self-supervised model to learn embeddings
that can predict the type of interactions the user will have
with the next items. Doing so could improve the model’s
generalization because knowing whether the user will click
or buy the next item constrains the items that make sense
to recommend. For instance, if we know that the user will
buy two items, the model could increase the probability of
recommending an item that tends to be purchased together
with other items (e.g., complementary items).

To test our hypothesis, we replaced the RL head with a
simple categorical classification problem, as shown in Fig-

Table 1. Top-k recommendation performance comparison for buy
interactions on the RetailRocket dataset. Boldface denotes the
highest performance. * denotes that the model outperforms the
self-supervised baseline with a significance p-value < 0.05.

Model HR@5 NG@5 HR@20 NG@20

GRU 0.1601 0.1248 0.2306 0.1456
GRU-SQN *0.1921 0.1519 *0.2698 0.1743
GRU-EVAL *0.1962 *0.1545 *0.2718 *0.1762

GRU-CAT 0.1644 0.1282 *0.2384 0.1495
GRU-CAT3 *0.1696 *0.1325 *0.2435 *0.1536
GRU-HIST *0.1980 *0.1549 *0.2747 *0.1770
GRU-FUT 0.0390 0.0312 0.0569 0.0375

ure 1(b). We call this model cat. The cat model adds an
auxiliary loss to the self-supervised model. The auxiliary
loss is a cross-entropy that predicts the types of interactions
with the following two items. In total, there are six classes
in this problem: Click-Done, Click-Click, Click-Buy, Buy-
Done, Buy-Click, and Buy-Buy. Since we know the future
interaction types during training, it is trivial to compute the
supervision for this auxiliary loss. We also experimented
with a cat3 model, which is identical to the cat model, but it
predicts the interaction types with the following three items.

Table 1 shows the performance in RetailRocket of GRU
using cat and cat3 as auxiliary losses. We note that cat and
cat3 are not RL objectives. Still, they significantly improve
the performance of GRU. On the other hand, there is a
clear gap between the performance of the cat models and
SQN. Somehow, the cat model doesn’t fully explain the
performance gains of using RL in RecSys. This motivated
our second approach to explore why RL works in RecSys.

6.2. Bottom-Up Approach: Feature Importance

Given the lackluster results obtained using the cat method,
we take a different approach. It might be that LDQN is
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Table 2. List of features used for linear regression analysis.
SHAP-XG shows the feature importance scores derived using
SHAP values from the XGBoost model on the RetailRocket
dataset using the Caser self-supervised model.

Feature Description SHAP-XG

hist-length Number of past user interactions
in the sequence.

18.4964

fut-length Number of future user interactions
in the sequence.

5.8296

hist-buys Number of items the user bought
in past interactions.

2.8757

fut-buys Number of items the user will buy
in future interactions.

2.7714

Q-Value The expected return following the
sequence in the history log.

1.7878

not really learning a good approximation of the optimal
Q-function. After all, we are using RL over a fixed set of
sequences. This setting is known as offline RL (Levine
et al., 2020), and it is known to be quite challenging (Dulac-
Arnold et al., 2021). Thus, we decided to empirically look
for features that correlate well with the Q-values that are
learned using LDQN.

Specifically, we trained a standard SQN model and obtained
all the Q-value Qθ(x1:t, ·) predictions on the test set Dtest.
Note that Qθ(x1:t, ·) is a vector of size |I| (i.e., there is
one value per item). Then, for each sequence x ∈ Dtest, we
compute twelve features that, we believe, could explain the
Q-value predictions. We then performed a correlation test
between the features and calculated their variance inflation
factor (VIF) to avoid significant multicollinearity (Daoud,
2017). After this preprocessing, only five features remained –
shown in Table 2. Finally, we performed feature importance
analyses to discover the features that explain Qθ better.

We conducted three feature importance analyses on the Re-
tailRocket dataset: (1) linear regression, (2) SHAP (Lund-
berg & Lee, 2017) after training predictive models with
XGBoost (Chen & Guestrin, 2016), and (3) SHAP after
training predictive models with linear regression – obtaining
similar feature rankings (see Table 11 in Appendix). This
ranking is shown in Table 2, including the SHAP values
from the trained XGBoost model using the Caser model as
a reference. Surprisingly, the most relevant feature is the
number of items the user has interacted with in the session
prior to the target timestamp (hist-length), followed by the
number of future interactions in the session (fut-length).

Our feature analysis suggests that RL might improve the
NIP performance because it learns to remember the number
of items the user has interacted with. To test this hypothesis,
we propose the hist model (shown in Figure 1(c)). The hist
model replaces the RL head from SQN with a prediction of
the number of items that the user has interacted with. This

head is trained using a mean square error loss between the
prediction and the target number. As Table 1 shows, the
hist model performs remarkably well. It is competitive with
GRU-SQN and it does not use RL. This result sheds some
light on why RL improves the NIP performance in RecSys.

Finally, we also investigated the performance of a fut model,
which is similar to the hist model but predicts the number
of future interactions. We explored this model because the
fut-length feature was the second most important feature
according to our feature analysis. Unfortunately, this model
performs poorly – as shown in Table 1.

7. Experimental Settings
In this section, we describe the details of our experiments.
We followed the recent guidelines proposed by Hidasi &
Czapp (2023) to prevent a flawed evaluation.

Datasets. Hidasi & Czapp (2023) pointed out that many
public rating-based datasets commonly used for sequential
recommendation evaluation, such as MovieLens and Ama-
zon (Beauty), are not appropriate for this task, as the time
of rating is disjoint from the time of user-item interaction.

On the other hand, they validated the sequential nature of
session-based datasets like RetailRocket, denoting it as an
appropriate dataset for sequential recommendation evalu-
ation. The RetailRocket dataset contains sequential data
collected from a real-world e-commerce website. We fol-
lowed the setting by Xin et al. (2020) by treating views as
clicks and adding to cart actions as purchases. The dataset
contains information about 195, 525 unique sessions with
1, 233, 949 click or purchase events across 70, 852 items.

We also tested our models on the RC15 dataset. This is
another session-based dataset constructed from retailer ses-
sion data. It was proposed as part of the RecSys Chal-
lenge 2015. This dataset contains 200, 000 sessions, 26, 702
unique items, and 1, 154, 911 interaction events.

Evaluation protocol. In the original SQN implementation,
Xin et al. (2020) followed a random split for training, testing,
and validation. This protocol might be flawed (Hidasi &
Czapp, 2023), since user preferences and behavior have
been noted to drift over time (Tsymbal, 2004), causing
information to leak when using train and test sessions with
time overlaps. To prevent this issue, we adopt a time-based
split (Hidasi & Czapp, 2023). We implement an 8:1:1 split
ratio for train, validation, and test by using the first 80% of
sessions for the train set and the last 10% for the test set.

We use two widely adopted metrics to evaluate the recom-
mendation performance, following the evaluation procedure
of previous work (Xin et al., 2020): Hit Ratio (HR) (Zhang
et al., 2018), and normalized discounted cumulative gain
(NDCG) (Järvelin & Kekäläinen, 2002). HR@K is a recall-
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Table 3. Performance for buy interactions on the RetailRocket
dataset. NG stands for NDCG. Boldface denotes the highest per-
formance and underlines the runner-up. * denotes a significant
difference when tested against the self-supervised baselines (GRU,
NIN, CASER, and SAS).

MODEL HR@5 NG@5 HR@20 NG@20

GRU 0.1601 0.1248 0.2306 0.1450
GRU-SQN *0.1921 0.1519 *0.2698 0.1743
GRU-EVAL *0.1962 *0.1545 *0.2718 *0.1762
GRU-CAT 0.1644 0.1282 *0.2384 0.1495
GRU-HIST *0.1980 *0.1549 *0.2747 *0.1770

NIN 0.2282 0.1785 0.3215 0.2053
NIN-SQN *0.3307 *0.2577 *0.4418 *0.2901
NIN-EVAL *0.3308 *0.2582 *0.4421 *0.2905
NIN-CAT *0.2505 0.1959 *0.3483 0.2242
NIN-HIST *0.3001 *0.2348 *0.4110 *0.2667

CASER 0.1682 0.1361 0.2217 0.1514
CASER-SQN *0.2020 *0.1601 *0.2715 *0.1801
CASER-EVAL 0.2000 0.1610 *0.2638 0.1794
CASER-CAT 0.1765 0.1434 0.2307 0.1591
CASER-HIST *0.2399 *0.1893 *0.3296 *0.2152

SAS 0.2458 0.1872 0.3509 0.2176
SAS-SQN *0.3012 *0.2280 *0.4227 *0.2634
SAS-EVAL 0.2963 *0.2242 *0.4195 *0.2600
SAS-CAT *0.2636 *0.1999 *0.3731 *0.2315
SAS-HIST *0.2960 *0.2231 0.3847 *0.2573

based metric that measures the ratio of events for which
the correct item was among the top-k recommended items
against the total number of events. NDCG@k is a ranking-
based metric that assigns a higher value if the correct item
is ranked better within the top-k recommended items.

Baselines. For the sequential-recommendation models used
in the proposed model’s architecture, we use four state-of-
the-art models: GRU (Hidasi et al., 2016), Caser (Tang
& Wang, 2018), NextItNet (NIN) (Yuan et al., 2019), and
SASRec (SAS) (Kang & McAuley, 2018).

For SQN, we used the same hyperparameters as the original
implementation (Xin et al., 2020) and trained the models
for 50 epochs. Each experiment was run 5 times, with the
average performance reported. Table 5 in the Appendix
shows the implementation details for each model.

8. Results
Table 3 summarizes the results of a NIP evaluation protocol
on purchase interactions in the RetailRocket dataset. We can
see that our proposed models that replace the RL loss with
a supervised version consistently outperform the respective
self-supervised baseline, most of the time by a significant
difference. We can see on Table 4 that these findings are
consistent on the RC15 dataset. This result highlights the
value of enhancing traditional recommendation models with

Table 4. Performance for buy interactions on the RC15 dataset.
NG stands for NDCG. Boldface denotes the highest performance
and underlines the runner-up. * denotes a significant difference
when tested against the self-supervised baselines (GRU, NIN,
CASER, and SAS).

MODEL HR@5 NG@5 HR@20 NG@20

GRU 0.3599 0.2511 0.5612 0.3098
GRU-SQN 0.3736 0.2626 0.5761 0.3218
GRU-EVAL 0.3704 0.2620 0.5776 0.3225
GRU-CAT 0.3579 0.2491 0.5551 0.3068
GRU-HIST *0.3841 *0.2714 *0.5901 *0.3316

NIN 0.3208 0.2243 0.5054 0.2783
NIN-SQN *0.3610 *0.2548 *0.5606 *0.3132
NIN-EVAL *0.3483 *0.2463 0.5342 *0.3021
NIN-CAT *0.3381 *0.2384 *0.5253 0.2923
NIN-HIST *0.3558 *0.2520 *0.5521 *0.3092

CASER 0.4095 0.2898 0.6192 0.3511
CASER-SQN *0.4263 *0.3014 *0.6342 *0.3621
CASER-EVAL *0.4340 0.3255 *0.6448 *0.3714
CASER-CAT *0.4351 *0.3106 *0.6386 *0.3699
CASER-HIST *0.4528 *0.3197 *0.6686 *0.3830

SAS 0.3706 0.2596 0.5598 0.3150
SAS-SQN 0.3831 0.2689 0.5805 *0.3266
SAS-EVAL *0.4115 *0.2872 *0.6216 *0.3483
SAS-CAT *0.4049 *0.2804 *0.6159 *0.3423
SAS-HIST 0.3741 0.2634 0.5634 0.3189

proxy objective functions to increase performance.

We see that the proposed EVAL update did not significantly
impact the model’s performance compared to the SQN per-
formance. The EVAL model narrowly outperforms the SQN
model when paired with the GRU and NextItNet models
on the RetailRocket dataset, while it does so when paired
with the Caser and SASRec models on the RC15 dataset.
As discussed earlier, this allows for a better mathematical
interpretation of the learning process during training while
not significantly impacting performance.

Regarding the cat model, it consistently and often signif-
icantly outperforms the self-supervised baseline on both
datasets, showing the advantage of learning to predict inter-
action types of upcoming events on the next-item prediction
task. However, there is a considerable gap between the
performance of the cat model and the SQN variants.

The hist model achieves results comparable to the SQN
model, outperforming SQN when paired with the GRU
and Caser models on both datasets. On the RetailRocket
dataset (Table 3), the best results overall are achieved by the
NextItNet-EVAL model, while on the RC15 dataset (Table
4) they were achieved by Caser-hist. However, the goal of
this paper is not to propose a novel model that outperforms
the current state-of-the-art but rather to explore why RL
shows an intriguing performance increase in a short-tem
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evaluation setting. The fact that learning the length of the
past sequence manages to achieve comparable performance
to SQN brings us one step closer to understanding RL per-
formance in RecSys.

Finally, the performance differences between using different
self-supervised networks can be explained by the diverse
mechanisms these networks have, impacting the informa-
tion available in the hidden state given to the auxiliary head.
Between the RNN-based GRU network, the CNN-based
NextItNet and Caser networks, and the transformer-based
SASRec network, different features from the original input
sequence might be lost or accentuated, impacting the per-
formance of the auxiliary task. The performances in click
prediction yielded similar conclusions to the ones of buy
prediction, and the full results can be found in Table 6.

9. Related Work
Recent works have investigated potential flaws in sequen-
tial recommendation evaluation. Hidasi & Czapp (2023)
showed how improper dataset pre-processing and evaluation
design can lead to flawed results. In contrast, Deffayet et al.
(2023) highlighted problems in the offline evaluation for
RL, specifically in the Next-item prediction (NIP) protocol.
They discussed that NIP only accounts for short-term re-
wards and, as such, the reward maximization objective of
RL is likely to deteriorate the results of this evaluation. In
this paper, we further explored this observation. We for-
mally showed that the NIP performance of an optimal RL
policy might be arbitrarily worse than the performance of a
self-supervised model. We then explored why RL methods
can still improve the NIP performance and found that RL, as
the process of finding optimal policies, is not exactly what
produces the performance gains. Our experiments showed
that we can replace RL with simple auxiliary functions and
observe similar gains. However, the gap between RL and
our auxiliary functions is not entirely closed. Exploring this
remaining gap is an exciting direction for future work.

Xin et al. (2020) proposed SQN, a self-supervised frame-
work that uses the TD-update rule from RL as a regularizer
in a sequential, self-supervised prediction algorithm. Based
on the SQN framework, Xin et al. (2022a) implemented
a negative sampling technique, while Stamenkovic et al.
(2022) changed the RL head with a multi-objective agent
looking to enhance the diversity and novelty in the recom-
mendations. Other methods, like SAR (Antaris & Rafailidis,
2021) and VPQ (Gao et al., 2022), also use RL as a regu-
larizing agent in a cross-entropy-based self-supervised task.
Each of these studies outperforms traditional self-supervised
sequential networks on the NIP task. In this paper, we look
to address the misalignment between the network objective
and the NIP evaluation protocol discussed in Section 4. In
this paper, we use SQN as the basis for our studies, but

Theorems 4.3 and 4.4 apply equally to all the studies dis-
cussed here. Analyzing what these different RL methods
are learning and why they improve the NIP performance is
an important direction for future work.

SDAC (Xiao & Wang, 2021) proposes a framework based
on a stochastic Actor-Critic method based on a probability
formulation while implementing regularization approaches
to reduce the extrapolation error. Unlike the previously
discussed models, SDAC does not use the RL component as
a regularizer for a supervised model. Since it’s an RL-based
model evaluated with the NIP protocol, Theorems 4.3 and
4.4 still apply to this framework. As such, a similar analysis
to the one proposed in this paper could be applied to it.

Other studies have approached the sequential recommenda-
tion task using RL; however, instead of directly using the
NIP protocol to evaluate, they take the items the target user
interacted with in the test set and look to re-rank them, look-
ing to place higher-value interactions in the top positions
(e.g., Zhao et al., 2018a; 2020b; 2018b). While this evalua-
tion method differs from NIP, it’s still a one-shot evaluation
protocol for an RL method. Thus, the discussion in Section
4 still applies to them. We believe that exploring the reason
behind the misalignment between the model’s objective and
results is an interesting direction for future work.

While this paper aims to explore the aforementioned discrep-
ancy, it does not contradict the potential long-term benefits
that using RL might bring to RecSys. However, a simulator
would be needed to evaluate those benefits properly. While
there is still no standardized simulation platform or bench-
mark specific to RL-based RecSys (Chen et al., 2021b), and
simulators are still not mature enough to be widely used
as standardized baselines (Hidasi & Czapp, 2023), simu-
lator research has been gaining more attention in RecSys
(Loepp, 2022). Some simulators have been proposed to sim-
ulate sequential recommendation scenarios (e.g., McInerney
et al., 2021; Hazrati & Ricci, 2022; Xie et al., 2018). At
the same time, different works have developed their own
ways to simulate unseen user feedback (e.g., Chen et al.,
2019a;b; Zhang et al., 2020; Zou et al., 2020), managing
to outperform the supervised baselines. By developing a
framework capable of simulating dynamic user behavior
under different conditions, the long-term benefits from RL
could be assessed in an offline setting.

Finally, it is worth mentioning that the scope of this inves-
tigation applies only to RL-based sequential recommenda-
tion models that use the NIP protocol for evaluation. Re-
search outside sequential recommendation includes conver-
sational recommendation (e.g., Sun & Zhang, 2018; Ren
et al., 2020; Lei et al., 2020), explainable recommendation
(e.g., Zhao et al., 2020a; Liu et al., 2021; Park et al., 2022),
and medical treatment recommendations (e.g., Nemati et al.,
2016; Raghu et al., 2017). Other sequential approaches like
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Prompt-Learning (Xin et al., 2022b) also fall outside this pa-
per’s scope. Similarly, the Multi-Armed Bandit approaches
fall outside of this investigation since our theorems only
apply to models with a discount factor γ > 0.

10. Conclusion and Future Work
This paper addressed an overlooked discrepancy in RL-
based recommender system research. Somehow, RL-based
methods achieve better performance under short-term met-
rics, even though they primarily aim to maximize long-term
rewards.

We studied this discrepancy and found that RL allows self-
supervised models to learn embeddings that encode infor-
mation about the user’s past interactions. In particular, when
adding RL as an auxiliary loss, the network learns Q-value
estimates that correlate with the length of the interaction
sequence. Then, we replaced the RL objective with a sim-
ple prediction of the current sequence length and obtained
similar performance gains to those obtained using RL.

This is an interesting result. It suggests that RL, as the pro-
cess of finding an optimal policy, might not be the reason
behind the performance improvement seen in sequential rec-
ommendation. But, at the same time, studying its behavior
might allow us to find useful auxiliary losses for sequential
recommendation, such as hist, cat, or fut.

Our work opens different avenues for future work. In partic-
ular, while the hist model achieved comparable performance
to SQN overall, the results vary depending on which self-
supervised method is used. And we are not entirely sure
why that is the case. We believe that SQN outperforms hist
in NIN and (sometimes) in SAS because those architectures
have specialized mechanisms that work well with large se-
quences. For instance, NIN uses dilated convolutions in
order to process longer sequences than traditional convolu-
tional models (such as Caser). As such, it might be easier
for NIN to consider the sequence length in their predictions.
This could explain why using hist as an auxiliary loss did
not significantly impact its performance. That said, further
experimentation is required to verify this hypothesis.

Another direction for future work is to study how to exploit
fut auxiliary loss better. Fut was the second most relevant
feature according to our analysis in Section 6.2 but its em-
pirical performance was terrible (see Tables 6 & 7 in the
Appendix). A fundamental difficulty of using fut as an
auxiliary loss is its high variance. For instance, consider
a user who has not interacted with any item yet. The fut
auxiliary loss asks the network to predict how many items
this new user will interact with. The best possible guess is
the average length of the sequences across the training data.
But that guess is way off most of the time. Since fut is a
mean square error loss, incorrect predictions result in large

values (with high variance) – making it hard to optimize
using gradient descent. Addressing this issue might allow us
to take advantage of fut as an auxiliary loss in future work.

Finally, since the SQN learning framework is used as the
basis for other works in RL (Xin et al., 2022a; Stamenkovic
et al., 2022), we expect that the conclusions of our work
should extend to other RL-based research in RecSys. We
also hope this work serves as the first step towards better
understanding the unexpected effectiveness of RL for se-
quential recommendation.
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A. Proof Theorem 4.3
Let’s consider a sequential recommendation problem with two items I = {x1, x2}. In this problem, there are two possible
interaction sequences: {x1, x2} and {x2}. For simplicity, let’s consider that the training and testing sets are identical. This
set D contains one trace {x1, x2} and n > 1 copies of the trace {x2}.

Given D, an optimal solution f∗ to the cross-entropy loss from Equation 1 – assuming that f∗ has enough capacity to encode
such a solution – is the following: f∗(x1|∅) = 1

n+1 , f∗(x2|∅) = n
n+1 , and f∗(x2|{x1}) = 1. That is, f∗ first recommends

x2 because most users in D interacted first with x2. But if we are in a situation where the user interacts first with x1, f∗
recommends x2 after that. As a result, the NIP performance of f∗ over D is the following:

N (D, f∗) =
1

n+ 2
(n · s(1) + s(2) + s(1)) =

n+ 1

n+ 2
,

where the term n · s(1) refers to the n sequences {x2} ∈ D and s(2) + s(1) refers to the one sequence {x1, x2} ∈ D where
the first x1 is recommended last by f∗ but then x2 is correctly recommended first from x1. Since N is consistent and this
problem has only two items, s(1) = 1 and s(2) = 0.

On the other hand, an optimal policy π∗ for D first recommends x1 because the expected discounted return of recommending
x1 is q∗(∅, x1) = r(1 + γ) whereas the Q-function of recommending x2 is q∗(∅, x2) = r. Thus, as long as we define a
positive reward r for interacting with an item and we use a discount of γ > 0, then π∗(x1|∅) = 1. And once the user
interacts with x1, the next recommendation will be x2: π∗(x2|x1) = 1. Therefore, according to the NIP performance, π∗
will fail at recommending x1 instead of x2 in n sequences in D (although, it will correctly recommend x1 and then x2 in the
single example where that situation happens in D):

N (D, π∗) =
1

n+ 2
(n · s(2) + s(1) + s(1)) =

2

n+ 2
,

Hence, the ratio between the scores of f∗ and π∗ is the following:

N (D, f∗)

N (D, π∗)
= n+

1

2
> n.

Then, as we increase the value of n the optimal policy π∗ can perform arbitrarily worse than f∗ according to any consistent
NIP metric.

B. Proof Theorem 4.4
Let Rπ be a sequential recommender that ranks items according to a policy π and Rf be a sequential recommender that
ranks items according to f∗. Let CD : I∗ → N be a function that returns the number of times a subsequence appears in D.
In particular, CD(x1:t) is equal to the number of sequences in D that begins with x1:t. Then,

f∗(x1:t, y) =
C(x1:t ◦ y | D)

C(x1:t | D)
for all y ∈ I, (6)

where x ◦ y represents the concatenation of x and y. That is, the probability of predicting y from x1:t is equal to the number
of times that y is the next item after sequence x1:t in D. Then, we can represent N in terms of the function C, where all the
subsequences xs ⊂ D are grouped together.

N (D,R) =
1

N

∑
xs⊂D

∑
y∈I

C(xs ◦ y | D) · s(R(xs, y))

Let N (D,R, xs) be the following:

N (D,R, xs) =
∑
y∈I

C(xs ◦ y | D) · s(R(xs, y))
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Then, we will prove that, for all subsequence xs ⊂ D:

N (D,Rf , xs) =
∑
y∈I

C(xs ◦ y | D) · s(Rf (xs, y)) ≥
∑
y∈I

C(xs ◦ y | D) · s(Rπ(xs, y)) = N (D,Rπ, xs) (7)

As stated in Equation 6, Rf (xs, y) ranks the items according to C(xs ◦ y | D). The item with higher counter C(xs ◦ y | D)
is ranked first. Then, the item with the second higher count and so for. In addition, the scoring function s is non-increasing
because N is consistent.

We will prove that Equation 7 holds by showing that no other ranking could achieve a higher N (D,Rf , xs) value than
Rf , for any xs. We will do so by contradiction. Let’s assume that there exists a policy π such that its ranking Rπ(xs, ·)
for the next item given the interaction sequence xs has higher N (D,Rπ, xs) value. For now, let’s consider that the only
difference between the rankings Rf (xs, ·) and Rπ(xs, ·) is in the location of two items y1 and y2 that are swapped. That is,
Rf (xs, y1) = Rπ(xs, y2) and Rf (xs, y2) = Rπ(xs, y1). Let’s say that f∗ ranks y1 higher than y2. Let pf1 be the position
of y1 according to f∗ and pf2 be the position of y2. Conversely, let pπ1 be the position of y1 according to π and pπ2 be the
position of y2.

Since f∗ ranks y1 higher than y2, then C1 = C(xs ◦ y1 | D) ≥ C(xs ◦ y2 | D) = C2. Therefore,

C1 = C2 + ϵ ,

for some ϵ ≥ 0. In addition, we know that the scoring function s is non-increasing. That means that:

s(pf1 ) = s(pf2 ) + β ,

where β ≥ 0. We now prove that the swap cannot increase the value of N (D,Rf , xs).

C1 · s(pf1 ) + C2 · s(pf2 ) = (C2 + ϵ) · (s(pf2 ) + β) + C2 · s(pf2 ) (8)

= C2 · s(pf2 ) + C2 · β + ϵ · s(pf2 ) + C2 · s(pf2 ) + ϵ · β (9)

≥ C2 · s(pf2 ) + C2 · β + ϵ · s(pf2 ) + C2 · s(pf2 ) (10)

= C2 · s(pf2 ) + C2 · β + ϵ · s(pf2 ) + C2 · s(pf2 ) (11)

= C2 · (s(pf2 ) + β) + s(pf2 ) · (C2 + ϵ) (12)

= C2 · s(pf1 ) + s(pf2 ) · C1 (13)
= C2 · s(pπ2 ) + s(pπ1 ) · C1 (14)

(15)

Thus, swapping the order of y1 and y2 cannot increase the value of N (D,Rf , xs). And, for the same reason, making more
than one swaps cannot increase the value of N (D,Rf , xs). This means that, regardless the policy π, N (D,Rf , xs) ≥
N (D,Rπ, xs). And since this relation holds for all xs ⊂ D, N (D, f∗) ≥ N (D, π∗) – proving the theorem.

C. Parameter Setting

Table 5. Model parameters used in training. Batch: Batch size used. lr: learning rate. h factor: Hidden factor or item embedding
size. filter# Number of horizontal filters used in Caser. f sizes: The size of the horizontal filters in Caser. Head#: Number of heads in
self-attention in SASRec. dropout: Dropout Rate. CR: Click Reward. BR: Buy Reward

Model Optimizer Epochs Batch lr γ h factor filter# f sizes Head# dropout CR BR

GRU Adam 50 256 0.005 0.5 64 - - - 0 1 5
NIN Adam 50 256 0.005 0.5 64 - - - 0 1 5
Caser Adam 50 256 0.005 0.5 64 16 [2,3,4] - 0.1 1 5
SAS Adam 50 256 0.005 0.5 64 - 1 0.1 1 5
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D. Complete Results

Table 6. Top-k recommendation performance comparison for click interactions on different models on the RetailRocket dataset. NG is
short for NDCG. Boldface denotes the highest performance and underlines denote the runner-up. * denotes that the model outperforms
the self-supervised baseline with a significance p-value < 0.05.

MODEL HR@5 NG@5 HR@10 NG@10 HR@15 NG@15 HR@20 NG@20

GRU 0.1205 0.0938 0.1472 0.1024 0.1633 0.1067 0.1751 0.1094
GRU-SQN *0.1416 *0.1105 *0.1705 *0.1199 *0.1874 *0.1244 *0.1999 *0.1273
GRU-SAC *0.1475 *0.1148 *0.1774 *0.1245 0.1947 *0.1291 *0.2069 *0.1320
GRU-EVAL *0.1426 *0.1109 *0.1714 *0.1203 *0.1888 *0.1249 *0.2009 *0.1277
GRU-CAT *0.1228 *0.0955 *0.1497 *0.1042 *0.1665 *0.1086 *0.1784 *0.1114
GRU-CAT3 *0.1249 *0.0969 *0.1514 *0.1054 *0.1677 *0.1097 *0.1797 *0.1126
GRU-HIST *0.1434 *0.1118 *0.1717 *0.1210 *0.1880 *0.1253 *0.1997 *0.1281
GRU-FUT 0.0390 0.0312 0.0474 0.0339 0.0528 0.0353 0.0569 0.0375

NIN 0.1345 0.1059 0.1612 0.1145 0.1774 0.1188 0.1892 0.1216
NIN-SQN *0.1673 *0.1310 *0.1996 *0.1414 *0.2178 *0.1463 *0.2305 *0.1493
NIN-SAC *0.1671 *0.1301 *0.1999 *0.1407 *0.2186 *0.1457 *0.2317 *0.1488
NIN-EVAL *0.1668 *0.1306 *0.1993 *0.1411 *0.2176 *0.1459 *0.2302 *0.1489
NIN-CAT *0.1431 *0.1121 *0.1721 *0.1215 *0.1890 *0.1259 *0.2014 *0.1289
NIN-CAT3 *0.1436 *0.1129 *0.1732 *0.1225 0.1903 *0.1271 *0.2027 *0.1300
NIN-HIST *0.1638 *0.1284 *0.1951 *0.1386 *0.2130 *0.1433 *0.2256 0.1463
NIN-FUT 0.0939 0.0750 0.1100 0.0802 0.1194 0.0827 0.1263 0.0830

CASER 0.1400 0.1107 0.1640 0.1185 0.1781 0.1222 0.1877 0.1245
CASER-SQN *0.1560 0.1218 *0.1849 *0.1312 *0.2018 *0.1357 *0.2136 *0.1385
CASER-SAC *0.1539 0.1190 *0.1836 *0.1286 *0.2012 *0.1333 *0.2132 *0.1361
CASER-EVAL 0.1577 0.1246 0.1849 0.1334 0.2005 0.1375 0.2116 0.1401
CASER-CAT 0.1415 0.1135 0.1652 0.1212 0.1790 0.1249 0.1888 0.1344
CASER-CAT3 0.1565 *0.1241 *0.1830 *0.1327 *0.1982 *0.1367 0.2090 *0.1393
CASER-HIST 0.1669 *0.1300 *0.1979 0.1401 *0.2160 *0.1449 *0.2283 *0.1478
CASER-FUT 0.0248 0.0189 0.0316 0.0210 0.0358 0.0222 0.0393 0.0230

SAS 0.1635 0.1249 0.1982 0.1361 0.2176 0.1413 0.2313 0.1445
SAS-SQN 0.1835 *0.1397 *0.2228 *0.1524 *0.2445 *0.1582 *0.2597 *0.1618
SAS-SAC *0.1852 *0.1398 *0.2266 *0.1532 *0.2496 *0.1593 *0.2649 *0.1629
SAS-EVAL 0.1815 *0.1382 *0.2212 *0.1511 *0.2433 *0.1569 *0.2584 0.1605
SAS-CAT *0.1689 *0.1285 *0.2057 *0.1404 *0.2259 *0.1458 *0.2399 *0.1491
SAS-CAT3 0.1669 0.1271 *0.2034 0.1390 *0.2239 0.1444 *0.2380 0.1477
SAS-HIST *0.1812 *0.1376 *0.2204 *0.1503 *0.2424 *0.1561 *0.2576 *0.1597
SAS-FUT 0.0099 0.0071 0.0138 0.0083 0.0168 0.0091 0.0193 0.0097
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Table 7. Top-k recommendation performance comparison for buy interactions on different models on the RetailRocket dataset. NG is
short for NDCG. Boldface denotes the highest performance and underlines denote the runner-up. * denotes that the model outperforms
the self-supervised baseline with a significance p-value < 0.05.

MODEL HR@5 NG@5 HR@10 NG@10 HR@15 NG@15 HR@20 NG@20

GRU 0.1601 0.1248 0.1932 0.1355 0.2151 0.1413 0.2306 0.1456
GRU-SQN *0.1921 0.1519 *0.2304 0.1643 *0.2531 0.1703 *0.2698 0.1743
GRU-SAC 0.1973 *0.1546 *0.2338 *0.1664 *0.2575 *0.1727 *0.2734 *0.1764
GRU-EVAL *0.1962 *0.1545 *0.2333 *0.1664 *0.2555 *0.1723 *0.2718 *0.1762
GRU-CAT 0.1644 0.1282 *0.2004 *0.1400 *0.2225 0.1457 *0.2384 0.1495
GRU-CAT3 *0.1696 *0.1325 *0.2044 *0.1438 *0.2272 *0.1498 *0.2435 *0.1536
GRU-HIST *0.1980 *0.1549 *0.2352 *0.1670 *0.2588 *0.1732 *0.2747 *0.1770
GRU-FUT 0.0390 0.0312 0.0474 0.0339 0.0528 0.0353 0.0569 0.0375

NIN 0.2282 0.1785 0.2746 0.1935 0.3018 0.2007 0.3215 0.2053
NIN-SQN *0.3307 *0.2577 *0.3890 *0.2767 *0.4200 *0.2849 *0.4418 *0.2901
NIN-SAC *0.3303 *0.2594 *0.3880 *0.2781 *0.4201 *0.2867 *0.4422 *0.2919
NIN-EVAL *0.3308 *0.2582 *0.3885 *0.2770 *0.4199 *0.2853 *0.4421 *0.2905
NIN-CAT *0.2505 0.1959 *0.2998 0.2119 *0.3280 0.2194 *0.3483 0.2242
NIN-CAT3 *0.2543 *0.1973 *0.3046 *0.2136 *0.3346 *0.2215 *0.3553 *0.2264
NIN-HIST *0.3001 *0.2348 *0.3566 *0.2529 *0.3896 *0.2616 *0.4110 *0.2667
NIN-FUT 0.1980 0.1581 0.2301 0.1685 0.2490 0.1735 0.2623 0.1767

CASER 0.1682 0.1361 0.1947 0.1446 0.2105 0.1488 0.2217 0.1514
CASER-SQN *0.2020 *0.1601 *0.2367 *0.1713 *0.2568 *0.1766 *0.2715 *0.1801
CASER-SAC *0.1979 *0.1559 *0.2237 *0.1684 *0.2581 *0.1741 *0.2737 *0.1778
CASER-EVAL 0.2000 0.1610 *0.2321 0.1714 *0.2505 0.1762 *0.2638 0.1794
CASER-CAT 0.1765 0.1434 0.2032 0.1521 0.2193 0.1564 0.2307 0.1591
CASER-CAT3 0.1936 *0.1565 *0.2254 *0.1668 *0.2420 *0.1712 *0.2541 *0.1740
CASER-HIST *0.2399 *0.1893 *0.2857 *0.2041 *0.3112 *0.2108 *0.3296 *0.2152
CASER-FUT 0.0299 0.0222 0.0378 0.0247 0.0435 0.0262 0.0481 0.0273

SAS 0.2458 0.1872 0.2995 0.2046 0.3283 0.2123 0.3509 0.2176
SAS-SQN *0.3012 *0.2280 *0.3657 *0.2490 *0.3989 *0.2577 *0.4227 *0.2634
SAS-SAC *0.3143 *0.2379 *0.3810 *0.2596 *0.4153 *0.2687 *0.4382 *0.2741
SAS-EVAL 0.2963 *0.2242 *0.3619 *0.2454 *0.3962 *0.2545 *0.4195 *0.2600
SAS-CAT *0.2636 *0.1999 *0.3190 *0.2178 *0.3504 *0.2261 *0.3731 *0.2315
SAS-CAT3 0.2572 0.1948 *0.3130 0.2129 *0.3437 0.2211 *0.3651 0.2261
SAS-HIST *0.2960 *0.2231 0.3315 *0.2428 0.3630 *0.2519 0.3847 *0.2573
SAS-FUT 0.0207 0.0144 0.0285 0.0170 0.0349 0.0187 0.0400 0.0199
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Table 8. Top-k recommendation performance comparison for click interactions on different models on the RC15 dataset. NG is short
for NDCG. Boldface denotes the highest performance and underlines denote the runner-up. * denotes that the model outperforms the
self-supervised baseline with a significance p-value < 0.05.

MODEL HR@5 NG@5 HR@10 NG@10 HR@15 NG@15 HR@20 NG@20

GRU 0.2676 0.1840 0.3527 0.2116 0.3976 0.2235 0.4274 0.2306
GRU-SQN 0.2923 0.2030 0.3818 0.2320 0.4268 0.2439 0.4569 *0.2510
GRU-EVAL 0.2918 0.2065 0.3812 0.2319 0.4272 0.2441 0.4567 0.2509
GRU-CAT 0.2822 0.1953 0.3707 0.2240 0.4159 0.2360 0.4450 0.2429
GRU-HIST 0.2723 0.1882 0.3598 0.2166 0.4052 0.2285 0.4355 0.2358

NIN 0.2718 0.1883 0.3567 0.2158 0.4003 0.2274 0.4294 0.2343
NIN-SQN *0.2985 *0.2067 *0.3900 *0.2363 *0.4365 *0.2487 *0.4667 *0.2558
NIN-EVAL 0.2981 *0.2068 *0.3876 *0.2358 *0.4330 *0.2479 *0.4625 *0.2548
NIN-CAT 0.2868 *0.1992 *0.3740 *0.2274 0.4186 *0.2392 *0.4479 *0.2461
NIN-HIST *0.2953 *0.2048 *0.3856 0.2330 *0.4323 *0.2465 *0.4623 *0.2536

CASER 0.2734 0.1898 0.3580 0.2172 0.4021 0.2289 0.4315 0.2358
CASER-SQN *0.2767 *0.1916 *0.3629 *0.2196 *0.4082 *0.2316 *0.4387 *0.2388
CASER-EVAL *0.2761 *0.1915 *0.3622 0.2194 *0.4074 *0.2314 *0.4372 *0.2384
CASER-CAT *0.2771 *0.1924 *0.3628 *0.2202 *0.4080 *0.2321 *0.4375 *0.2391
CASER-HIST *0.2834 *0.1959 *0.3742 *0.2253 *0.4219 *0.2379 *0.4535 *0.2454

SAS 0.3239 0.2246 0.4201 0.2559 0.4668 0.2683 0.4962 0.2752
SAS-SQN *0.3304 0.2290 *0.4272 0.2605 *0.4751 *0.2732 *0.5052 *0.2803
SAS-EVAL 0.3272 0.2268 *0.4243 0.2583 *0.4714 0.2708 *0.5018 0.2780
SAS-CAT 0.3218 0.2225 0.4177 0.2537 0.4652 0.2663 0.4956 0.2734
SAS-HIST *0.3333 *0.2318 *0.4297 *0.2631 *0.4769 *0.2756 *0.5067 *0.2827

Table 9. Top-k recommendation performance comparison for buy interactions on different models on the RC15 dataset. NG is short
for NDCG. Boldface denotes the highest performance and underlines denote the runner-up. * denotes that the model outperforms the
self-supervised baseline with a significance p-value < 0.05.

MODEL HR@5 NG@5 HR@10 NG@10 HR@15 NG@15 HR@20 NG@20

GRU 0.3599 0.2511 0.4685 0.2864 0.5240 0.3010 0.5612 0.3098
GRU-SQN 0.3736 0.2626 0.4832 0.2983 0.5394 0.3132 0.5761 0.3218
GRU-EVAL 0.3704 0.2620 0.4819 0.2983 0.5403 0.3137 0.5776 0.3225
GRU-CAT 0.3579 0.2491 0.4653 0.2840 0.5190 0.2982 0.5551 0.3068
GRU-HIST *0.3841 *0.2714 *0.4972 *0.3080 *0.5527 *0.3228 *0.5901 *0.3316

NIN 0.3208 0.2243 0.4217 0.2571 0.4724 0.2707 0.5054 0.2783
NIN-SQN *0.3610 *0.2548 *0.4703 *0.2903 *0.5234 *0.3044 *0.5606 *0.3132
NIN-EVAL *0.3483 *0.2463 *0.4463 0.2782 *0.4994 *0.2927 0.5342 *0.3021
NIN-CAT *0.3381 *0.2384 *0.4368 *0.2699 *0.4912 *0.2842 *0.5253 0.2923
NIN-HIST *0.3558 *0.2520 *0.4609 *0.2868 *0.5152 *0.3004 *0.5521 *0.3092

CASER 0.4095 0.2898 0.5251 0.3272 0.5816 0.3422 0.6192 0.3511
CASER-SQN *0.4263 *0.3014 *0.5394 *0.3389 *0.5990 *0.3538 *0.6342 *0.3621
CASER-EVAL *0.4340 0.3255 *0.5512 *0.3477 *0.6071 *0.3632 *0.6448 *0.3714
CASER-CAT *0.4351 *0.3106 *0.5462 *0.3468 *0.6016 *0.3611 *0.6386 *0.3699
CASER-HIST *0.4528 *0.3197 *0.5724 *0.3586 *0.6317 *0.3743 *0.6686 *0.3830

SAS 0.3706 0.2596 0.4741 0.2933 0.5262 0.3070 0.5598 0.3150
SAS-SQN 0.3831 0.2689 0.4920 *0.3062 0.5462 *0.3185 0.5805 *0.3266
SAS-EVAL *0.4115 *0.2872 *0.5275 *0.3245 *0.5828 *0.3391 *0.6216 *0.3483
SAS-CAT *0.4049 *0.2804 *0.5192 *0.3178 *0.5764 *0.3330 *0.6159 *0.3423
SAS-HIST 0.3741 0.2634 0.4795 0.2979 0.5289 0.3108 0.5634 0.3189
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E. Feature Importance Analysis

Table 10. Initial list of features before filtering

Feature Description

Interaction Categorical feature denoting the interaction type (click, buy) at the target timestamp
Interaction 2 Categorical feature denoting the interaction type (click, buy, done) at timestamp t+ 1
Interaction 3 Categorical feature denoting the interaction type (click, buy, done) at timestamp t+ 2
Is done Binary feature denoting whether the sequence finishes at timestamp t
hist-length Number of past user interactions in the sequence.
fut-length Number of future user interactions in the sequence.
total-length Number of interactions in the complete sequence.
Q-Value (eval) The expected return following the sequence in the history log.
hist-buys Number of items the user bought in past interactions.
fut-buys Number of items the user will buy in future interactions.
Steps2Buy Number of steps until the next buy interaction in the sequence.

Table 11. Feature importance analysis for each SQN model on the RetailRocket dataset. β represents the feature coefficient on the linear
regression model, SHAP-LR is the SHAP score using a linear regression model, and SHAP-XG is the SHAP score using XGBoost.
Boldface denotes the highest importance score under each metric

GRU-SQN NextItNet-SQN

Feature β SHAP-LR SHAP-XG Feature β SHAP-LR SHAP-XG

hist-length 0.0711 0.1446 0.0998 hist-length 0.0339 0.0672 0.0916
fut-length 0.0342 0.0721 0.0445 fut-length 0.0327 0.0653 0.1085
Q-Value 0.0091 0.0043 0.0284 Q-Value 0.0292 0.0146 0.0291
hist-buys 0.0352 0.0458 0.0570 hist-buys 0.0139 0.0182 0.0817
fut-buys 0.0097 0.0114 0.0370 fut-buys 0.0246 0.0314 0.0598

Caser-SQN SASRec-SQN

Feature β SHAP-LR SHAP-XG Feature β SHAP-LR SHAP-XG

hist-length 7.8921 15.5814 18.4964 hist-length 0.0638 0.1297 0.0696
fut-length 1.8460 3.5634 5.8296 fut-length 0.0261 0.0546 0.0533
Q-Value 0.5914 0.2555 1.7878 Q-Value 0.0159 0.0072 0.0252
hist-buys 5.7520 7.2642 2.8757 hist-buys 0.0282 0.0371 0.0391
fut-buys 2.1184 2.6344 2.7714 fut-buys 0.0110 0.0141 0.0321
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F. RL-Based Loss

Table 12. Top-k recommendation performance comparison on the RetailRocket dataset between the baseline, self-supervised models, their
SQN counterpart and the model using only the RL-based loss for recommendations.

clicks

Model HR@5 NG@5 HR@10 NG@10 HR@15 NG@15 HR@20 NG@20

GRU 0.1205 0.0938 0.1472 0.1024 0.1633 0.1067 0.1751 0.1094
GRU-SQN 0.1416 0.1105 0.1705 0.1199 0.1874 0.1244 0.1999 0.1273
GRU-RL 0.0001 0.0001 0.0001 0.0001 0.0003 0.0001 0.0004 0.0001

NIN 0.1345 0.1059 0.1612 0.1145 0.1774 0.1188 0.1892 0.1216
NIN-SQN 0.1673 0.1310 0.1996 0.1414 0.2178 0.1463 0.2305 0.1493
NIN-RL 0.0014 0.0009 0.0020 0.0011 0.0026 0.0012 0.0033 0.0014

Caser 0.1400 0.1107 0.1640 0.1185 0.1781 0.1222 0.1877 0.1245
Caser-SQN 0.1560 0.1218 0.1849 0.1312 0.2018 0.1357 0.2136 0.1385
Caser-RL 0.0017 0.0014 0.0020 0.0015 0.0023 0.0015 0.0031 0.0017

SAS 0.1635 0.1249 0.1982 0.1361 0.2176 0.1413 0.2313 0.1445
SAS-SQN 0.1835 0.1397 0.2228 0.1524 0.2445 0.1582 0.2597 0.1618
SAS-RL 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0002 0.0001

buys

GRU 0.1205 0.0938 0.1472 0.1024 0.1633 0.1067 0.1751 0.1094
GRU-SQN 0.1416 0.1105 0.1705 0.1199 0.1874 0.1244 0.1999 0.1273
GRU-RL 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 0.0001

NIN 0.2282 0.1785 0.2746 0.1935 0.3018 0.2007 0.3215 0.2053
NIN-SQN 0.3307 0.2577 0.3890 0.2767 0.4200 0.2849 0.4418 0.2901
NIN-RL 0.0009 0.0005 0.0014 0.0006 0.0016 0.0007 0.0020 0.0008

Caser 0.1400 0.1107 0.1640 0.1185 0.1781 0.1222 0.1877 0.1245
Caser-SQN 0.1560 0.1218 0.1849 0.1312 0.2018 0.1357 0.2136 0.1385
Caser-RL 0.0025 0.0021 0.0027 0.0022 0.0033 0.0024 0.0042 0.0026

SAS 0.2458 0.1872 0.2995 0.2046 0.3283 0.2123 0.3509 0.2176
SAS-SQN 0.3012 0.2280 0.3657 0.2490 0.3989 0.2577 0.4227 0.2634
SAS-RL 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000
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