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Abstract
Feature visualization is one of the most popular techniques to interpret the internal
behavior of individual units of trained deep neural networks. Based on activation
maximization, they consist of finding synthetic or natural inputs that maximize
neuron activations. This paper introduces an optimization framework that aims to
deceive feature visualization through adversarial model manipulation. It consists of
finetuning a pre-trained model with a specifically introduced loss that aims to main-
tain model performance, while also significantly changing feature visualization.
We provide evidence of the success of this manipulation on several pre-trained
models for the ImageNet classification task.

1 Introduction
Deep Neural Networks (DNNs) can be trained to perform many economically valuable tasks [20,
16]. They are already pervasive in many sectors, and their prevalence is only expected to increase
over time. With increasing computational power and ever more available data, DNN architectures are
growing in size and executing increasingly intricate tasks. Given the increasing size and complexity
of DNNs, interpreting how they function, a well-established challenge, will likely grow more difficult
with new developments. However, for certain classes of critical applications, close inspection and
guarantees of functionality will be very important, especially in heavily regulated and high-stakes
domains. Here we ask: could a malicious actor conceal the true functionality of a DNN from an
interpretability method by perturbing the DNN?

Focusing on the continuously popular feature visualization method [39, 25, 26], we propose to create
an optimization procedure to manipulate the interpretation of individual neurons of a network while
keeping its final behavior the same. A successful modification of the interpretation while keeping
outputs constant is evidence for the manipulability of the interpretation approach. In this work, we
concentrate on convnet architectures for which interpretation by activation maximization or feature
visualization methods has been popular [39, 36]. We study the feature visualization of a neuron
or channel norm via activation maximization and attempt to modify it while maintaining network
outputs and accuracy. Then, we characterize the attacks quantitatively and show two different attacks
that can effectively manipulate and explicitly obfuscate interpretations.

The first proposed attack, push-down, aims to replace the initial top-k image interpretation with
another. The second attack, termed push-up, aims to replace the initial top-k images with images of a
chosen decoy class, allowing a more targeted manipulation.

To date, most works on interpretability manipulability have focused on techniques such as feature
attribution [33, 13] tailored for model predictions. Little attention has been paid to the manipulability
of neuron interpretability techniques, despite their increasing popularity due to their fine-grained
understanding of inner structures of DNNs [25, 26, 30]. Notably, it has also been applied to create
mechanistic interpretations [23, 4] which are argued to be robust as they directly link the function
of neurons. The primary contributions of our work are to propose two distinct attacks on feature
visualization approaches and define metrics to quantify and characterize their success. We then
demonstrate both our attacks can achieve a degree of success (see illustration in Figure 1). We discuss
related works and theoretical background in Appx. A
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Figure 1: Illustration of the attack model for our adversarial interpretability manipulation. Top-5 images that
best activate a given neuron, seemingly capturing a shared semantic concept that an interpreter may describe
and/or use an external tool to describe [14, 24]. We assume the model creator can manipulate the model before it
is released to the interpreter. In this case, they can create a model that might lead to interpreting the selected
neuron as only capturing the semantics of a single class.

2 Methods
Notations and Background. We denote by D = {(xi, yi)}Ni=1 a dataset for supervised learning,
where xi ∈ Rd is the input and yi ∈ {1, ...,K} is its class label. Let fθ denote a DNN, f (l)

θ (x)
defines activation maps of x on the l-th layer, which can be decomposed into J single activation
maps f (l,j)

θ (x). In particular, f (l,j)
θ (x) is a matrix if the l-th layer is a 2D-convolutional layer and

a scalar if it is a fully connected layer. We aim to understand the internal behavior of individual
units through feature visualization, generically defined by activation maximization [22, 36], i.e.,
x∗ ∈ argmaxx∈D f

(l,j)
θ (x). Where (l, j) is the pair of layer l and neuron j. When the layer l is

a convolutional layer, in the rest of the paper, we aggregate the activation map f
(l,j)
θ (x) using its

spatial squared ℓ2-norm ∥f (l,j)
θ (x)∥22, and subsequently refer to j as the channel index. Additionally,

we mainly focus on the case where D is a set of natural images, and we denote by top-k images the
set of images that have the k highest values of activations for a given pair (l, j). When X ⊂ Rd,
following [42], the result x∗ will be called synthetic feature visualization.

Attack Framework. We consider feature visualization with top-k images and propose an adver-
sarial model manipulation that fine-tunes a pre-trained model with a loss that maintains its initial
performance while changing the result of feature visualization. More formally, given a set of training
data D, a pre-trained model with parameters θinitial , and an additional set of images (e.g., a set of
top-k images) Dattack , our attack framework consists in the following optimization

min
θ

(αLA(D,Dattack ;θ) + (1− α)LM(D;θ,θinitial)), (1)

where θ are parameters of the updated model fθ, LM(.) is the loss that aims to maintain the initial
performance of the model fθinitial , and LA(.) is the attack loss. For the maintain objective, when
viewing final outputs fθ(.) as a conditional distribution, our maintain loss is the distillation loss
LM(D;θ,θinitial) = LCE(fθinitial (.)||fθ(.)) [15], where LCE is the cross entropy loss between the
original model outputs and the attacked model outputs on training data D. The attack loss LA(.)
varies depending on the attack, and is defined in the next sections.

2.1 Push-Down and Push-Up Attack
Given a set of top-k images from feature visualization, denoted by D(l,j)

attack , that best activate the layer l
and channel j of the initial model fθ , our first attack aims to push to zero the activations of examples
in D(l,j)

attack . This attack is called the push-down attack, and we propose the following objective for

all channels of a layer l simultaneously LA(D,Dattack ;θ) =
∑Jl

j=1

∑
x∗∈D(l,j)

attack
∥f (l,j)

θ (x∗)∥22 where

Jl is the number of channels of the layer l. Note that it is possible to attack a single channel or
channels from multiple layers. Here we focus on attacking all the channels in a layer. In the push-up
decoy attack, given a set of examples x∗

p ∈ Ddecoy , we aim to make these images appear in the top-k
result for all the channels of a layer l. For this purpose, we propose the following objective (where
[.]+ is max(., 0)): LA(D,Ddecoy ;θ) =

∑
j,p,i[∥f

(l,j)
θ (xi)∥22 −∥f (l,j)

θ (x∗
p)∥22]+. which aims to make

activations of examples in Ddecoy larger than all the activations of training examples.

Attack Characterization. We propose two approaches to assess the effectiveness of an adversarial
attack on the top-k images of feature visualization.
Kendall-τ . To assess the degree of change in the underlying behavior of a channel, we use Kendall’s
Rank Correlation Coefficient (Kendall-τ ) on a large subset Dτ of ImageNet. For each channel, we
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calculate the Kendall-τ coefficient using (i) the ranking Rinit of the initial image activations, and (ii)
the ranking Rfinal of final (post-attack) image activations using images in Dτ . A Kendall-τ coefficient
approaching 1 indicates that the ordering of image activations for each channel before and after the
attack remains the same, implying minimal change in channel behavior.
CLIP-δ. To quantify the semantic change in the feature visualization, we employ the external and
generic CLIP image encoder [29] to compute embeddings of top-k images. Given a channel j, we
denote by C̄ init,init

j,j the average of cosine similarities between CLIP embeddings of (i) initial top-k
images and (ii) themselves. Similarly, for the channel j, we denote by C̄ init,final

j,j the average of cosine
similarities between CLIP embeddings of (i) initial top-k images and (ii) final ones. Our proposed
CLIP-δ score for a channel j is defined as CLIP-δj = (C̄ init,init

j,j − C̄ init,final
j,j )/( 1

Jl−1

∑
p ̸=j C̄

init,init
j,p ),

which quantifies the semantic change in top images through their CLIP embeddings. A higher score
indicates more significant semantic change, as can be visually verified in Fig. 2 and Appx.C.3.
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Figure 2: Push-down all-channel attack on Conv5 of AlexNet. All initial top-5 images have been replaced.

The Whack-A-Mole Problem. A natural question in our framework is whether the behavior and
interpretation of one neuron can be moved to another neuron through the optimization process. For
example, the push-down attack loss may be strongly satisfied by channel permutation. We call this the
whack-a-mole problem. To ensure that this does not occur, we introduce two metrics: Kendall-τ -W
and CLIP-W . Typically, values ⪅ 1 imply an absence of the whack-a-mole problem. More details on
the metrics and a discussion of the results can be found in Appx. E.

3 Experiments and Results
For all of our attacks, we use the ImageNet [7] training set as D, and the PyTorch [28] pretrained
AlexNet [19] for analysis. In Appx. G and H, we provide an ablation study on EfficientNet [34],
ResNet-50 [12], and ViT-B/32 [9] with similar findings. Details regarding hyperparameters for all
the attacks can be found in Appx. B. For the push-down and up attack, we consider D(l,j)

attack ⊂ D as
the top-10 images that maximally activate the channel j of layer l. For the push-up attack, we also
consider Ddecoy as 100 randomly sampled images of a selected decoy class.

Warm-up: Fine-Tuning Baseline and Single-Channel Attack. To set a baseline reference for our
attack framework, we begin by fine-tuning AlexNet without attacking it (i.e. using the loss defined
in Eq. (2) with α = 0). This leads to virtually no change in the feature visualization, as can be
seen in Appx. C.1) and confirmed via our metrics in the first row of Table 1. Next, we apply the
push-down attack to one channel. Appx. Figure 6 shows the visualization of top images before and
after the attack. We can see that after optimization, the top-k activating images of the neuron have
been completely replaced by other images with different semantic concepts, suggesting a successful
attack with a negligible 0.04% accuracy loss. Note that naively setting a channel’s weights to 0
would perfectly satisfy this attack objective. Experimentally, doing this on channel 0 of Conv5
with no retraining leads to only 0.2% accuracy loss. We thus consider more challenging settings.

Layer/Attack CLIP-δ K-τ CLIP-W K-τ -W Acc.(%)
Conv5 Finetuning Baseline 0.001 0.969 0.999 0.058 56.5
Conv5 Push-Down 0.249 0.530 0.963 0.048 56.2
Conv5 Push-Up 0.150 0.654 0.962 0.011 56.3
Conv4 Push-Down 0.205 0.548 0.974 0.122 56.2
Conv3 Push-Down 0.127 0.573 0.963 0.130 56.1
Conv2 Push-Down 0.056 0.612 0.994 0.151 56.3
Conv1 Push-Down 0.043 0.682 0.996 0.302 56.1
EfficientNet L7 Push-Down 0.262 0.503 0.971 -0.145 77.5

Table 1: Average (over channels) metrics for an All-Channel Push-
Down and Push-Up Attack for AlexNet (rows 2-7) and EfficientNet
(row 8). Row 1 shows a simple finetuning baseline, corresponding to
α = 0 in Eq. 2. We see that the relative whack-a-mole metrics are low,
suggesting this problem is not present for our attacks. Lower layers are
more challenging to attack leading to lower CLIP-δ score and higher
Kendall-τ as confirmed by visual intuition.

All-Channel Attack. Unlike
the single-channel attack, the all-
channel attack does not have
a trivial solution. Naively set-
ting all channel weights to zero
would result in catastrophic per-
formance loss. We apply our at-
tack framework to Conv5 of the
AlexNet Model. Figure 2 shows
a selection of 3 channels and
the modifications achieved under
the all-channel push-down attack
and the aggregate metrics (aver-
ages for all channels in a layer)
are shown in Table 1. More vi-
sual examples are provided in the
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Appx. C.3. For the visualized channels (and those in Appx. C.3) we observe a near-complete
replacement of the top-5 images.

Further, the labels of the top images significantly change, with minimal residual overlap. This
suggests that the semantic concepts that would be determined by an interpreter would likely change.
This is opposed to the model memorizing the top images and replacing them with semantically
similar ones. We further confirm this in Appx. C.3 by showing validation set top-k images which
demonstrate the same semantic change seen on the training images (which were used for the actual
attack). Overall, this attack produces a generalized change in the feature visualization of neurons.

By analyzing the metrics reported in Fig. 2 and by comparing the channels before and after mod-
ification, we observe several noteworthy behaviors. The first two channels exhibit relatively high
Kendall-τ scores, from which we conclude that the ordering of image activations has not undergone
severe changes. This likely means that a subset of images, which includes the initial top-k has
moved in rank. Studying the CLIP-δ in both cases allows us to conclude that there is some semantic
overlap in the initial and final top-k, which can be confirmed by visual inspection of Fig. 2. This is
in contrast to the channel shown on the right, where the Kendall-τ score is close to zero, indicating
a full re-ordering of the activations. Correspondingly, the CLIP-δ from initial to final is also much
higher, which matches with a visual inspection.

Overall, we notice a substantial correspondence between our visual intuition and the CLIP-δ and
Kendall-τ scores. Channels with low scores Kendall-τ and high CLIP-δ tend to change substantially.
As illustrated in further examples in Figs 8 and 17, one observed difference in these two metrics is
that channels maintaining similar classes in the top images will tend to have a lower CLIP-δ.
Effect of Depth. We now consider how the attack is affected by depth, with results for different layers
of AlexNet shown in Table 1. We observe that modifications of the earliest layers are significantly
harder to achieve than for later layers as confirmed by the metrics and visual examination. The
observed CLIP-δ scores, as well as visual observation, shown in Appx. D, both indicate lower layers’
channels are more resilient to this sort of attack.

Push-Up Decoy Attack. We study a more targeted attack objective, namely one that actively pushes
a set of selected images into the top activating images for every channel. This is achieved with the
loss defined in section 2.1. The loss is non-zero when there exist images outside the set of selected
images that activate higher than the selected images we intend to push up.

This targeted attack is likely more challenging than the push-down attack, which does not specify
what images the top-k should be replaced with. Indeed, the push-up attack, if successful, can assign
the same interpretation to every channel in a layer, making any interpretation attempt based on top-k
images minimally informative.

Fig. 1 shows the result of the push-up attack using a collection of images with the ImageNet label
“Goldfish” as the decoy set. Further, in Fig. 3, we show additional channels, where the top-5 contain
a few or consist entirely of Goldfish images. The metrics in Table 1 also demonstrate substantial
change and a low likelihood of whack-a-mole behavior. Examining the figure closely, we observe that
not only Goldfish, but also images sharing traits with Goldfish images are also boosted, suggesting a
degree of generality in the newly imposed selectivity, further explored in Appx. F.
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Figure 3: Examples of channels in all-channel push-up attack. The decoy images were successfully put in the
top images. The Kendall-τ remains relatively high (> 0.5) suggesting much of the channel behavior is preserved
while the top activating images completely obfuscate the behavior.

4 Conclusions, Limitations, and Broader Impact
We demonstrated the adversarial model manipulability of feature visualization with top-k images,
proposing two attacks that pose varying threats. We provide experimental evidence that supports
the success of our attacks, with little to no evidence of a whack-a-mole issue. Our metrics to
systematically detect the presence of whack-a-mole may be imperfect as validating them requires
inspecting all channels. Future work may consider the investigation of synthetic feature maps and
how they may be attacked, as well as further enhance the metrics used.
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Appendix of the paper entitled “Adversarial Attacks
on the Interpretation of Neuron Activation

Maximization”

A Related Work
A growing body of literature has investigated the interpretability of Convolutional Neural Networks
(CNNs) and their lack of robustness under different manipulations of interpretability methods.
Interpretability methods. Previous work aiming to provide interpretability of DNNs can be grouped
into two broad categories. Firstly, some works develop interpretable-by-design methods that provide
interpretations without relying on external tools. These methods usually couple traditional layers with
various types of interpretable components. Examples range from concept explanations [5, 18, 1, 38],
feature attributions [35, 27]to part of object disentanglement [40, 32]. Secondly, there are methods
usually called post-hoc that aim to explain and understand either specific components (e.g., weights,
neurons, layers) or outputs of a trained DNN. To interpret the output of models for a particular
data instance (local interpretability), while feature attribution methods [21, 31] such as saliency
maps assign a weight to each input feature corresponding to its importance on the model’s output,
counterfactual examples aim to give the minimal changes required to change the model’s output [11].
There are post-hoc approaches that aim to interpret the internal logic of particular DNNs through their
components and representations. For example, some methods focus on layer representations through
concept vectors [17, 41], on sub-network interpretability through circuits [2, 3], and individual
neurons via e.g., feature visualization. Our work focuses on feature visualization, which is one of the
most popular techniques to understand the learned features of individual neurons [42, 25].

Interpretability manipulation. There is a recent trend to analyze the reliability of interpretable
techniques through the lens of stability. Stability aims to study to what extent the interpretability
technique is statistically robust to reasonable input perturbations and model perturbations [13, 37].
Most works that study input and model manipulability focus on feature attributions. For example,
[8] design adversarial input perturbations to change feature attributions in a targeted way, and [13]
shows that such manipulation can be performed through adversarial model manipulation, realized
by fine-tuning a pre-trained model to change feature attributions while keeping the same accuracy
of the original model. Despite sharing similarities with this work thanks to the use of adversarial
model manipulation, instead of studying the manipulability of feature attribution methods, we focus
on neuron interpretability, which brings different challenges such as the whack-a-mole problem
explained in Sec. 2.1.

B Hyperparameters and Training Details

This section presents the details of the hyperparamters and training settings used to run our attacks.

B.1 Push-Up and Push-Down Attacks

We train for 2 epochs over the ImageNet-1k training set with a batch size of 256. We use the Adam
optimizer with learning rate 1e-5.

Regarding α, we employ a dynamic updating rule inspired by Algorithm 1: Dynamical balancing
of Distillation and CKA map loss in appendix A of [6] in order to have better control over loss in
accuracy. We initialize α as 0.1 (except for on the push-down attack for conv-2 where using α = 0.01
had more stable results). If the accuracy loss is greater than 0.5% we halve the current α. If it is less
than 0.1% we double α. With this dynamic update, we aim to minimize the loss in accuracy while
still ensuring the top images shifts.

B.2 Optimization Curves

We show in Figure 4 the evolution of attack and maintain losses across two epochs. It can be observed
that the attack loss of late layers (conv 4, conv 5) decreases very quickly, and almost monotonically,
showing the easiness to attack late layers. In contrast, early layers do not have the same behavior. We
can also observe from the training curves that the maintain loss is almost close to its initial value after
2 epochs. This corroborates the observed accuracy preservation as shown in Table 1 of the paper.
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Figure 4: Sample training curves for the maintain and attack objectives. Late layers (conv5, conv4)
are easier to attack compared to early ones (conv1, conv2 and conv3). The maintain loss is very close
to its initial value after two epochs.

Channel 2 of Conv 5: Kendall- : 0.960, CLIP- : -0.001

mosque cocktail shaker stupa teapot mosque
Initial top-K

mosque cocktail shaker stupa teapot mosque
Final top-K

Channel 170 of Conv 5: Kendall- : 0.965, CLIP- : 0.000

peacock peacock peacock peacock bell pepper
Initial top-K

peacock peacock peacock peacock tree frog
Final top-K

Channel 9 of Conv 5: Kendall- : 0.974, CLIP- : -0.001

Yorkshire terrier file Norfolk terrier Norwich terrier chiffonier
Initial top-K

Yorkshire terrier file Norfolk terrier Norwich terrier Norfolk terrier
Final top-K

Figure 5: Finetuning baseline result on Conv5 of AlexNet. All initial images are almost the same after finetuning.
Kendall-τ and CLIP-δ are respectively close to 1 and 0, suggesting almost zero changes in channel behavior and
semantic changes.

C Additional Results for Push-down Attack on a Single Channel and on all
Channels

Before showing additional results for the push-down attacks on a single channel and on all channels
simultaneously, we present below the finetnuing baselines.

C.1 Finetuning Baseline

One can observe that the finetuning baseline fails to change top-k images, in particular, top-4 images
are exactly the same in the visualized channels. This is also materialized empirically in the kendall-τ
coefficients approaching 1, indicating that the ordering of the images has not significantly shifted.
The CLIP-δ scores also indicate that the semantic change in the top-k images is minimal. Overall,
the finetuning results in an AlexNet that is extremely similar to PyTorch’s default with respect to
performance and Interpretation via Feature Visualization.

C.2 Push-Down Attack on Single Channel

Figure 7 shows the results of initial top-k images and final ones after running the push-down attack
on every single channel. Except for channels 6 and 4 with relatively low CLIP-δ scores, it can be
observed that all other channels have semantically different final top-k images compared to the initial
ones. This can be also seen by higher values of CLIP-δ scores.
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Initial top-K

Final top-K 

Figure 6: Top images for a channel before and after a single-channel Push-Down attack.
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Channel 0 of Conv 5: Kendall- : -0.030, CLIP- : 0.144

ladybug pomegranate
black-footed

ferret cucumber pill bottle

Initial top-K

hen combination lock hen ladybug
black-footed

ferret

Final top-K

Channel 1 of Conv 5: Kendall- : 0.261, CLIP- : 0.196
shoji window screen window screen wallet window screen

Initial top-K

crossword puzzle chainlink fencehand-held computercrossword puzzle pillow
Final top-K

Channel 2 of Conv 5: Kendall- : 0.217, CLIP- : 0.277
mosque cocktail shaker stupa teapot mosque

Initial top-K

mortarboard academic gown mortarboard beer bottle milk can
Final top-K

Channel 3 of Conv 5: Kendall- : 0.191, CLIP- : 0.283

malamute

German
short-haired

pointer papillon revolver greenhouse

Initial top-K

dogsled snowmobile paddle white stork
electric

locomotive

Final top-K

Channel 4 of Conv 5: Kendall- : 0.221, CLIP- : 0.148
sunscreen soccer ball shield pinwheel jean

Initial top-K

indigo bunting police van maypole macaw shopping basket
Final top-K

Channel 5 of Conv 5: Kendall- : 0.358, CLIP- : 0.237
monarch monarch pool table scabbard monarch

Initial top-K

vault face powder purse whistle tile roof
Final top-K

Channel 6 of Conv 5: Kendall- : 0.084, CLIP- : 0.198
croquet ball agaric dough golf ball hen-of-the-woods

Initial top-K

golf ball American egret golf ball golf ball golf ball
Final top-K

Channel 7 of Conv 5: Kendall- : -0.008, CLIP- : 0.482
croquet ball buckeye buckeye buckeye buckeye

Initial top-K

lipstick Blenheim spaniel whistle hippopotamus ground beetle
Final top-K

Channel 8 of Conv 5: Kendall- : 0.186, CLIP- : 0.278
strawberry bell pepper cucumber bell pepper bell pepper

Initial top-K

pineapple tiger beetle mantis tiger beetle cauliflower
Final top-K

Channel 9 of Conv 5: Kendall- : -0.073, CLIP- : 0.467
Yorkshire terrier file Norfolk terrier Norwich terrier chiffonier

Initial top-K

barrel space heater rain barrel nail hamster
Final top-K

Figure 7: Push-down attack on a single-channel of Conv5 of AlexNet. All initial images have been replaced by
other images.
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C.3 Push-down All-Channel Attack

This section presents additional results for the push-down attack on all channels at once. The results
are obtained by attacking all the channels of the conv5 layer of AlexNet. We first show visual
examples of results obtained from the training set of ImageNet and show its generalization to the
validation set.

Visual Examples. Figure 8 shows results obtained on 10 randomly chosen channels. It can be
observed that all initial top-5 images were completely removed from the set of top-activating images.
Additionally, channels with high CLIP-δ scores such as channels 102 and 132, present semantically
different images (initial vs final) with no overlap classes. In contrast, we observe that channels
with low CLIP-δ scores such as channels 254 and 227 usually share similar classes in top-activating
images. Finally, from Kendall-τ scores, we observe that channels that have high Kendall-τ (e.g.,
channel 108 and 185) do not often have high values of CLIP-δ scores, indicating that the weak change
in channel behavior assessed by the Kendall-τ is often related to low semantic change.
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Channel 102 of Conv 5: Kendall- : 0.291, CLIP- : 0.432

Bernese
mountain

dog Cardigan Brittany spaniel Appenzeller Pembroke

Initial top-K

combination lock flatworm American egret American egret drake
Final top-K

Channel 108 of Conv 5: Kendall- : 0.610, CLIP- : 0.161
maypole pier umbrella Shetland sheepdog boxer

Initial top-K

rubber eraser theater curtain German shepherd plate rack screw
Final top-K

Channel 132 of Conv 5: Kendall- : 0.516, CLIP- : 0.416
window screen window screen honeycomb window screen window screen

Initial top-K

chain mail bolo tie jackfruit jackfruit strainer
Final top-K

Channel 183 of Conv 5: Kendall- : 0.522, CLIP- : 0.263
reel car wheel wall clock analog clock manhole cover

Initial top-K

limpkin table lamp limpkin thimble indigo bunting
Final top-K

Channel 185 of Conv 5: Kendall- : 0.752, CLIP- : 0.266
honeycomb chainlink fence crossword puzzle barrel hognose snake

Initial top-K

boxer dingo cleaver hare

African
hunting

dog

Final top-K

Channel 186 of Conv 5: Kendall- : 0.501, CLIP- : 0.247
harmonica king snake king snake academic gown king snake

Initial top-K

sturgeon hartebeest great white shark bighorn sturgeon
Final top-K

Channel 216 of Conv 5: Kendall- : 0.596, CLIP- : 0.253
strainer honeycomb long-horned beetle spider web grille

Initial top-K

ski mask echidna echidna ski mask ski mask
Final top-K

Channel 227 of Conv 5: Kendall- : 0.546, CLIP- : 0.072
lighter remote control groenendael odometer file

Initial top-K

groenendael Labrador retriever Newfoundland groenendael
Staffordshire

bullterrier

Final top-K

Channel 232 of Conv 5: Kendall- : 0.568, CLIP- : 0.245
dome mosque mosque dome dome

Initial top-K

dome mosque beer bottle chime chocolate sauce
Final top-K

Channel 254 of Conv 5: Kendall- : 0.211, CLIP- : 0.128
Siberian husky Pembroke Pembroke collie kit fox

Initial top-K

Eskimo dog kit fox malamute lynx lynx
Final top-K

Figure 8: Push-down all-channel attack of Conv5 of AlexNet. All initial top-5 images were completely removed
from the new set of top-5 images, demonstrating the success of the attack. Channel indexes were chosen
randomly.
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Generalization on Validation Set. We evaluate the generalization of our attack on the validation
set of ImageNet. This gives more insights to the change of feature visualization. Figures 9 and 10
show the initial top-k images and final ones from training and validation sets for 10 randomly chosen
channels.

It can be observed that on every channel, from the validation set, at least one image from the initial
top-5 images is no longer present in final top-5 images (for the majority of these channels, the first
top-activating is no longer the top one). We also observe a complete replacement of top-5 images on
the validation set when Kenall-τ scores and CLIP-δ are respectively low and high simultaneously
(e.g., channels 37 and 50 of Figure 9). Moreover, the general trends in training and validation are
similar suggesting the attack is not just memorizing specific images but leading to a generalized
change.

Channel 37 of Conv 5 "train": Kendall- : 0.208, CLIP- : 0.340

palace hand-held computer window screen police van thimble
Initial Training top-K

gibbon guenon gibbon gibbon guenon
Final Training top-K

Channel 37 of Conv 5 "val": Kendall- : 0.307, CLIP- : 0.084

vending machine palace trolleybus barbershop streetcar
Initial Validation top-K

titi gibbon guenon orangutan proboscis monkey
Final Validation top-K

Channel 48 of Conv 5 "train": Kendall- : 0.712, CLIP- : 0.012

mailbag Gila monster lawn mower pencil box CD player
Initial Training top-K

studio couch crib mailbag rule cradle
Final Training top-K

Channel 48 of Conv 5 "val": Kendall- : 0.691, CLIP- : 0.000

hair slide abacus cellular telephone pencil box abacus
Initial Validation top-K

notebook tape player chest pencil box projector
Final Validation top-K

Channel 50 of Conv 5 "train": Kendall- : 0.435, CLIP- : 0.580

ptarmigan coucal black grouse
red-backed
sandpiper ptarmigan

Initial Training top-K

stupa maillot ptarmigan totem pole bell cote
Final Training top-K

Channel 50 of Conv 5 "val": Kendall- : 0.560, CLIP- : 0.077

robin black grouse coucal house finch black grouse
Initial Validation top-K

stupa stupa pedestal
flat-coated
retriever toy terrier

Final Validation top-K

Channel 71 of Conv 5 "train": Kendall- : 0.480, CLIP- : 0.223

strainer strainer manhole cover handkerchief manhole cover
Initial Training top-K

ocarina ocarina porcupine ocarina ocarina
Final Training top-K

Channel 71 of Conv 5 "val": Kendall- : 0.388, CLIP- : 0.009

ocarina ocarina wallet manhole cover flute
Initial Validation top-K

ocarina ocarina football helmet ladybug ladybug
Final Validation top-K

Figure 9: Push-down all-channel attack of Conv5 of AlexNet. For each channel, the first two rows are top-k
images derived from the training set while the last two are derived from the validation set.
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Channel 128 of Conv 5 "train": Kendall- : 0.406, CLIP- : 0.083

Scottish deerhound Scottish deerhound
Staffordshire

bullterrier Scottish deerhound Mexican hairless

Initial Training top-K

Bouvier
des

Flandres Lakeland terrier standard schnauzer

Bouvier
des

Flandres Border terrier

Final Training top-K

Channel 128 of Conv 5 "val": Kendall- : 0.486, CLIP- : 0.032

standard schnauzer
miniature
schnauzer dingo

miniature
schnauzer bluetick

Initial Validation top-K

standard schnauzer toy poodle standard schnauzer Scotch terrier Kerry blue terrier
Final Validation top-K

Channel 144 of Conv 5 "train": Kendall- : 0.605, CLIP- : 0.296

chain pretzel brain coral chain pretzel
Initial Training top-K

common newt agama eft night snake eft
Final Training top-K

Channel 144 of Conv 5 "val": Kendall- : 0.669, CLIP- : -0.005

chain green mamba pretzel thunder snake green snake
Initial Validation top-K

chain agama thunder snake green mamba pretzel
Final Validation top-K

Channel 158 of Conv 5 "train": Kendall- : 0.801, CLIP- : 0.219

barrel tile roof chainlink fence honeycomb night snake
Initial Training top-K

window screen thunder snake Persian cat Persian cat Lhasa
Final Training top-K

Channel 158 of Conv 5 "val": Kendall- : 0.793, CLIP- : 0.022

honeycomb honeycomb honeycomb honeycomb dishrag
Initial Validation top-K

digital watch honeycomb necklace fly tick
Final Validation top-K

Channel 169 of Conv 5 "train": Kendall- : 0.514, CLIP- : 0.181

miniature poodle porcupine miniature poodle hyena hay
Initial Training top-K

great grey owl

Bouvier
des

Flandres great grey owl great grey owl great grey owl

Final Training top-K

Channel 169 of Conv 5 "val": Kendall- : 0.522, CLIP- : 0.012

great grey owl great grey owl great grey owl great grey owl

Irish
water

spaniel

Initial Validation top-K

great grey owl great grey owl great grey owl laptop great grey owl
Final Validation top-K

Figure 10: Push-down all-channel attack of Conv5 of AlexNet. For each channel, the first two rows are top-k
images derived from the training set while the last two are derived from the validation set.
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D Effect of Depth

We vary different layers of AlexNet and evaluate how the attack is affected by depth. Figure 11 shows
results obtained on randomly chosen channels from conv1, conv2, conv3, and conv4 of AlexNet. It
can be observed that the earliest layers conv1 and conv2 are harder to attack. This is materialized by
high values of Kendal-τ and low values of CLIP-δ scores. When increasing the depth (conv3 and
conv4) we observe a complete replacement in top-5 images in channels 147 (conv3), 121 (conv4) and
124 (conv4), although some of these channels have low values of CLIP-δ scores.
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Channel 6 of Conv 1: Kendall- : 0.849, CLIP- : 0.000
brass accordion file window screen electric fan

Initial top-K

accordion brass file window screen electric fan
Final top-K

(a) Layer: Conv1.

Channel 11 of Conv 1: Kendall- : 0.735, CLIP- : 0.007
brass space heater accordion window screen electric fan

Initial top-K

brass space heater electric fan window screen file
Final top-K

(b) Layer: Conv1.

Channel 1 of Conv 2: Kendall- : 0.580, CLIP- : 0.127
solar dish window screen window screen grille solar dish

Initial top-K

solar dish solar dish window screen crossword puzzle pick
Final top-K

(c) Layer: Conv2.

Channel 106 of Conv 2: Kendall- : 0.505, CLIP- : 0.059
mailbag shoji black grouse leafhopper sombrero

Initial top-K

mailbag leafhopper monarch analog clock croquet ball
Final top-K

(d) Layer: Conv2.

Channel 147 of Conv 3: Kendall- : 0.696, CLIP- : 0.230
window screen window screen cleaver zebra electric fan

Initial top-K

rugby ball binder anemone fish parachute wall clock
Final top-K

(e) Layer: Conv3.

Channel 214 of Conv 3: Kendall- : 0.622, CLIP- : 0.112
chain mail chain tiger spatula fig

Initial top-K

tiger fig megalith chain tripod
Final top-K

(f) Layer: Conv3.

Channel 121 of Conv 4: Kendall- : 0.672, CLIP- : 0.056

flatworm holster
typewriter
keyboard limpkin electric ray

Initial top-K

affenpinscher Bedlington terrier Weimaraner Scottish deerhound polecat
Final top-K

(g) Layer: Conv4.

Channel 124 of Conv 4: Kendall- : 0.509, CLIP- : 0.177

space bar
typewriter
keyboard slot dial telephone slot

Initial top-K

menu ear bottlecap diaper menu
Final top-K

(h) Layer: Conv4.

Figure 11: Push-down all-channel attack of on several layers of AlexNet. Channels indexes were selected
randomly. While there are some changes in top-activating images of early layers (conv1 and conv2), they are not
significant as materialized by low values of CLIP-δ and high values of Kendall-τ . For conv3 and conv4, we see
a complete replacement of top-5 images on channels 147 (conv3), 121 (conv4), and 124 (conv4).
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E Whack-a-mole

This section provides further investigations into the existence of the whack-a-mole problem for the
push-down attack on AlexNet.

E.1 Further Details for Whack-a-Mole Metrics

We introduce two metrics based on Kendall-τ and CLIP similarity, denoted by Kendall-τ -Wj and
CLIP-Wj , where “W” refers to whack-a-mole and j refers to the channel index for which the
whack-a-mole effect is assessed, which we naturally compare to all other channels in a layer.

Kendall-τ -Wj . Given a channel index j, and using the subset of ImageNet Dτ , we obtain the
maximum Kendall-τ score between rankings Rinit,j and Rfinal,i where i ̸= j. To obtain Kendall-τ -Wj ,
we divide this maximum value by the initial maximum Kendall-τ score i.e. the score over Rinit,j and
Rinit,i where i ̸= j. Effectively, we find the most similar other post-attack channel, then normalize
against thee most similar pre-attack channel.

CLIP-Wj . Using the top-k images in the initial model and channel j we obtain CLIP-Wj =

maxi̸=j C̄
initial,final
j,i /maxi̸=j C̄

initial,initial
j,i comparing to all top-k images in other channels of the final

model, normalized against that same similarity metric in the initial CLIP scores.

E.2 Whack-a-mole Results

We further analyze the existence of the whack-a-mole problem by observing Fig. 13 which shows for
a given channel of AlexNet Conv5, the top-k images in the modified model which have the closest
Kendall-τ -W and CLIP-W scores (not including the channel itself).

We observe that the first channel (channel 2 on Fig. 13) has little to no visually discernible similarity
to nearby channels in the modified model as well confirmed by the Kendall-τ -W. Indeed a majority
of the channels look like this (see Appx.E). On the other hand, we do observe similar images for the
initial channel 193 and its nearest final one (163), which was picked as the most illustrative examples
("hard" one) where the red curve of Fig. 14 is above the blue one. However, for this "hard" example,
more insight is given by investigating the CLIP-Wj where the denominator notably measures the clip
similarity to other channels in the original model. A score of ⪅ 1 suggests that the original model
already had a high similarity to another channel. Indeed in the Appx.E, for the second example, we
confirm there is a very similar channel in the original model. To gain further insight into CLIP-Wj ,
in Fig.14, we further visualize the numerator and denominator of CLIP-Wj for all the channels (red
line) and sort them by the initial similarity to other channels (denominator). We observe that the red
line is usually below the blue line, and if it exceeds, it is not by a large relative amount. This suggests
that channels with high whack-a-mole metrics are actually ones that already had similarities to other
channels in the original model. Overall we conclude the presence of the whack-a-mole problem is
minimal in our current attack.

Zoom onto Channel 193 for Whack-a-mole. We begin by showing the full overview of the
behavior of channel 193, selected as one "hard" case where similar initial images are found in final
(post-attack) top-k images of another channel. As discussed in Section C.2, although similar initial
images for channel 193 were found in channel 163 after the attack, it appears from the second row of
Figure 15 that channel 193 was initially highly correlated with the channel 90 according to CLIP-δ
score. Moreover, the fact that the CLIP-δ-Wj is 0.991 < 1 shows that the nearest post-attack channel
(channel 163) is not more correlated than the nearest pre-attack channel (channel 90) according to
CLIP scores. This, therefore, limits the existence of the whack-a-mole problem on this channel.

Additional Investigation of Potential Existence of Whack-a-mole. These randomly selected
examples support the general findings reported in figure-7. While certain channels may have similar
top images to specific post-attack channels, it is generally the case that even the most similar channels
are distinct. In figure-6 in the main body of text, the two bottom rows denote the top 5 images
of the most similar channels to the pre-attack channel measured by the Kendall-τ and CLIP-Wj

respectively.

17



Whake-a-mole for channel 2 of conv_5

mosque
cocktail
shaker stupa

Intial top-K for channel 2

projectile king penguin pineapple
Final top-k, nearest channel: 47, Kendall- -Wj:-0.082

car wheel bottlecap manhole cover
Final top-k, nearest channel: 187, CLIP-Wj:0.971

Whake-a-mole for channel 193 of conv_5

Bernese
mountain

dog Appenzeller

Bernese
mountain

dog

Intial top-K for channel 193

Chihuahua Appenzeller

Bernese
mountain

dog

Final top-k, nearest channel: 163, Kendall- -Wj:0.132

Chihuahua Appenzeller

Bernese
mountain

dog

Final top-k, nearest channel: 163, CLIP-Wj:0.991

Figure 13: We show the initial top images for two channels and beneath are the corresponding final top images
of closest channels w.r.t Kendall-τ -Wj and CLIP-Wj .
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Figure 14: We compare initial CLIP similarity to other channels (blue) versus similarity after attack (red). Red
and blue largely track each other for all channels.
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Whack-a-mole for channel 193 of Conv 5

Bernese
mountain

dog Appenzeller

Bernese
mountain

dog Appenzeller EntleBucher

Initial top-K for channel 193

Rottweiler Appenzeller bluetick
Border
collie

Tibetan
mastiff

Final top-K for channel 193

honeycomb apiary honeycomb apiary honeycomb

Nearest pre-Attack channel by KT: 163, Kendall- -Wj:0.303

Saint Bernard Saint Bernard Border collie Appenzeller Saint Bernard

Nearest pre-Attack channel by clip: 90, CLIP-1.00

Chihuahua

Bernese
mountain

dog Appenzeller Rottweiler Appenzeller

Nearest Post-Attack channel by KT: 163, final top-K, Kendall- -Wj:0.185

Chihuahua

Bernese
mountain

dog Appenzeller Rottweiler Appenzeller

Nearest Post-Attack channel by clip: 163, final top-K, CLIP-0.991

Figure 15: Illustrations for the existence of whack-a-mole on the channel 193, found as one of the high
whack-a-mole cases. The first two rows show the initial and final top-k images for the targeted channel. The third
and fourth rows show the initial nearest channels w.r.t. Kendall-τ -Wj and CLIP-δ-Wj , respectively. The fifth
and sixth rows show the nearest post-attack channel according to Kendall-τ -Wj and CLIP-δ-Wj respectively.
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Whack-a-mole for channel 0 of Conv 5

ladybug pomegranate
black-footed

ferret cucumber pill bottle

Initial top-K for channel 0

ice cream ladybug hen strawberry baseball

Final top-K for channel 0

honeycomb matchstick apiary honeycomb honeycomb

Nearest pre-Attack channel by KT: 15, Kendall- -Wj:0.110

strawberry bell pepper cucumber bell pepper bell pepper

Nearest pre-Attack channel by clip: 8, CLIP-1.00

Blenheim
spaniel grocery store thimble orange

Blenheim
spaniel

Nearest Post-Attack channel by KT: 15, final top-K, Kendall- -Wj:-0.044

Granny Smith house finch bell pepper Granny Smith Granny Smith

Nearest Post-Attack channel by clip: 111, final top-K, CLIP-0.952

(a) Targeted channel: 0.

Whack-a-mole for channel 121 of Conv 5

grocery
store daisy daisy Granny Smith orange

Initial top-K for channel 121

daisy daisy

yellow
lady's
slipper

European
fire

salamander

European
fire

salamander

Final top-K for channel 121

honeycomb matchstick apiary honeycomb honeycomb

Nearest pre-Attack channel by KT: 15, Kendall- -Wj:0.106

croquet ball lemon orange Granny Smith lipstick

Nearest pre-Attack channel by clip: 13, CLIP-1.00

Blenheim
spaniel grocery store thimble orange

Blenheim
spaniel

Nearest Post-Attack channel by KT: 15, final top-K, Kendall- -Wj:0.008

Loafer bell pepper fig pill bottle Granny Smith

Nearest Post-Attack channel by clip: 94, final top-K, CLIP-0.941

(b) Targeted channel: 121.

Figure 16: Illustrations for the existence of whack-a-mole on two randomly chosen channels. The first two
rows show the initial and final top-k images for the targeted channel. The third and fourth rows show the initial
nearest channels w.r.t. Kendall-τ -Wj and CLIP-Wj , respectively. The fifth and sixth rows show the nearest
post-attack channel according to Kendall-τ -Wj and CLIP-Wj , respectively.
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F Additional Illustrations for the Push-up Attack

This section provides additional visual illustrations of the push-up all-channel attack on the layer
conv5 of AlexNet.

Visual Examples. We first provide additional visual illustrations in Figure 17 of the attack on 10
randomly chosen channels. As a reminder, this push-up attack aims to make images of the Goldfish
class appear in the top-k images of every channel on the targeted layer. From Figure 17, a first
observation is the fact that out of these 10 randomly chosen channels, only two channels (channel
15 and channel 23) do not show an image with the Goldfish class. On the rest of the channels, an
image with Goldfish was successfully inserted in the final top images. Furthermore, in several cases
(channels 110, 125, 145, 180, 183, and 50) is the majority class of final top-5 images, demonstrating
the success of this attack. It is also important to note the complete replacement of images with the
Goldfish class in some channels (e.g., channel 125).
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Channel 11 of Conv 5: Kendall- : 0.695, CLIP- : 0.159
brass menu menu brass menu

Initial top-K

goldfish menu goldfish menu brass
Final top-K

Channel 110 of Conv 5: Kendall- : 0.683, CLIP- : 0.296
crane magpie bald eagle vulture cardoon

Initial top-K

goldfish crane goldfish goldfish cardoon
Final top-K

Channel 125 of Conv 5: Kendall- : 0.689, CLIP- : 0.307
shower cap jigsaw puzzle bath towel shower curtain pencil box

Initial top-K

goldfish goldfish goldfish goldfish goldfish
Final top-K

Channel 145 of Conv 5: Kendall- : 0.600, CLIP- : 0.122

chain mail anemone fish sea anemone coral reef
typewriter
keyboard

Initial top-K

goldfish goldfish goldfish goldfish chain mail
Final top-K

Channel 15 of Conv 5: Kendall- : 0.553, CLIP- : 0.048
honeycomb matchstick apiary honeycomb honeycomb

Initial top-K

honeycomb matchstick honeycomb rubber eraser honeycomb
Final top-K

Channel 180 of Conv 5: Kendall- : 0.607, CLIP- : 0.125
Airedale sea urchin bloodhound golden retriever African grey

Initial top-K

Airedale goldfish goldfish lorikeet goldfish
Final top-K

Channel 183 of Conv 5: Kendall- : 0.658, CLIP- : 0.197
reel car wheel wall clock analog clock manhole cover

Initial top-K

goldfish goldfish reel car wheel goldfish
Final top-K

Channel 23 of Conv 5: Kendall- : 0.600, CLIP- : 0.126
dome dome balloon dome dome

Initial top-K

dome balloon dome dome car wheel
Final top-K

Channel 232 of Conv 5: Kendall- : 0.665, CLIP- : 0.096
dome mosque mosque dome dome

Initial top-K

goldfish dome mosque dome beer bottle
Final top-K

Channel 50 of Conv 5: Kendall- : 0.709, CLIP- : 0.151

ptarmigan coucal black grouse
red-backed
sandpiper ptarmigan

Initial top-K

ptarmigan goldfish goldfish goldfish black grouse
Final top-K

Figure 17: Push-up all-channel attack of Conv5 of AlexNet. Channel indexes were taken randomly.
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Generalization for the Push-Up attack. After demonstrating the success of achieving target
manipulability of top-k feature visualization through the push-up attack on training images, it is also
important to evaluate whether this success generalizes to unseen data. Figure 18 shows not only top-k
images from the training but also from the validation set of ImageNet. We can observe that on all
the 10 randomly chosen channels not only at least one image of the Goldfish class is present in the
final top-5 images of the training but also at least one image of the Goldfish class is in the final top-5
images from the validation set. Moreover, we also observe a similar number of images of the Goldfish
class present in top-5 images from both training and validation sets. This indicates the ability of the
push-up attack to generalize on the same distribution from where training examples were drawn.

Channel 111 of Conv 5 "train": Kendall- : 0.724, CLIP- : 0.304
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Final Training top-K

Channel 111 of Conv 5 "val": Kendall- : 0.764, CLIP- : 0.087
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center desktop computer iPod television

Initial Validation top-K

goldfish goldfish laptop
entertainment

center goldfish

Final Validation top-K

Channel 132 of Conv 5 "train": Kendall- : 0.630, CLIP- : 0.271

window screen window screen honeycomb window screen window screen
Initial Training top-K

goldfish honeycomb window screen grille window screen
Final Training top-K

Channel 132 of Conv 5 "val": Kendall- : 0.660, CLIP- : 0.034

window screen honeycomb shopping basket planetarium puffer
Initial Validation top-K

window screen shopping basket goldfish honeycomb planetarium
Final Validation top-K

Channel 155 of Conv 5 "train": Kendall- : 0.717, CLIP- : 0.140
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Channel 155 of Conv 5 "val": Kendall- : 0.755, CLIP- : 0.083
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Initial Validation top-K
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Final Validation top-K

Channel 183 of Conv 5 "train": Kendall- : 0.658, CLIP- : 0.197
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Initial Training top-K
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Final Training top-K

Channel 183 of Conv 5 "val": Kendall- : 0.757, CLIP- : 0.062

manhole cover stopwatch stopwatch toilet seat saltshaker
Initial Validation top-K

goldfish goldfish goldfish manhole cover stopwatch
Final Validation top-K

Figure 18: Push-up all-channel attack of Conv5 of AlexNet. For each channel, the first two rows are top-k
images derived from the training set while the last two are derived from the validation set.
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Channel 20 of Conv 5 "train": Kendall- : 0.709, CLIP- : 0.087

lipstick lipstick syringe Angora hair spray
Initial Training top-K

lipstick goldfish syringe goldfish lipstick
Final Training top-K

Channel 20 of Conv 5 "val": Kendall- : 0.781, CLIP- : -0.008
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Channel 207 of Conv 5 "train": Kendall- : 0.758, CLIP- : 0.111

European gallinule American coot indigo bunting pillow European gallinule
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goldfish goldfish goldfish goldfish goldfish
Final Training top-K

Channel 207 of Conv 5 "val": Kendall- : 0.805, CLIP- : 0.030
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Final Validation top-K

Channel 215 of Conv 5 "train": Kendall- : 0.624, CLIP- : 0.410
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goldfish goldfish goldfish wool goldfish
Final Training top-K

Channel 215 of Conv 5 "val": Kendall- : 0.722, CLIP- : 0.114
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Final Validation top-K

Channel 244 of Conv 5 "train": Kendall- : 0.802, CLIP- : 0.383
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goldfish goldfish goldfish goldfish goldfish
Final Training top-K

Channel 244 of Conv 5 "val": Kendall- : 0.820, CLIP- : 0.110
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Figure 19: Push-up all-channel attack of Conv5 of AlexNet. For each channel, the first two rows are top-k
images derived from the training set while the last two are derived from the validation set.
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G Ablation Study on EfficientNet

It is important to show that the proposed attack methodology is not limited to AlexNet. To show that
the attack can work on newer, more sophisticated neural nets, we have also run an ablation study
on EfficientNet [34]. We select the third convolutional block in the Feature 7 layer and perform
a push-down attack similar way to AlexNet. The visual results are shown in Appendix B and the
metrics for the layer are given in Table 1 in the main text. We observe similar effects to AlexNet; the
top images are changed in terms of the exact images and the semantic concepts. We also observe
relatively strong CLIP-δ and Kendall-τ changes. Having confirmed the generality of our approach in
this way, we leave a survey study over all relevant architectures to future work, computation power
permitting.

Channel 8 of features 7 conv block 3: Kendall- : 0.406, CLIP- : 0.103

tripod tripod tricycle iPod miniskirt
Initial top-K
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Final top-K

Channel 51 of features 7 conv block 3: Kendall- : 0.358, CLIP- : 0.244

snail snail chiton snail custard apple
Initial top-K

rubber eraser cucumber otter hair slide printer
Final top-K

Channel 99 of features 7 conv block 3: Kendall- : 0.241, CLIP- : 0.288
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African
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Initial top-K

bib gasmask shopping basket Christmas stocking purse
Final top-K

Channel 102 of features 7 conv block 3: Kendall- : 0.514, CLIP- : 0.020

prison barrow pencil sharpener container ship wreck
Initial top-K

analog clock tricycle magnetic compass plastic bag loudspeaker
Final top-K

Channel 147 of features 7 conv block 3: Kendall- : 0.431, CLIP- : 0.491

Yorkshire terrier Yorkshire terrier toy terrier silky terrier vizsla
Initial top-K

lynx packet jean dumbbell pomegranate
Final top-K

Channel 167 of features 7 conv block 3: Kendall- : 0.395, CLIP- : 0.492

fountain pen wine bottle wine bottle oil filter beer bottle
Initial top-K

football helmet amphibian steel drum stole dock
Final top-K

Channel 176 of features 7 conv block 3: Kendall- : 0.512, CLIP- : 0.072

red wine carpenter's kit ice lolly carpenter's kit letter opener
Initial top-K

beer glass lotion beer glass cup valley
Final top-K

Channel 193 of features 7 conv block 3: Kendall- : 0.561, CLIP- : 0.264

tennis ball Shih-Tzu Shih-Tzu vacuum toy terrier
Initial top-K

cowboy hat chainlink fence hair slide squirrel monkey pitcher
Final top-K

Figure 20: Push-down all-channel attack on Feature 7 block 3 of EfficientNet. All initial top-5 images were
completely removed from the new set of top-5 images, demonstrating the success of the attack. Channel indexes
were randomly chosen.
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H Non-ConvNet Ablations

We perform additional ablations on ViT and ResNet-50 to demonstrate the generalizability of our
attack framework beyond convolutional neural nets.

H.1 ResNet-50

We have performed additional experiments on Resnet-50 for push-up and push-down attacks, for all
the channels of the layer layer_4_2_conv_2. We observe no significant loss in accuracy as shown
in Table 2. Figures 21 and 22 show the result for a randomly chosen channel. We observed that the
results follow similar trends to those for AlexNet, with higher Kendall-τ values on the push up attack,
higher CLIP-δ on the pushdown, and low performance loss overall.

H.2 ViT-B/32

We attack the self-attention encoder layer in layers 0, 6, and 11 of ViT-B/32 to present a cross section
of the attack behaviour. Visualizations of the results can be seen in figures 21 and 22. Overall the
results follow those of AlexNet with later layers having a larger semantic change as shown by the
CLIP-δ scores. Interestingly, we note overall increased CLIP-δ scores, in particular for the first layer,
whose analogue in AlexNet saw much smaller changes in its feature visualization.

Channel 505 of Layer_4_2:conv_2: Kendall- : 0.835, CLIP- : 0.126

military uniform radio telescope assault rifle radio telescope radio telescope
Initial top-K

goldfish goldfish goldfish goldfish goldfish
Final top-K

(a) Model: ResNet50

Channel 8 of Layer 11: Kendall- : 0.618, CLIP- : 0.557

computer keyboard space bar computer keyboardcomputer keyboard
typewriter
keyboard

Initial top-K

goldfish goldfish goldfish goldfish goldfish
Final top-K

(b) Model: ViT-B/32.

Figure 21: All-channel push-up attacks on ResNet50 and ViT. Goldfish images were successfully put
in top images.

Layer/Attack CLIP-δ Kendall-τ CLIP-W K.-τ -W Accuracy ∆ Acc.
ViT layer 11 Push Up 0.295 0.399 0.813 0.138 75.7% -0.22%
ViT layer 11 Push Down 0.378 -0.168 0.833 -0.082 75.6% -0.27%
ViT layer 6 Push Down 0.244 -0.152 0.885 0.122 75.2% -0.73%
ViT layer 0 Push Down 0.219 -0.139 0.913 0.133 75.4% -0.55%
ResNet-50 layer4.2.conv2 Push Down 0.267 0.319 0.946 0.124 80.2% -0.01%
ResNet-50 layer4.2.conv2 Push Up 0.138 0.784 0.965 0.135 80.2% -0.01%

Table 2: ViT-B/32 and Resnet-50 with Push-up and Push Down Attacks. Each row reports the result
obtained after attacking all units of a particular layer. Note that on ViT, the attacks are quite successful,
more than those performed on AlexNet, based on increased clip-δ scores and low accuracy loss. We
further note that compared to early AlexNet layers, earlier layers of ViT are less resilient to attacks.
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Channel 505 of Layer_4_2:conv_2: Kendall- : 0.328, CLIP- : 0.213

military uniform radio telescope assault rifle radio telescope radio telescope
Initial top-K

hot pot hot pot Crock Pot wooden spoon hot pot
Final top-K

(a) Network: ResNet50.

Channel 8 of Layer 11: Kendall- : -0.078, CLIP- : 0.666

computer keyboard space bar computer keyboardcomputer keyboard
typewriter
keyboard

Initial top-K

harp cello pajama pajama pajama
Final top-K

(b) Network: ViT-B/32.

Figure 22: All-channel push-down attacks on Resnet-50 and ViT. Initial top images were successfully
replaced.
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Attack Layer CLIP-δ Kendall-τ CLIP-W K.-τ -W Accuracy ∆Acc

All-Layer Push Down

Conv 1 0.025 0.779 0.981 0.295

56.1% -0.45%
Conv 2 0.097 0.447 0.993 0.157
Conv 3 0.154 0.512 0.969 0.134
Conv 4 0.180 0.558 0.953 0.135
Conv 5 0.194 0.584 0.969 0.060

All-Layer Push Up

Conv 1 0.021 0.726 0.981 0.303

56.1% -0.46%
Conv 2 0.049 0.420 0.992 0.137
Conv 3 0.070 0.307 0.987 0.108
Conv 4 0.170 0.272 0.971 0.097
Conv 5 0.248 0.541 0.938 0.068

Table 3: Alexnet All-Layer Attacks. Each block of rows (for the push-down and push-up attack)
shows the results obtained after attacking all the channels and layers of conv layers in AlexNet. We
see that both attacks follow the previously seen trend of later layers being easier to attack. Based on
a comparison of these metrics against those found in Table 1, we see that the push-down attack is
slightly less effective overall, while the push-up attack is actually more effective.

I All-Layer Attack

We perform additional experiments to attack all the channels of every layer simultaneously. Table 3
reports the computed metrics. The Push Down All-Channel Attack has results for each of its layers
that correspond well to what we saw in each layers’ individual attacks in the main paper (Table 1).
Overall the CLIP-δ scores are slightly lower, which is not unexpected as this attack demands a shift
in the neurons of all layers leaving less room for compensation than a single layer attack. The Push
Up Attack however, actually shows better results in this paradigm. We hypothesize that this is due to
synergistic effects in pushing up the same set of images across all layers.
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J Synthetic Feature Visualization

J.1 Synthetic Feature Visualization

We study the impact of the push-down and push-up attacks on the synthetic activation-maximizing
images of the channels under attack. Synthetic activation-maximizing images are the result of an
optimization problem over input pixels solved by gradient ascent on the channel activation under a
norm constraint in pixel space. To avoid adversarial noise samples [10] it is necessary to jitter the
input image or parameterize it as a smooth function[25].

In Fig. 23, we study the synthetic optimal images for several channels before and after the attack. By
visual inspection, while the top-k images change drastically, the synthetic optimal image is largely
unaffected. The most common observed change (see also Appx. J) for Conv5 is a low-frequency
modulation of the pattern. We hypothesize that this is because the top-k attack most significantly
modifies the weights of the attacked layer, which is a later layer preceded by several downsampling
operations.

The lack of change in the synthetic optimal image suggests that the synthetic feature visualization
and the top-k analysis are, counter-intuitively, highly de-correlatable. Notably, the left-hand synthetic
image indicates selectivity for cats even when most of the top-k images are goldfish. This is a
worrying prospect for the top-k interpretability method. Further, this does not permit the conclusion
that the synthetic optimal image is more robust to attack since we have not explicitly run an attack
against it. Rather, this suggests the space of DNN weights and the possible functions they span is
quite large, and can possibly accommodate more functionality and attacks than one might expect.

Initial top-K

Push-Down
Final top-K 

Push-Up
Final top-K 

Synthetic Synthetic

Figure 23: Synthetic feature visualization after attack. We observe the visualization is largely decorrelated to
top-k natural images.

J.2 Additional Illustrations for Synthetic Feature Visualization

This section provides illustrations of the decorrelation between synthetic and natural (through top-k
images) feature visualization.

Figure 24 shows the natural and synthetic feature visualization before and after the attack on 6
randomly chosen channels of conv5 of AlexNet. We observe a lack of change in the synthetic optimal
image, even when top images have been completely replaced by images of the Goldfish class, e.g.,
in channel 54. We, therefore, reemphasize that attacking the natural feature visualization does not
transpose to attacking the synthetic feature visualization. This indicates a decorrelation between the
synthetic feature visualization and the top-k images.
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top-k vs synthetic for channel 1 of Conv 5

shoji window screen window screen wallet Synthetic
Initial feature visualization

crossword puzzle crossword puzzle chainlink fence tobacco shop Synthetic
Final feature visualization for push-down

wallet shoji goldfish window screen Synthetic
Final feature visualization for push-up

top-k vs synthetic for channel 158 of Conv 5
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Final feature visualization for push-down

goldfish goldfish goldfish goldfish Synthetic
Final feature visualization for push-up

top-k vs synthetic for channel 179 of Conv 5
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Final feature visualization for push-down

goldfish goldfish goldfish goldfish Synthetic
Final feature visualization for push-up

top-k vs synthetic for channel 188 of Conv 5

banjo acoustic guitar red wine pirate Synthetic
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Final feature visualization for push-down

goldfish goldfish banjo red wine Synthetic
Final feature visualization for push-up

top-k vs synthetic for channel 215 of Conv 5

wool sea urchin stole poncho Synthetic
Initial feature visualization

meerkat great grey owl great grey owl starfish Synthetic
Final feature visualization for push-down

goldfish goldfish goldfish wool Synthetic
Final feature visualization for push-up

top-k vs synthetic for channel 251 of Conv 5

coral fungus coral fungus anemone fish pretzel Synthetic
Initial feature visualization

Dandie Dinmont Dandie Dinmont toy poodle miniature poodle Synthetic
Final feature visualization for push-down

goldfish coral fungus goldfish coral fungus Synthetic
Final feature visualization for push-up

Figure 24: Synthetic Feature Visualization attack after push-down and push-up attacks on Conv5 of AlexNet.
Channels indexes were taken randomly. We observe a decorrelation between natural top-activating images and
synthetic optimal images.
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