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Abstract
Since the rise of large language models (LLMs),001
the domain adaptation has been one of the002
hot topics in various domains. Many medi-003
cal LLMs trained with English medical dataset004
have made public recently. However, Japanese005
LLMs in medical domain still lack its research006
Here we utilize multiple 70B-parameter LLMs007
for the first time and show that instruction tun-008
ing using Japanese medical question-answering009
dataset significantly improves the ability of010
Japanese LLMs to solve Japanese medical li-011
cense exams, surpassing 50% in accuracy. In012
particular, the Japanese-centric models exhibit013
a more significant leap in improvement through014
instruction tuning compared to their English-015
centric counterparts. This underscores the im-016
portance of continual pretraining and the adjust-017
ment of the tokenizer in our local language. We018
also examine two slightly different prompt for-019
mats, resulting in non-negligible performance020
improvement.021

1 Introduction022

In recent years, there has been a growing num-023

ber of large language models (LLMs) specializing024

in a specific domain such as finance (Xie et al.,025

2023) (Yong et al., 2023) and medicine. In med-026

ical domain, while non-public models, such as027

Med-PaLM2 (Singhal et al., 2023a) and GPT-4028

with prompting techniques (Nori et al., 2023), have029

achieved the state of the art in medical question-030

answering tasks, open-source efforts have been031

also made to achieve comparable results in some032

tasks. For instance, PMC-LLaMA (Wu et al.,033

2023), having 7B or 13B parameters, is developed034

by pretraining LLaMA (Touvron et al., 2023a) on035

4.8M PubmedCentral papers and Medical Books.036

MEDITRON-70B (Chen et al., 2023) is a continual037

pretrained model derived from Llama 2 (Touvron038

et al., 2023b) using approximately 50B tokens of039

medical articles, which currently holds the position040

of the largest medical LLM among public models.041

Figure 1: Overview of our candidate LLMs

On the other hand, the capabilities and limita- 042

tions of medical LLMs in Japanese contexts remain 043

largely unexplored. The performance of GPT-4 044

in the Japanese National Medical License Exam 045

(NMLE) has been investigated, and while it already 046

exceeds the passing standard, there have been re- 047

ports of selecting forbidden choices in some ques- 048

tions (Kasai et al., 2023). However, except for 049

JMedLoRA (Sukeda et al., 2023), which is based 050

on Llama 2 and represents the initial attempt at 051

instruction tuning in Japanese medical articles fo- 052

cusing on two different domain adaptations – one 053

in medicine and the other in language – no other re- 054

search has been conducted. Our work is the first to 055

apply multiple 70B-parameter LLMs in Japanese 056

medical domain adaptation, resulting in the devel- 057

opment of the currently strongest Japanese LLM 058

particularly excelling in the domain of medical 059

question-answering. 060

Our main findings are two-folds. Firstly, while 061

instruction tuning in a Japanese question-answer 062

dataset consistently contributes to performance im- 063

provement in every setting, a Japanese continual- 064

pretrained LLM yields better results than an En- 065

glish one for answering medical questions, surpass- 066

ing 50% in accuracy. These results are consistent 067
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#ID Base model Instruction tuning
1-1 Llama 2 none
1-2 Llama 2 3000 steps
2-1 Xwin none
2-2 Xwin 3000 steps
3-1 Swallow none
3-2 Swallow 3000 steps
4 GPT-4 none

Table 1: Model settings in our experiments

with the idea that the superior performance when068

based on continual-pretraining in Japanese is at-069

tributed to the substantial inclusion of Japanese070

data in the pretraining process, and the tokenizer071

being optimized for Japanese processing.072

Secondly, while preparing two similar prompts,073

there was a reasonably significant gap in accuracy,074

reaching up 8% in some cases. This result indicates075

that even the differences between prompts that are076

nearly synonymous are not negligible.077

2 Medical Instruction Tuning in Japanese078

Our research is devoted to examining the perfor-079

mance of several 70B-parameter LLMs, which are080

the largest among the available models, in medical081

question-answering. We perform instruction tuning082

using medical texts on different base models, as083

summarized in Table 1 and Figure 1. GPT-41 is084

added as #4 for reference.085

2.1 Base Model086

All of our experiments are built on Llama 2 and its087

variants. Llama 2 (Touvron et al., 2023b) with 65B088

parameters has been the baseline model in open-089

source community since its release by Meta Inc. In090

addition, we employ Xwin-LM-70B-V0.1 (Xwin-091

LM Team, 2023), which is hereafter referred to092

as Xwin in this paper. Although the details of093

this model is not made public, Xwin is reported094

to outperform GPT-4 (OpenAI, 2023) on AlpacaE-095

val benchmark (Li et al., 2023). We also use the096

currently most powerful Japanese LLM Swallow-097

70b-instruct-hf 2, which is hereafter referred to as098

Swallow in this paper. Both of Xwin and Swallow099

have undergone continual-pretraining from Llama100

2 in English and Japanese resources, repspectively.101

1https://openai.com/gpt-4
2https://huggingface.co/tokyotech-llm/

Swallow-70b-instruct-hf

2.2 QLoRA 102

QLoRA (Dettmers et al., 2023) is one of the pa- 103

rameter efficient fine-tuning method of LLMs, in- 104

corporating quantization into low rank adaptation 105

(LoRA) (Hu et al., 2021). Hyperparameters we 106

used are listed in Appendix A. 107

2.3 Instruction Dataset 108

To conduct instruction tuning on each model, 109

we prepare USMLE-JP, 12723 records from 110

the United States Medical Licensing Examina- 111

tion(USMLE) (Jin et al., 2021), where all the 112

questions, choices, and answers are translated in 113

Japanese by Japanese medical doctors by hand. 114

During the medical instruction tuning phase, En- 115

glish Alpaca prompt (Taori et al., 2023) is em- 116

ployed. 117

3 Evaluation 118

3.1 Evaluation Dataset 119

The questions from NMLE in 2018 is used 120

for evaluation, which is made public online as 121

IgakuQA (Kasai et al., 2023). The number of ques- 122

tions is 277 and the question format is a 5-choice 123

structure (see Appendix B). 124

Throughout the evaluation, 1-shot Chain-of- 125

Thought (CoT) prompting (Wei et al., 2022) is ap- 126

plied for inference in two slightly different ways 127

: one follows Med-PaLM2 (Singhal et al., 2023b) 128

and another follows Alpaca (Taori et al., 2023). 129

These two prompts only differ in the order of sen- 130

tences (see Appendix C). 131

3.2 Metrics 132

Sukeda et al. (Sukeda et al., 2023) uses three dif- 133

ferent metrics: Exact match, Gestalt score, and 134

Accuracy. These metrics calculate the discrepancy 135

between the correct choice and the model’s out- 136

put. While Exact match does not allow any slight 137

misspecification in any tokens, Gestalt score and 138

Accuracy are based on Gestalt distance calculated 139

by pattern matching algorithm and robust to such 140

issues. However, this approach has two weakness: 141

(i) it is prone to the slight misspecification of each 142

token in the output (ii) it does not evaluate with 143

regard to the order for questions that involve select- 144

ing multiple choices. 145

Here we have made a slight update in the defini- 146

tion of Accuracy and adopted it as our evaluation 147

metric. Algorithm 1 shows the procedure of cal- 148
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Algorithm 1 Evaluation of the correctness for each
question-answer pair

Require: C : choices, C∗ : correct choices, R :
model’s output, G(·, ·) : Gestalt distance
if |C∗| = 1 then

is_correct = 1 if C∗ = argmaxC∈CG(C,R)
else 0

else {|C∗| = 2}
R1, R2 ← split(R)
C1 ← argmaxC∈CG(C,R1)
C2 ← argmaxC∈CG(C,R2)
is_correct = 1 if C∗ = {C1, C2} else 0

end if
return is_correct

culating is_correct for each question. Accuracy is149

defined as the average of is_correct.150

4 Results151

Table 2 shows the performance of each model in152

answering IgakuQA 2018 by single run. Incorrect153

responses include Invalid responses, where the154

number in instruction and the number of choices155

in model’s output are not equal, and Wrong re-156

sponses, where the model simply choose wrong157

answer. Top-3 Accuracy is emphasized in bold. In158

the Improvement column, the original Xwin and159

Swallow are compared with Llama 2 to quantify160

the contribution of continual pretraining. Each of161

the other models is compared with its base model162

to quantify the contribution of QLoRA.163

4.1 Base Model Selection : Swallow164

outperforms Xwin165

First we argue that the base model more suited to166

the target task is more preferable. When compar-167

ing the best performances of each model, Swallow168

performed better than Xwin, followed by Llama169

2, around 9% difference each. This result exhibits170

the effect of suited continual pretraining. Two in-171

distinguishable and mutually related factors are172

the base model improvement and the tokenizer im-173

provement. Evidently, Swallow passes continual174

pretraining with more than 90B tokens (Fujii et al.,175

2024), thus its ability in Japanese should be bet-176

ter than English-centric Xwin. In addition, since177

Swallow is intended to solve Japanese tasks, its to-178

kenizer is optimized mainly for Japanese. Figure 2179

illustrates that while the enhancement by QLoRA180

Figure 2: Improvement by QLoRA instruction tuning
in Accuracy. Gray shows the performance of Llama 2
as baseline. Light blue shows the difference between
Xwin (original) and Llama 2 (original). Pink shows
the difference between Swallow (original) and Llama 2
(original), which is negative in #3-2(A). Blue shows the
contribution of QLoRA.

on Swallow is substantial, the original Swallow is 181

not quite competitive — even worse than Llama 182

2 when prompt (A) is used. This trend is in con- 183

trast with the results for Xwin, suggesting that the 184

improvement and adjustment in its tokenizer con- 185

tributes more to the performance increase than the 186

improvement in the base model. 187

Moreover, it is observed that Llama 2 and Xwin 188

output more invalid responses after instruction tun- 189

ing compared to Swallow. Most of these invalid 190

responses included only one choice as the answer, 191

implying a deterioration in the ability to capture 192

numbers mentioned in instructions properly when 193

English-centric models are finetuned in Japanese. 194

4.2 Format of CoT Prompts 195

Should the CoT prompt follow Med-PaLM2 (Sing- 196

hal et al., 2023b) or Alpaca (Taori et al., 2023)? 197

These two prompts have almost the same meaning 198

but differ slightly in how they instruct the model. 199

Table 2 demonstrates that this difference resulted 200

in a non-negligible accuracy gap as large as 8.7% 201

at most. 202

In our experiments #1-1, #2-1, and #3-2, prompt 203

(A) outperforms prompt (B) in accuracy, while the 204

opposite is true in the rest of the cases. Which 205
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#Model ID Prompt Correct Invalid Wrong Accuracy Improvement
1-1 (A) 53 9 215 0.191 -
1-1 (B) 45 7 225 0.162 -
1-2 (A) 89 14 174 0.321 + 0.130
1-2 (B) 94 28 155 0.339 + 0.177
2-1 (A) 102 2 173 0.368 (#1-1) + 0.177
2-1 (B) 87 8 182 0.314 (#1-1) + 0.152
2-2 (A) 103 27 147 0.372 + 0.004
2-2 (B) 117 25 135 0.422 + 0.108
3-1 (A) 50 14 213 0.180 (#1-1) − 0.010
3-1 (B) 74 5 198 0.267 (#1-1) + 0.105
3-2 (A) 144 10 123 0.519 + 0.339
3-2 (B) 134 11 132 0.484 + 0.217
4∗ (A) 31 0 6 0.838 -
∗ The number of evaluation dataset is reduced due to computational cost.

Table 2: Performance results. Xwin and Swallow are compared with Llama 2 to quantify the contribution of
continual pretraining. Each of the models after QLoRA is compared with its base model.

Correct
(Swallow)

Wrong
(Swallow)

Correct(GPT-4) 12 19
Wrong(GPT-4) 1 5

Table 3: Swallow(#3-2, (A)) vs GPT(#4, (A)) in a subset
of IgakuQA 2018.

prompt is preferable depends on the situation, re-206

gardless of the type of base model or the presence207

of tuning. This observation, indicating that accu-208

racy varies due to slight differences in prompts,209

highlights the difficulty of establishing a unified210

approach to constructing domain-specific LLMs.211

4.3 Comparison with GPT-4212

In our experimental settings, neither Xwin nor213

Swallow achieved the level of accuracy exhibited214

by the original GPT-4, with an approximate 30%215

gap, even after instruction tuning specific to the216

medical domain. As in Table 3, there was only217

one question where our best model, namely #3-2,218

provided a correct answer while GPT-4 made an219

incorrect response. Remarkably, GPT-4 did not220

generate invalid response at all.221

4.4 Limitations and Future Works222

Using multiple-choice questions in the evaluation223

of LLM has been controversial (Pezeshkpour and224

Hruschka, 2023) (Zheng et al., 2023). In Ap-225

pendix D.1, we demonstrate the fact that the score226

significantly drops after the shuffle of choices. Fur-227

ther exploration is required to determine the most228

meaningful evaluation metrics. 229

The size of the training and evaluation datasets 230

is limited. Our work suggests significant benefits 231

of training in the local language, emphasizing the 232

importance of curating the available Japanese med- 233

ical corpus to construct a practical and useful LLM 234

in a local environment such as clinics. 235

Also, the validity of training with USMLE and 236

evaluating on NMLE should be further argued sicne 237

both of them are medical license exams but in dif- 238

ferent countries and languages. 239

Furthermore, it has been noted that prompt en- 240

gineering significantly impacts the performance of 241

LLMs, although this was beyond the scope of our 242

research. Utilizing multiple-shot inference, self- 243

consistency (Wang et al., 2022), ensemble refine- 244

ment (Singhal et al., 2023b), and Medprompt (Nori 245

et al., 2023) may lead to a significant improvement 246

in their performance also in Japanese context. 247

5 Conclusion 248

Our work has demonstrated the possibility and limi- 249

tations of the best accessible model that we can con- 250

struct locally in each clinical institution, focusing 251

on medical domain adaptation and Japanese adap- 252

tation simultaneously. Compared to its English- 253

centric counterparts, the use of the currently 254

strongest Japanese LLM as base model has am- 255

plified the effect of instruction tuning. When using 256

Med-PaLM2-like CoT prompting, the performance 257

in Japanese medical question-answering has sub- 258

stantially increased, surpassing 50% in accuracy. 259
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Ethical Consideration260

We intend not to use our models for any clinical261

purposes, but only for research purposes.262
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A QLoRA Hyperparameters375

QLoRA (Dettmers et al., 2023) is one of the pa-376

rameter efficient fine-tuning method of LLMs, in-377

corporating quantization into low rank adaptation378

(LoRA) (Hu et al., 2021). Hyperparameters we379

used throughout our experiments are listed in Ta-380

ble 4.381

Table 4: Hyperparameters for QLoRA

learning rate 2e-4
input length 512

target max length 512
batch size 16
max steps 3000

r of QLoRA 64
α of QLoRA 16

dropout rate of QLoRA 0.1
target parameter all linear layers

B Details of IgakuQA dataset382

IgakuQA (Kasai et al., 2023) includes Japanese383

Medical License Exams from 2018 to 2022. The384

2018 exam includes a total of 400 five-choices ques-385

tions. In this study, as LLMs can only handle text,386

we decided to use a subset consisting of 284 text-387

only questions. However, there were 7 questions388

that required selecting three or more options, and389

due to their complexity, we excluded them. As a390

result, we utilized the remaining 277 questions for391

experiments.392

C Prompt Formats393

Two slightly different prompt formats in 1-shot394

manner are applied in evaluation to observe its395

influence on performances. Prompt (A) follows396

Med-PaLM2 (Singhal et al., 2023b), the best medi-397

cal LLM. Prompt (B) follows Alpaca (Taori et al.,398

2023), aligning with the instruction tuning step.399

For both prompt formats, questions are input in400

{instruction} and choices are input in {input}.401

CoT prompt (A) (originally in Japanese)� �
### Instruction:
The following are multiple choice questions
about medical knowledge. Solve them in a
step-by-step fashion, starting by summarizing
the available information. Output a single op-
tion from the five options as the final answer.
### Input:
{instruction}
{input}
### Response:� � 402

CoT prompt (B) (originally in Japanese)� �
The following are multiple choice questions
about medical knowledge. Solve them in a
step-by-step fashion, starting by summarizing
the available information. Output a single op-
tion from the five options as the final answer.
### Instruction:
{instruction}
### Input:
{input}
### Response:� � 403

D Ablation Studies 404

D.1 Changing evaluation dataset into 405

USMLE-JP 406

This part is devoted to confirm that LLMs can mem- 407

orize the answers contained in instruction dataset. 408

Here, we use USMLE-JP instead of IgakuQA in 409

2018 for evaluation, letting the data leakage occur 410

on purpose. 411

As a result, Xwin with 3000 steps of QLoRA (#1- 412

3) achieved Accuracy = 0.827 using CoT prompt 413

(A), and Accuracy = 0.822 using CoT prompt (B), 414

respectively. We conclude that instruction tuning 415

based on QLoRA is capable of memorising training 416

dataset sufficiently, although not completely. 417

D.2 Changing instruction dataset into medical 418

journal articles 419

We performed instruction tuning on Llama 2, Xwin, 420

and Swallow with Japanese medical journal articles 421

used by (Sukeda et al., 2023). Except the dataset 422

used, the experimental setup followed Section 2 423

and Section 3. 424

The performances of each model are summa- 425

rized in Table 5. Through these experiments, we 426

observe an overall decrease in accuracy compared 427

to the instruction tuning using USMLE-JP which 428
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Base Model Prompt Correct Invalid Accuracy
Llama 2 (A) 65 9 0.234
Llama 2 (B) 75 12 0.270

Xwin (A) 91 7 0.328
Xwin (B) 80 20 0.288

Swallow (A) 104 2 0.375
Swallow (B) 96 9 0.346

Table 5: Performance of models finetuned with medical
journal article dataset

is presented in Table 2, suggesting that USMLE-429

JP includes knowledge that is common between430

Japanese medical license exams and the English431

one to a certain extent.432

E Other Information433

E.1 Model License434

All models utilized in our experiments are cov-435

ered by the LLAMA 2 COMMUNITY LICENSE436

AGREEMENT3, which are available for research437

use. Since our developed model is also built upon438

Llama 2, it is released under the same license.439

E.2 Computational Environment440

All instruction tuning experiments are conducted441

on 4 NVIDIA A100 GPUs with 80GB VRAM each.442

All evalutations are conducted on 1 NVIDIA A100443

GPU with 80GB VRAM. All source codes are de-444

veloped using Python and Docker on Ubuntu 20.04.445

3https://github.com/facebookresearch/llama/
blob/main/LICENSE
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