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Abstract
eXplainable Artificial Intelligence (XAI) aims at
providing understandable explanations of black
box models. In this paper, we evaluate current
XAI methods by scoring them based on ground
truth simulations and sensitivity analysis. To
this end, we used an Electric Arc Furnace (EAF)
model to better understand the limits and robust-
ness characteristics of XAI methods such as SHap-
ley Additive exPlanations (SHAP), Local Inter-
pretable Model-agnostic Explanations (LIME), as
well as Averaged Local Effects (ALE) or Smooth
Gradients (SG) in a highly topical setting. These
XAI methods were applied to various types of
black-box models and then scored based on their
correctness compared to the ground-truth sensitiv-
ity of the data-generating processes using a novel
scoring evaluation methodology over a range of
simulated additive noise. The resulting evaluation
shows that the capability of the Machine Learning
(ML) models to capture the process accurately
is, indeed, coupled with the correctness of the
explainability of the underlying data-generating
process. We furthermore show the differences
between XAI methods in their ability to correctly
predict the true sensitivity of the modeled indus-
trial process.

1. Introduction
ML approaches have the power to model complex depen-
dencies in demanding tasks such as industrial processes.
However, the behavior of these industrial processes that rely
on complex, non-linear interactions is often not fully under-
stood. This results in the need for algorithms to understand
and interpret how these ML models arrive at certain predic-
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tions and how they might react to certain perturbances in
the input. In the last years, there has been an effort to pro-
vide explanations to the ML model predictions using XAI
(Lundberg & Lee, 2017; Ribeiro et al., 2018; Alvarez-Melis
& Jaakkola, 2018; Shrikumar et al., 2017).

Most of these works, even if they focus on the robustness
and trustworthiness of the XAI method, have the short-
coming that they can only be evaluated through surrogate
measures (Crabbé & van der Schaar, 2023), and the ground
truth sensitivity of the evaluated datasets cannot be prop-
erly calculated (Alvarez-Melis & Jaakkola, 2018). Some
existing approaches rather use data augmentation (Sun et al.,
2020) or create measures estimating the importance of the
features (Yeh et al., 2019); further related work is provided
in Section A.3. None of these systems, to the best of our
knowledge, consider the ground truth sensitivity, or gradi-
ent, of the data-generating process that created the dataset.
Modeling the sensitivity to the inputs is, however, key to
understand the underlying process using proxy ML models
solely learned on data.

In this paper, we introduce data-driven evaluation of dif-
ferent XAI methods using a simulated process of an EAF
model and its ground truth sensitivity, providing insights
into the actual limits and robustness properties of state-of-
the-art ML models and interpretability approaches. We
propose to use a specifically generated dataset and perform
perturbations to analyze this robustness empirically. Two
central problems, however, arose when scoring these XAI
methods and comparing them to a ground truth sensitivity:

1. The feature importance scores over the feature dimen-
sions are not within the same magnitude and range,
requiring scaling (Shrikumar et al., 2017).

2. The relative sizes of different XAI feature importance
scores are not necessarily aligned to each other (Lund-
berg & Lee, 2017; Apley & Zhu, 2019), requiring nor-
malization.

Therefore, we introduce a novel evaluation methodology, for
solving both of these problems. We essentially analyze how
well the XAI methods explain the sensitivity of the input
features, compared to a known ground truth sensitivity.
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2. Data-generating processes
This section outlines the two data generation processes: a
toy dataset, as well as the EAF process simulation, including
the process variables. These specifically generated datasets
are necessary, as other datasets do not provide the ground
truth effects w∗

i of the functions at the datapoints xi.

2.1. Toy dataset

To prove the effectiveness of our evaluation methodology,
we first build a small polynomial data-generating system of
the form

f(x1, x2) = k1x
2
1+k2x

2
2+k3x1x2+k4x1+k5x2+k6 (1)

with the coefficients kd being drawn from kd ∼
Uniform(0, 1) once. The function effects, or gradients,
were estimated using automatic gradient calculation using
PyTorch (Paszke et al., 2019). This data-generating pro-
cess was used to generate 1000 samples f(x1, x2), where
x1, x2 ∼ Uniform(−5, 5), which were utilized for the eval-
uation process.

2.2. EAF process

The choice of an EAF model as the data-generating pro-
cess was owed to a wide range of factors. First, the EAF
process itself is relevant in the steel industry as it promises,
given enough clean energy, greenhouse gas emission re-
duction compared to traditional steel production in blast
furnaces (De Ras et al., 2019). Furthermore, EAFs have
been studied and modeled for a long time using many differ-
ent approaches and modeling strategies, from their electrical
characteristics (Billings et al., 1979; Boulet et al., 2003) to
their chemical processes and internal interactions (Zhang &
Fruehan, 1995; Basu et al., 2008). These works helped build
an accurate chemical simulation of an EAF, representing the
real-world system quite well while keeping it simulatable
and manageable in parameter space (Binti Ahmad Dzul-
fakhar et al., 2023). The functional complexity is sophis-
ticated, providing an interesting process to be modeled by
ML models. Furthermore, the data generating process is
non-independant and identically distrubuted (iid.), as the
EAF model has timesteps, and, when considering these, de-
pendencies between each simulated tapping of the furnace
arise, making modeling even more challenging. The model
itself simulated the individual zones of the EAF reactor as
homogeneous zones, with the same temperature and uni-
form mixture across the whole zone. These zones are the
gas zone, solid metal zone, liquid slag zone, liquid metal,
and solid slag zone. Additionally, the reactor is modeled as
a few discrete parts, particularly the roof, and walls. The liq-
uid metal and slag zones are the ones where measurements
were simulated during tapping.

The EAF model (Binti Ahmad Dzulfakhar et al., 2023) was

converted into a Python module, where automatic differ-
entiation tools (Paszke et al., 2019) were used to generate
ground truth sensitivities of the input parameters. This sim-
ulated experiment was repeated over sampled combinations
of a subset of different input parameters, which were the
oxygen lance rate, oxygen for post-combustion, power of
the arc, carbon injection rate, ferromanganese injection rate,
and the mass addition rate of solids. Furthermore, auxil-
iary properties within the simulated tapped material were
recorded, more specifically the ratios of silicon dioxide and
iron oxide in the slag, as well as the temperature of the
liquid slag and metal. The observed target variable, the
ratio of carbon in the tapped steel from the furnace, was
recorded, too. Each tapping was considered as one data
sample xi ∈ {x1, . . . ,xn}, consisting of the observed vari-
ables. The gradient of the input parameters concerning the
output was calculated and accumulated at the timesteps in
the simulation, too. This simulation resulted in a dataset
of about n ≈ 104 samples after the removal of numerical
outliers due to instabilities after simulating the furnace for
about a week. The process was furthermore restarted after
each parameter change.

2.3. Perturbing the Dataset

While the datasets at hand provided a perfect ground truth
sensitivity for interpretations, there was still no proper way
to assess the robustness of the ML models in combination
with the XAI methods. To this end, the dataset was artifi-
cially perturbed using noise in two ways. The source of the
noise was Gaussian noise added to the feature j of sample i,
except the target variable, using

x̃i,j = xi,j + nj (2)

where nj ∼ N (0, l · ( max
i∈1,...,n

xi,j − min
i∈1,...,n

xi,j)),

xi,j being the j-th feature of the observation xi =
{xi,0, xi,1, . . . , xi,d}. The 0-th feature is the target yi ∈ Y .
l ∈ [0, 1) is the selected noise level of the experiment.

3. Scoring Methodology for Local
Explanations

We developed an evaluation methodology (see Figure 1) to
quantify the effect of the perturbances on the ML models
and the interpretation, as there is no such common measure
to cater to heterogeneous types of feature importance and
interpretability measures, as discussed in Section A.3. Fur-
thermore, the problems that make comparisons difficult, as
mentioned in Section 1, were addressed using this scoring
methodology.

We denote the output of each XAI method as wi =
wi,1, . . . , wi,d, independent of the underlying explainer. All
ground truth sensitivity values from the data-generating
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Figure 1: Evaluation methodology, see text for further details and choices of measures.

processes are denoted as w∗
i . All input features of the data-

generating functions were used in this evaluation system.
To solve the first problem outlined in the introduction, the
feature scores wi,j were scaled using the features values
themselves, using

w̃i,j = wi,j · xi,j . (3)

This helps to adjust the magnitude of the XAI method results
to the appropriate scale. The second problem is approached
by min-max normalization on each data sample to indicate
their relative strength within a sample. The scaling results
in an indication of the weights’ approximate strength by
scaling them to a [0, 1] range using

w̄i,j =

w̃i,j − min
j∈1,...,d

w̃i,j

max
j∈1,...,d

w̃i,j − min
j∈1,...,d

w̃i,j
. (4)

Both scaling operations are performed for the ground truth
derivatives w∗

i,j of the data-generating process too, leading
to the normalized ground truth w̄∗

i,j . Using both results, the
score of the local interpretation can finally be computed
using the Brier Score (Brier, 1950), a probabilistic scoring
method, initially intended for weather forecasts. It is, in
essence, the Mean Squared Error (MSE), and the score si
for one observation is thus calculated using

si =
1

d

d∑
j=1

(
w̄i,j − w̄∗

i,j

)2
. (5)

The final score s for one set of n observations is computed
by averaging each samples score si using

s = 1− 1

n

n∑
i=1

si. (6)

This averaging should return a score of s = 1 if the interpre-
tations completely align with the ground truth and lower if
there are discrepancies. This scoring methodology, due to
the comparison to the ground truth effect, focuses therefore
not on the feature’s importance, but rather on the correctness
of the effects that a feature, at a certain data point, has.

3.1. Evaluation Process

The evaluation methodology is performed 50 times over a
randomly sampled fold of 10 percent of the samples from
the datasets. However, due to the non-iid data of the EAF,
care is taken during sampling. The simulation runs are
therefore sampled in a way that no data from one run can
be taken into both the evaluation and training set. The
sampled training set (90% of the samples) is then perturbed
using a range of different noise levels using the approaches
from Section 2.3. The whole evaluation methodology is
illustrated in Figure 1, showing how the explanations are
scaled and used throughout the process. The blue part of
the graph illustrates existing work and systems, while the
green part shows the novel scaling and scoring scheme.

3.1.1. BLACK-BOX MODELS

The regressor ML models f(xi) used for this evaluation
are a linear regression model, a neural network with three
layers of 32 neurons with Rectified Linear Unit (ReLU)
activation modeled in PyTorch (Paszke et al., 2019), and
the XGBoost regressor (Chen & Guestrin, 2016). Explana-
tions wi = Φ(f,xi) are generated using the XAI methods
discussed in the next section. The necessary gradients are
calculated using either the parameters directly from linear
regression, automatic differentiation for the neural network,
or finite differences for the XGBoost tree. These local expla-
nations are only generated on the unperturbed and complete
evaluation set. This allows us to test how well and accu-
rately ML models can learn feature importances even in
noisy settings.

3.1.2. EXPLANATION METHODS

The introduced measure s and the three ML models f(x) are
then used in five different XAI methods. An overview of the
general XAI landscape is provided in Section A.1, showing
the different types of XAI methods and why we chose local
explanations. The selected local XAI methods can generally
be categorized in either Effect-based Methods (EM) and
Additive Methods (AM). The first XAI method describes the
effects the input shift has on the output; the latter how much
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the feature contributes to the output - usually in a sparse
form. The following XAI methods are used (theoretical
details in Section A.2):

• The gradient baseline simply takes the gradient of the
input of the ML model - a very simple approach (EM).

• Improving upon that, the SG method averages the gra-
dient over k = 10 neighbors sampled using k-Nearest
Neighbors (kNN) (Yeh et al., 2019) (EM).

• Next, the ALE-kNN (Apley & Zhu, 2019) uses a
simple Gaussian conditional distribution with a fixed
σ2 = 0.2 scaled by the feature range, a resolution of
nsamples = 50 bins over the feature range and k = 10
samples for the kNN selection (EM).

• LIME (Ribeiro et al., 2016) simply uses default values,
with no modifications (AM).

• The SHAP (Lundberg & Lee, 2017) methods are used
with default parameters. Different SHAP methods,
however, are used, depending on the ML model - Lin-
ear SHAP for the linear regression, Tree SHAP for
XGBoost, and Gradient SHAP for the neural network
(AM).

4. Results & Discussion
This section presents the evaluation results, beginning with
an overview of how noise affects the different XAI ap-
proaches, in combination with different ML models. Sanity
checks with just noise are also performed, providing a lower
empirical bar for s of the evaluated systems.

4.1. Robustness Results

The core results of this paper from both datasets are shown
in Figure 2 and 3, where we show the effect of progressively
applying more noise to the training data. Various black-box
models are then fitted to this perturbed training set and XAI
methods are evaluated using the scoring method proposed
in Section 3.

The first graphs of either dataset, Figures 2a and 3a, show
the R2 score, a metric to evaluate regression problems. The
score can achieve a maximum of 1 if the predictions are
perfect, 0 if they predict the mean and arbitrarily negative if
the prediction is worse than the mean (Chicco et al., 2021).
These scores show that the increasing noise has, as expected,
adverse effects on the performance of the evaluation set. Fur-
thermore, the linear regression model is quite robust in the
regime of strong noise for the EAF, while it fails to capture
any of the relations of the toy dataset. The next graphs of the
toy dataset, Figures 2b through 2d show that the effect-based
XAI methods are strongly dependent on the performance of
the trained ML models. Linear regression fails to capture
most relations while XGBoost and the neural network work
quite well, especially in regimes of low noise using a robust

explainer like ALE-kNN. The additive methods, shown in
Figures 2e and 2f, are not able to capture the sensitivity
present in the ground truth w∗ even without noise.

Similarly, the EAF results show that the explainer perfor-
mance recorded is coupled with the ML model performance,
as the effect-based methods fall with increasing noise. This
rising noise plays, again, a key role in the lowering of the
scores of the XGBoost and neural networks for the more
robust XAI methods, SG and ALE-kNN, as seen in Figures
3c and 3d. These two and the raw gradient of Figure 3b
show two further, interesting findings: first, when the linear
regression performance is good, the explainer score of the
linear regresssor is quite constant over the range of noise
levels. Second, most ML models needed some initial noise
on this dataset to start modeling the relations well, which is
especially pronounced in Figure 3d, where all ML models
rise slightly when adding a bit of noise. This could be due to
a regularizing effect of the noise on the gradients, effectively
creating more truthful averages of gradients when adding
noise. The additive methods are again not as effective in
explaining the ground truth sensitivity as evident in Figures
3e and 3f

4.2. Random baseline: Empirical lower bounds for
Results

We additionally empirically calculate the random lower
bounds using noisy data to make sure that the evaluation
measures worked. This check was performed by training
the ML model on the correct, slightly perturbed data using
a noise level of l = 0.05. The ML model was then given
random evaluation data, on which the scores for the inter-
preters were calculated. The evaluation dataset was set to
xij ∼ N (µj , σj), where µj and σj are the mean and stan-
dard deviation of the training dataset; the used dataset is the
toy dataset. The results for this perturbation can be seen
in Table 1, where all XAI methods approached a score of
about 0.5 to 0.6, indicating, that this is indeed similar to the
worst results observed above.

In the next experiment, we trained the ML model on com-
pletely noisy data, again with xij ∼ N (µj , σj), but scored
on the correct evaluation set. This produced, expectedly,
even worse performance metrics. This indicates that the ran-
dom baseline for this scoring method is around s = 0.55.

4.3. Discussion

This investigation of the robustness of XAI methods showed
that these approaches are influenced by the noise and the
predictive performance. This is especially true for gradient-
based XAI approaches. The SG as well as the cohort-based
ALE-kNN works well. The properties of the custom cohort
approach foster the correctness of the interpretations, as
there is an uplift in performance, especially in combination
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Figure 2: Score s on toy data with varying levels of noise on the different combinations of explainers and ML models. The shaded area is
the 90th and 10th percentile over 50 experiments with random sampling. (a) R2 score, (b) Gradient score s, (c) SG score s, (d) ALE-kNN
score s, (e) LIME score s, and (f) SHAP score s.
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Figure 3: Score s on EAF data with varying levels of noise on the different combinations of explainers and ML models. The shaded area
is, again, the 90th and 10th percentile over 50 experiments with random sampling. (a) R2 score, (b) Gradient score s, (c) SG score s, (d)
ALE-kNN score s, (e) LIME score s, and (f) SHAP score s,

with the tree-based XGBoost system. Both LIME and SHAP
are, however, in the category of additive methods. This
makes them unsuitable for interpretations that call for scores
reflecting the input sensitivity on the output, i.e. reflecting
the feature effect of the output.

The low performance of the additive feature importance
scores can also be partially attributed to the metric prefer-
ring the effect-based scoring methods, as the related work
by Yeh et al. (2019) notes. Notwithstanding, we showed
that effect-based scoring methods are highly dependent on
the performance of the ML model to accurately reflect the
ground truth importance scores w∗

ij and that a single gradi-
ent of the ML model is often not enough to estimate them
correctly.

5. Conclusion & Future Work
We showed how different XAI methods are affected based
on the predictive performance of the ML models. The focus
of this work was on model-agnostic post-hoc explanations
for local data samples, as these could be evaluated using
numeric, data-driven approaches. Of these XAI methods,
SHAP, LIME, SG, and a local version of ALE were chosen.
These were evaluated using a novel evaluation process fo-
cused on scaling the feature importance scores to a similar
magnitude within one sample, then normalizing them to the
same range as the ground truth effects, and, finally, calculat-
ing the distance to the ground truth effects reference. This
ground truth was generated using a chemical simulation of

an EAF model, providing the necessary ground truth sensi-
tivity for comparison and evaluation. This data-generating
distribution was chosen based on the maturity of the EAF
models for these real-world processes as well as current
interest in the technology due to its promise of cleaner steel
production. Additionally, a toy example was initially used
to test the approaches on a limited and known nonlinear
dataset.

Noise analysis over a range of perturbances of the initial
dataset was performed using this evaluation methodology.
The resulting analysis lends the conclusion that XGBoost
in combination with smooth gradient-based XAI methods
can approximate both the target values as well as the ground
truth interpretations very well, even in noisy environments.
LIME and SHAP, however, were not as successful in cor-
rectly finding the ground truth feature importance scores,
probably due to their differing approaches to the interpreta-
tion of the feature importance scores. Some of these XAI
methods and ML models, furthermore, showed a higher vari-
ance, indicating that they varied between sampling runs and
were affected by the high noise. Sanity checks on the valid-
ity of the evaluation process were carried out using noise,
first, as evaluation data, and then as training data. Both tests
showed that the scores tend to be around s = 0.55 since the
ML models cannot learn the importance at all.
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Table 1: Results of sanity check with Gaussian noise as evaluation inputs on the toy dataset (± one standard deviation).

MODEL NAME R2 GRAD SG ALE KNN LIME SHAP

LINEAR REGRESSION -0.11±0.08 0.62±0.05 0.62±0.05 0.62±0.05 0.50±0.05 0.50±0.04
NEURAL NETWORK -1.05±0.33 0.48±0.06 0.56±0.02 0.53±0.06 0.53±0.05 0.50±0.05
XGBOOST -0.93±0.29 0.50±0.06 0.55±0.05 0.56±0.05 0.52±0.05 0.51±0.06

Table 2: Results of sanity check using Gaussian noise as training inputs on the toy dataset (± one standard deviation).

MODEL NAME R2 GRAD SG ALE KNN LIME SHAP

LINEAR REGRESSION -0.02±0.03 0.49±0.13 0.49±0.13 0.49±0.13 0.52±0.22 0.49±0.22
NEURAL NETWORK -0.03±0.08 0.48±0.11 0.53±0.01 0.47±0.09 0.51±0.16 0.51±0.15
XGBOOST -0.52±0.20 0.50±0.05 0.50±0.12 0.48±0.13 0.54±0.14 0.49±0.08

5.1. Future Work

There is an apparent need to quantify the uncertainty of the
XAI methods, as this high variability of the feature impor-
tance scores of ML models with high uncertainty in noisy en-
vironments distorted the feature interpretation significantly.
There are already works investigating such uncertainties for
XAI (Löfström et al., 2024; Zhao et al., 2021; Slack et al.,
2021), however, none of these address the effect-based ap-
proaches where the feature importance score reflects the
change of the output with respect to the input.

The empirical evaluation of feature importance scores, es-
pecially from LIME and SHAP could also be further inves-
tigated by the comparison of different metrics on a ground
truth dataset. Further improvements on the measures of
infidelity and sensitivity (Yeh et al., 2019), combined with
the consideration of a known ground truth feature impor-
tance and deeper analysis of noise could also lead to further
understanding of robustness and failure cases of XAI.
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