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ABSTRACT

Backdoor attacks pose a serious threat to deep neural networks (DNNs), allow-
ing adversaries to implant triggers for hidden behaviors in inference. Defend-
ing against such vulnerabilities is especially difficult in the post-training setting,
since end-users lack training data or prior knowledge of the attacks. Model merg-
ing offers a cost-effective defense; however, latest methods like weight averag-
ing (WAG) provide reasonable protection when multiple homologous models are
available, but are less effective with fewer models and place heavy demands on de-
fenders. We propose a module-switching defense (MSD) for disrupting backdoor
shortcuts. We first validate its theoretical rationale and empirical effectiveness
on two-layer networks, showing its capability of achieving higher backdoor di-
vergence than WAG, and preserving utility. For deep models, we evaluate MSD
on Transformer and CNN architectures and design an evolutionary algorithm to
optimize fusion strategies with selective mechanisms to identify the most effec-
tive combinations. Experiments shown that MSD achieves stronger defense with
fewer models in practical settings, and even under an underexplored case of collu-
sive attacks among multiple models–where some models share same backdoors–
switching strategies by MSD deliver superior robustness against diverse attacks.

1 INTRODUCTION

Backdoor attacks pose a particularly insidious threat to modern neural networks. By injecting crafted
triggers into a small portion of training data (Gu et al., 2017; Chen et al., 2017), an adversary trains
models to behave normally on clean inputs yet exhibit malicious behavior when triggers appear.
The combination of stealth and effectiveness makes them a critical security concern, particularly as
training increasingly relies on large-scale, uncurated web data (Halfacree, 2025).

This threat is amplified by the shift toward a “post-training” paradigm, where practitioners adopt
models without visibility into their origins. This trend manifests in several prominent scenarios: (1)
open-source model platforms, e.g., HuggingFace (Wolf et al., 2019), which facilitate widespread
reuse and finetuning of pretrained models; (2) multi-expert systems like Mixture-of-Experts (MoE),
where a router dynamically selects among specialized models trained on heterogeneous data (Fedus
et al., 2022; Zhou et al., 2022); (3) one-shot Federated Learning (Guha et al., 2019; Dai et al., 2024),
which allows a central server aggregating models from distributed clients once. While these trends
accelerate innovation, they also share a vulnerability: the opacity of training data and processes
provides fertile ground for adversarial attacks (Huynh & Hardouin, 2023).

The post-training paradigm presents a dual challenge: its opacity not only enables hidden backdoors
but also undermines traditional defenses. Many existing defenses assume access to training-time
resources, such as the original data for filtering (He et al., 2023; 2024), a trusted auxiliary dataset
for fine-tuning (Liu et al., 2018; Zhang et al., 2022; Min et al., 2023; Zhao et al., 2024), or the
optimization procedure for trigger inversion (Tao et al., 2022; Sur et al., 2023). Without these
resource hypotheses, model merging (Izmailov et al., 2018; Matena & Raffel, 2022; Aristimuño,
2024)–originally designed for knowledge aggregation–emerges as a compelling defense strategy
that leverages multi-model availability and suppresses backdoors (Arora et al., 2024).

Nonetheless, model merging is not a panacea. Existing approaches face three main constraints: (1)
methods such as WAG (Arora et al., 2024) and DAM (Yang et al., 2025) typically require 3 to 6
homologous models to achieve effective backdoor suppression, which imposes a heavy burden on
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defenders; (2) strategies guided by trusted criteria, curated data, or proxy models (Yang et al., 2025;
Chen et al., 2024) depend on resources that are often scarce in untrusted environments; and (3)
although compromised auxiliary models can be used as defensive references (Li et al., 2024; Tong
et al., 2024), they may introduce additional risks (He et al., 2025).

To overcome these constraints, we propose Module Switching, a defense framework that selectively
exchanges network modules across models from related tasks and domains. The key insight is
that backdoors operate as learned “shortcuts,” exploiting spurious correlations to trigger malicious
behavior (Gardner et al., 2021; He et al., 2023; Ye et al., 2024; Li et al., 2025). These shortcuts are
typically localized within specific modules, yet different backdoored models rarely implant them in
the same location. Swapping corresponding modules thus disrupts these fragile pathways, replacing
compromised components with benign counterparts and thereby neutralizing the vulnerability.

Input Output

Model B

Model A

Input Output

Backdoor shortcuts
are disrupted. 

Combined Model
(A & B)

Input Output

Backdoor shortcut A Backdoor shortcut B

Module-Switching

Figure 1: An illustration of Module-Switching
Defense (MSD). By switching weight modules
between compromised models (left), the spurious
correlations (shortcuts) learned from backdoored
tasks are disrupted in the combined model (right).

This mechanism brings two key benefits: (1)
compared to weight averaging, it blocks back-
door transmission with fewer models, provid-
ing a more practical defense; and (2) it also of-
fers robustness in an underexplored case of col-
lusive attacks, where some models share back-
doors and weight averaging degrades to fewer-
model performance, whereas module switching
remains effective. We empirically demonstrate
both benefits in Section 5.2.

We formulate shortcut disruption as an op-
timization problem: searching for module-
switching strategies that break shortcut connec-
tions within a given model architecture. By
combining heuristic scoring and an evolution-
ary algorithm, we obtain an index table that
specifies which source model should fill each
module slot. As this scheme relies solely on architectural information, it generalizes well across
tasks and is transferable to models sharing the same structure (e.g., one strategy applicable to
RoBERTa (Liu et al., 2019b) can be reused for DeBERTa (He et al., 2021)).

Our Module-Switching Defense (MSD) applies the strategy by assigning each module across the
network a source-model index and recombining the selected modules to construct candidate mod-
els. Then, we identify the most robust candidate by comparing their representations on a small
clean validation set (requiring only 20–50 samples per class and no poisoned data). Since MSD
is structure-driven, it is task-agnostic, counters a wide spectrum of backdoor threats, and preserves
utility for downstream tasks. Our key contributions are as follows.

• We propose and develop MSD, which (1) establishes heuristic rules (Section 4.2) to guide evo-
lutionary search for module-switching strategies (Section 4.3), and (2) defines a feature-distance
criterion to select the best candidate combination (Section 4.4).

• We conduct study on shallow networks to analyze and interpret the mechanism of module-
switching on backdoor mitigation and semantic preservation (Section 3).

• We empirically validate favorable properties of MSD, including (1) stronger defense under more
practical, fewer-model constraints, and (2) robustness against the underexplored collusive attack
surface where multiple models share the same backdoors (Section 5.2).

2 RELATED WORK

Backdoor Attacks. Backdoor attacks implant hidden vulnerabilities in DNNs, activating only when
specific triggers appear in the input while behave normal on benign data. They can be broadly
categorized by implanting methods: (1) Data-poisoning attacks inject trigger patterns into a small
portion of the datasets with manipulated labels to train compromised models. Since being first
discovered by Gu et al. (2017), these attacks have evolved with diverse trigger designs in both
vision (Nguyen & Tran, 2021; Li et al., 2021b; Xu et al., 2023b; Huynh et al., 2024) and text
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domains (Dai et al., 2019; Kurita et al., 2020; Qi et al., 2021b;c). In contrast, (2) Weight-poisoning
attacks directly modify model weights to embed backdoors (Dumford & Scheirer, 2020; Kurita
et al., 2020). Backdoor attacks can be considered as correlating trigger patterns with predefined
predictions in DNNs, activated in inference (Gardner et al., 2021; He et al., 2023). Our work focuses
on defending against data-poisoning attacks, given their widespread adoption and potential risks.

Backdoor Defense. Backdoor defenses are typically classified by deployment stage into (1)
training-phase and (2) test-phase methods. Training-phase defenses treat poisoned data as outliers,
aiming to detect and removing them based on distinctive activation or learning patterns (Li et al.,
2021a; He et al., 2023; 2024). Test-phase defenses operate on inputs or the model itself: data-level
approaches reverse-engineer triggers (Wang et al., 2019; 2023) or detect poisoned inputs (Qi et al.,
2021a; Gao et al., 2024; Xie et al., 2024; Hou et al., 2024), while model-level strategies detect tro-
janed models (Liu et al., 2019a; Wang et al., 2020; 2024a; Su et al., 2024) or purify models through
pruning, fine-tuning, or other adaptations (Wu & Wang, 2021; Liu et al., 2018; Zhang et al., 2022;
Xu et al., 2023a; Zhao et al., 2024; Cheng et al., 2024) or unlearning (Wu & Wang, 2021; Zeng
et al., 2022; Li et al., 2023a).

Detection-based methods aim to identify poisoned samples or compromised models and therefore
address a complementary defense dimension relative to model-level repair techniques. While tradi-
tional model purification demands proxy data and retraining, recent research has focused on model
combination strategies requiring fewer assumptions and lower computational costs (Arora et al.,
2024; Yang et al., 2025; Chen et al., 2024; Li et al., 2024; Tong et al., 2024). Building on this line
of work, we propose a model fusion approach that reduces dependency on trusted resources while
mitigating threats by disrupting spurious correlations in constituent models.

3 MODULE SWITCHING IN TWO-LAYER NEURAL NETWORKS

We theoretically and empirically examine whether module switching in two-layer networks disrupts
backdoor patterns introduced during fine-tuning while preserving pretrained semantics. We find that
swapping layer weights deviates more from backdoor patterns than weight averaging (WAG) (Arora
et al., 2024; Wang et al., 2024b), yielding improved robustness against backdoored inputs.

3.1 PRELIMINARY SETUP

Setup and Notation. We consider two-layer networks defined as f(x; θ) = W2 σ(W1x), with
input x ∈ RN and parameters θ := {W1,W2}, and activation function σ(·) (linear or non-linear).
Training progresses in two stages: a pretraining stage, where shared weights W1 ∈ RK×N and
W2 ∈ RN×K learn general semantics, followed by a fine-tuning stage that introduces updates
(∆W ∗

1 and ∆W ∗
2 ) to encode backdoor behavior in individual modelsM∗.

In a linear network with identity activation, the fine-tuned model isM(x) = (W2 +∆W ∗
2 )(W1 +

∆W ∗
1 )x, which expands to a semantic term S = W2W1 and a backdoor component

B∗ = W2∆W ∗
1 +∆W ∗

2 W1 + ϵ∗, (1)
such thatM∗(x) = (S+B∗)x, where ϵ∗ = ∆W ∗

2 ∆W ∗
1 represents a second-order interaction. The

ϵ-terms are typically much smaller in magnitude than first-order terms (i.e., W2∆W ∗
1 +∆W ∗

2 W1).
We empirically verify this in Appendix C, and accordingly omit the ϵ-term in subsequent analysis.

3.2 THEORETICAL ANALYSIS

We first define the weight averaged and the module switched models, together with the notion of
output distances between these combinations and their constituent models. These distances will be
used to quantify how WAG and the switched models differ from the constituent backdoor models.

Definition 1 (Weight-Averaged Model). Let i and j index two fine-tuned backdoor models. Averag-
ing the weights ofMi andMj defines the Weight-Averaged (WAG) model, with parameters:

θwag :=

{
1

2

(
W1 +∆W i

1

)
+

1

2

(
W1 +∆W j

1

)
,
1

2

(
W2 +∆W i

2

)
+

1

2

(
W2 +∆W j

2

)}
.

Assuming a linear network as above, we decompose the model as Mwag(x) = (S +Bwag)x,
where S denotes the shared pretrained semantics, and the backdoor component is equivalent to

Bwag =
1

2
W2

(
∆W i

1 +∆W j
1

)
+

1

2

(
∆W i

2 +∆W j
2

)
W1.
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Definition 2 (Distance between Outputs from WAG and Constituent Models). Under identity acti-
vation, ℓ2 distances between the WAG model and the two constituent modelsMi andMj are:

∥Dwag,i∥ = ∥Mwag(x)−Mi(x)∥ = 1

2
∥
(
W2(∆W j

1 −∆W i
1) + (∆W j

2 −∆W i
2)W1

)
x∥,

∥Dwag,j∥ = ∥Mwag(x)−Mj(x)∥ = 1

2
∥
(
W2(∆W i

1 −∆W j
1 ) + (∆W i

2 −∆W j
2 )W1

)
x∥.

Definition 3 (Module-Switched Models). Swapping one layer between Mi and Mj yields two
possible switched models, each with its own parameters, semantic-backdoor decomposition:

θij := {W1 +∆W i
1 , W2 +∆W j

2 }, Mij(x) = (S +Bij)x, Bij = W2∆W i
1 +∆W j

2W1,

θji := {W1 +∆W j
1 , W2 +∆W i

2}, Mji(x) = (S +Bji)x, Bji = W2∆W j
1 +∆W i

2W1.

Definition 4 (Distance between Outputs from Switched and Constituent Models). Under identity
activation, ℓ2 distances between the switched modelMij and the two constituent models are:

∥Dij,i∥ = ∥Mij(x)−Mi(x)∥ = ∥(∆W j
2 −∆W i

2)W1x∥,
∥Dij,j∥ = ∥Mij(x)−Mj(x)∥ = ∥W2(∆W i

1 −∆W j
1 )x∥.

The analogous results for ∥Dji,i∥ and ∥Dji,j∥ hold with swapped indices (see Equation (5)).

To show the improved divergence achieved by module switching, we next compare how far the
switched models move relative to the constituent backdoor models, in contrast to WAG.
Theorem 1 (Module Switching Exceeds WAG in Backdoor Divergence). Under identity activation,
the total backdoor divergence of the Weight-Averaged (WAG) model is upper bounded by the average
divergence of the switched models:

∥Dwag,i∥+ ∥Dwag,j∥ ≤ 1

2

(
∥Dij,i∥+ ∥Dij,j∥+ ∥Dji,i∥+ ∥Dji,j∥

)
. (2)

This theorem confirms the rationale that module switching on average yields stronger suppression
of backdoor-specific patterns than weight averaging.
Proposition 1 (The Existence of a More Divergent Switched Model). Given Theorem 1, there exists
at least one switched model with greater backdoor divergence than Weight-Averaged (WAG) model:

∥Dwag,i∥+ ∥Dwag,j∥ ≤ max
{
∥Dij,i∥+ ∥Dij,j∥, ∥Dji,i∥+ ∥Dji,j∥

}
. (3)

This proposition shows that the least backdoor-aligned switched model exceeds the WAG model in
backdoor divergence, underscoring the importance of selecting the least aligned candidate and moti-
vating the selection step in Section 4.4. Appendix D details proofs of Theorem 1 and Proposition 1.

Utility Loss. Having established the divergence properties of backdoor components, we next exam-
ine whether module switching compromises utility. For a modelM∗, we measure its utility loss as
the distance between its outputs to benign semantics, i.e., L∗(x) := M∗(x) − Sx = B∗x. The
switched models satisfy the identity Lij + Lji = Li + Lj (see Appendix E), implying that the total
loss of a switched pair is equivalent to the sum of its constituents. To assess individual models, we
empirically measure each switched model’s loss relative to its originals and find that the relative
utility loss remains low (see Appendix F), demonstrating promising utility preservation.

3.3 EMPIRICAL ANALYSIS

We simulate 1000 linear and non-linear two-layer networks, each pretrained on a shared semantic
component S ∼ N (0, 1) and fine-tuned with a backdoor component B∗ ∼ N (0, 0.12). For each
fine-tuned pair Mi and Mj , we construct the corresponding WAG model Mwag and switched
modelsMij andMji. We evaluate output alignment with (1) the semantic direction Sx, measured
by dS = ∥norm(f(x; θ)) − norm(Sx)∥; and (2) the backdoor direction B∗x, measured by dB =
∥norm(f(x; θ)− Sx)− norm(B∗x)∥, where norm(v) = v/∥v∥.
Figure 2 presents 2D scatter plots comparing output distances across all model types under both
linear and ReLU (Nair & Hinton, 2010; Agarap, 2018) activations. More results with various ac-
tivations are provided in Appendix G. We observe that while fine-tuned models stay close to their
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Figure 2: Euclidean distances between normalized output vectors of pretrained, fine-tuned, WAG,
and switched two-layer networks, relative to the semantic direction Sx and the backdoor directions
B∗x, under linear (left) and ReLU (right) activations.

respective backdoor patterns B∗, the WAG model shifts farther away, and the switched models di-
verge even more, indicating stronger backdoor suppression. All models remain near the semantic
term S, confirming preserved functionality.

4 MODULE SWITCHING DEFENSE

In this section, we extend the findings on module switching to more complicated deep neural net-
works and develop a comprehensive defense pipeline. We begin by introducing the problem setting
in Section 4.1, followed by establishing a set of heuristic rules to guide the search for effective mod-
ule switching strategies in Section 4.2. Next, we adapt an evolutionary algorithm for searching the
optimal strategy in Section 4.3, guiding switched models construction and selection in Section 4.4.

4.1 PRELIMINARIES

Threat Model. We study data poisoning attacks where an attacker modifies a subset of a clean
dataset Dc = {(xc, yc)} into poisoned samples Dp = {(xp = gt(xc), yp)} using a trigger function
gt and target label yp. The poisoned data is used to train a backdoored model or shared with others
for training, resulting in trojaned models being widely available via model-sharing platforms.

Defender Capability. The defender downloads potentially trojaned models and aims to purify them
before deployment. They have white-box access and a small clean validation set (20–50 samples
per class), but no knowledge of the triggers or poisoned data. They can access multiple (as few as
two) domain-relevant models of uncertain integrity and may combine them using the validation set.

Neural Network Architecture. We adopt Transformer models (Vaswani et al., 2017), chosen for
their strong performance and popularity in both text and vision. Each model has L layers, com-
posed of a self-attention block and a feed-forward network (FFN), both followed by residual con-
nections (He et al., 2016). We abbreviate the six core modules (the attention block’s query (Wq), key
(Wk), value (Wv), output (Wo), and the FFN’s input (Wi) and output (Wp)) as {Q,K, V,O, I, P}.
To assess cross-modality applicability, we also examine vision architectures, including Vision Trans-
formers (ViT) (Wu et al., 2020) and convolutional networks (CNNs). For ViT models, we apply the
same module abstraction used for text-based Transformers. For CNNs such as the ResNet fam-
ily (He et al., 2016), each convolution-batch normalization weight pair is treated as a module (e.g.,
the first conv-bn pair in each BasicBlock denoted as C1).

4.2 SCORING RULES FOR MODULE SWITCHING

In Section 3, we studied weight switching in two-layer networks, where replacing weights disrupts
spurious correlations, eliminating undesired patterns while preserving utility. Extending to deep
models, we hypothesize that breaking backdoor propagation paths can similarly deactivate them.

Given the structural complexity of deep networks, we define heuristic rules to guide the search for
module combinations that disrupt backdoor paths in both feedforward and residual streams (Elhage
et al., 2021). We identify three types of adjacency that may support poison transmission (illustrated

5
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Figure 3: The fused model combines modules from different models (shown as red and blue nodes),
considering three types of module adjacency in Transformers, as illustrated at the top.

in Figure 3): (1) intra-layer (within the same layer), (2) consecutive-layer (adjacent layers), and (3)
residual (via skip connections). Additionally, we introduce a (4) balance penalty to avoid overusing
any single model and a (5) diversity reward to encourage varied combinations across layers.

These rules serve as criteria for computing an overall score of a given module-switching strategy,
evaluating how well it adheres to the principles. Detailed rules and types are in Appendix H.1.

4.3 EVOLUTIONARY MODULE SWITCHING SEARCH

We frame the search for effective module-switching strategies as a discrete Neural Architecture
Search (NAS) problem (White et al., 2023). Let S denote the space of switching strategies, where
each s ∈ S assigns a source model index to each module: s : {1, . . . , L}×M → {1, . . . , N},M =
{Q,K, V,O, I, P}, where L is the number of layers and N the number of source models.

Fitness Evaluation. Each strategy s is scored by

F (s) = −λ1Aintra(s)− λ2Acons(s)− λ3Ares(s)− λ4Bbal(s) + λ5Rdiv(s), (4)

Algorithm 1 Evolutionary Module-Switching Search
1: Input: population P , generations G, children per iter

C, number of models N , layers L, module set M .
2: population← ∅
3: gen count← 0
4: while |population| < P do
5: indiv.strategy ← RANDOMSTRATEGY(N,L,M )
6: indiv.fitness← CALCSCORE(indiv.strategy)
7: population.append(indiv)
8: end while
9: while gen count < G do

10: for i← 1 to C do
11: parent← TOURNAMENTSELECT(population)
12: child.strategy ← MUTATION(parent)
13: child.fitness← CALCSCORE(child.strategy)
14: population.append(child)
15: end for
16: sort(population) ▷ by descending fitness score
17: population← population[0 : P ] ▷ truncate to P
18: gen count← gen count+ 1
19: end while
20: Output: BESTSTRATEGY ← population[0].strategy

where Aintra, Acons, and Ares penalize
adjacency violations (Section 4.2),
Bbal penalizes module imbalance,
and Rdiv rewards diversity. By de-
fault, we set all λk to 1.0. Higher
F (s) indicates stronger disruption of
potential backdoor paths. Details of
each term are in Appendix H.2.

Search Algorithm. As the scores
by F (s) is non-differentiable over a
large discrete space, we adopt evo-
lutionary search (Miller et al., 1989),
well-suited to optimizing implicit ob-
jectives (Zhou et al., 2021). We adopt
the aging regularized evolution al-
gorithm (Real et al., 2019), modi-
fying it in two key ways: (1) fit-
ness is computed directly using the
heuristic scoring function F , with-
out model training or validation; and
(2) low-scoring strategies are dis-
carded, replacing aging regulariza-
tion (So et al., 2019). As outlined
in Algorithm 1, it evolves a popula-
tion through tournament selection (line 11), mutation (line 12), and fitness-based dropping (line 13).
Appendix K presents example searched strategies.

4.4 SWITCHED MODELS CONSTRUCTION AND SELECTION

The searched strategy T can be used to switch modules among a group of victim models M =
{M1, . . . ,MN} to fuse a candidate pool, which on average exceeds the WAG model in backdoor
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divergence (as Theorem 1) and guarantees the existence of at least one candidate with higher diver-
gence (as Proposition 1). This motivates us to develop a feature-distance-based method to select the
least-backdoor-aligned candidate from the pool.

Algorithm 2 Switched Model Selection
1: Input: Victim models M = {M1, . . . ,MN}; clean

set Dc; switching strategy T .
2: wag ← WAG(M) ▷ weight averaging overM
3: models←M∪ {wag}
4: score← ZEROVECTOR(num classes)
5: for m ∈ models do
6: for c ∈ candidate classes do
7: xdummy ← OPTIMIZEINPUT(m,xrandom, c)
8: zdummy ← FORWARD(m,xdummy)
9: zclean ← FORWARD(m,Dc,non-c)

10: score[c] += MEANCOSINEDIST(zdummy, zclean)
11: DUMMYFEATURE[m][c]← zdummy
12: end for
13: end for
14: c∗ ← argmaxc score[c] ▷ suspect target class
15: z∗ ← DUMMYFEATURE[wag][c∗]
16: candidates← MODULESWITCH(T,M)
17: for m ∈ candidates do
18: z ← FORWARD(m,Dc,non-c∗)
19: m.dist← MEANCOSINEDIST(z, z∗)
20: end for
21: Output: argmaxm m.dist

Suspect-class Detection. We first
use the final-layer embedding of
[CLS] token to detect the suspect
class, based on the insight that back-
doored models prioritize trigger fea-
tures (Fu et al., 2023; Yi et al., 2024;
Wang et al., 2024a). For each m ∈
M∪{WAG(M)} and class c, we op-
timize a random input to induce pre-
diction of c, yielding a dummy final-
layer [CLS] feature zdum

m,c. Its average
cosine distance to clean features over
a few non-c samples is accumulated
across models: S(c) =

∑
m avg

[
1−

cos(zdum
m,c, z

clean
m,¬c)

]
. The class with the

highest score, c∗ = argmaxc S(c),
is deemed suspicious, and the corre-
sponding WAG dummy feature z∗ =
zdum

WAG,c∗ is used as a fixed refer-
ence. For CNNs, the same proce-
dure is applied using the global av-
erage pooled feature of the final con-
volutional layer in place of the [CLS]
embedding.

Candidate Selection. Applying T to M gives candidates m ∈ C(T,M) (e.g., Mij and Mji).
Each m is scored by d(m) = avg

[
1 − cos(z∗, fm(x))

]
, the mean cosine distance between its

[CLS] features on a few clean, non-c∗ samples x and the WAG dummy z∗. The winner m∗ =
argmaxm∈C(T,M) d(m) is the one least aligned with backdoor features and, by Proposition 1, has
better defense than WAG. The pipeline detailed in Algorithm 2, avoids exhaustive trojan detection
process (Wang et al., 2019; 2020; 2024a; Su et al., 2024), yet reliably selects robust candidates.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We primarily evaluate our method in the text domain using three NLP datasets: SST-
2 (Socher et al., 2013), MNLI (Williams et al., 2018), and AG News (Zhang et al., 2015). Following
previous work (Arora et al., 2024), we apply a poison rate of 20% in training, and additionally test
settings with 10% and 1%. To further assess cross-domain applicability, we evaluate on two vision
datasets: CIFAR-10 (Krizhevsky et al., 2009) and TinyImageNet (Le & Yang, 2015), where a
poison rate of 5% is used. The statistics of the used datasets are reported in Table 6 (Appendix I.1).
The poisoned test sets, used solely for evaluation, are generated by adding triggers to validation
samples outside the target class, while the defenders are restricted to access only the clean test set.

Backdoor Attacks. We evaluate our defense against four text-based backdoor attacks that poison
data by modifying and relabeling clean samples. Two are insertion-based: BadNet (Kurita et al.,
2020), which adds rare-word triggers {“cf”, “mn”, “bb”, “tq”, “mb”}, and InsertSent (Dai et al.,
2019), which inserts trigger phrases {“I watched this movie”, “no cross, no crown”}. The other
two are stealthier: Learnable Word Substitution (LWS) (Qi et al., 2021c), which uses synonym
substitution, and Hidden-Killer (Hidden) (Qi et al., 2021b), which applies syntactic paraphrasing.

For the vision domain, we use attacks that inject digital patterns, such as BadNet (Gu et al., 2017)
and BATT (Xu et al., 2023b), as well as stealthier methods like the warping-based WaNet (Nguyen
& Tran, 2021) and the object-based PhysicalBA (Li et al., 2021b). To further challenge our defense,
we also evaluate it against the Adaptive-Patch attack (Qi et al., 2023). All poisoned vision datasets
and models are generated using the BackdoorBox toolkit (Li et al., 2023b).
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Table 1: Performance comparison across backdoor attacks on SST-2 using RoBERTa-large. Best
results are in blue . ∗ indicates results averaged over four variants; same for subsequent tables.

Defense CACC Attack Success Rate (ASR) ↓ Defense CACC Attack Success Rate (ASR) ↓
BadNet Insert LWS Hidden AVG. BadNet Insert LWS Hidden AVG.

Benign 95.9 4.1 2.2 12.8 16.5 8.9 Z-Def 95.6∗ 4.6 1.8 97.3 35.7 34.9
Victim 95.9∗ 100.0 100.0 98.0 96.5 98.6 ONION 92.8∗ 56.8 99.9 85.7 92.9 83.8

Combined: BadNet + InsertSent Combined: BadNet + HiddenKiller

WAG 96.3 56.3 7.4 - - 31.9 WAG 96.1 63.9 - - 29.0 46.4
TIES 95.9 88.7 17.0 - - 52.9 TIES 96.0 90.4 - - 36.9 63.6

DARE 96.5 57.8 36.3 - - 47.1 DARE 96.7 36.5 - - 47.6 41.9
Ours 96.2 36.9 7.1 - - 22.0 Ours 96.1 40.5 - - 27.7 34.1

Combined: BadNet + LWS Combined: Benign + BadNet

WAG 96.2 74.0 - 50.3 - 62.2 WAG 96.1 39.3 - - - 39.3
TIES 95.9 88.1 - 66.1 - 77.1 TIES 95.7 69.2 - - - 69.2

DARE 96.2 60.4 - 62.5 - 61.4 DARE 96.4 43.2 - - - 43.2
Ours 96.0 41.7 - 39.0 - 40.4 Ours 96.1 12.2 - - - 12.2

Defense Baselines. We compare against seven defenses across text and vision: three model-merging
approaches applicable to both domains–TIES (Yadav et al., 2023), DARE (Yu et al., 2024), and
WAG (Arora et al., 2024)–and two domain-specific data purification methods per modality. In text,
Z-Def. (He et al., 2023) and ONION (Qi et al., 2021a) perform outlier detection; in vision, Cut-
Mix (Yun et al., 2019) disrupts triggers via patch mixing, and ShrinkPad (Li et al., 2021b) reduces
vulnerability by shrinking and padding inputs. All baselines use open-source implementations with
default settings (see Appendix I.3 for details).

Evaluation Metrics. We assess utility and defense with Clean Accuracy (CACC) and Attack Suc-
cess Rate (ASR) (Qi et al., 2021a;c; Arora et al., 2024). CACC is the accuracy on clean samples,
with higher values indicating better utility. ASR is the accuracy on a poisoned test set, where all
samples are attacked and relabeled to the target class; higher ASR indicates greater vulnerability.

Implementation Details. We use RoBERTa-large (Liu et al., 2019b), BERT-large (Devlin et al.,
2019), and DeBERTa-large (He et al., 2021) for text experiments; and ViT (Wu et al., 2020) as well
as pretrained ResNet-18 and ResNet-50 (He et al., 2016; TorchVision maintainers and contributors,
2016) for vision experiments. NLP models are fine-tuned for 3 epochs with Adam (Kingma & Ba,
2015) at 2× 10−5, and vision models for 10 epochs with SGD (Bottou, 2010) at 1× 10−2.

We evaluate two-model merging in both domains and additionally consider multi-model merging
for text. All experiments are run with three random seeds on a single Nvidia A100 GPU, and results
are averaged. The evolutionary search runs for 2 million generations on a single Intel Core i9-
14900K CPU, taking 2.6 hours for two models and 4.3 hours for four models. Since the strategy is
structure-driven and task-agnostic, only one search is required per architecture. For model selection,
discussed in Section 4.4, we use 50 samples per class to choose candidate models and ablate this to
20 in Section 5.3. Selection takes less than a minute on both SST-2 and CIFAR-10.

5.2 MAIN RESULTS

Mitigation of Textual Backdoor Attacks. We evaluate our defense with RoBERTa-large on SST-2,
MNLI, and AG News. Partial SST-2 results appear in Table 1, with full results in Appendix J.1.
We evaluate merging backdoored models to examine robustness against attacks, and merging back-
doored with benign models to examine resistance to backdoor transfer. A unified strategy from our
evolutionary algorithm (see Figure 7) is applied consistently across all cases.

Across all datasets and model pairs, our method shows strong defense while preserving clean accu-
racy. Merging BadNet and InsertSent yields an ASR of 22.0%, compared to 31.9% for WAG. With
BadNet and LWS (a stealthier attack), it reaches 40.4%, over 21.0% lower than baselines (typically
above 60%). These results demonstrate that even with compromised models, our approach disrupts
spurious correlations and mitigates backdoors.

When merging a benign model with compromised ones, our method consistently yields low ASRs
across four combinations. In the BadNet-controlled case, it achieves 12.2%, 27.1% better than WAG.
This indicates that our method blocks unintended backdoor effects, unlike approaches that preserve
utility but risk new vulnerabilities. While Z-Def performs well against insertion-based attacks (with
training data access), it is less effective against attacks with subtle trigger patterns.
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Table 2: Performance comparison across backdoor attacks on the CIFAR-10 dataset using ViT.
Defense CACC BadNet WaNet BATT PBA AVG. Defense CACC BadNet WaNet BATT PBA AVG.

Benign 98.8 10.1 10.2 7.7 10.1 9.5 CutMix 97.7∗ 87.1 70.6 99.9 64.9 80.6
Victim 98.5∗ 96.3 84.7 99.9 89.4 92.6 ShrinkPad 97.3∗ 14.4 51.3 99.9 88.3 63.5

Combined: BadNet + WaNet Combined: BadNet + BATT

WAG 98.7 13.7 10.6 - - 12.2 WAG 98.9 10.1 - 42.9 - 26.5
TIES 98.6 11.9 10.7 - - 11.3 TIES 98.9 10.1 - 47.9 - 29.0

DARE 98.8 83.3 10.2 - - 46.7 DARE 99.0 69.2 - 26.8 - 48.0
Ours 98.7 12.3 10.5 - - 11.4 Ours 98.7 10.2 - 32.6 - 21.4

Combined: BadNet + PhysicalBA Combined: Benign + PhysicalBA

WAG 99.0 39.6 - - 39.5 39.6 WAG 99.0 - - - 10.1 10.1
TIES 99.0 38.9 - - 38.9 38.9 TIES 98.8 - - - 10.2 10.2

DARE 99.0 72.2 - - 72.2 72.2 DARE 99.9 - - - 10.1 10.1
Ours 98.7 18.5 - - 18.4 18.5 Ours 98.9 - - - 10.1 10.1

Mitigation of Vision Backdoor Attacks. We assess our method on the CIFAR-10 and TinyIm-
ageNet datasets using a 12-layer ViT (Wu et al., 2020) model. Partial results for CIFAR-10 are
shown in Table 2, with full results presented in Appendix J.2. The evolutionary search yields the
module-switching strategy in Figure 14, applied across all vision experiments.

Our method consistently defends against all attack combinations while preserving utility. For exam-
ple, in the BadNet + PhysicalBA case, it lowers ASR to 18.5%, outperforming all baselines by at
least 20.4%. These results demonstrate the robustness of our strategy in disrupting spurious corre-
lations and its effectiveness across domains with different input characteristics.

Three-Model Fusion Defense. When three backdoored models are available, even baseline WAG
already shows strong results. However, our module-switching approach achieves consistently
stronger defense. Using the strategy in Figure 15 (see Appendix J.3), MSD reduces the average
ASR to below 20% across different combinations, outperforming WAG as reported in Table 12.

Merging Models with Collusive Backdoors. Although WAG achieves relatively low ASRs when
combining multiple models, in a realistic yet underexplored scenario some models may share iden-
tical backdoors. In such settings, WAG degenerates to fewer-model behavior, reducing its defensive
effectiveness. In contrast, our module-switching strategy is more resilient, as it strategically disrupts
these recurring shortcuts. Using the strategy in Figure 16 (see Appendix J.3), MSD outperforms
WAG under collusion, as shown in Table 13, demonstrating robustness against collusive models.

Comparison of Different Strategies. We compare two evolutionary search strategies–with and
without early stopping–shown in Figures 7 and 8, and report their fitness scores in Table 14 of Ap-
pendix J.4. The early stopping terminates the search when no improvement in fitness score is ob-
served over 100,000 iterations. We observe a positive correlation between the fitness score and de-
fense performance: the adopted strategy without early stopping achieves a higher score and reduces
the ASR by 27.2%. Based on score breakdowns and visualizations, we attribute the improvement to
fewer residual rule violations, which more effectively disrupt subtle spurious correlations.

Diversity of Discovered Strategies. We further examine the structural diversity of strategies pro-
duced by the evolutionary search. Using three strategies obtained from different random seeds
(Figures 7 and 9), we compute their module-level overlap. As detailed in Appendix J.5, only 10
out of 144 module positions coincide across all strategies (6.94%), with no region or module type
exhibiting higher consistency than others. This demonstrates that MSD does not rely on a narrow
set of critical layers but instead induces broad structural disruption, which helps mitigate backdoor
effects and makes the searched strategies transferable and reusable across different scenarios.

Candidate Selection Results. Our method generates multiple asymmetric module allocation candi-
dates, with selection guided by the process in Section 4.4. While the selected candidate consistently
performs well, we also analyze the unselected ones (see Table 15 in Appendix J.6). In most cases,
our method correctly identifies the top-performing candidate, outperforming other options by a sig-
nificant margin. Even when an unselected candidate achieves a lower ASR in specific cases, our
chosen candidate remains competitive with both the best alternative and the WAG baseline.

5.3 ABLATION STUDIES

Importance of Heuristic Rules. We ablate each of the first three rules from Section 4.2 to evaluate
their individual contributions. As shown in Table 16 (Appendix J.7), removing any rule typically
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degrades performance, highlighting the complementary effect of the full rule set. Visualizations
in Figures 11 to 13 show that each ablation yields distinct strategy patterns.

Generalization across Architectures. We apply our method to RoBERTa-large, BERT-large, and
DeBERTa-v3-large under three settings. As shown in Table 17 (Appendix J.8), our approach consis-
tently outperforms WAG across all tests. Importantly, we reuse the same searched strategy from Fig-
ure 7, demonstrating strong cross-model generalization and supporting practical scalability.

To further evaluate generality beyond Transformer families, we also extend MSD to CNN architec-
tures, including ResNet-18 and ResNet-50 on CIFAR-10. The searched strategies for these models
are shown in Appendix K (Figures 17 and 18), and the full quantitative results are presented in Ap-
pendix J.8 (Table 18). Across diverse combinations, MSD achieves comparable or superior ASR
reduction relative to WAG while maintaining similar clean accuracy. These results demonstrate that
MSD naturally transfers to CNN-based models, reinforcing its cross-domain robustness.

Minimum Clean Data Requirement. We examine the impact of reducing clean supervision from
50 to 20 samples per class on SST-2 across three architectures. Results in Table 17 (Appendix J.9)
show our method still selects low-ASR candidates, suggesting effectiveness with limited clean data.

Performance under Varying Poisoning Rates. We test robustness under 20%, 10%, and 1% poi-
soning rates on SST-2 using RoBERTa-large. As shown in Table 19 (Appendix J.10), our method
consistently achieves lower ASR than WAG across different attacks and poisoning levels.

Robustness to Adaptive Attacks. We consider two types of threat scenarios: attacks that are adap-
tive to MSD and challenging backdoor patterns that introduce stronger shortcut behaviors. First, we
consider an attacker who knows the deployed module selection strategy and retrains only those mod-
ules on poisoned data. Our approach counters this by generating diverse strategies using different
random seeds. Even if one strategy (Figure 7) is compromised, alternatives (Figure 9) remain effec-
tive, as demonstrated on SST-2 with RoBERTa-large (Table 20). Second, we evaluate a challenging
backdoor pattern, Adaptive-Patch (Qi et al., 2023), which is not MSD-specific but induces more
complex shortcut behavior. Using a transferability-based strategy (Figure 14), our method consis-
tently demonstrates strong defensive performance (Table 21). A detailed analysis of both scenarios
is provided in Appendix J.11.

Robustness to Label-Inconsistent and Identical Backdoors. A practical consideration for model
merging is that the obtained models may be trained by different attackers targeting different labels,
or they may encode identical backdoor triggers. We therefore examine two challenging settings: (1)
models with inconsistent target labels, and (2) models trained with the same backdoor trigger. In the
first case, where each model has a different target label, our method maintains strong defensive per-
formance. In the second case, where models share the same trigger, our method again substantially
reduces ASR compared to WAG, as shown in Table 22 (Appendix J.12).

Efficiency Analysis. We compare the computational efficiency of MSD with representative base-
lines in the two-model setting. The comparison is summarized in Table 3.

Table 3: Efficiency comparison.
Phase DARE TIES WAG MSD
Search 2.5 hrs – – 2.6 hrs
Merge – 1 min 10 s 16 s

MSD requires a one-time architecture-dependent search
of 2.6 hours that can be performed offline, after which
the merging step takes only 16 seconds. In contrast,
deployment-time search methods such as DARE need to
rerun a greedy search for every new model pair, taking
approximately 2.5 hours per deployment. Since the MSD strategy can be reused for all models
that share the same architecture, the amortized deployment cost becomes negligible, providing a
practical efficiency advantage while maintaining strong defensive performance.

6 CONCLUSION

In this paper, we propose Module-Switching Defense (MSD), a post-training backdoor defense that
disrupts shortcuts of spurious correlations by strategically switching weight modules between (com-
promised) models. MSD does not rely on trusted reference models or training data and remains
effective with a couple of models. Using heuristic rules and evolutionary search, we establish a
transferable module fusion strategy that mitigates various backdoor attacks while preserving their
task utility. Empirical results on text and vision tasks confirm its outstanding defense performance,
and strong generalization capability, highlighting its practicality in real-world applications.
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ETHICS STATEMENT

This paper presents an efficient post-training defense against backdoor attacks on machine learning
models. By strategically combining model weight modules from either clean or compromised mod-
els, our approach disrupts backdoor propagation while preserving model utility. We demonstrated
the usage of MSD to strengthen the security of machine learning models in both natural language
processing and computer vision. All models and datasets used in this study are sourced from estab-
lished open-source platforms. The discovered MSD templates will be released to facilitate further
research on defense study. While we do not anticipate any direct negative societal consequences, we
hope this work encourages further research into more robust defense mechanisms.

REPRODUCIBILITY STATEMENT

We describe our method in detail in Section 4, with two key algorithms presented in Algorithm 1
and Algorithm 2. Experimental settings are documented in Section 5.1, and the searched outputs
of the algorithms are included in Appendix K, which should help in reproducing our results. To
preserve anonymity during the review process, code and data are not released at this stage. Upon
acceptance, we will make the code, data, and documentation publicly available to facilitate repro-
ducibility and further research.

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

Ignacio Aristimuño. Model merging: Combining different fine-tuned llms. Mar-
vik AI Blog, June 2024. URL https://blog.marvik.ai/2024/06/19/
model-merging-combining-different-fine-tuned-llms/.

Ansh Arora, Xuanli He, Maximilian Mozes, Srinibas Swain, Mark Dras, and Qiongkai Xu. Here’s
a free lunch: Sanitizing backdoored models with model merge. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics: ACL
2024, pp. 15059–15075, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.findings-acl.894. URL https://aclanthology.org/
2024.findings-acl.894.
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A LIMITATIONS

While our study demonstrates the effectiveness of Module-Switching Defense (MSD) across a range
of classification tasks in NLP and CV, our current scope is limited to classification-based settings.
Backdoor attacks in generative models operate through notably different mechanisms, and extending
MSD to such scenarios remains an important direction for future research.

B GENERATIVE LLM USAGE STATEMENT

We used ChatGPT and Gemini for surface-level edits, such as grammar checks, phrasing refinement,
and table caption formatting to improve readability.

C EMPIRICAL VALIDATION OF THE SECOND-ORDER INTERACTION
MAGNITUDE

We empirically validate the condition adopted in Section 3, where the second-order interaction term
ϵ = ∆W2∆W1 is omitted due to its negligible magnitude relative to the first-order terms. This
validation proceeds from three perspectives.

First, Figure 4 compares the Frobenius norms of the semantic term S = W2W1, the first-order
adaptation term B = W2∆W1 +∆W2W1, and the second-order residual ϵ = ∆W2∆W1 across
five derived networks. The left subfigure confirms that ∥ϵ∥ is consistently two orders of magnitude
smaller than ∥S∥ and well below 4% of ∥B∥. The right subfigure further reveals that the element-
wise values of ϵ concentrate tightly around zero, contrasting with the heavier tails of B and S.
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Figure 4: Frobenius norm and element-wise distribution of the semantic, first-order, and second-
order terms across five network configurations. While the first-order term dominates the residual
behavior, the second-order interaction ϵ = ∆W2∆W1 remains negligible in both scale and distri-
bution.

Second, Table 4 reports ∥ϵ∥/∥B∥ ratios across five network variants under varying backdoor
strengths, where perturbations are sampled from zero-mean Gaussian noise with increasing vari-
ance. The inclusion of error bars (mean ± standard deviation) reflects variation across multiple
runs. In typical scenarios where the backdoor signal is weak or comparable to the main seman-
tic component, the second-order interaction consistently remains below 4% of the first-order term.
Even under exaggerated settings where the backdoor signal is scaled to 1.5× or 2× the semantic
strength, ∥ϵ∥/∥B∥ remains within a stable range of 5%–7%, reaffirming the negligible and bounded
nature of second-order interactions across regimes.

Additionally, we extend this analysis to deep transformer-based (Vaswani et al., 2017) models by
computing ∥ϵ∥/∥B∥ for the attention weight product, where W1 and W2 denote the key (K) and
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Table 4: Relative magnitude of second-order interactions, reported as ∥ε∥/∥B∥, across networks and
backdoor strengths. All models are evaluated with S ∼ N (0, 1) and perturbations B ∼ N (0, σ2).

Semantic Dist Backdoor Dist ∥ε∥/∥B∥ for Different Shallow Models

Mi Mj Mwag Mij Mji

S ∼ N (0, 1.02)

B ∼ N (0, 0.12) 2.82±0.19% 2.70±0.20% 3.42±0.23% 2.95±0.15% 3.14±0.21%
B ∼ N (0, 0.52) 1.98±0.21% 1.90±0.28% 1.78±0.18% 1.75±0.12% 1.76±0.18%
B ∼ N (0, 1.02) 3.24±0.22% 3.10±0.32% 2.33±0.17% 2.33±0.12% 2.30±0.17%
B ∼ N (0, 1.52) 4.77±0.25% 4.48±0.33% 3.18±0.14% 3.09±0.15% 2.97±0.12%
B ∼ N (0, 2.02) 6.31±0.27% 6.28±0.35% 4.14±0.29% 4.06±0.14% 3.92±0.18%

query (Q) projection matrices, respectively, and QK⊤ := W2W1. The weight changes ∆W1,
∆W2 are computed relative to the original pretrained RoBERTa-large (Liu et al., 2019b) weights.
All models are trained on SST-2 (Socher et al., 2013), including both benign and backdoored variants
such as BadNet (Kurita et al., 2020), InsertSent (Dai et al., 2019), learnable word substitution
(LWS) (Qi et al., 2021c), and Hidden-Killer (Hidden) (Qi et al., 2021b).

As shown in Table 5, across all pairwise combinations of these models, the relative magnitude of
second-order interactions consistently remains below 4%. Each reported value reflects the mean
and standard deviation computed across all 24 layers of RoBERTa-large. This pattern holds across
both original and recombined variants (Mwag,Mij ,Mji), confirming the stability of second-order
contributions in practical transformer settings.

Table 5: Relative magnitude of second-order interactions, reported as ∥ε∥/∥B∥, computed from the
key (K) and query (Q) projection matrices in RoBERTa-large models trained on SST-2.

Combination ∥ε∥/∥B∥ for Attention Weight Product (QKT ) in RoBERTa-large Models

(Mi +Mj) Mi Mj Mwag Mij Mji

BadNet + InsertSent 3.53±0.77% 3.24±0.61% 2.43±0.39% 2.68±0.51% 2.61±0.50%
BadNet + LWS 3.53±0.77% 3.30±0.65% 2.46±0.4% 2.71±0.46% 2.68±0.49%

BadNet + Hidden 3.53±0.77% 3.30±0.61% 2.49±0.43% 2.77±0.45% 2.72±0.45%
BadNet + Benign 3.53±0.77% 3.27±0.58% 2.52±0.42% 2.78±0.47% 2.73±0.48%

Accordingly, we omit the second-order term ϵ in our definitions and proofs throughout the paper
without loss of generality.
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D PROOFS OF THEOREM 1 AND PROPOSITION 1

Theorem 1 (Module Switching Exceeds WAG in Backdoor Divergence). Under identity activation,
the total backdoor divergence of the Weight-Averaged (WAG) model is upper bounded by the average
divergence of the switched models:

∥Dwag,i∥+ ∥Dwag,j∥ ≤ 1

2

(
∥Dij,i∥+ ∥Dij,j∥+ ∥Dji,i∥+ ∥Dji,j∥

)
. (2)

Proposition 1 (The Existence of a More Divergent Switched Model). Given Theorem 1, there exists
at least one switched model with greater backdoor divergence than Weight-Averaged (WAG) model:

∥Dwag,i∥+ ∥Dwag,j∥ ≤ max
{
∥Dij,i∥+ ∥Dij,j∥, ∥Dji,i∥+ ∥Dji,j∥

}
. (3)

Proof. From Definition 2 and 4, we have the following expressions for the backdoor divergences:

∥Dwag,i∥ = 1

2

∥∥∥(W2(∆W j
1 −∆W i

1) + (∆W j
2 −∆W i

2)W1

)
x
∥∥∥ ,

∥Dwag,j∥ = 1

2

∥∥∥(W2(∆W i
1 −∆W j

1 ) + (∆W i
2 −∆W j

2 )W1

)
x
∥∥∥ ,

∥Dij,i∥ =
∥∥∥(∆W j

2 −∆W i
2)W1x

∥∥∥ , ∥Dij,j∥ =
∥∥∥W2(∆W i

1 −∆W j
1 )x

∥∥∥ ,
∥Dji,i∥ =

∥∥∥W2(∆W j
1 −∆W i

1)x
∥∥∥ , ∥Dji,j∥ =

∥∥∥(∆W i
2 −∆W j

2 )W1x
∥∥∥ .

(5)

Linear relationships. By regrouping terms in the above definitions, we obtain the following vector
identities:

Dwag,i =
1

2
(Dij,i +Dji,i), Dwag,j =

1

2
(Dij,j +Dji,j). (6)

Bounding the average switched model backdoor divergence. Substituting equation 6 into the
norms and applying the triangle inequality (Tversky & Gati, 1982), we have:

∥Dwag,i∥ = ∥1
2
(Dij,i +Dji,i)∥ ≤ 1

2

(
∥Dij,i∥+ ∥Dji,i∥

)
, (7)

∥Dwag,j∥ = ∥1
2
(Dij,j +Dji,j)∥ ≤ 1

2

(
∥Dij,j∥+ ∥Dji,j∥

)
. (8)

Summing both inequalities gives:

∥Dwag,i∥+ ∥Dwag,j∥ ≤ 1

2

(
∥Dij,i∥+ ∥Dji,i∥+ ∥Dij,j∥+ ∥Dji,j∥

)
, (9)

which proves Theorem 1.

Bounding the maximum switched model backdoor divergence. Let:

C1 := ∥Dij,i∥+ ∥Dij,j∥, C2 := ∥Dji,i∥+ ∥Dji,j∥, G := max{C1, C2}. (10)

Since C1 + C2 ≤ 2G, it follows that:

∥Dwag,i∥+ ∥Dwag,j∥ ≤ 1

2
(C1 + C2) ≤ max{C1, C2}, (11)

which proves Proposition 1.

E DERIVATION OF UTILITY LOSS IDENTITY

As discussed in Section 3, utility loss in a two-layer network can be expressed as the difference from
the benign semantic output. For a modelM∗, we define

L∗(x) :=M∗(x)− Sx = B∗x. (12)
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According to the notation in Section 3 and the construction in Definition 3, the utility losses of
constituent and switched models are

Li(x) =
(
W2∆W i

1 +∆W i
2W1

)
x; Lj(x) =

(
W2∆W j

1 +∆W j
2W1

)
x;

Lij(x) =
(
W2∆W i

1 +∆W j
2W1

)
x; Lji(x) =

(
W2∆W j

1 +∆W i
2W1

)
x.

(13)

Regrouping these expressions yields the key identity,

Lij(x) + Lji(x) =
(
W2∆W i

1 +∆W j
2W1

)
x+

(
W2∆W j

1 +∆W i
2W1

)
x

=
(
W2∆W i

1 +∆W i
2W1

)
x+

(
W2∆W j

1 +∆W j
2W1

)
x

= Li(x) + Lj(x).

(14)

F EMPIRICAL EVALUATION OF UTILITY LOSS

As derived in Appendix E, the identity, Lij(x) + Lji(x) = Li(x) + Lj(x), characterizes the
combined loss of a switched pair relative to its constituent models. We now evaluate loss at the level
of individual switched models with respect to the benign semantic output.

For any modelM∗, define its utility loss ratio relative to benign semantic S as

r∗(x) :=
∥L∗(x)∥
∥Sx∥

for inputs with ∥Sx∥ > 0. (15)

To measure how a switched model compares to its originals, we denote

eij,i(x) := rij(x)− ri(x), eij,j(x) := rij(x)− rj(x),

eji,i(x) := rji(x)− ri(x), eji,j(x) := rji(x)− rj(x).
(16)

Let E = {eij,i, eij,j , eji,i, eji,j} denote the collection of all signed differences between the switched
models and their origins. A value close to zero indicates that the switched modelsMij andMji

preserve the benign utility at a level comparable to their original models Mi and Mj . Negative
value further implies that a switched model provides representations closer to the benign semantics
than those by corresponding original models.
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Figure 5: Empirical distribution of E , the relative utility loss differences between switched models
(Mij ,Mji) and their originals (Mi,Mj). Non-positive values indicate that a switched model is
closer to the benign utility, with more negative values corresponding to closer alignment.

Figure 5 shows the empirical distribution of E aggregated over 1,000 randomly sampled model pairs
(Mi,Mj). The combined results yield a mean of −0.014 ± 0.008, 99th percentile of 0.004, and a
maximum of 0.031, suggesting that the maximum deviation from the originals is below 3%, while on
average the switched modelsMij andMji incur slightly smaller loss relative to the benign utility.
These findings demonstrate that utility is effectively preserved under module switching, compared
to the original constituent models.
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G MODULE SWITCHING WITH ADDITIONAL ACTIVATION FUNCTIONS

We extend the experiments from Section 3 to two additional activation functions: tanh and sig-
moid (Dubey et al., 2022), in addition to the linear and ReLU results discussed in the main text. For
each activation, we simulate 1000 pairs of fine-tuned modelsMi andMj with a shared pretrained
semantic component S ∼ N (0, 12) and individual backdoor shifts B∗ ∼ N (0, 0.12). We then con-
struct the weight-averaged modelMwag and the module-switched modelsMij andMji, as defined
in Definitions 1 and 3.

Figure 6 visualizes the semantic and backdoor alignment of each model type across the four activa-
tion functions. Consistently across activations, we observe that:

• Fine-tuned models remain closely aligned with their respective backdoor direction B∗x;
• WAG models deviate more from the backdoor pattern;
• Switched models exhibit the larger distance to backdoor patterns, indicating stronger miti-

gation;
• All model types maintain proximity to the semantic output Sx, confirming that semantic

information is preserved.

These results generalize the findings in Figure 2 to a broader range of nonlinear activations, re-
inforcing the conclusion that module switching more effectively disrupts backdoor behavior while
retaining semantic utility.
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Figure 6: Euclidean distances between normalized output vectors of pretrained, fine-tuned, WAG,
and switched networks, relative to semantic output Sx and backdoor output B∗x, under linear,
ReLU, tanh, and sigmoid activations.
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H FITNESS SCORE CALCULATION FOR EVOLUTIONARY SEARCH

Building upon the heuristic rules established in Section 4.2 for disrupting backdoor connections in
compromised models, we develop a comprehensive fitness function. This function incorporates five
key components that collectively evaluate the quality of a module composition strategy.

H.1 HEURISTIC RULES

Our fitness function implements the following rules through penalties and rewards:

Heuristic-based Search Rules

1. Intra-layer adjacency penalty: Penalizes adjacent modules from the same source model
within a specific layer i (e.g., Qi and Ki).

2. Consecutive-layer adjacency penalty: Discourages direct connections between mod-
ules from the same source model across consecutive layers i and i+1 (e.g., Pi to Qi+1).

3. Residual-path adjacency penalty: Applies a distance-weighted penalty to modules
from the same source model connected via residual connections between layers i and
j (e.g., Oi to Qj , where j > i), with diminishing impact as j − i increases.

4. Balance penalty: Promotes uniform distribution of modules {Q,K, V,O, I, P} across
source models to prevent any single model from dominating the architecture.

5. Diversity reward: Encourages varied module combinations across layers to enhance
architectural diversity.

H.2 MATHEMATICAL FORMULATION

As introduced in Section 4.3, the total fitness score for a given module composition strategy s is:

F (s) = −λ1Aintra(s)− λ2Acons(s)− λ3Ares(s)− λ4Bbal(s) + λ5Rdiv(s), (17)

where all λk are weight factors (default to 1.0) that control the relative importance of each compo-
nent in the overall fitness score.

Each component is calculated as follows:

1. Intra-layer Adjacency (Aintra(s))

Aintra(s) =

|s|∑
l=1

INTRAVIOLATION(s[l]) (18)

Here, INTRAVIOLATION quantifies the number of adjacent module pairs from the same source
model within layer s[l].

2. Consecutive-layer Adjacency (Acons(s))

Acons(s) =

|s|−1∑
l=1

CONSECVIOLATION(s[l], s[l + 1]) (19)

The function CONSECVIOLATION counts module pairs from the same source model that are directly
connected between consecutive layers.

3. Residual Connections (Ares(s))

Ares(s) =

|s|∑
l=1

|s|∑
k=l+1

RESIDUALVIOLATION(s[l], s[k])× (0.5)k−l (20)

This term evaluates residual connections between layers s[l] and s[k], with RESIDUALVIOLATION
weighted by (0.5)k−l to reduce the impact of long-range connections.
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4. Module Balance (Bbal(s))

Bbal(s) =

nmodels∑
i=1

∑
m∈M

|counti,m − countideal| (21)

where counti,m is the count of module type m from model i, M = {Q,K, V,O, I, P} is the set of
module types, and countideal = |s|/nmodels represents the ideal count per module type per model.

5. Layer Diversity (Rdiv(s))
Rdiv(s) = |unique(s)| (22)

where unique(s) is the set of unique layer compositions in strategy s.
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I ADDITIONAL EXPERIMENT SETUP

I.1 DATASET STATISTICS

We evaluate our method on four text and two vision datasets. The statistics of each dataset and the
settings of backdoor target class are shown in Table 6. In addition, we conduct an ablation study
on merging backdoored models with different target labels, and our method remains effective, as
discussed in Section 5.3.

Table 6: The statistics of the evaluated text and vision datasets.

Domain Dataset Classes Train Test Target Class
Clean Poison

Text
SST-2 2 67,349 872 444 Negative (0)
MNLI 3 100,000 400 285 Neutral (1)

AGNews 4 120,000 7,600 5,700 Sports (1)

Vision CIFAR-10 10 50,000 10,000 9,000 Automobile (1)
TinyImageNet 200 100,000 10,000 9,950 European Fire Salamander (1)

I.2 DATASET LICENSES

We evaluate our method on the following datasets: SST-2 (Socher et al., 2013), MNLI (Williams
et al., 2018), AG News (Zhang et al., 2015), CIFAR-10 (Krizhevsky et al., 2009), and TinyIma-
geNet (Le & Yang, 2015).

The MNLI dataset is released under the Open American National Corpus (OANC) license, which
permits free use, as stated in the original paper (Williams et al., 2018). The AG News dataset
is distributed with a disclaimer stating it is provided ”as is” without warranties and does not im-
pose explicit restrictions on academic use.1 No public licensing information was found for SST-2,
CIFAR-10, or TinyImageNet. We use all datasets solely for academic, non-commercial research
purposes, in accordance with standard practice in the machine learning community.

I.3 DEFENSE BASELINES

As discussed in Section 5.1, we evaluate seven defensive approaches across text and vision domains:
three model-merging techniques common to both domains, plus two domain-specific data purifica-
tion methods for each–one applied during training and another during inference.

The three model-merging methods are: (1) TIES (Yadav et al., 2023), (2) DARE (Yu et al., 2024),
and (3) WAG (Arora et al., 2024). These methods are chosen because they are applicable to both
text and vision domains, do not rely on assumptions about backdoor priors, and eliminate the need
for large-scale proxy clean or compromised data used for model purification or retraining. Their
alignment with our setting makes them suitable for comparison. For conventional baselines, we use
Z-Def. (He et al., 2023) and ONION (Qi et al., 2021a) in the text domain, which detect outlier trigger
words during training and testing, respectively. For the vision domain, we select CutMix (Yun
et al., 2019) and ShrinkPad (Li et al., 2021b). CutMix mitigates backdoor attacks by mixing image
patches, disrupting the spatial integrity of triggers. ShrinkPad defends by shrinking the image and
padding it, altering trigger placement, and reducing its effectiveness. For the vision domain, we use
the BackdoorBox toolkit (Li et al., 2023b) to apply these defenses. Specifically, for CutMix, we use
30 epochs to repair the model. While these well-established methods are representative in terms of
usage and performance, their dependence on data access may limit practicality in some scenarios.
All baseline methods use their open-source codebases with default hyperparameters.

1http://groups.di.unipi.it/˜gulli/AG_corpus_of_news_articles.html
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J ADDITIONAL RESULTS

J.1 OVERALL DEFENSE PERFORMANCE FOR TEXTUAL BACKDOOR ATTACKS

Due to space constraints, we present comprehensive experimental results for three datasets (SST-
2, MNLI, and AG News) in Table 7, Table 8, and Table 9. All experiments follow the controlled
settings described in Section 5.1, utilizing RoBERTa-large as the victim model, with results averaged
across three random seeds.

We observe that our method yields decent performance on the SST-2 dataset: it achieves top per-
formance in 8 out of 10 attack combinations, with the remaining 2 combinations ranking second
best. In cases where our method ranks first, it significantly outperforms baseline approaches. For in-
stance, when combining BadNet with LWS attacks, our method achieves an average ASR score 21%
lower than the second-best defense method. Moreover, our method consistently achieves the lowest
individual ASR scores across both attacks in most combinations, highlighting its effectiveness in
simultaneously mitigating multiple threats when merging compromised models.

Even in scenarios where our method ranks second, it maintains comparable defense performance to
the top-performing approach. Furthermore, when combining clean models with compromised ones,
our method demonstrates strong resistance against malicious attack injection, as evidenced by the
lowest ASR scores. Notably, our method maintains good utility preservation across all combinations,
showing minimal impact to the model performance.

Table 7: Performance comparison on the SST-2 dataset using the RoBERTa-large model.
Defense CACC BadNet Insert LWS Hidden AVG. Defense CACC BadNet Insert LWS Hidden AVG.

Benign 95.9 4.1 2.2 12.8 16.5 8.9 Z-Def 95.6∗ 4.6 1.8 97.3 35.7 34.9
Victim 95.9∗ 100.0 100.0 98.0 96.5 98.6 ONION 92.8∗ 56.8 99.9 85.7 92.9 83.8

Combined: BadNet + InsertSent Combined: InsertSent + LWS

WAG 96.3 56.3 7.4 - - 31.9 WAG 96.1 - 15.1 43.3 - 29.2
TIES 95.9 88.7 17.0 - - 52.9 TIES 96.1 - 35.8 64.9 - 50.3

DARE 96.5 57.8 36.3 - - 47.1 DARE 96.4 - 44.4 31.5 - 37.9
Ours 96.2 36.9 7.1 - - 22.0 Ours 96.0 - 11.9 39.7 - 25.8

Combined: BadNet + LWS Combined: InsertSent + HiddenKiller

WAG 96.2 74.0 - 50.3 - 62.2 WAG 96.3 - 12.5 - 28.5 20.5
TIES 95.9 88.1 - 66.1 - 77.1 TIES 95.9 - 37.5 - 39.0 38.3

DARE 96.2 60.4 - 62.5 - 61.4 DARE 96.6 - 38.7 - 29.1 33.9
Ours 96.0 41.7 - 39.0 - 40.4 Ours 95.8 - 10.1 - 28.7 19.4

Combined: BadNet + HiddenKiller Combined: LWS + HiddenKiller

WAG 96.1 63.9 - - 29.0 46.4 WAG 96.4 - - 60.5 41.7 51.1
TIES 96.0 90.4 - - 36.9 63.6 TIES 96.0 - - 77.8 55.8 66.8

DARE 96.7 36.3 - - 47.6 41.9 DARE 96.7 - - 67.7 43.3 55.5
Ours 96.1 40.5 - - 27.7 34.1 Ours 96.0 - - 58.6 47.2 52.9

Combined: Benign + BadNet Combined: Benign + LWS

WAG 96.1 39.3 - - - 39.3 WAG 96.1 - - 43.3 - 43.3
TIES 95.7 69.2 - - - 69.2 TIES 95.8 - - 60.7 - 60.7

DARE 96.4 43.2 - - - 43.2 DARE 96.6 - - 72.3 - 72.3
Ours 96.1 12.2 - - - 12.2 Ours 95.9 - - 39.0 - 39.0

Combined: Benign + InsertSent Combined: Benign + HiddenKiller

WAG 96.1 - 5.5 - - 5.5 WAG 96.0 - - - 24.9 24.9
TIES 96.1 - 9.0 - - 9.0 TIES 96.1 - - - 30.0 30.0

DARE 96.6 - 4.7 - - 4.7 DARE 96.7 - - - 38.2 38.2
Ours 96.1 - 4.1 - - 4.1 Ours 96.0 - - - 25.5 25.5

For the results of MNLI dataset Table 8, our method demonstrates more balanced and robust defense
performance across different attack combinations. While DARE occasionally achieves lower ASR
on individual attacks (e.g., 11.6% ASR for BadNet in BadNet+InsertSent combination), it shows sig-
nificant vulnerability to the other attack type (90.6% ASR for InsertSent), indicating potential risks
when merging with new models. In contrast, our method maintains consistently lower average ASRs
across various combinations (e.g., 23.7% for BadNet+InsertSent, 43.7% for InsertSent+LWS, and
40.2% for InsertSent+Hidden), demonstrating its effectiveness in simultaneously defending against
multiple attack types.
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For the results of AG NEWS dataset Table 9, we observe a similar pattern, where our method
provides more balanced defense capabilities. Notably, for the InsertSent+LWS combination, while
DARE achieves a low ASR of 1.2% on LWS, it remains highly vulnerable to InsertSent attacks
(99.6% ASR). In contrast, our method maintains consistently lower ASRs for both attacks (9.5%
and 16.7%), resulting in a better average performance of 13.1%.

Table 8: Performance comparison on the MNLI dataset using the RoBERTa-large model.
Defense CACC BadNet Insert LWS Hidden AVG. Defense CACC BadNet Insert LWS Hidden AVG.

Benign 87.6 12.3 12.6 26.4 36.9 22.1 Z-Def 89.2∗ 11.1 11.6 92.2 50.6 41.4
Victim 89.5∗ 100.0 100.0 96.0 99.9 99.0 ONION 86.3∗ 64.3 98.6 89.0 98.8 87.7

Combined: BadNet + InsertSent Combined: InsertSent + LWS

WAG 90.3 39.8 27.6 - - 33.7 WAG 90.6 - 36.1 62.6 - 49.4
TIES 90.3 73.6 56.1 - - 64.9 TIES 90.3 - 60.0 65.3 - 62.7

DARE 91.3 11.6 90.6 - - 51.1 DARE 91.4 - 88.8 40.2 - 64.5
Ours 90.5 24.8 22.5 - - 23.7 Ours 91.0 - 24.8 62.5 - 43.7

Combined: BadNet + LWS Combined: InsertSent + Hidden

WAG 89.8 59.3 - 69.3 - 64.3 WAG 91.5 - 36.6 - 46.9 41.8
TIES 90.0 87.3 - 73.1 - 80.2 TIES 90.9 - 65.1 - 55.2 60.2

DARE 90.5 71.7 - 56.4 - 64.1 DARE 91.8 - 90.8 - 40.2 65.5
Ours 90.1 45.1 - 68.9 - 57.0 Ours 91.1 - 24.3 - 56.1 40.2

Combined: BadNet + Hidden Combined: LWS + Hidden

WAG 89.9 61.6 - - 51.7 56.7 WAG 89.8 - - 70.2 55.1 62.7
TIES 90.0 89.4 - - 64.0 76.7 TIES 90.1 - - 73.8 59.1 66.5

DARE 90.9 33.4 - - 81.8 57.6 DARE 91.0 - - 41.5 88.7 65.1
Ours 90.2 32.5 - - 59.3 45.9 Ours 89.9 - - 70.3 57.3 63.8

Combined: Benign + BadNet Combined: LWS + Benign

WAG 90.2 47.8 - - - 47.8 WAG 89.0 - - 65.6 - 65.6
TIES 89.8 64.9 - - - 64.9 TIES 89.8 - - 69.3 - 69.3

DARE 91.0 41.8 - - - 41.8 DARE 90.1 - - 48.9 - 48.9
Ours 90.1 43.3 - - - 43.3 Ours 89.3 - - 64.1 - 64.1

Combined: InsertSent + Benign Combined: Hidden + Benign

WAG 90.4 - 23.2 - - 23.2 WAG 90.3 - - - 47.0 47.0
TIES 90.4 - 40.6 - - 40.6 TIES 89.8 - - - 54.3 54.3

DARE 91.3 - 42.3 - - 42.3 DARE 90.9 - - - 63.3 63.3
Ours 90.5 - 18.3 - - 18.3 Ours 89.4 - - - 47.9 47.9

J.2 OVERALL DEFENSE PERFORMANCE FOR VISION BACKDOOR ATTACKS

Regarding the vision domain discussed in Section 5.2, we present the full results for the CIFAR-10
and TinyImageNet datasets with the ViT model in Table 10 and Table 11, respectively.

While most methods achieve relatively low ASRs for many attack types, our approach is particularly
effective against stealthier attacks like PhysicalBA. This is most evident in the BadNet+PhysicalBA
combination, where our method reduces the ASR to 18.5% for both attacks while maintaining a
high clean accuracy of 98.7% in CIFAR-10 dataset. These results highlight our method’s strength in
defending against more sophisticated visual backdoor attacks.

J.3 MULTIPLE-MODEL FUSION DEFENSE

We evaluate our method in multi-model fusion scenarios as discussed in Section 5.2, beginning with
three distinct backdoored models and then moving to a more challenging four-model setting involv-
ing collusion. Applied on three models, our approach derives the strategies (illustrated in Figure 15)
that consistently deliver strong defensive performance, reducing the average Attack Success Rate
(ASR) to below 20% across different combinations, as shown in Table 12.

Although WAG may achieve relatively low ASRs when combining multiple models, we argue that
in realistic the likelihood of colluding backdoors increases. In such settings, WAG becomes less
effective, as naive averaging cannot neutralize repeated malicious patterns. In contrast, our module-
switching strategy is more resilient, as it strategically disrupts these recurring shortcuts. The results
in Table 13, obtained using the strategy illustrated in Figure 16, confirm this advantage and demon-
strate the robustness of MSD against collusive models.
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Table 9: Performance comparison on the AG NEWS dataset using the RoBERTa-large model.
Defense CACC BadNet Insert LWS Hidden AVG. Defense CACC BadNet Insert LWS Hidden AVG.

Benign 95.4 1.9 0.5 0.5 1.1 1.0 Z-Def 95.4∗ 1.6 0.4 97.9 100.0 50.0
Victim 95.0∗ 99.9 99.6 99.6 100.0 99.8 ONION 92.3∗ 59.4 97.8 84.8 99.6 85.4

Combined: BadNet + InsertSent Combined: InsertSent + LWS

WAG 95.4 75.2 60.2 - - 67.7 WAG 95.2 - 39.5 17.8 - 28.7
TIES 95.3 92.4 95.6 - - 94.0 TIES 95.1 - 90.5 55.7 - 73.1

DARE 95.6 33.7 66.6 - - 50.1 DARE 95.4 - 99.6 1.2 - 50.4
Ours 95.3 72.3 42.5 - - 57.4 Ours 95.1 - 9.5 16.7 - 13.1

Combined: BadNet + LWS Combined: InsertSent + Hidden

WAG 95.2 76.1 - 28.1 - 52.1 WAG 95.4 - 61.4 - 43.6 52.5
TIES 95.1 95.6 - 64.4 - 80.0 TIES 95.3 - 93.4 - 75.3 84.4

DARE 95.4 99.3 - 3.5 - 51.4 DARE 95.5 - 84.0 - 15.8 49.9
Ours 95.2 75.8 - 26.0 - 50.9 Ours 95.3 - 41.7 - 47.5 44.6

Combined: BadNet + Hidden Combined: LWS + Hidden

WAG 95.2 73.2 - - 37.2 55.2 WAG 95.1 - - 31.7 62.6 47.2
TIES 95.3 91.9 - - 71.9 81.9 TIES 95.1 - - 67.5 92.2 79.9

DARE 95.4 66.7 - - 40.4 53.6 DARE 95.3 - - 2.5 99.9 51.2
Ours 95.2 56.5 - - 38.1 47.3 Ours 95.2 - - 33.5 60.5 47.0

Combined: Benign + BadNet Combined: Benign + LWS

WAG 95.4 65.4 - - - 65.4 WAG 95.2 - - 14.0 - 14.0
TIES 95.4 87.4 - - - 87.4 TIES 95.2 - - 47.1 - 47.1

DARE 95.6 33.6 - - - 33.6 DARE 95.6 - - 2.6 - 2.6
Ours 95.4 46.4 - - - 46.4 Ours 95.2 - - 15.7 - 15.7

Combined: Benign + InsertSent Combined: Benign + Hidden

WAG 95.4 - 56.6 - - 56.6 WAG 95.3 - - - 36.4 36.4
TIES 95.3 - 93.2 - - 93.2 TIES 95.3 - - - 68.8 68.8

DARE 95.6 - 3.1 - - 3.1 DARE 95.5 - - - 7.4 7.4
Ours 95.3 - 16.6 - - 16.6 Ours 95.3 - - - 48.0 48.0

Table 10: Performance comparison on the CIFAR-10 dataset using the ViT model.
Defense CACC BadNet WaNet BATT PBA AVG. Defense CACC BadNet WaNet BATT PBA AVG.

Benign 98.8 10.1 10.2 7.7 10.1 9.5 CutMix 97.7∗ 87.1 70.6 99.9 64.9 80.6
Victim 98.5∗ 96.3 84.7 99.9 89.4 92.6 ShrinkPad 97.3∗ 14.4 51.3 99.9 88.3 63.5

Combined: BadNet + WaNet Combined: WaNet + BATT

WAG 98.7 13.8 10.6 - - 12.2 WAG 98.7 - 10.2 22.3 - 16.3
TIES 98.6 11.9 10.6 - - 11.3 TIES 98.9 - 10.2 23.9 - 17.0

DARE 98.8 83.3 10.2 - - 46.7 DARE 98.9 - 10.2 45.8 - 28.0
Ours 98.7 12.3 10.5 - - 11.4 Ours 98.7 - 10.3 19.1 - 14.7

Combined: BadNet + BATT Combined: WaNet + PhysicalBA

WAG 98.9 10.1 - 42.7 - 26.4 WAG 98.8 - 10.2 - 10.2 10.2
TIES 98.9 10.1 - 55.8 - 33.0 TIES 98.9 - 10.1 - 10.3 10.2

DARE 99.0 69.2 - 26.8 - 48.0 DARE 98.9 - 10.1 - 21.0 15.6
Ours 98.7 10.2 - 32.6 - 21.4 Ours 98.7 - 10.3 - 10.2 10.2

Combined: BadNet + PhysicalBA Combined: BATT + PhysicalBA

WAG 99.0 39.5 - - 39.5 39.5 WAG 98.9 - - 26.8 10.0 18.4
TIES 98.9 43.1 - - 43.1 43.1 TIES 98.7 - - 23.4 10.0 16.7

DARE 99.0 72.2 - - 72.2 72.2 DARE 98.9 - - 23.0 10.1 16.5
Ours 98.7 18.5 - - 18.4 18.5 Ours 98.8 - - 9.8 10.0 9.9

Combined: Benign + BadNet Combined: Benign + WaNet

WAG 98.8 19.4 - - - 19.4 WAG 98.9 - 10.2 - - 10.2
TIES 98.8 10.2 - - - 10.2 TIES 98.6 - 10.3 - - 10.3

DARE 98.8 10.3 - - - 10.3 DARE 98.8 - 10.2 - - 10.2
Ours 98.7 10.3 - - - 10.3 Ours 98.7 - 10.3 - - 10.3

Combined: Benign + BATT Combined: Benign + PhysicalBA

WAG 98.8 - - 19.4 - 19.4 WAG 99.0 - - - 10.1 10.1
TIES 98.8 - - 23.4 - 23.4 TIES 98.8 - - - 10.2 10.2

DARE 99.0 - - 28.2 - 28.2 DARE 99.9 - - - 10.1 10.1
Ours 98.8 - - 15.8 - 15.8 Ours 98.9 - - - 10.1 10.1

J.4 FITNESS SCORE COMPARISON OF DIFFERENT STRATEGY

We investigate the defense performance using two different evolutionary search strategies, with and
without early stopping, as illustrated in Figure 8 and 7, and present their fitness score breakdown
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Table 11: Performance comparison on the TinyImageNet dataset using the ViT model.
Defense CACC BadNet WaNet BATT PBA AVG.

Benign 89.1 0.51 0.01 0.04 0.03 0.15
Victim 85.8∗ 97.8 98.9 100.0 90.0 96.6

Combined: BadNet + WaNet

WAG 88.2 11.7 5.5 - - 8.6
Ours 84.2 0.6 0.2 - - 0.4

Combined: BadNet + BATT

WAG 87.3 0.11 - 0.15 - 0.13
Ours 86.8 0.03 - 0.07 - 0.05

Combined: BadNet + PhysicalBA

WAG 88.5 58.5 - - 35.9 47.2
Ours 84.8 48.2 - - 29.1 38.7

Table 12: Results of combining three backdoored models on SST-2. Best results are highlighted.
Defense CACC BadNet Insert LWS Hidden AVG. Defense CACC BadNet Insert LWS Hidden AVG.

BadNet + InsertSent + LWS BadNet + InsertSent + HiddenKiller

WAG 96.3 9.5 3.4 21.6 - 11.5 WAG 96.7 5.9 2.7 - 19.1 9.2
Ours 96.0 9.2 3.8 25.9 - 13.0 Ours 96.2 5.9 1.6 - 18.7 8.7

BadNet + LWS + HiddenKiller InsertSent + LWS + HiddenKiller

WAG 96.0 10.8 - 30.9 20.3 20.7 WAG 96.0 - 2.7 25.5 19.6 15.9
Ours 96.2 7.9 - 25.7 20.7 18.1 Ours 96.2 - 2.1 24.1 19.4 15.2

in Table 14. The early stopping criterion terminates the search when no improvement in fitness score
is observed over 100,000 iterations. We observe a positive correlation between the fitness score and
defense performance: the adopted strategy without early stopping achieves a lower fitness score and
reduces the ASR by 27.2%. By examining the score breakdowns and the visualized combinations,
we attribute this improvement to fewer violations of residual connection rules in the adopted strategy,
which helps disrupt subtle spurious correlations more effectively.

J.5 STRUCTURAL OVERLAP ANALYSIS OF SEARCHED STRATEGIES

As discussed in Section 5.2, we analyze the structural overlap among the three strategies obtained
from different random seeds, corresponding to the adopted strategy in Figure 7 and the two alterna-
tives in Figure 9. The visualization is provided in Figure 10. Only 10 out of 144 module positions
match across all three strategies, yielding an overlap rate of 6.94%. The overlapping positions are
scattered throughout the network, and no specific region or module type exhibits higher consistency
than others.

These results indicate that MSD succeeds by inducing broad structural disruption rather than de-
pending on attack-specific or task-specific critical points, which helps make the discovered strategies
transferable and reusable across different scenarios.

J.6 RESULTS OF CANDIDATE SELECTION

As our method asymmetrically allocates modules to models, a set of candidates is generated, for
which we design a selection method illustrated in Section 4.4. While the chosen candidate consis-
tently performs well, we analyze unselected candidates’ performance, as shown in Table 15. Our
selection method correctly identifies the best candidates in most cases, outperforming alternatives
by a significant margin. Although some unselected candidates achieve a lower ASR in certain cases,
our selected candidate maintains comparable performance.
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Table 13: Performance comparison in a four-model fusion scenario with backdoor collusion on the
SST-2 dataset using the roberta-large model. We combine two pairs of models, where each pair
shares the same backdoor attack. Best defensive results (lowest ASR) are highlighted.

Combination Defense CACC (%)
(↑)

ASR (↓)
Atk1 Atk2 AVG.

BadNet+BadNet+Sent+Sent WAG 96.3 56.3 7.4 31.9
Ours (MSD) 96.7 32.0 9.1 20.5

BadNet+BadNet+LWS+LWS WAG 96.1 74.0 50.3 62.2
Ours (MSD) 95.7 51.1 60.3 55.7

BadNet+BadNet+Hidden+Hidden WAG 96.2 63.9 29.0 46.4
Ours (MSD) 96.2 42.4 24.2 33.3

Table 14: Comparison of strategy fitness scores and performance in combining Benign with BadNet
model.

Early Stopping Strategy Adopted Strategy
Fitness Score Components

Intra Layer Score -42.00 Intra Layer Score -48.00
Inter Layer Score -21.00 Inter Layer Score -15.00
Residual Connection Score -48.24 Residual Connection Score -24.02
Balance Score 0.00 Balance Score 0.00
Diversity Score 17.00 Diversity Score 12.00

Total Score -94.24 Total Score -75.01
Performance Metrics

CACC (↑) 96.70 CACC (↑) 96.10
ASR (↓) 39.40 ASR (↓) 12.20

J.7 IMPORTANCE OF HEURISTIC RULES

We introduce five heuristic rules in Section 4.2 to guide the evolutionary search for module switching
strategies. To assess the contribution of each rule, we perform ablation experiments by individually
removing the first three rules, which aim to disconnect adjacent modules at different structural levels,
and measure the resulting defense performance under three settings. As shown in Table 16, remov-
ing any of these rules generally leads to performance degradation, supporting the complementary
nature of the full rule set. We further visualize the searched strategies resulting from each ablation
in Figures 11 to 13.

J.8 GENERALIZATION ACROSS MODEL ARCHITECTURES

As discussed in Section 5.3, we evaluate our method across three model architectures–RoBERTa-
large, BERT-large, and DeBERTa-v3-large–under three backdoor settings. As shown in Table 17,
our defense consistently achieves lower ASR compared to the baseline WAG across all models.
Notably, we apply the same unified searched strategy (presented in Figure 7) to all architectures,
demonstrating the strong generalization and transferability of our method. This supports its scala-
bility and practicality in real-world applications.

To further examine the generality of MSD beyond Transformer-based families, we extend MSD
to CNN architectures, ResNet-18 and ResNet-50 (He et al., 2016), on the CIFAR-10 dataset. The
corresponding searched strategies are presented in Figure 17 and Figure 18, and the quantitative
results are shown in Table 18.

Across all attack combinations, MSD provides robust defense performance that is comparable to or
better than WAG. For ResNet-18, MSD achieves average ASRs of 11.78% and 10.59% under the
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Table 15: Performance comparison of selected and unselected candidates on SST-2.

Setting
Selection candidate Unselected candidate Overall

Mean ASR
(↓)

WAG
Mean ASR

(↓)CACC
(↑)

AVG. ASR
(↓)

CACC
(↑)

AVG. ASR
(↓)

BadNet+InsertSent 96.2 22.0 96.5 31.2 26.6 31.9

BadNet+LWS 96.0 40.4 95.9 72.4 56.4 62.2

BadNet+Hidden 96.1 34.1 96.0 48.5 41.3 46.5

InsertSent+LWS 96.0 25.8 96.0 30.3 28.1 29.2

InsertSent+Hidden 95.8 19.4 96.1 19.2 19.3 20.5

LWS+Hidden 96.0 52.9 96.2 49.6 51.3 51.1

Average 96.0 32.4 96.1 41.9 37.2 40.2

Table 16: Impact of heuristic rule ablations under different combinations of backdoor settings on
SST-2 using the RoBERTa-large model. ∆ denotes the change in average ASR relative to the full
rule set.

Setting Ablation CACC
(↑)

ASR (↓)
Atk1 Atk2 AVG. ∆

BadNet + InsertSent

All rules (full) 96.2 36.9 7.1 22.0 –
w/o rule 1 96.0 33.2 18.7 25.9 +3.9
w/o rule 2 96.3 60.6 14.1 37.3 +15.3
w/o rule 3 96.3 43.1 6.2 24.6 +2.6

BadNet + LWS

All rules (full) 96.0 41.7 39.0 40.4 –
w/o rule 1 95.9 46.2 51.2 48.7 +8.3
w/o rule 2 96.0 68.1 62.8 65.4 +25.0
w/o rule 3 96.0 69.1 46.3 57.7 +17.3

BadNet + Hidden

All rules (full) 96.1 40.5 27.7 34.1 –
w/o rule 1 95.9 14.0 32.8 23.4 -10.7
w/o rule 2 96.1 59.4 29.4 44.4 +10.3
w/o rule 3 96.0 56.6 29.1 42.9 +8.8

BadNet+BATT and BadNet+WaNet settings, outperforming WAG while keeping clean accuracy sta-
ble. For ResNet-50, MSD reduces the average ASR to 11.07% and 9.90% on the two combinations,
again achieving the lowest ASRs among all evaluated methods.

These results indicate that MSD naturally extends to convolutional architectures and maintains
strong defensive capability without requiring CNN-specific modifications, supporting its cross-
domain applicability.

J.9 MINIMUM CLEAN DATA REQUIREMENT

By default, we use 50 clean data points per class to guide the candidate selection process (as de-
scribed in Section 4.4). To further investigate the minimum clean data required for effective de-
fense, we reduce this to 20 samples per class across all three model architectures on SST-2. As
shown in Table 17, our approach continues to select candidates with low ASR even under this con-
strained setting. These results indicate that the method remains effective in low-resource scenarios
with limited clean supervision.

J.10 PERFORMANCE UNDER VARYING POISONING RATES

As discussed in Section 5.3, we further evaluate the robustness of our method under varying poi-
soning rates (20%, 10%, and 1%) on SST-2 dataset using the RoBERTa-large model. As shown
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Table 17: Cross-model evaluation under varying clean data budgets on SST-2. N = 50 and N = 20
indicate the number of clean samples per class used for validation.

Setting Defense
RoBERTa-large BERT-large DeBERTa-v3-large

CACC
(↑)

ASR (↓) CACC
(↑)

ASR (↓) CACC
(↑)

ASR (↓)
Atk1 Atk2 AVG. Atk1 Atk2 AVG. Atk1 Atk2 AVG.

BadNet +
InsertSent

WAG 96.3 56.3 7.4 31.9 93.3 40.2 60.1 50.2 96.1 47.4 5.2 26.3
Ours (N = 50) 96.2 36.9 7.1 22.0 93.5 39.7 38.1 38.9 96.3 40.4 5.2 22.8
Ours (N = 20) 96.2 47.7 6.6 27.1 93.5 39.7 38.1 38.9 96.3 32.8 5.1 19.0

BadNet +
LWS

WAG 96.2 74.0 50.3 62.2 93.1 76.9 63.0 69.9 96.2 63.4 79.5 71.5
Ours (N = 50) 96.0 41.7 39.0 40.4 93.0 73.9 61.3 67.6 96.0 48.7 73.0 60.8
Ours (N = 20) 96.0 41.7 39.0 40.4 93.0 76.5 63.6 70.0 96.0 48.7 73.0 60.8

BadNet +
Hidden

WAG 96.1 63.9 29.0 46.5 93.3 56.9 43.8 50.3 96.2 48.3 39.6 43.9
Ours (N = 50) 96.1 40.5 27.7 34.1 93.4 50.3 37.9 44.1 96.1 22.7 41.0 31.8
Ours (N = 20) 96.2 34.9 25.6 30.3 93.4 50.3 37.9 44.1 96.3 22.7 41.0 31.8

Table 18: Defense performance on CNN architectures (ResNet-18 and ResNet-50) on CIFAR-10.
MSD achieves comparable or lower ASRs than WAG across diverse combinations.

Model Combination Method CACC (↑) Atk1 ASR (↓) Atk2 ASR (↓) AVG. ASR (↓)

ResNet-18

BadNet + BATT
No Defense 95.93∗ 98.34 99.84 99.09

WAG 96.34 10.21 13.87 12.04
Ours 94.46 10.18 13.37 11.78

BadNet + WaNet
No Defense 95.79∗ 98.34 100.0 99.17

WAG 96.14 10.94 10.15 10.55
Ours 94.41 11.26 9.91 10.59

ResNet-50

BadNet + BATT
No Defense 95.13∗ 98.42 99.81 99.12

WAG 96.61 10.29 13.71 12.00
Ours 95.59 10.02 12.11 11.07

BadNet + WaNet
No Defense 94.99∗ 98.42 99.91 99.17

WAG 96.53 10.31 9.99 10.15
Ours 96.13 10.04 9.75 9.90

in Table 19, our method consistently achieves lower ASR than WAG across settings that combine
models poisoned with different attack methods and poisoning ratios.

J.11 PERFORMANCE UNDER ADAPTIVE ATTACKS

As discussed in Section 5.3, we evaluate robustness under two adaptive scenarios: (1) when a
searched strategy is exposed and exploited by an attacker who adversarially retrains the model by
freezing unused modules while continuing to fine-tune the selected ones on poisoned data, aiming
to preserve them after module switching; (2) advanced adaptive backdoor attacks such as Adaptive-
Patch (Qi et al., 2023).

For (1), there is no single fixed strategy: the defender can rerun the search with different seeds to
obtain diverse strategies. This flexibility provides protection even if the attacker has adapted to a
known one. For example, when the adversary adapts to Strategy Figure 7, alternative strategies
from different seeds (Figure 9) still mitigate the attack. We simulate an attacker aware of Strategy 1
(S1) and defend using Strategy 2 (S2) and Strategy 3 (S3), with results on SST-2 (RoBERTa-large)
reported in Table 20.

For (2), we evaluate the Adaptive-Patch attack (Qi et al., 2023). Following the transferability
strategy in Figure 14, our method consistently demonstrates strong performance against this more
challenging setting, as shown in Table 21.

J.12 PERFORMANCE UNDER LABEL-INCONSISTENT AND IDENTICAL BACKDOOR ATTACKS

A practical consideration for model merging is that the obtained models may be trained by different
attackers targeting different labels, or they may encode identical backdoor attacks. We therefore
examine two challenging settings: (1) models with inconsistent target labels, and (2) models trained
with the same backdoor. In the first case, where each model has a different target label, our method
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Table 19: Performance comparison under varying poison rates on SST-2 using the RoBERTa-large
model.

Setting Defense
Poison Rate: 20% Poison Rate: 10% Poison Rate: 1%

CACC
(↑)

ASR (↓) CACC
(↑)

ASR (↓) CACC
(↑)

ASR (↓)
Atk1 Atk2 AVG. Atk1 Atk2 AVG. Atk1 Atk2 AVG.

BadNet
+ InsertSent

WAG 96.3 56.3 7.4 31.9 96.1 66.6 8.9 37.9 96.4 58.3 27.2 42.8
Ours (MSD) 96.2 36.9 7.1 22.0 96.0 55.1 9.3 32.3 96.3 57.4 44.4 50.9

BadNet
+ LWS

WAG 96.2 74.0 50.3 62.2 95.1 83.7 46.3 65.0 96.3 62.7 28.9 45.8
Ours (MSD) 96.0 41.7 39.0 40.4 94.9 70.6 40.1 55.3 96.4 59.9 27.6 43.7

BadNet
+ Hidden

WAG 96.1 63.9 29.0 46.5 95.9 67.9 26.9 47.4 96.1 64.9 30.5 47.7
Ours (MSD) 96.1 40.5 27.7 34.1 95.5 51.9 25.8 38.9 96.1 59.2 30.0 44.6

Table 20: Robustness against attacker adapted to Strategy 1 (S1) on SST-2 with RoBERTa-large.

No. Defense Variant CACC
(↑)

ASR (↓)
Atk1 Atk2 Avg

1 No Defense BadNet 96.0 100.0 – –
2 No Defense InsertSent 96.3 – 100.0 –
3 No Defense BadNet (adaptive, S1 known) 95.6 100.0 – –

4
Merge 1+2

WAG 96.7 56.3 7.4 31.9
5 Ours (w/ S2) 96.0 39.0 8.0 23.5
6 Ours (w/ S3) 96.0 39.4 20.6 30.0
7

Merge 2+3
WAG 95.8 59.8 9.2 34.5

8 Ours (w/ S2) 96.1 21.3 7.2 14.3
9 Ours (w/ S3) 96.0 57.5 5.4 31.5

maintains strong defensive performance. In the second case, when models are attacked with the
same method but different labels, our method again substantially reduces ASR compared to WAG,
as shown in Table 22.
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Table 21: Defense performance under Adaptive-Patch attacks on CIFAR-10 using ViT.

Setting Defense CACC
(↑)

ASR (↓)
Atk1 Atk2 Avg

BadNet
No Defense

98.4 97.3 – –
BATT 98.4 99.4 – –

Adaptive Patch 98.0 – 86.1 –

BadNet + Adaptive Patch WAG 98.5 24.3 17.6 20.9
Ours 98.5 13.9 16.5 15.2

BATT + Adaptive Patch WAG 98.7 0.8 10.3 5.5
Ours 98.6 1.3 10.3 5.8

Table 22: Results under inconsistent-target-label and identical backdoor attacks cases.

Dataset Combination Method CACC (↑) ASR (↓)
Atk1 Atk2 Avg

Label-Inconsistent Cases

SST-2 BadNet (label=0) + InsertSent (label=1) WAG 96.4 47.2 71.2 59.2
Ours 96.2 20.0 65.9 43.0

CIFAR-10 BadNet (label=1) + BATT (label=2) WAG 98.7 0.3 18.8 9.6
Ours 98.6 0.4 19.1 9.8

Identical-Attack Cases (Different Labels)

SST-2 BadNet (label=0) + BadNet (label=1) WAG 96.3 78.0 2.4 40.2
Ours 96.1 38.7 16.0 27.4
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K EXAMPLES OF SEARCHED STRATEGIES

We present several representative examples of module-switching strategies discovered by our evo-
lutionary algorithm, grouped below for clarity.

• Two-model strategies on Transformer and ViT architectures.
– Adopted merging strategy for two RoBERTa-large models (24 layers), shown in Fig-

ure 7, with a fitness score of -75.0.
– An early-stage merging strategy for two RoBERTa-large models, illustrated in Fig-

ure 8, yielding a fitness score of -94.2.
– Two alternative full-search strategies obtained with distinct random seeds, shown in

Figure 9, achieving fitness scores of -76.5 and -72.0.
– Structural overlap analysis across these three strategies (Figure 10), showing that only

6.94% of module positions coincide, indicating high structural diversity.
– Adopted strategy for merging two 12-layer models (e.g., ViT), presented in Figure 14,

with a fitness score of -39.5.
• Strategies under ablation and multi-model fusion settings.

– Strategies derived by ablating individual heuristic rules (Figures 11–13), used to assess
the contribution of each rule.

– Adopted strategy for merging three RoBERTa-large models (24 layers), depicted in
Figure 15, with a fitness score of -26.2.

– Adopted strategy for merging four models, shown in Figure 16, with a fitness score of
-11.0.

• Strategies on CNN architectures.
– Searched merging strategy for two ResNet-18 models, shown in Figure 17, with a

fitness score of -1.4.
– Searched merging strategy for two ResNet-50 models, shown in Figure 18, with a

fitness score of -1.9.
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Figure 7: Adopted merging strategy (with a fit-
ness score of -75.0).
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Figure 8: Early stopping strategy (with a fitness
score of -94.2).
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Figure 9: Two alternative discovered full search merging strategies using distinct random seeds. The
strategies yielded comparable fitness scores of -76.5 and -72.0, respectively.

Q K V O I P
Modules

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

La
ye

r

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Strategy 1

Q K V O I P
Modules

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Strategy 2

Q K V O I P
Modules

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Q K V O I P

Strategy 3

Q K V O I P
Modules

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

K

V

K

Q

K

Q

V

K

K

P

Overlap
(Ratio: 6.94%)

Figure 10: Overlap analysis across three strategies (Figure 7 and Figure 9). Only 6.94% of module
positions coincide across all strategies, indicating high structural diversity.
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Figure 11: Strategy of Ablating
rule 1.
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Figure 12: Strategy of ablating
rule 2.
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Figure 13: Strategy of ablating
rule 3.
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Figure 14: Adopted strategy for merging two 12-layer models (e.g., ViT) (fitness score: -39.5).
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Figure 15: Adopted merging strategy for merging three models (fitness score -26.2).
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Figure 16: Adopted strategy for merging four models (fitness score -11.0).
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Figure 17: Searched merging strategy for two ResNet-18 models (fitness score: -1.4).
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Figure 18: Searched merging strategy for two ResNet-50 models (fitness score: -1.9).
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