DEFENDING AGAINST BACKDOOR ATTACKS VIA MODULE SWITCHING

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

023

025

026027028

029

031

033

034

035

037

038

040

041

042

043 044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Backdoor attacks pose a serious threat to deep neural networks (DNNs), allowing adversaries to implant triggers for hidden behaviors in inference. Defending against such vulnerabilities is especially difficult in the post-training setting, since end-users lack training data or prior knowledge of the attacks. Model merging offers a cost-effective defense; however, latest methods like weight averaging (WAG) provide reasonable protection when multiple homologous models are available, but are less effective with fewer models and place heavy demands on defenders. We propose a module-switching defense (MSD) for disrupting backdoor shortcuts. We first validate its theoretical rationale and empirical effectiveness on two-layer networks, showing its capability of achieving higher backdoor divergence than WAG, and preserving utility. For deep models, we evaluate MSD on Transformer architectures and design an evolutionary algorithm to optimize fusion strategies with selective mechanisms to identify the most effective combinations. Experiments shown that MSD achieves stronger defense with fewer models in practical settings, and even under an underexplored case of collusive attacks among multiple models-where some models share same backdoors-switching strategies by MSD deliver superior robustness against diverse attacks.

1 Introduction

Backdoor attacks pose a particularly insidious threat to modern neural networks. By injecting crafted triggers into a small portion of training data (Gu et al., 2017; Chen et al., 2017), an adversary trains models to behave normally on clean inputs yet exhibit malicious behavior when triggers appear. The combination of stealth and effectiveness makes them a critical security concern, particularly as training increasingly relies on large-scale, uncurated web data (Halfacree, 2025).

This threat is amplified by the shift toward a "post-training" paradigm, where practitioners adopt models without visibility into their origins. This trend manifests in several prominent scenarios: (1) open-source model platforms, *e.g.*, HuggingFace (Wolf et al., 2019), which facilitate widespread reuse and finetuning of pretrained models; (2) multi-expert systems like Mixture-of-Experts (MoE), where a router dynamically selects among specialized models trained on heterogeneous data (Fedus et al., 2022; Zhou et al., 2022); (3) one-shot Federated Learning (Guha et al., 2019; Dai et al., 2024), which allows a central server aggregating models from distributed clients once. While these trends accelerate innovation, they also share a vulnerability: the opacity of training data and processes provides fertile ground for adversarial attacks (Huynh & Hardouin, 2023).

The post-training paradigm presents a dual challenge: its opacity not only enables hidden backdoors but also undermines traditional defenses. Many existing defenses assume access to training-time resources, such as the original data for filtering (He et al., 2023; 2024), a trusted auxiliary dataset for fine-tuning (Liu et al., 2018; Zhang et al., 2022; Min et al., 2023; Zhao et al., 2024), or the optimization procedure for trigger inversion (Tao et al., 2022; Sur et al., 2023). Without these resource hypotheses, model merging (Izmailov et al., 2018; Matena & Raffel, 2022; Aristimuño, 2024)—originally designed for knowledge aggregation—emerges as a compelling defense strategy that leverages multi-model availability and suppresses backdoors (Arora et al., 2024).

Nonetheless, model merging is not a panacea. Existing approaches face three main constraints: (1) methods such as WAG (Arora et al., 2024) and DAM (Yang et al., 2025) typically require 3 to 6 homologous models to achieve effective backdoor suppression, which imposes a heavy burden on

defenders; (2) strategies guided by trusted criteria, curated data, or proxy models (Yang et al., 2025; Chen et al., 2024) depend on resources that are often scarce in untrusted environments; and (3) although compromised auxiliary models can be used as defensive references (Li et al., 2024; Tong et al., 2024), they may introduce additional risks (He et al., 2025).

To overcome these constraints, we propose *Module Switching*, a defense framework that selectively exchanges network modules across models from related tasks and domains. The key insight is that backdoors operate as learned "shortcuts," exploiting spurious correlations to trigger malicious behavior (Gardner et al., 2021; He et al., 2023; Ye et al., 2024; Li et al., 2025). These shortcuts are typically localized within specific modules, yet different backdoored models rarely implant them in the same location. Swapping corresponding modules thus disrupts these fragile pathways, replacing compromised components with benign counterparts and thereby neutralizing the vulnerability.

This mechanism brings two key benefits: (1) compared to weight averaging, it blocks backdoor transmission with fewer models, providing a more practical defense; and (2) it also offers robustness in an underexplored case of collusive attacks, where some models share backdoors and weight averaging degrades to fewer-model performance, whereas module switching remains effective. We empirically demonstrate both benefits in Section 5.2.

We formulate shortcut disruption as an optimization problem: searching for module-switching strategies that break shortcut connections within a given model architecture. By combining heuristic scoring and an evolutionary algorithm, we obtain an index table that specifies which source model should fill each

Figure 1: An illustration of Module-Switching Defense (MSD). By switching weight modules between compromised models (*left*), the spurious correlations (shortcuts) learned from backdoored tasks are disrupted in the combined model (*right*).

module slot. As this scheme relies solely on architectural information, it generalizes well across tasks and is transferable to models sharing the same structure (*e.g.*, one strategy applicable to *RoBERTa* (Liu et al., 2019b) can be reused for *DeBERTa* (He et al., 2021)).

Our <u>Module-Switching Defense</u> (MSD) applies the strategy by assigning each module across the network a source-model index and recombining the selected modules to construct candidate models. Then, we identify the most robust candidate by comparing their representations on a small clean validation set (requiring only 20–50 samples per class and no poisoned data). Since MSD is structure-driven, it is task-agnostic, counters a wide spectrum of backdoor threats, and preserves utility for downstream tasks. Our key contributions are as follows.

- We propose and develop MSD, which (1) establishes heuristic rules (Section 4.2) to guide evolutionary search for module-switching strategies (Section 4.3), and (2) defines a feature-distance criterion to select the best candidate combination (Section 4.4).
- We conduct study on shallow networks to analyze and interpret the mechanism of module-switching on backdoor mitigation and semantic preservation (Section 3).
- We empirically validate favorable properties of MSD, including (1) stronger defense under more practical, fewer-model constraints, and (2) robustness against the underexplored collusive attack surface where multiple models share the same backdoors (Section 5.2).

2 RELATED WORK

Backdoor Attacks. Backdoor attacks implant hidden vulnerabilities in DNNs, activating only when specific triggers appear in the input while behave normal on benign data. They can be broadly categorized by implanting methods: (1) *Data-poisoning attacks* inject trigger patterns into a small portion of the datasets with manipulated labels to train compromised models. Since being first discovered by Gu et al. (2017), these attacks have evolved with diverse trigger designs in both vision (Nguyen & Tran, 2021; Li et al., 2021b; Xu et al., 2023b; Huynh et al., 2024) and text

domains (Dai et al., 2019; Kurita et al., 2020; Qi et al., 2021b;c). In contrast, (2) *Weight-poisoning attacks* directly modify model weights to embed backdoors (Dumford & Scheirer, 2020; Kurita et al., 2020). Backdoor attacks can be considered as correlating trigger patterns with predefined predictions in DNNs, activated in inference (Gardner et al., 2021; He et al., 2023). Our work focuses on defending against *data-poisoning attacks*, given their widespread adoption and potential risks.

Backdoor Defense. Backdoor defenses are typically classified by deployment stage into (1) *training-phase* and (2) *test-phase* methods. *Training-phase* defenses treat poisoned data as outliers, aiming to detect and removing them based on distinctive activation or learning patterns (Li et al., 2021a; He et al., 2023; 2024). *Test-phase* defenses operate on inputs or the model itself: datalevel approaches reverse-engineer triggers (Wang et al., 2019; 2023) or filter anomalies (Qi et al., 2021a), while model-level strategies detect trojaned models (Liu et al., 2019a; Wang et al., 2020; 2024a; Su et al., 2024) or purify models through pruning, fine-tuning, or other adaptations (Wu & Wang, 2021; Liu et al., 2018; Zhang et al., 2022; Xu et al., 2023a; Zhao et al., 2024; Cheng et al., 2024) or unlearning (Wu & Wang, 2021; Zeng et al., 2022; Li et al., 2023a). While traditional model purification demands proxy data and retraining, recent research has focused on model combination strategies requiring fewer assumptions and lower computational costs (Arora et al., 2024; Yang et al., 2025; Chen et al., 2024; Li et al., 2024; Tong et al., 2024). Building on this line of work, we propose a model fusion approach that reduces dependency on trusted resources while mitigating threats by disrupting spurious correlations in constituent models.

3 Module Switching in Two-layer Neural Networks

We theoretically and empirically examine whether *module switching* in two-layer networks disrupts backdoor patterns introduced during fine-tuning while preserving pretrained semantics. We find that swapping layer weights deviates more from backdoor patterns than weight averaging (WAG) (Arora et al., 2024; Wang et al., 2024b), yielding improved robustness against backdoored inputs.

Setup and Notation. We consider two-layer networks defined as $f(x;\theta) = W_2 \sigma(W_1 x)$, with input $x \in \mathbb{R}^N$ and parameters $\theta := \{W_1, W_2\}$, and activation function $\sigma(\cdot)$ (linear or non-linear). Training progresses in two stages: a *pretraining* stage, where shared weights $W_1 \in \mathbb{R}^{K \times N}$ and $W_2 \in \mathbb{R}^{N \times K}$ learn general semantics, followed by a *fine-tuning* stage that introduces updates (ΔW_1^*) and ΔW_2^* to encode backdoor behavior in individual models \mathcal{M}^* .

In a linear network with identical activation, the fine-tuned model is $\mathcal{M}(x) = (W_2 + \Delta W_2^*)(W_1 + \Delta W_1^*)x$, which expands to a semantic term $S = W_2W_1$ and a backdoor component

$$\boldsymbol{B}^* = \boldsymbol{W}_2 \Delta \boldsymbol{W}_1^* + \Delta \boldsymbol{W}_2^* \boldsymbol{W}_1 + \boldsymbol{\epsilon}^*, \tag{1}$$

such that $\mathcal{M}^*(x) = (S + B^*)x$, where $\epsilon^* = \Delta W_2^* \Delta W_1^*$ represents a second-order interaction. The ϵ -terms are typically much smaller in magnitude than first-order terms (i.e., $W_2 \Delta W_1^* + \Delta W_2^* W_1$). We empirically verify this in Appendix C, and accordingly omit the ϵ -term in subsequent analysis.

Definition 1 (Weight-Averaged Model). Let i and j index two fine-tuned backdoor models. Averaging the weights of \mathcal{M}^i and \mathcal{M}^j defines the Weight-Averaged (WAG) model, with parameters:

$$\theta^{\text{wag}} := \left\{ \frac{1}{2} \left(\boldsymbol{W}_1 + \Delta \boldsymbol{W}_1^i \right) + \frac{1}{2} \left(\boldsymbol{W}_1 + \Delta \boldsymbol{W}_1^j \right), \frac{1}{2} \left(\boldsymbol{W}_2 + \Delta \boldsymbol{W}_2^i \right) + \frac{1}{2} \left(\boldsymbol{W}_2 + \Delta \boldsymbol{W}_2^j \right) \right\}$$

Assuming a linear network as above, we decompose the model as $\mathcal{M}^{\text{wag}}(x) = (S + B^{\text{wag}})x$, where S denotes the shared pretrained semantic, and the backdoor component is equivalent to

$$oldsymbol{B}^{ ext{wag}} = rac{1}{2} oldsymbol{W}_2 \left(\Delta oldsymbol{W}_1^i + \Delta oldsymbol{W}_1^j
ight) + rac{1}{2} \left(\Delta oldsymbol{W}_2^i + \Delta oldsymbol{W}_2^j
ight) oldsymbol{W}_1.$$

Definition 2 (Distance between Outputs from WAG and Constituent Models). *Under identity activation*, ℓ_2 distances between the WAG model and the two constituent models \mathcal{M}^i and \mathcal{M}^j are:

$$\begin{split} \|\mathcal{D}^{\text{wag},i}\| &= \|\mathcal{M}^{\text{wag}}(\boldsymbol{x}) - \mathcal{M}^i(\boldsymbol{x})\| = \frac{1}{2} \| \left(\boldsymbol{W}_2(\Delta \boldsymbol{W}_1^j - \Delta \boldsymbol{W}_1^i) + (\Delta \boldsymbol{W}_2^j - \Delta \boldsymbol{W}_2^i) \boldsymbol{W}_1 \right) \boldsymbol{x} \|, \\ \|\mathcal{D}^{\text{wag},j}\| &= \|\mathcal{M}^{\text{wag}}(\boldsymbol{x}) - \mathcal{M}^j(\boldsymbol{x})\| = \frac{1}{2} \| \left(\boldsymbol{W}_2(\Delta \boldsymbol{W}_1^i - \Delta \boldsymbol{W}_1^j) + (\Delta \boldsymbol{W}_2^i - \Delta \boldsymbol{W}_2^j) \boldsymbol{W}_1 \right) \boldsymbol{x} \|. \end{split}$$

Definition 3 (Module-Switched Models). Swapping one layer between \mathcal{M}^i and \mathcal{M}^j yields two possible switched models, each with its own parameters, semantic-backdoor decomposition:

$$egin{aligned} heta^{ij} &:= \{m{W}_1 + \Delta m{W}_1^i, \, m{W}_2 + \Delta m{W}_2^j\}, \quad \mathcal{M}^{ij}(m{x}) = (m{S} + m{B}^{ij})m{x}, \quad m{B}^{ij} &= m{W}_2 \Delta m{W}_1^i + \Delta m{W}_2^j m{W}_1, \\ heta^{ji} &:= \{m{W}_1 + \Delta m{W}_1^j, \, m{W}_2 + \Delta m{W}_2^i\}, \quad \mathcal{M}^{ji}(m{x}) = (m{S} + m{B}^{ji})m{x}, \quad m{B}^{ji} &= m{W}_2 \Delta m{W}_1^j + \Delta m{W}_2^i m{W}_1. \end{aligned}$$

Definition 4 (Distance between Outputs from Switched and Constituent Models). *Under identity activation*, ℓ_2 distances between the switched model \mathcal{M}^{ij} and the two constituent models are:

$$\|\mathcal{D}^{ij,i}\| = \|\mathcal{M}^{ij}(x) - \mathcal{M}^{i}(x)\| = \|(\Delta W_2^j - \Delta W_2^i)W_1x\|,$$

 $\|\mathcal{D}^{ij,j}\| = \|\mathcal{M}^{ij}(x) - \mathcal{M}^{j}(x)\| = \|W_2(\Delta W_1^i - \Delta W_2^j)x\|.$

The analogous results of $\|\mathcal{D}^{ji,i}\|$ and $\|\mathcal{D}^{ji,j}\|$ hold with swapped indices (see Equation (5)).

Theorem 1 (Module Switching Exceeds WAG in Backdoor Divergence). *Under identity activation, the total backdoor divergence of the Weight-Averaged (WAG) model is upper bounded by the average divergence of the switched models:*

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \frac{1}{2} \left(\|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ij,j}\| + \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ji,j}\| \right). \tag{2}$$

This theorem confirms the rationale that module switching on average yields stronger suppression of backdoor-specific patterns than weight averaging.

Proposition 1 (The Existence of a More Divergent Switched Model). *Given Theorem 1, there exists at least one switched model with greater backdoor divergence than Weight-Averaged (WAG) model:*

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \max \{\|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ij,j}\|, \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ji,j}\| \}.$$
 (3)

This proposition shows that the least backdoor-aligned switched model exceeds the WAG model in backdoor divergence, underscoring the importance of selecting the least aligned candidate and motivating the selection step in Section 4.4. Appendix D details proofs of Theorem 1 and Proposition 1.

Utility Loss. Having established the divergence properties of backdoor components, we next examine whether module switching compromises utility. For a model \mathcal{M}^* , we measure its utility loss as the distance between its outputs to benign semantics, i.e., $L^*(x) := \mathcal{M}^*(x) - Sx = B^*x$. The switched models satisfy the identity $L^{ij} + L^{ji} = L^i + L^j$ (see Appendix E), implying that the total loss of a switched pair is equivalent to the sum of its constituents. To assess individual models, we empirically measure each switched model's loss relative to its originals and find that the relative utility loss remains low (see Appendix F), demonstrating promising utility preservation.

Empirical Study. We simulate 1000 linear and non-linear two-layer networks, each pretrained on a shared semantic component $S \sim \mathcal{N}(\mathbf{0}, 1)$ and fine-tuned with a backdoor component $B^* \sim \mathcal{N}(\mathbf{0}, 0.1^2)$. For each fine-tuned pair \mathcal{M}^i and \mathcal{M}^j , we construct the corresponding WAG model \mathcal{M}^{wag} and switched models \mathcal{M}^{ij} and \mathcal{M}^{ji} . We evaluate output alignment with (1) the semantic direction Sx, measured by $d_S = \|\text{norm}(f(x;\theta)) - \text{norm}(Sx)\|$; and (2) the backdoor direction B^*x , measured by $d_B = \|\text{norm}(f(x;\theta) - Sx) - \text{norm}(B^*x)\|$, where $\text{norm}(v) = v/\|v\|$.

Figure 2: Euclidean distances between normalized output vectors of *pretrained*, *fine-tuned*, *WAG*, and *switched* two-layer networks, relative to the semantic direction Sx and the backdoor directions B^*x , under linear (left) and ReLU (right) activations.

Figure 2 presents 2D scatter plots comparing output distances across all model types under both linear and ReLU (Nair & Hinton, 2010; Agarap, 2018) activations. More results with various activations are provided in Appendix G. We observe that while *fine-tuned* models stay close to their respective backdoor patterns B^* , the WAG model shifts farther away, and the *switched* models diverge even more, indicating stronger backdoor suppression. All models remain near the semantic term S, confirming preserved functionality.

Figure 3: The fused model combines modules from different models (shown as red and blue nodes), considering three types of module adjacency in Transformers, as illustrated at the top.

4 Module Switching Defense

In this section, we extend the findings on module switching to more complicated deep neural networks and develop a comprehensive defense pipeline. We begin by introducing the problem setting in Section 4.1, followed by establishing a set of heuristic rules to guide the search for effective module switching strategies in Section 4.2. Next, we adapt an evolutionary algorithm for searching the optimal strategy in Section 4.3, guiding switched models construction and selection in Section 4.4.

4.1 PRELIMINARIES

216

217

218

219

220

221

222

223

224

225226

227228

229

230

231

232233

234235

236

237

238239

240

241

242

243

244

245

246

247

248

249250

251

252

253

254

255

256

257

258

259

260

261262

263 264

265

266

267

268

269

Threat Model. We study data poisoning attacks where an attacker modifies a subset of a clean dataset $\mathcal{D}_c = \{(x_c, y_c)\}$ into poisoned samples $\mathcal{D}_p = \{(x_p = g_t(x_c), y_p)\}$ using a trigger function g_t and target label y_p . The poisoned data is used to train a backdoored model or shared with others for training, resulting in trojaned models being widely available via model-sharing platforms.

Defender Capability. The defender downloads potentially trojaned models and aims to purify them before deployment. They have white-box access and a small clean validation set (20–50 samples per class), but no knowledge of the triggers or poisoned data. They can access multiple (as few as two) domain-relevant models of uncertain integrity and may combine them using the validation set.

Neural Network Architecture. We adopt Transformer models (Vaswani et al., 2017), chosen for their strong performance and popularity in both text and vision. Each model has L layers, composed of a self-attention block and a feed-forward network (FFN), both followed by residual connections (He et al., 2016). We abbreviate the six core modules (the attention block's query (W_q) , key (W_k) , value (W_v) , output (W_o) , and the FFN's input (W_i) and output (W_p) as $\{Q, K, V, O, I, P\}$.

4.2 Scoring Rules for Module Switching

In Section 3, we studied weight switching in two-layer networks, where replacing weights disrupts spurious correlations, eliminating undesired patterns while preserving utility. Extending to deep models, we hypothesize that breaking backdoor propagation paths can similarly deactivate them.

Given the structural complexity of deep networks, we define heuristic rules to guide the search for module combinations that disrupt backdoor paths in both feedforward and residual streams (Elhage et al., 2021). We identify three types of adjacency that may support poison transmission (illustrated in Figure 3): (1) intra-layer (within the same layer), (2) consecutive-layer (adjacent layers), and (3) residual (via skip connections). Additionally, we introduce a (4) balance penalty to avoid overusing any single model and a (5) diversity reward to encourage varied combinations across layers.

These rules serve as criteria for computing an overall score of a given module-switching strategy, evaluating how well it adheres to the principles. Detailed rules and types are in Appendix H.1.

4.3 EVOLUTIONARY MODULE SWITCHING SEARCH

We frame the search for effective module-switching strategies as a discrete Neural Architecture Search (NAS) problem (White et al., 2023). Let S denote the space of switching strategies, where each $s \in S$ assigns a source model index to each module: $s : \{1, \ldots, L\} \times M \to \{1, \ldots, N\}, M = \{Q, K, V, O, I, P\}$, where L is the number of layers and N the number of source models.

Fitness Evaluation. Each strategy s is scored by

$$F(s) = -\lambda_1 A_{\text{intra}}(s) - \lambda_2 A_{\text{cons}}(s) - \lambda_3 A_{\text{res}}(s) - \lambda_4 B_{\text{bal}}(s) + \lambda_5 R_{\text{div}}(s), \tag{4}$$

where $A_{\rm intra}$, $A_{\rm cons}$, and $A_{\rm res}$ penalize adjacency violations (Section 4.2), $B_{\rm bal}$ penalizes module imbalance, and $R_{\rm div}$ rewards diversity. By default, we set all λ_k to 1.0. Higher F(s) indicates stronger disruption of potential backdoor paths. Details of each term are in Appendix H.2.

270

271

272

273

274

275

276

277

278

279

281

282

283

284

285

286

287

288

289

290

291

292

293 294

295296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321 322

323

Search Algorithm. As the scores by F(s) is non-differentiable over a large discrete space, we adopt evolutionary search (Miller et al., 1989), well-suited to optimizing implicit objectives (Zhou et al., 2021). We adopt the aging regularized evolution algorithm (Real et al., 2019), modifying it in two key ways: (1) fitness is computed directly using the heuristic scoring function F, without model training or validation; and (2) low-scoring strategies are discarded, replacing aging regularization (So et al., 2019). As outlined

Algorithm 1 Evolutionary Module-Switching Search

```
1: Input: population P, generations G, children per iter
    C, number of models N, layers L, module set M.
 2: population \leftarrow \emptyset
 3: qen\_count \leftarrow 0
 4: while |population| < P do
      indiv.strategy \leftarrow RANDOMSTRATEGY(N, L, M)
 5:
      indiv.fitness \leftarrow \texttt{CALCSCORE}(indiv.strategy)
 6:
 7:
      population.append(indiv)
 8: end while
 9: while qen\_count < G do
10:
      for i \leftarrow 1 to C do
11:
         parent \leftarrow TOURNAMENTSELECT(population)
12:
         child.strategy \leftarrow Mutation(parent)
13:
         child.fitness \leftarrow CalcScore(child.strategy)
14:
         population.append(child)
15:
      sort(population) 
ightharpoonup by descending fitness score
16:
      population \leftarrow population[0:P]
17:

    bruncate to P

       gen\_count \leftarrow gen\_count + 1
19: end while
20: Output: BESTSTRATEGY \leftarrow population[0].strategy
```

in Algorithm 1, it evolves a population through tournament selection (line 11), mutation (line 12), and fitness-based dropping (line 13). Appendix K presents example searched strategies.

4.4 SWITCHED MODELS CONSTRUCTION AND SELECTION

The searched strategy T can be used to switch modules among a group of victim models $\mathcal{M} = \{\mathcal{M}_1, \ldots, \mathcal{M}_N\}$ to fuse a *candidate pool*, which on average exceeds the WAG model in backdoor divergence (as Theorem 1) and guarantees the existence of at least one candidate with higher divergence (as Proposition 1). This motivates us to develop a feature-distance-based method to select the least-backdooraligned candidate from the pool.

Suspect-class Detection. We first use the final-layer embedding of [CLS] token to detect the suspect class, based on the insight that back-doored models prioritize trigger features (Fu et al., 2023; Yi et al., 2024). For each $m \in \mathcal{M} \cup \{\text{WAG}(\mathcal{M})\}$ and class c, we optimize a random input to induce prediction of c, yielding a dummy final-layer [CLS] feature $z_{m,c}^{\text{dum}}$. Its average cosine distance

```
Algorithm 2 Switched Model Selection
```

```
1: Input: Victim models \mathcal{M} = \{\mathcal{M}_1, \dots, \mathcal{M}_N\}; clean
     set \mathcal{D}_c; switching strategy T.
 2: wag \leftarrow WAG(\mathcal{M})
                                        \triangleright weight averaging over \mathcal{M}
 3: models \leftarrow \mathcal{M} \cup \{waq\}
 4: score ← ZEROVECTOR(num_classes)
 5: for m \in models do
        for c \in \text{candidate classes do}
 6:
 7:
            x_{\text{dummy}} \leftarrow \text{OPTIMIZEINPUT}(m, x_{\text{random}}, c)
            z_{\text{dummy}} \leftarrow \text{FORWARD}(m, x_{\text{dummy}})
 8:
 9:
            z_{\text{clean}} \leftarrow \text{FORWARD}(m, \mathcal{D}_c, \text{non-}c)
10:
            score[c] += MEANCOSINEDIST(z_{dummy}, z_{clean})
11:
            DUMMYFEATURE[m][c] \leftarrow z_{\text{dummy}}
12:
        end for
13: end for
14: c^* \leftarrow \arg\max_c score[c]
                                                 15: z^* \leftarrow \text{DUMMYFEATURE}[wag][c^*]
16: candidates \leftarrow ModuleSwitch(T, \mathcal{M})
17: for m \in candidates do
        z \leftarrow \text{FORWARD}(m, \mathcal{D}_c, \text{non-}c^*)
        m.dist \leftarrow \text{MEANCOSINEDIST}(z, z^*)
19:
20: end for
21: Output: arg max_m m.dist
```

to clean features over a few non-c samples is accumulated across models: $S(c) = \sum_m \text{avg} [1 - \cos(z_{m,c}^{\text{dum}}, z_{m,-c}^{\text{clean}})]$. The class with the highest score, $c^* = \arg\max_c S(c)$, is deemed suspicious, and the corresponding WAG dummy feature $z^* = z_{\text{WAG},c^*}^{\text{dum}}$ is used as a fixed reference.

Candidate Selection. Applying T to \mathcal{M} gives candidates $m \in \mathcal{C}(T, \mathcal{M})$ (e.g., \mathcal{M}^{ij} and \mathcal{M}^{ji}). Each m is scored by $d(m) = \text{avg}[1 - \cos(z^*, f_m(x))]$, the mean cosine distance between its

[CLS] features on a few clean, non- c^* samples x and the WAG dummy z^* . The winner $m^* = \arg\max_{m \in \mathcal{C}(T,\mathcal{M})} d(m)$ is the one least aligned with backdoor features and, by Proposition 1, has better defense than WAG. The pipeline detailed in Algorithm 2, avoids exhaustive trojan detection process (Wang et al., 2019; 2020; 2024a; Su et al., 2024), yet reliably selects robust candidates.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We primarily evaluate our method in the text domain using three NLP datasets: **SST-2** (Socher et al., 2013), **MNLI** (Williams et al., 2018), and **AG News** (Zhang et al., 2015). Following previous work (Arora et al., 2024), we apply a poison rate of 20% in training, and additionally test settings with 10% and 1%. To further assess cross-domain applicability, we evaluate on two vision datasets: **CIFAR-10** (Krizhevsky et al., 2009) and **TinyImageNet** (Le & Yang, 2015), where a poison rate of 5% is used. The statistics of the used datasets are reported in Table 5 (Appendix I.1). The poisoned test sets, used solely for evaluation, are generated by adding triggers to validation samples outside the target class, while the defenders are restricted to access only the clean test set.

Backdoor Attacks. We evaluate our defense against four text-based backdoor attacks that poison data by modifying and relabeling clean samples. Two are insertion-based: **BadNet** (Kurita et al., 2020), which adds rare-word triggers { "cf", "mn", "bb", "tq", "mb"}, and **InsertSent** (Dai et al., 2019), which inserts trigger phrases { "I watched this movie", "no cross, no crown"}. The other two are stealthier: Learnable Word Substitution (**LWS**) (Qi et al., 2021c), which uses synonym substitution, and Hidden-Killer (**Hidden**) (Qi et al., 2021b), which applies syntactic paraphrasing.

For the vision domain, we use attacks that inject digital patterns, such as **BadNet** (Gu et al., 2017) and **BATT** (Xu et al., 2023b), as well as stealthier methods like the warping-based **WaNet** (Nguyen & Tran, 2021) and the object-based **PhysicalBA** (Li et al., 2021b). To further challenge our defense, we also evaluate it against the **Adaptive-Patch** attack (Qi et al., 2023). All poisoned vision datasets and models are generated using the **BackdoorBox** toolkit (Li et al., 2023b).

Defense Baselines. We compare against seven defenses across text and vision: three model-merging approaches applicable to both domains—**TIES** (Yadav et al., 2023), **DARE** (Yu et al., 2024), and **WAG** (Arora et al., 2024)—and two domain-specific data purification methods per modality. In text, **Z-Def.** (He et al., 2023) and **ONION** (Qi et al., 2021a) perform outlier detection; in vision, **Cut-Mix** (Yun et al., 2019) disrupts triggers via patch mixing, and **ShrinkPad** (Li et al., 2021b) reduces vulnerability by shrinking and padding inputs. All baselines use open-source implementations with default settings (see Appendix I.3 for details).

Evaluation Metrics. We assess utility and defense with Clean Accuracy (**CACC**) and Attack Success Rate (**ASR**) (Qi et al., 2021a;c; Arora et al., 2024). CACC is the accuracy on clean samples, with higher values indicating better utility. ASR is the accuracy on a poisoned test set, where all samples are attacked and relabeled to the target class; higher ASR indicates greater vulnerability.

Implementation Details. We use *RoBERTa-large* (Liu et al., 2019b), *BERT-large* (Devlin et al., 2019), and *DeBERTa-large* (He et al., 2021) for text experiments; and *Visual Transformers* (*ViT*) (Wu et al., 2020) for vision experiments. NLP models are fine-tuned for 3 epochs with Adam (Kingma & Ba, 2015) at 2×10^{-5} , and ViT models for 10 epochs with SGD (Bottou, 2010) at 1×10^{-2} .

We evaluate two-model merging in both domains and additionally consider multi-model merging for text. All experiments are run with three random seeds on a single Nvidia A100 GPU, and results are averaged. The evolutionary search runs for 2 million generations on a single Intel Core i9-14900K CPU, taking 2.6 hours for two models and 4.3 hours for four models. Since the strategy is structure-driven and task-agnostic, only one search is required per architecture. For model selection, discussed in Section 4.4, we use 50 samples per class to choose candidate models and ablate this to 20 in Section 5.3. Selection takes less than a minute on both SST-2 and CIFAR-10.

5.2 Main Results

Mitigation of Textual Backdoor Attacks. We evaluate our defense with *RoBERTa-large* on SST-2, MNLI, and AG News. Partial SST-2 results appear in Table 1, with full results in Appendix J.1. We evaluate merging backdoored models to examine robustness against attacks, and merging back-

Table 1: Performance comparison across backdoor attacks on **SST-2** using *RoBERTa-large*. Best results are in **blue**. * indicates results averaged over four variants; same for subsequent tables.

Defense CACC Attack Success Rate (ASR) ↓							Defense	CACC	At	tack Suc	ccess Ra	te (ASR)	ļ
		BadNet	Insert	LWS	Hidden	AVG.			BadNet	Insert	LWS	Hidden	AVG.
Benign	95.9	4.1	2.2	12.8	16.5	8.9	Z-Def	95.6*	4.6	1.8	97.3	35.7	34.9
Victim	95.9*	100.0	100.0	98.0	96.5	98.6	ONION	92.8*	56.8	99.9	85.7	92.9	83.8
	Cor	nbined: Bo	dNet + I	InsertSei	ıt			Comi	bined: Bad	Net + H	iddenKii	ller	
WAG	96.3	56.3	7.4	-	-	31.9	WAG	96.1	63.9	-	-	29.0	46.4
TIES	95.9	88.7	17.0	-	-	52.9	TIES	96.0	90.4	-	-	36.9	63.6
DARE	96.5	57.8	36.3	-	-	47.1	DARE	96.7	36.5	-	-	47.6	41.9
Ours	96.2	36.9	7.1	-	-	22.0	Ours	96.1	40.5	-	-	27.7	34.1
	(Combined:	BadNet	+ LWS				Co	ombined: I	Benign +	BadNet		
WAG	96.2	74.0	-	50.3	-	62.2	WAG	96.1	39.3	-	-	-	39.3
TIES	95.9	88.1	-	66.1	-	77.1	TIES	95.7	69.2	-	-	-	69.2
DARE	96.2	60.4	-	62.5	-	61.4	DARE	96.4	43.2	-	-	-	43.2
Ours	96.0	41.7	-	39.0	-	40.4	Ours	96.1	12.2	-	-	-	12.2

Table 2: Performance comparison across backdoor attacks on the CIFAR-10 dataset using ViT.

Defense	CACC	BadNet	WaNet	BATT	PBA	AVG.	Defense	CACC	BadNet	WaNet	BATT	PBA	AVG.
Benign	98.8	10.1	10.2	7.7	10.1	9.5	CutMix	97.7*	87.1	70.6	99.9	64.9	80.6
Victim	98.5*	96.3	84.7	99.9	89.4	92.6	ShrinkPad	97.3*	14.4	51.3	99.9	88.3	63.5
	Ce	ombined: I	BadNet +	WaNet				Со	mbined: B	adNet + E	BATT		
WAG	98.7	13.7	10.6	-	-	12.2	WAG	98.9	10.1	-	42.9	-	26.5
TIES	98.6	11.9	10.7	-	- [11.3	TIES	98.9	10.1	-	47.9	-	29.0
DARE	98.8	83.3	10.2	-	-	46.7	DARE	99.0	69.2	-	26.8	-	48.0
Ours	98.7	12.3	10.5	-	-	11.4	Ours	98.7	10.2	-	32.6	-	21.4
	Com	bined: Bad	lNet + Ph	ysicalBA				Comb	oined: Ben	ign + Phy	sicalBA		
WAG	99.0	39.6	-	-	39.5	39.6	WAG	99.0	-	-	-	10.1	10.1
TIES	99.0	38.9	-	-	38.9	38.9	TIES	98.8	-	-	-	10.2	10.2
DARE	99.0	72.2	-	-	72.2	72.2	DARE	99.9	-	-	-	10.1	10.1
Ours	98.7	18.5	-	-	18.4	18.5	Ours	98.9	-	-	-	10.1	10.1

doored with benign models to examine resistance to backdoor transfer. A unified strategy from our evolutionary algorithm (see Figure 7) is applied consistently across all cases.

Across all datasets and model pairs, our method shows strong defense while preserving clean accuracy. Merging BadNet and InsertSent yields an ASR of 22.0%, compared to 31.9% for WAG. With BadNet and LWS (a stealthier attack), it reaches 40.4%, over 21.0% lower than baselines (typically above 60%). These results demonstrate that even with compromised models, our approach disrupts spurious correlations and mitigates backdoors.

When merging a benign model with compromised ones, our method consistently yields low ASRs across four combinations. In the BadNet-controlled case, it achieves 12.2%, 27.1% better than WAG. This indicates that our method blocks unintended backdoor effects, unlike approaches that preserve utility but risk new vulnerabilities. While Z-Def performs well against insertion-based attacks (with training data access), it is less effective against attacks with subtle trigger patterns.

Mitigation of Vision Backdoor Attacks. We assess our method on the **CIFAR-10** and **TinyImageNet** datasets using a 12-layer *ViT* (Wu et al., 2020) model. Partial results for CIFAR-10 are shown in Table 2, with full results presented in Appendix J.2. The evolutionary search yields the module-switching strategy in Figure 13, applied across all vision experiments.

Our method consistently defends against all attack combinations while preserving utility. For example, in the BadNet + PhysicalBA case, it lowers ASR to 18.5%, outperforming all baselines by at least 20.4%. These results demonstrate the robustness of our strategy in disrupting spurious correlations and its effectiveness across domains with different input characteristics.

Three-Model Fusion Defense. When three backdoored models are available, even baseline WAG already shows strong results. However, our module-switching approach achieves consistently stronger defense. Using the strategy in Figure 14 (see Appendix J.3), MSD reduces the average ASR to below 20% across different combinations, outperforming WAG as reported in Table 11.

Merging Models with Collusive Backdoors. Although WAG achieves relatively low ASRs when combining multiple models, in a realistic yet underexplored scenario some models may share identical backdoors. In such settings, WAG degenerates to fewer-model behavior, reducing its defensive effectiveness. In contrast, our module-switching strategy is more resilient, as it strategically disrupts

these recurring shortcuts. Using the strategy in Figure 15 (see Appendix J.3), MSD outperforms WAG under collusion, as shown in Table 12, demonstrating robustness against collusive models.

Comparison of Different Strategies. We compare two evolutionary search strategies—with and without early stopping—shown in Figures 7 and 8, and report their fitness scores in Table 13 of Appendix J.4. The early stopping terminates the search when no improvement in fitness score is observed over 100,000 iterations. We observe a positive correlation between the fitness score and defense performance: the adopted strategy without early stopping achieves a higher score and reduces the ASR by 27.2%. Based on score breakdowns and visualizations, we attribute the improvement to fewer residual rule violations, which more effectively disrupt subtle spurious correlations.

Candidate Selection Results. Our method generates multiple asymmetric module allocation candidates, with selection guided by the process in Section 4.4. While the selected candidate consistently performs well, we also analyze the unselected ones (see Table 14 in Appendix J.5). In most cases, our method correctly identifies the top-performing candidate, outperforming other options by a significant margin. Even when an unselected candidate achieves a lower ASR in specific cases, our chosen candidate remains competitive with both the best alternative and the WAG baseline.

5.3 ABLATION STUDIES

Importance of Heuristic Rules. We ablate each of the first three rules from Section 4.2 to evaluate their individual contributions. As shown in Table 15 (Appendix J.6), removing any rule typically degrades performance, highlighting the complementary effect of the full rule set. Visualizations in Figures 10 to 12 show that each ablation yields distinct strategy patterns.

Generalization across Architectures. We apply our method to *RoBERTa-large*, *BERT-large*, and *DeBERTa-v3-large* under three settings. As shown in Table 16 (Appendix J.7), our approach consistently outperforms WAG across all tests. Importantly, we reuse the same searched strategy from Figure 7, demonstrating strong cross-model generalization and supporting practical scalability.

Minimum Clean Data Requirement. We examine the impact of reducing clean supervision from 50 to 20 samples per class on SST-2 across three architectures. Results in Table 16 (Appendix J.8) show our method still selects low-ASR candidates, suggesting effectiveness with limited clean data.

Performance under Varying Poisoning Rates. We test robustness under 20%, 10%, and 1% poisoning rates on SST-2 using *RoBERTa-large*. As shown in Table 17 (Appendix J.9), our method consistently achieves lower ASR than WAG across different attacks and poisoning levels.

Robustness to Adaptive Attacks. We assess our method's resilience against two adaptive attack scenarios. First, we consider an attacker who knows the deployed module selection strategy and retrains only those modules on poisoned data. Our approach counters this by generating diverse strategies using different random seeds. Even if one strategy (Figure 7) is compromised, alternatives (Figure 9) remain effective, as demonstrated on SST-2 with *RoBERTa-large* (Table 18). Second, we test against advanced backdoors like Adaptive-Patch (Qi et al., 2023). Using a transferability-based strategy (Figure 13), our method consistently demonstrates strong defensive performance (Table 19). A detailed analysis of both scenarios is provided in Appendix J.10.

Robustness to Label-Inconsistent and Identical Backdoors. A practical consideration for model merging is that the obtained models may be trained by different attackers targeting different labels, or they may encode identical backdoor triggers. We therefore examine two challenging settings: (1) models with inconsistent target labels, and (2) models trained with the same backdoor trigger. In the first case, where each model has a different target label, our method maintains strong defensive performance. In the second case, where models share the same trigger, our method again substantially reduces ASR compared to WAG, as shown in Table 20 (Appendix J.11).

6 Conclusion

In this paper, we propose Module-Switching Defense (MSD), a post-training backdoor defense that disrupts shortcuts of spurious correlations by strategically switching weight modules between (compromised) models. MSD does not rely on trusted reference models or training data and remains effective with a couple of models. Using heuristic rules and evolutionary search, we establish a transferable module confusion strategy that mitigates various backdoor attacks while preserving their task utility. Empirical results on text and vision tasks confirm its outstanding defense performance, and strong generalization capability, highlighting its practicality in real-world applications.

ETHICS STATEMENT

This paper presents an efficient post-training defense against backdoor attacks on machine learning models. By strategically combining model weight modules from either clean or compromised models, our approach disrupts backdoor propagation while preserving model utility. We demonstrated the usage of MSD to strengthen the security of machine learning models in both natural language processing and computer vision. All models and datasets used in this study are sourced from established open-source platforms. The discovered MSD templates will be released to facilitate further research on defense study. While we do not anticipate any direct negative societal consequences, we hope this work encourages further research into more robust defense mechanisms.

REPRODUCIBILITY STATEMENT

We describe our method in detail in Section 4, with two key algorithms presented in Algorithm 1 and Algorithm 2. Experimental settings are documented in Section 5.1, and the searched outputs of the algorithms are included in Appendix K, which should help in reproducing our results. To preserve anonymity during the review process, code and data are not released at this stage. Upon acceptance, we will make the code, data, and documentation publicly available to facilitate reproducibility and further research.

REFERENCES

- Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018.
- Ignacio Aristimuño. Model merging: Combining different fine-tuned llms. Marvik AI Blog, June 2024. URL https://blog.marvik.ai/2024/06/19/model-merging-combining-different-fine-tuned-llms/.
- Ansh Arora, Xuanli He, Maximilian Mozes, Srinibas Swain, Mark Dras, and Qiongkai Xu. Here's a free lunch: Sanitizing backdoored models with model merge. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 15059–15075, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.894. URL https://aclanthology.org/2024.findings-acl.894.
- Léon Bottou. Large-scale machine learning with stochastic gradient descent. In *Proceedings of COMPSTAT'2010: 19th International Conference on Computational StatisticsParis France, August 22-27, 2010 Keynote, Invited and Contributed Papers*, pp. 177–186. Springer, 2010.
- Chen Chen, Yuchen Sun, Xueluan Gong, Jiaxin Gao, and Kwok-Yan Lam. Neutralizing backdoors through information conflicts for large language models. *arXiv preprint arXiv:2411.18280*, 2024.
- Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep learning systems using data poisoning. *CoRR*, abs/1712.05526, 2017. URL http://arxiv.org/abs/1712.05526.
- Siyuan Cheng, Guangyu Shen, Kaiyuan Zhang, Guanhong Tao, Shengwei An, Hanxi Guo, Shiqing Ma, and Xiangyu Zhang. Unit: Backdoor mitigation via automated neural distribution tightening. In *European Conference on Computer Vision*, pp. 262–281. Springer, 2024.
- Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A backdoor attack against lstm-based text classification systems. *IEEE Access*, 7:138872-138878, 2019. URL https://api.semanticscholar.org/CorpusID:168170110.
- Rong Dai, Yonggang Zhang, Ang Li, Tongliang Liu, Xun Yang, and Bo Han. Enhancing one-shot federated learning through data and ensemble co-boosting. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=tm8s36960x.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

- Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in deep learning: A comprehensive survey and benchmark. *Neurocomputing*, 503:92–108, 2022. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2022.06.111. URL https://www.sciencedirect.com/science/article/pii/S0925231222008426.
- Jacob Dumford and Walter Scheirer. Backdooring convolutional neural networks via targeted weight perturbations. In 2020 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–9, 2020. doi: 10.1109/IJCB48548.2020.9304875.
- Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021. URL https://transformer-circuits.pub/2021/framework/index.html.
- William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39, 2022. URL http://jmlr.org/papers/v23/21-0998.html.
- Chong Fu, Xuhong Zhang, Shouling Ji, Ting Wang, Peng Lin, Yanghe Feng, and Jianwei Yin. FreeEagle: Detecting complex neural trojans in Data-Free cases. In *32nd USENIX Security Symposium (USENIX Security 23)*, pp. 6399–6416, Anaheim, CA, August 2023. USENIX Association. ISBN 978-1-939133-37-3. URL https://www.usenix.org/conference/usenixsecurity23/presentation/fu-chong.
- Matt Gardner, William Merrill, Jesse Dodge, Matthew Peters, Alexis Ross, Sameer Singh, and Noah A. Smith. Competency problems: On finding and removing artifacts in language data. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 1801–1813, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.135. URL https://aclanthology.org/2021.emnlp-main.135/.
- Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. *CoRR*, abs/1708.06733, 2017. URL http://arxiv.org/abs/1708.06733.
- Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. *arXiv preprint arXiv:1902.11175*, 2019.
- Gareth Halfacree. Ai crawlers and fetchers are blowing up websites, with meta and openai the worst offenders. *The Register*, August 2025. URL https://www.theregister.com/2025/08/21/ai_crawler_traffic/.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016. URL https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.
- Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style pre-training with gradient-disentangled embedding sharing. *arXiv preprint arXiv:2111.09543*, 2021.

595

596

597

598

600

601

602

603

604

605

606

607

608

609

610

612

613

614

615 616

617

618

619

620

621

622

623 624

625

627 628

629 630

631

632

633

634 635

636

637

638

639

640

641

642 643

644

645

```
Xuanli He, Qiongkai Xu, Jun Wang, Benjamin Rubinstein, and Trevor Cohn. Mitigating backdoor poisoning attacks through the lens of spurious correlation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 953–967, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.60. URL https://aclanthology.org/2023.emnlp-main.60/.
```

- Xuanli He, Qiongkai Xu, Jun Wang, Benjamin I. P. Rubinstein, and Trevor Cohn. SEEP: Training dynamics grounds latent representation search for mitigating backdoor poisoning attacks. *Transactions of the Association for Computational Linguistics*, 12:996–1010, 2024. doi: 10.1162/tacl_a_00684. URL https://aclanthology.org/2024.tacl-1.55/.
- Xuanli He, Jun Wang, Qiongkai Xu, Pasquale Minervini, Pontus Stenetorp, Benjamin I. P. Rubinstein, and Trevor Cohn. TUBA: Cross-lingual transferability of backdoor attacks in LLMs with instruction tuning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 16504–16544, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.848. URL https://aclanthology.org/2025.findings-acl.848/.
- and Daniel Huynh Jade Hardouin. Poisongpt: How hid we a lobotomized llm on hugging MithrilSeface to spread fake news. curity, July 2023. URL https://blog.mithrilsecurity.io/ poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-face-to-spread-fake-news/.
- Tran Huynh, Dang Nguyen, Tung Pham, and Anh Tran. Combat: Alternated training for effective clean-label backdoor attacks. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38 (3):2436–2444, Mar. 2024. doi: 10.1609/aaai.v38i3.28019. URL https://ojs.aaai.org/index.php/AAAI/article/view/28019.
- Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging weights leads to wider optima and better generalization. *arXiv preprint arXiv:1803.05407*, 2018.
- Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.
- Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.
- Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pretrained models. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 2793–2806, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.249. URL https://aclanthology.org/2020.acl-main.249.
- Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.
- Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Antibackdoor learning: Training clean models on poisoned data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 14900–14912. Curran Associates, Inc., 2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/7d38b1e9bd793d3f45e0e212a729a93c-Paper.pdf.
- Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang. Reconstructive neuron pruning for backdoor defense. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 19837–19854. PMLR, 23–29 Jul 2023a. URL https://proceedings.mlr.press/v202/li23v.html.

- Yige Li, Jiabo He, Hanxun Huang, Jun Sun, Xingjun Ma, and Yu-Gang Jiang. Shortcuts everywhere and nowhere: Exploring multi-trigger backdoor attacks. *IEEE Transactions on Dependable and Secure Computing*, pp. 1–12, 2025. doi: 10.1109/TDSC.2025.3605597.
 - Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor attack in the physical world. *arXiv preprint arXiv:2104.02361*, 2021b.
 - Yiming Li, Mengxi Ya, Yang Bai, Yong Jiang, and Shu-Tao Xia. Backdoorbox: A python toolbox for backdoor learning. In *ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning*, 2023b. URL https://openreview.net/forum?id=B_WOnQXJd5.
 - Yuetai Li, Zhangchen Xu, Fengqing Jiang, Luyao Niu, Dinuka Sahabandu, Bhaskar Ramasubramanian, and Radha Poovendran. Cleangen: Mitigating backdoor attacks for generation tasks in large language models. *arXiv preprint arXiv:2406.12257*, 2024.
 - Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring attacks on deep neural networks. *CoRR*, abs/1805.12185, 2018. URL http://arxiv.org/abs/1805.12185.
 - Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu Zhang. Abs: Scanning neural networks for back-doors by artificial brain stimulation. In *Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security*, pp. 1265–1282, 2019a.
 - Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. *CoRR*, abs/1907.11692, 2019b. URL http://arxiv.org/abs/1907.11692.
 - Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 17703–17716. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/70c26937fbf3d4600b69a129031b66ec-Paper-Conference.pdf.
 - Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing neural networks using genetic algorithms. In *ICGA*, volume 89, pp. 379–384, 1989.
 - Rui Min, Zeyu Qin, Li Shen, and Minhao Cheng. Towards stable backdoor purification through feature shift tuning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 75286–75306. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/ee37d51b3c003d89acba2363dde256af-Paper-Conference.pdf.
 - Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In *Proceedings of the 27th international conference on machine learning (ICML-10)*, pp. 807–814, 2010.
 - Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. *arXiv preprint arXiv:2102.10369*, 2021.
 - Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. ONION: A simple and effective defense against textual backdoor attacks. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 9558–9566, Online and Punta Cana, Dominican Republic, November 2021a. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.752. URL https://aclanthology.org/2021.emnlp-main.752.
 - Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and Maosong Sun. Hidden killer: Invisible textual backdoor attacks with syntactic trigger. In Chengqing

Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 443–453, Online, August 2021b. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.37. URL https://aclanthology.org/2021.acl-long.37/.

- Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun. Turn the combination lock: Learnable textual backdoor attacks via word substitution. In *Annual Meeting of the Association for Computational Linguistics*, 2021c. URL https://api.semanticscholar.org/CorpusID:235417102.
- Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the assumption of latent separability for backdoor defenses. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=_wSHsgrVali.
- Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image classifier architecture search. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33 (01):4780–4789, Jul. 2019. doi: 10.1609/aaai.v33i01.33014780. URL https://ojs.aaai.org/index.php/AAAI/article/view/4405.
- David So, Quoc Le, and Chen Liang. The evolved transformer. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 5877–5886. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/so19a.html.
- Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard (eds.), *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics. URL https://aclanthology.org/D13-1170.
- Yanghao Su, Jie Zhang, Ting Xu, Tianwei Zhang, Weiming Zhang, and Nenghai Yu. Model x-ray: Detecting backdoored models via decision boundary. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 10296–10305, 2024.
- Indranil Sur, Karan Sikka, Matthew Walmer, Kaushik Koneripalli, Anirban Roy, Xiao Lin, Ajay Divakaran, and Susmit Jha. Tijo: Trigger inversion with joint optimization for defending multimodal backdoored models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 165–175, October 2023.
- Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu, Shiqing Ma, Pan Li, and Xiangyu Zhang. Better trigger inversion optimization in backdoor scanning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13368–13378, June 2022.
- Yao Tong, Weijun Li, Xuanli He, Haolan Zhan, and Qiongkai Xu. Cut the deadwood out: Post-training model purification with selective module substitution. *arXiv preprint arXiv:2412.20476*, 2024.
- Amos Tversky and Itamar Gati. Similarity, separability, and the triangle inequality. *Psychological review*, 89(2):123, 1982.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

- Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In *2019 IEEE Symposium on Security and Privacy (SP)*, pp. 707–723, 2019. doi: 10.1109/SP.2019.00031.
- Hang Wang, Zhen Xiang, David J Miller, and George Kesidis. Mm-bd: Post-training detection of backdoor attacks with arbitrary backdoor pattern types using a maximum margin statistic. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 1994–2012. IEEE, 2024a.
- Hu Wang, Congbo Ma, Ibrahim Almakky, Ian Reid, Gustavo Carneiro, and Mohammad Yaqub. Rethinking weight-averaged model-merging. *arXiv preprint arXiv:2411.09263*, 2024b.
- Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical detection of trojan neural networks: Data-limited and data-free cases. In *Computer Vision–ECCV* 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16, pp. 222–238. Springer, 2020.
- Zhenting Wang, Kai Mei, Juan Zhai, and Shiqing Ma. UNICORN: A unified backdoor trigger inversion framework. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=Mj7K4lglGyj.
- Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. *arXiv* preprint arXiv:2301.08727, 2023.
- Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence understanding through inference. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp. 1112–1122. Association for Computational Linguistics, 2018. URL http://aclweb.org/anthology/N18–1101.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface's transformers: State-of-the-art natural language processing. *arXiv* preprint arXiv:1910.03771, 2019.
- Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation and processing for computer vision, 2020.
- Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 16913–16925. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/8cbe9ce23f42628c98f80fa0fac8b19a-Paper.pdf.
- Qiuling Xu, Guanhong Tao, Jean Honorio, Yingqi Liu, Shengwei An, Guangyu Shen, Siyuan Cheng, and Xiangyu Zhang. Medic: Remove model backdoors via importance driven cloning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 20485–20494, June 2023a.
- Tong Xu, Yiming Li, Yong Jiang, and Shu-Tao Xia. Batt: Backdoor attack with transformation-based triggers. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023b.
- Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Tiesmerging: Resolving interference when merging models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 7093–7115. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf.
- Jinluan Yang, Anke Tang, Didi Zhu, Zhengyu Chen, Li Shen, and Fei Wu. Mitigating the backdoor effect for multi-task model merging via safety-aware subspace. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=dqMqAaw7Sq.

- Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, and Aidong Zhang. Spurious correlations in machine learning: A survey. *arXiv preprint arXiv:2402.12715*, 2024.
- Biao Yi, Sishuo Chen, Yiming Li, Tong Li, Baolei Zhang, and Zheli Liu. BadActs: A universal backdoor defense in the activation space. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 5339–5352, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.317. URL https://aclanthology.org/2024.findings-acl.317/.
- Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Absorbing abilities from homologous models as a free lunch. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=fq0NaiU8Ex.
- Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 6023–6032, 2019.
- Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of backdoors via implicit hypergradient. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=MeeQkFYVbzW.
- Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.
- Zhiyuan Zhang, Lingjuan Lyu, Xingjun Ma, Chenguang Wang, and Xu Sun. Fine-mixing: Mitigating backdoors in fine-tuned language models. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp. 355–372, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.26. URL https://aclanthology.org/2022.findings-emnlp.26.
- Xingyi Zhao, Depeng Xu, and Shuhan Yuan. Defense against backdoor attack on pre-trained language models via head pruning and attention normalization. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 61108–61120. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/zhao24r.html.
- Xun Zhou, A. K. Qin, Maoguo Gong, and Kay Chen Tan. A survey on evolutionary construction of deep neural networks. *IEEE Transactions on Evolutionary Computation*, 25(5):894–912, 2021. doi: 10.1109/TEVC.2021.3079985.
- Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, zhifeng Chen, Quoc V Le, and James Laudon. Mixture-of-experts with expert choice routing. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 7103–7114. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/2f00ecd787b432c1d36f3de9800728eb-Paper-Conference.pdf.

A LIMITATIONS

While our study demonstrates the effectiveness of Module-Switching Defense (MSD) across a range of classification tasks in NLP and CV, we identify two main limitations. First, our focus is restricted to classification-based settings. Backdoor attacks in generative models operate through notably different mechanisms, and extending MSD to such scenarios remains an important direction for future research. Second, our method is designed and evaluated primarily within Transformer-based architectures, which dominate current text and vision benchmarks. The applicability of MSD to other model families, such as convolutional neural networks (CNNs) or emerging architectures, is left for future exploration.

B GENERATIVE LLM USAGE STATEMENT

We used ChatGPT and Gemini for surface-level edits, such as grammar checks, phrasing refinement, and table caption formatting to improve readability.

C EMPIRICAL VALIDATION OF THE SECOND-ORDER INTERACTION MAGNITUDE

We empirically validate the condition adopted in Section 3, where the second-order interaction term $\epsilon = \Delta W_2 \Delta W_1$ is omitted due to its negligible magnitude relative to the first-order terms. This validation proceeds from three perspectives.

First, Figure 4 compares the Frobenius norms of the semantic term $S = W_2W_1$, the first-order adaptation term $B = W_2\Delta W_1 + \Delta W_2W_1$, and the second-order residual $\epsilon = \Delta W_2\Delta W_1$ across five derived networks. The left subfigure confirms that $\|\epsilon\|$ is consistently two orders of magnitude smaller than $\|S\|$ and well below 4% of $\|B\|$. The right subfigure further reveals that the elementwise values of ϵ concentrate tightly around zero, contrasting with the heavier tails of B and S.

Figure 4: Frobenius norm and element-wise distribution of the semantic, first-order, and second-order terms across five network configurations. While the first-order term dominates the residual behavior, the second-order interaction $\epsilon = \Delta W_2 \Delta W_1$ remains negligible in both scale and distribution.

Second, Table 3 reports $\|\epsilon\|/\|B\|$ ratios across five network variants under varying backdoor strengths, where perturbations are sampled from zero-mean Gaussian noise with increasing variance. The inclusion of error bars (mean \pm standard deviation) reflects variation across multiple runs. In typical scenarios where the backdoor signal is weak or comparable to the main semantic component, the second-order interaction consistently remains below 4% of the first-order term. Even under exaggerated settings where the backdoor signal is scaled to $1.5\times$ or $2\times$ the semantic

strength, $\|\epsilon\|/\|B\|$ remains within a stable range of 5%–7%, reaffirming the negligible and bounded nature of second-order interactions across regimes.

Table 3: Relative magnitude of second-order interactions, reported as $\|\varepsilon\|/\|B\|$, across networks and backdoor strengths. All models are evaluated with $S \sim \mathcal{N}(\mathbf{0}, 1)$ and perturbations $B \sim \mathcal{N}(\mathbf{0}, \sigma^2)$.

Semantic Dist	Backdoor Dist		$\ arepsilon\ /\ oldsymbol{B}\ $ for Different Shallow Models										
	Ducing of Dist	\mathcal{M}^i	\mathcal{M}^j	\mathcal{M}^{wag}	\mathcal{M}^{ij}	\mathcal{M}^{ji}							
	$\boldsymbol{B} \sim \mathcal{N}(\boldsymbol{0}, 0.1^2)$	2.82±0.19%	2.70±0.20%	3.42±0.23%	2.95±0.15%	3.14±0.21%							
	$B \sim \mathcal{N}(0, 0.5^2)$	$1.98 \pm 0.21\%$	$1.90 \pm 0.28\%$	$1.78\pm0.18\%$	$1.75\pm0.12\%$	$1.76\pm0.18\%$							
$S \sim \mathcal{N}(0, 1.0^2)$	$\boldsymbol{B} \sim \mathcal{N}(\boldsymbol{0}, 1.0^2)$	$3.24{\pm}0.22\%$	$3.10 \pm 0.32\%$	$2.33{\pm}0.17\%$	$2.33{\pm}0.12\%$	$2.30 \pm 0.17\%$							
	$\boldsymbol{B} \sim \mathcal{N}(\boldsymbol{0}, 1.5^2)$	$4.77\pm0.25\%$	$4.48 \pm 0.33\%$	$3.18 \pm 0.14\%$	$3.09 \pm 0.15\%$	$2.97 \pm 0.12\%$							
	$\boldsymbol{B} \sim \mathcal{N}(\boldsymbol{0}, 2.0^2)$	$6.31{\pm}0.27\%$	$6.28{\pm}0.35\%$	$4.14{\pm}0.29\%$	$4.06{\pm}0.14\%$	$3.92{\pm}0.18\%$							

Additionally, we extend this analysis to deep transformer-based (Vaswani et al., 2017) models by computing $\|\epsilon\|/\|B\|$ for the attention weight product, where W_1 and W_2 denote the key (K) and query (Q) projection matrices, respectively, and $QK^{\top} := W_2W_1$. The weight changes ΔW_1 , ΔW_2 are computed relative to the original pretrained RoBERTa-large (Liu et al., 2019b) weights. All models are trained on SST-2 (Socher et al., 2013), including both benign and backdoored variants such as **BadNet** (Kurita et al., 2020), **InsertSent** (Dai et al., 2019), learnable word substitution (LWS) (Qi et al., 2021c), and Hidden-Killer (Hidden) (Qi et al., 2021b).

As shown in Table 4, across all pairwise combinations of these models, the relative magnitude of second-order interactions consistently remains below 4%. Each reported value reflects the mean and standard deviation computed across all 24 layers of RoBERTa-large. This pattern holds across both original and recombined variants (\mathcal{M}^{wag} , \mathcal{M}^{ij} , \mathcal{M}^{ji}), confirming the stability of second-order contributions in practical transformer settings.

Table 4: Relative magnitude of second-order interactions, reported as $\|\varepsilon\|/\|B\|$, computed from the key (K) and query (Q) projection matrices in *RoBERTa-large* models trained on **SST-2**.

Combination	$\ arepsilon\ /\ oldsymbol{B}\ $ for	Attention Weig	ght Product (Q	K^T) in $RoBER$	Ta-large Models
$(\mathcal{M}^i + \mathcal{M}^j)$	$\overline{\mathcal{M}^i}$	\mathcal{M}^j	\mathcal{M}^{wag}	\mathcal{M}^{ij}	$\overline{\mathcal{M}^{ji}}$
BadNet + InsertSent	3.53±0.77%	3.24±0.61%	2.43±0.39%	2.68±0.51%	2.61±0.50%
BadNet + LWS	$3.53\pm0.77\%$	$3.30 \pm 0.65\%$	$2.46 \pm 0.4\%$	$2.71\pm0.46\%$	$2.68\pm0.49\%$
BadNet + Hidden	$3.53\pm0.77\%$	$3.30 \pm 0.61\%$	$2.49\pm0.43\%$	$2.77\pm0.45\%$	$2.72\pm0.45\%$
BadNet + Benign	$3.53 \pm 0.77\%$	$3.27{\pm}0.58\%$	$2.52 \pm 0.42\%$	$2.78 \pm 0.47\%$	$2.73 \pm 0.48\%$

Accordingly, we omit the second-order term ϵ in our definitions and proofs throughout the paper without loss of generality.

D PROOFS OF THEOREM 1 AND PROPOSITION 1

Theorem 1 (Module Switching Exceeds WAG in Backdoor Divergence). *Under identity activation, the total backdoor divergence of the Weight-Averaged (WAG) model is upper bounded by the average divergence of the switched models:*

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \frac{1}{2} \left(\|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ij,j}\| + \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ji,j}\| \right). \tag{2}$$

Proposition 1 (The Existence of a More Divergent Switched Model). *Given Theorem 1, there exists at least one switched model with greater backdoor divergence than Weight-Averaged (WAG) model:*

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \max \left\{ \|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ij,j}\|, \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ji,j}\| \right\}.$$
 (3)

Proof. From Definition 2 and 4, we have the following expressions for the backdoor divergences:

$$\|\mathcal{D}^{\text{wag},i}\| = \frac{1}{2} \left\| \left(\mathbf{W}_{2} (\Delta \mathbf{W}_{1}^{j} - \Delta \mathbf{W}_{1}^{i}) + (\Delta \mathbf{W}_{2}^{j} - \Delta \mathbf{W}_{2}^{i}) \mathbf{W}_{1} \right) \mathbf{x} \right\|,$$

$$\|\mathcal{D}^{\text{wag},j}\| = \frac{1}{2} \left\| \left(\mathbf{W}_{2} (\Delta \mathbf{W}_{1}^{i} - \Delta \mathbf{W}_{1}^{j}) + (\Delta \mathbf{W}_{2}^{i} - \Delta \mathbf{W}_{2}^{j}) \mathbf{W}_{1} \right) \mathbf{x} \right\|,$$

$$\|\mathcal{D}^{ij,i}\| = \left\| (\Delta \mathbf{W}_{2}^{j} - \Delta \mathbf{W}_{2}^{i}) \mathbf{W}_{1} \mathbf{x} \right\|, \quad \|\mathcal{D}^{ij,j}\| = \left\| \mathbf{W}_{2} (\Delta \mathbf{W}_{1}^{i} - \Delta \mathbf{W}_{1}^{j}) \mathbf{x} \right\|,$$

$$\|\mathcal{D}^{ji,i}\| = \left\| \mathbf{W}_{2} (\Delta \mathbf{W}_{1}^{j} - \Delta \mathbf{W}_{1}^{i}) \mathbf{x} \right\|, \quad \|\mathcal{D}^{ji,j}\| = \left\| (\Delta \mathbf{W}_{2}^{i} - \Delta \mathbf{W}_{2}^{j}) \mathbf{W}_{1} \mathbf{x} \right\|.$$

$$(5)$$

Linear relationships. By regrouping terms in the above definitions, we obtain the following vector identities:

$$\mathcal{D}^{\text{wag},i} = \frac{1}{2} (\mathcal{D}^{ij,i} + \mathcal{D}^{ji,i}), \qquad \mathcal{D}^{\text{wag},j} = \frac{1}{2} (\mathcal{D}^{ij,j} + \mathcal{D}^{ji,j}). \tag{6}$$

Bounding the average switched model backdoor divergence. Substituting equation 6 into the norms and applying the triangle inequality (Tversky & Gati, 1982), we have:

$$\|\mathcal{D}^{\text{wag},i}\| = \|\frac{1}{2}(\mathcal{D}^{ij,i} + \mathcal{D}^{ji,i})\| \le \frac{1}{2}(\|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ji,i}\|),$$
 (7)

$$\|\mathcal{D}^{\text{wag},j}\| = \|\frac{1}{2}(\mathcal{D}^{ij,j} + \mathcal{D}^{ji,j})\| \le \frac{1}{2} (\|\mathcal{D}^{ij,j}\| + \|\mathcal{D}^{ji,j}\|).$$
 (8)

Summing both inequalities gives:

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \frac{1}{2} \left(\|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ij,j}\| + \|\mathcal{D}^{ji,j}\| \right), \tag{9}$$

which proves Theorem 1.

Bounding the maximum switched model backdoor divergence. Let:

$$C_1 := \|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ij,j}\|, \qquad C_2 := \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ji,j}\|, \qquad G := \max\{C_1, C_2\}.$$
 (10)

Since $C_1 + C_2 \leq 2G$, it follows that:

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \frac{1}{2}(C_1 + C_2) \le \max\{C_1, C_2\},$$
 (11)

which proves Proposition 1.

E DERIVATION OF UTILITY LOSS IDENTITY

As discussed in Section 3, utility loss in a two-layer network can be expressed as the difference from the benign semantic output. For a model \mathcal{M}^* , we define

$$L^*(\boldsymbol{x}) := \mathcal{M}^*(\boldsymbol{x}) - S\boldsymbol{x} = B^*\boldsymbol{x}. \tag{12}$$

According to the notation in Section 3 and the construction in Definition 3, the utility losses of constituent and switched models are

$$L^{i}(\mathbf{x}) = (W_{2}\Delta W_{1}^{i} + \Delta W_{2}^{i}W_{1})\mathbf{x}; \ L^{j}(\mathbf{x}) = (W_{2}\Delta W_{1}^{j} + \Delta W_{2}^{j}W_{1})\mathbf{x};$$

$$L^{ij}(\mathbf{x}) = (W_{2}\Delta W_{1}^{i} + \Delta W_{2}^{j}W_{1})\mathbf{x}; \ L^{ji}(\mathbf{x}) = (W_{2}\Delta W_{1}^{j} + \Delta W_{2}^{i}W_{1})\mathbf{x}.$$
(13)

Regrouping these expressions yields the key identity,

$$L^{ij}(\boldsymbol{x}) + L^{ji}(\boldsymbol{x}) = (W_2 \Delta W_1^i + \Delta W_2^j W_1) \boldsymbol{x} + (W_2 \Delta W_1^j + \Delta W_2^i W_1) \boldsymbol{x}$$
$$= (W_2 \Delta W_1^i + \Delta W_2^i W_1) \boldsymbol{x} + (W_2 \Delta W_1^j + \Delta W_2^j W_1) \boldsymbol{x}$$
$$= L^i(\boldsymbol{x}) + L^j(\boldsymbol{x}). \tag{14}$$

F EMPIRICAL EVALUATION OF UTILITY LOSS

As derived in Appendix E, the identity, $L^{ij}(\mathbf{x}) + L^{ji}(\mathbf{x}) = L^i(\mathbf{x}) + L^j(\mathbf{x})$, characterizes the combined loss of a switched pair relative to its constituent models. We now evaluate loss at the level of individual switched models with respect to the benign semantic output.

For any model \mathcal{M}^* , define its utility loss ratio relative to benign semantic S as

$$r^*(x) := \frac{\|L^*(x)\|}{\|Sx\|}$$
 for inputs with $\|Sx\| > 0$. (15)

To measure how a switched model compares to its originals, we denote

$$e^{ij,i}(\mathbf{x}) := r^{ij}(\mathbf{x}) - r^{i}(\mathbf{x}), \quad e^{ij,j}(\mathbf{x}) := r^{ij}(\mathbf{x}) - r^{j}(\mathbf{x}),$$

$$e^{ji,i}(\mathbf{x}) := r^{ji}(\mathbf{x}) - r^{i}(\mathbf{x}), \quad e^{ji,j}(\mathbf{x}) := r^{ji}(\mathbf{x}) - r^{j}(\mathbf{x}).$$
(16)

Let $\mathcal{E} = \{e^{ij,i}, e^{ij,j}, e^{ji,i}, e^{ji,j}\}$ denote the collection of all signed differences between the switched models and their origins. A value close to zero indicates that the switched models \mathcal{M}^{ij} and \mathcal{M}^{ji} preserve the benign utility at a level comparable to their original models \mathcal{M}^i and \mathcal{M}^j . Negative value further implies that a switched model provides representations *closer* to the benign semantics than those by corresponding original models.

Figure 5: Empirical distribution of \mathcal{E} , the relative utility loss differences between switched models $(\mathcal{M}^{ij}, \mathcal{M}^{ji})$ and their originals $(\mathcal{M}^i, \mathcal{M}^j)$. Non-positive values indicate that a switched model is closer to the benign utility, with more negative values corresponding to closer alignment.

Figure 5 shows the empirical distribution of $\mathcal E$ aggregated over 1,000 randomly sampled model pairs $(\mathcal M^i,\mathcal M^j)$. The combined results yield a mean of -0.014 ± 0.008 , 99^{th} percentile of 0.004, and a maximum of 0.031, suggesting that the maximum deviation from the originals is below 3%, while on average the switched models $\mathcal M^{ij}$ and $\mathcal M^{ji}$ incur slightly smaller loss relative to the benign utility. These findings demonstrate that utility is effectively preserved under module switching, compared to the original constituent models.

G MODULE SWITCHING WITH ADDITIONAL ACTIVATION FUNCTIONS

We extend the experiments from Section 3 to two additional activation functions: tanh and sig-moid (Dubey et al., 2022), in addition to the linear and ReLU results discussed in the main text. For each activation, we simulate 1000 pairs of fine-tuned models \mathcal{M}^i and \mathcal{M}^j with a shared pretrained semantic component $S \sim \mathcal{N}(\mathbf{0}, 1^2)$ and individual backdoor shifts $B^* \sim \mathcal{N}(\mathbf{0}, 0.1^2)$. We then construct the weight-averaged model \mathcal{M}^{wag} and the module-switched models \mathcal{M}^{ij} and \mathcal{M}^{ji} , as defined in Definitions 1 and 3.

Figure 6 visualizes the semantic and backdoor alignment of each model type across the four activation functions. Consistently across activations, we observe that:

- Fine-tuned models remain closely aligned with their respective backdoor direction B^*x ;
- WAG models deviate more from the backdoor pattern;
- Switched models exhibit the larger distance to backdoor patterns, indicating stronger mitigation;
- All model types maintain proximity to the semantic output Sx, confirming that semantic information is preserved.

These results generalize the findings in Figure 2 to a broader range of nonlinear activations, reinforcing the conclusion that module switching more effectively disrupts backdoor behavior while retaining semantic utility.

Figure 6: Euclidean distances between normalized output vectors of *pretrained*, *fine-tuned*, *WAG*, and *switched* networks, relative to semantic output Sx and backdoor output B^*x , under *linear*, *ReLU*, *tanh*, and *sigmoid* activations.

H FITNESS SCORE CALCULATION FOR EVOLUTIONARY SEARCH

Building upon the heuristic rules established in Section 4.2 for disrupting backdoor connections in compromised models, we develop a comprehensive fitness function. This function incorporates five key components that collectively evaluate the quality of a module composition strategy.

H.1 HEURISTIC RULES

Our fitness function implements the following rules through penalties and rewards:

Heuristic-based Search Rules

- 1. **Intra-layer adjacency penalty:** Penalizes adjacent modules from the same source model within a specific layer i (e.g., Q_i and K_i).
- 2. Consecutive-layer adjacency penalty: Discourages direct connections between modules from the same source model across consecutive layers i and i + 1 (e.g., P_i to Q_{i+1}).
- 3. **Residual-path adjacency penalty:** Applies a distance-weighted penalty to modules from the same source model connected via residual connections between layers i and j (e.g., O_i to Q_j , where j > i), with diminishing impact as j i increases.
- 4. **Balance penalty:** Promotes uniform distribution of modules $\{Q, K, V, O, I, P\}$ across source models to prevent any single model from dominating the architecture.
- 5. **Diversity reward:** Encourages varied module combinations across layers to enhance architectural diversity.

H.2 MATHEMATICAL FORMULATION

As introduced in Section 4.3, the total fitness score for a given module composition strategy s is:

$$F(s) = -\lambda_1 A_{\text{intra}}(s) - \lambda_2 A_{\text{cons}}(s) - \lambda_3 A_{\text{res}}(s) - \lambda_4 B_{\text{bal}}(s) + \lambda_5 R_{\text{div}}(s), \tag{17}$$

where all λ_k are weight factors (default to 1.0) that control the relative importance of each component in the overall fitness score.

Each component is calculated as follows:

1. Intra-layer Adjacency $(A_{intra}(s))$

$$A_{\text{intra}}(s) = \sum_{l=1}^{|s|} \text{INTRAVIOLATION}(s[l])$$
 (18)

Here, IntraViolation quantifies the number of adjacent module pairs from the same source model within layer s[l].

2. Consecutive-layer Adjacency $(A_{cons}(s))$

$$A_{\text{cons}}(s) = \sum_{l=1}^{|s|-1} \text{ConsecViolation}(s[l], s[l+1])$$
 (19)

The function CONSECVIOLATION counts module pairs from the same source model that are directly connected between consecutive layers.

3. Residual Connections $(A_{res}(s))$

$$A_{\text{res}}(s) = \sum_{l=1}^{|s|} \sum_{k=l+1}^{|s|} \text{ResidualViolation}(s[l], s[k]) \times (0.5)^{k-l}$$
(20)

This term evaluates residual connections between layers s[l] and s[k], with RESIDUALVIOLATION weighted by $(0.5)^{k-l}$ to reduce the impact of long-range connections.

4. Module Balance $(B_{bal}(s))$

$$B_{\text{bal}}(s) = \sum_{i=1}^{n_{\text{models}}} \sum_{m \in \mathcal{M}} |\text{count}_{i,m} - \text{count}_{\text{ideal}}|$$
 (21)

where $\operatorname{count}_{i,m}$ is the count of module type m from model $i, M = \{Q, K, V, O, I, P\}$ is the set of module types, and $\operatorname{count}_{\operatorname{ideal}} = |s|/n_{\operatorname{models}}$ represents the ideal count per module type per model.

5. Layer Diversity $(R_{div}(s))$

$$R_{\text{div}}(s) = |\text{unique}(s)| \tag{22}$$

where unique(s) is the set of unique layer compositions in strategy s.

I ADDITIONAL EXPERIMENT SETUP

I.1 DATASET STATISTICS

 We evaluate our method on four text and two vision datasets. The statistics of each dataset and the settings of backdoor target class are shown in Table 5. In addition, we conduct an ablation study on merging backdoored models with different target labels, and our method remains effective, as discussed in Section 5.3.

Table 5: The statistics of the evaluated text and vision datasets.

Domain	Dataset	Classes	Train	To	est	Target Class
Domain	Dutuset	Clusses	114111	Clean	Poison	Turget Cluss
	SST-2	2	67,349	872	444	Negative (0)
Text	MNLI	3	100,000	400	285	Neutral (1)
	AGNews	4	120,000	7,600	5,700	Sports (1)
Vision	CIFAR-10	10	50,000	10,000	9,000	Automobile (1)
VISIOII	TinyImageNet	200	100,000	10,000	9,950	European Fire Salamander (1)

I.2 DATASET LICENSES

We evaluate our method on the following datasets: **SST-2** (Socher et al., 2013), **MNLI** (Williams et al., 2018), **AG News** (Zhang et al., 2015), **CIFAR-10** (Krizhevsky et al., 2009), and **TinyImageNet** (Le & Yang, 2015).

The MNLI dataset is released under the Open American National Corpus (OANC) license, which permits free use, as stated in the original paper (Williams et al., 2018). The AG News dataset is distributed with a disclaimer stating it is provided "as is" without warranties and does not impose explicit restrictions on academic use. No public licensing information was found for SST-2, CIFAR-10, or TinyImageNet. We use all datasets solely for academic, non-commercial research purposes, in accordance with standard practice in the machine learning community.

I.3 DEFENSE BASELINES

As discussed in Section 5.1, we evaluate seven defensive approaches across text and vision domains: three model-merging techniques common to both domains, plus two domain-specific data purification methods for each—one applied during training and another during inference.

The three model-merging methods are: (1) **TIES** (Yadav et al., 2023), (2) **DARE** (Yu et al., 2024), and (3) **WAG** (Arora et al., 2024). These methods are chosen because they are applicable to both text and vision domains, do not rely on assumptions about backdoor priors, and eliminate the need for large-scale proxy clean or compromised data used for model purification or retraining. Their alignment with our setting makes them suitable for comparison. For conventional baselines, we use **Z-Def.** (He et al., 2023) and **ONION** (Qi et al., 2021a) in the text domain, which detect outlier trigger words during training and testing, respectively. For the vision domain, we select **CutMix** (Yun et al., 2019) and **ShrinkPad** (Li et al., 2021b). CutMix mitigates backdoor attacks by mixing image patches, disrupting the spatial integrity of triggers. ShrinkPad defends by shrinking the image and padding it, altering trigger placement, and reducing its effectiveness. For the vision domain, we use the BackdoorBox toolkit (Li et al., 2023b) to apply these defenses. Specifically, for CutMix, we use 30 epochs to repair the model. While these well-established methods are representative in terms of usage and performance, their dependence on data access may limit practicality in some scenarios. All baseline methods use their open-source codebases with default hyperparameters.

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

J ADDITIONAL RESULTS

J.1 OVERALL DEFENSE PERFORMANCE FOR TEXTUAL BACKDOOR ATTACKS

Due to space constraints, we present comprehensive experimental results for three datasets (**SST-2**, **MNLI**, and **AG News**) in Table 6, Table 7, and Table 8. All experiments follow the controlled settings described in Section 5.1, utilizing *RoBERTa-large* as the victim model, with results averaged across three random seeds.

We observe that our method yields decent performance on the SST-2 dataset: it achieves top performance in 8 out of 10 attack combinations, with the remaining 2 combinations ranking second best. In cases where our method ranks first, it significantly outperforms baseline approaches. For instance, when combining BadNet with LWS attacks, our method achieves an average ASR score 21% lower than the second-best defense method. Moreover, our method consistently achieves the lowest individual ASR scores across both attacks in most combinations, highlighting its effectiveness in simultaneously mitigating multiple threats when merging compromised models.

Even in scenarios where our method ranks second, it maintains comparable defense performance to the top-performing approach. Furthermore, when combining clean models with compromised ones, our method demonstrates strong resistance against malicious attack injection, as evidenced by the lowest ASR scores. Notably, our method maintains good utility preservation across all combinations, showing minimal impact to the model performance.

Table 6: Performance comparison on the SST-2 dataset using the *RoBERTa-large* model.

Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.
Benign	95.9	4.1	2.2	12.8	16.5	8.9	Z-Def	95.6*	4.6	1.8	97.3	35.7	34.9
Victim	95.9*	100.0	100.0	98.0	96.5	98.6	ONION	92.8*	56.8	99.9	85.7	92.9	83.8
	Cor	nbined: Bo	ıdNet + I	InsertSei	ıt			Co	ombined: I	nsertSen	t + LWS		
WAG	96.3	56.3	7.4	-	-	31.9	WAG	96.1	-	15.1	43.3	-	29.2
TIES	95.9	88.7	17.0	-	-	52.9	TIES	96.1	-	35.8	64.9	-	50.3
DARE	96.5	57.8	36.3	-	-	47.1	DARE	96.4	-	44.4	31.5	-	37.9
Ours	96.2	36.9	7.1	-	-	22.0	Ours	96.0	-	11.9	39.7	-	25.8
	(Combined:	BadNet	+ LWS				Combi	ined: Inser	tSent + I	HiddenK	iller	
WAG	96.2	74.0	-	50.3	-	62.2	WAG	96.3	-	12.5	-	28.5	20.5
TIES	95.9	88.1	-	66.1	-	77.1	TIES	95.9	-	37.5	-	39.0	38.3
DARE	96.2	60.4	-	62.5	-	61.4	DARE	96.6	-	38.7	-	29.1	33.9
Ours	96.0	41.7	-	39.0	-	40.4	Ours	95.8	-	10.1	-	28.7	19.4
	Com	bined: Baa	Net + H	iddenKil	ler			Con	nbined: LV	VS + Hid	denKille	er	
WAG	96.1	63.9	-	-	29.0	46.4	WAG	96.4	-	-	60.5	41.7	51.1
TIES	96.0	90.4	-	-	36.9	63.6	TIES	96.0	-	-	77.8	55.8	66.8
DARE	96.7	36.3	-	-	47.6	41.9	DARE	96.7	-	-	67.7	43.3	55.5
Ours	96.1	40.5	-	-	27.7	34.1	Ours	96.0	-	-	58.6	47.2	52.9
	C	ombined: I	Benign +	BadNet				(Combined:	Benign	+ LWS		
WAG	96.1	39.3	-	-	-	39.3	WAG	96.1	-	-	43.3	-	43.3
TIES	95.7	69.2	-	-	-	69.2	TIES	95.8	-	-	60.7	-	60.7
DARE	96.4	43.2	-	-	-	43.2	DARE	96.6	-	-	72.3	-	72.3
Ours	96.1	12.2	-	-	-	12.2	Ours	95.9	-	-	39.0	-	39.0
	Coi	mbined: Be	enign + 1	nsertSer	ıt			Com	bined: Ben	ign + Hi	ddenKil	ler	
WAG	96.1	-	5.5	-	-	5.5	WAG	96.0	-	-	-	24.9	24.9
TIES	96.1	-	9.0	-	-	9.0	TIES	96.1	-	-	-	30.0	30.0
DARE	96.6	-	4.7	-	-	4.7	DARE	96.7	-	-	-	38.2	38.2
Ours	96.1	-	4.1	-	-	4.1	Ours	96.0	-	-	-	25.5	25.5

For the results of **MNLI** dataset Table 7, our method demonstrates more balanced and robust defense performance across different attack combinations. While DARE occasionally achieves lower ASR on individual attacks (*e.g.*, 11.6% ASR for BadNet in BadNet+InsertSent combination), it shows significant vulnerability to the other attack type (90.6% ASR for InsertSent), indicating potential risks when merging with new models. In contrast, our method maintains consistently lower average ASRs across various combinations (*e.g.*, 23.7% for BadNet+InsertSent, 43.7% for InsertSent+LWS, and 40.2% for InsertSent+Hidden), demonstrating its effectiveness in simultaneously defending against multiple attack types.

For the results of **AG NEWS** dataset Table 8, we observe a similar pattern, where our method provides more balanced defense capabilities. Notably, for the InsertSent+LWS combination, while DARE achieves a low ASR of 1.2% on LWS, it remains highly vulnerable to InsertSent attacks (99.6% ASR). In contrast, our method maintains consistently lower ASRs for both attacks (9.5% and 16.7%), resulting in a better average performance of 13.1%.

Table 7: Performance comparison on the MNLI dataset using the *RoBERTa-large* model.

Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.
Benign	87.6	12.3	12.6	26.4	36.9	22.1	Z-Def	89.2*	11.1	11.6	92.2	50.6	41.4
Victim	89.5*	100.0	100.0	96.0	99.9	99.0	ONION	86.3*	64.3	98.6	89.0	98.8	87.7
	Cor	nbined: Bo	ıdNet + I	nsertSei	ıt			Ce	ombined: I	nsertSen	t + LWS		
WAG	90.3	39.8	27.6	-	-	33.7	WAG	90.6	_	36.1	62.6	-	49.4
TIES	90.3	73.6	56.1	-	-	64.9	TIES	90.3	-	60.0	65.3	-	62.7
DARE	91.3	11.6	90.6	-	-	51.1	DARE	91.4	-	88.8	40.2	-	64.5
Ours	90.5	24.8	22.5	-	-	23.7	Ours	91.0	-	24.8	62.5	-	43.7
	(Combined:	BadNet	+ LWS				Cor	nbined: In	sertSent	+ Hidde	n	
WAG	89.8	59.3	-	69.3	-	64.3	WAG	91.5	-	36.6	-	46.9	41.8
TIES	90.0	87.3	_	73.1	-	80.2	TIES	90.9	-	65.1	-	55.2	60.2
DARE	90.5	71.7	-	56.4	-	64.1	DARE	91.8	-	90.8	-	40.2	65.5
Ours	90.1	45.1	-	68.9	-	57.0	Ours	91.1	-	24.3	-	56.1	40.2
	Co	ombined: I	BadNet +	Hidden				(Combined:	LWS + I	Hidden		
WAG	89.9	61.6	-	-	51.7	56.7	WAG	89.8	-	-	70.2	55.1	62.7
TIES	90.0	89.4	-	-	64.0	76.7	TIES	90.1	-	-	73.8	59.1	66.5
DARE	90.9	33.4	-	-	81.8	57.6	DARE	91.0	-	-	41.5	88.7	65.1
Ours	90.2	32.5	-	-	59.3	45.9	Ours	89.9	-	-	70.3	57.3	63.8
	Co	ombined: I	Benign +	BadNet				(Combined:	LWS +	Benign		
WAG	90.2	47.8	-	-	-	47.8	WAG	89.0	-	-	65.6	-	65.6
TIES	89.8	64.9	-	-	-	64.9	TIES	89.8	-	-	69.3	-	69.3
DARE	91.0	41.8	-	-	-	41.8	DARE	90.1	-	-	48.9	-	48.9
Ours	90.1	43.3	-	-	-	43.3	Ours	89.3	-	-	64.1	-	64.1
	Cor	nbined: In	sertSent	+ Benig	n			C	ombined: I	Hidden +	- Benign		
WAG	90.4	-	23.2	-	-	23.2	WAG	90.3	-	-	-	47.0	47.0
TIES	90.4	-	40.6	-	-	40.6	TIES	89.8	-	-	-	54.3	54.3
DARE	91.3	-	42.3	-	-	42.3	DARE	90.9	-	-	-	63.3	63.3
Ours	90.5	-	18.3	-	-	18.3	Ours	89.4	-	-	-	47.9	47.9

J.2 OVERALL DEFENSE PERFORMANCE FOR VISION BACKDOOR ATTACKS

Regarding the vision domain discussed in Section 5.2, we present the full results for the **CIFAR-10** and **TinyImageNet** datasets with the ViT model in Table 9 and Table 10, respectively.

While most methods achieve relatively low ASRs for many attack types, our approach is particularly effective against stealthier attacks like PhysicalBA. This is most evident in the BadNet+PhysicalBA combination, where our method reduces the ASR to 18.5% for both attacks while maintaining a high clean accuracy of 98.7% in CIFAR-10 dataset. These results highlight our method's strength in defending against more sophisticated visual backdoor attacks.

J.3 MULTIPLE-MODEL FUSION DEFENSE

We evaluate our method in multi-model fusion scenarios as discussed in Section 5.2, beginning with three distinct backdoored models and then moving to a more challenging four-model setting involving collusion. Applied on three models, our approach derives the strategies (illustrated in Figure 14) that consistently deliver strong defensive performance, reducing the average Attack Success Rate (ASR) to below 20% across different combinations, as shown in Table 11.

Although WAG may achieve relatively low ASRs when combining multiple models, we argue that in realistic the likelihood of colluding backdoors increases. In such settings, WAG becomes less effective, as naive averaging cannot neutralize repeated malicious patterns. In contrast, our module-switching strategy is more resilient, as it strategically disrupts these recurring shortcuts. The results in Table 12, obtained using the strategy illustrated in Figure 15, confirm this advantage and demonstrate the robustness of MSD against collusive models.

Table 8: Performance comparison on the **AG NEWS** dataset using the *RoBERTa-large* model.

Defense CACC BadNet Insert LWS Hidden AVG. Defense CACC BadNet Insert LWS Hidden AVG.				1									0		
Victim 95.0* 99.9 99.6 99.6 100.0 99.8 ONION 92.3* 59.4 97.8 84.8 99.6 85.4 Combined: BadNet + InsertSent Combined: InsertSent + LWS WAG 95.4 75.2 60.2 - - 67.7 WAG 95.2 - 39.5 17.8 - 28.7 TIES 95.3 92.4 95.6 - - 94.0 TIES 95.1 - 90.5 55.7 - 73.1 DARE 95.3 72.3 42.5 - - 50.1 DARE 95.4 - 90.6 1.2 - 50.1 Combined: BadNet + LWS Combined: BadNet + LWS Combined: InsertSent + Hidden Combined: BadNet + Hidden <td< th=""><th>Defense</th><th>CACC</th><th>BadNet</th><th>Insert</th><th>LWS</th><th>Hidden</th><th>AVG.</th><th>Defense</th><th>CACC</th><th>BadNet</th><th>Insert</th><th>LWS</th><th>Hidden</th><th>AVG.</th></td<>	Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	
Combined: BadNet + InsertSent Combined: InsertSent + LWS	Benign	95.4	1.9	0.5	0.5	1.1	1.0	Z-Def	95.4*	1.6	0.4	97.9	100.0	50.0	
WAG	Victim	95.0*	99.9	99.6	99.6	100.0	99.8	ONION	92.3*	59.4	97.8	84.8	99.6	85.4	
TIES		Con	nbined: Bo	adNet + I	InsertSer	ıt			Ce	ombined: I	nsertSen	t + LWS	'		
DARE 95.6 33.7 66.6 -	WAG	95.4	75.2	60.2	-	-	67.7	WAG	95.2	-	39.5	17.8	-	28.7	
Ours 95.3 72.3 42.5 - - 57.4 Ours 95.1 - 9.5 16.7 - 13.1 Combined: BadNet + LWS Combined: InsertSent + Hidden WAG 95.2 76.1 - 28.1 - 52.1 WAG 95.4 - 61.4 - 43.6 52.5 TIES 95.1 95.6 - 64.4 - 80.0 TIES 95.3 - 93.4 - 75.3 84.4 DARE 95.4 99.3 - 3.5 - 51.4 DARE 95.5 - 84.0 - 15.8 49.9 Combined: BadNet + Hidden Combined: BadNet + Hidden Combined: BadNet + Hidden Combined: LWS + Hidden Combined: Ballet Combined: Ballet Combined: Ballet Combined: Benign + Ballet Combined: Benign + LWS <th cols<="" td=""><td>TIES</td><td>95.3</td><td>92.4</td><td>95.6</td><td>-</td><td>-</td><td>94.0</td><td>TIES</td><td>95.1</td><td>-</td><td>90.5</td><td>55.7</td><td>-</td><td>73.1</td></th>	<td>TIES</td> <td>95.3</td> <td>92.4</td> <td>95.6</td> <td>-</td> <td>-</td> <td>94.0</td> <td>TIES</td> <td>95.1</td> <td>-</td> <td>90.5</td> <td>55.7</td> <td>-</td> <td>73.1</td>	TIES	95.3	92.4	95.6	-	-	94.0	TIES	95.1	-	90.5	55.7	-	73.1
Combined: BadNet + LWS	DARE	95.6	33.7	66.6	-	-	50.1	DARE	95.4	-	99.6	1.2	-	50.4	
WAG 95.2 76.1 - 28.1 - 52.1 WAG 95.4 - 61.4 - 43.6 52.5 TIES 95.1 95.6 - 64.4 - 80.0 TIES 95.3 - 93.4 - 75.3 84.4 DARE 95.4 99.3 - 3.5 - 51.4 DARE 95.5 - 84.0 - 15.8 49.9 Ours 95.2 75.8 - 26.0 - 50.9 Ours 95.3 - 41.7 - 47.5 44.6 Combined: BadNet + Hidden Combined: LWS + Hidden WAG 95.2 73.2 - - 37.2 55.2 WAG 95.1 - - 31.7 62.6 47.2 TIES 95.3 91.9 - - 71.9 81.9 TIES 95.1 - - 67.5 92.2 79.9	Ours	95.3	72.3	42.5	-	-	57.4	Ours	95.1	-	9.5	16.7	-	13.1	
TIES 95.1 95.6 - 64.4 - 80.0 TIES 95.3 - 93.4 - 75.3 84.4 DARE 95.4 99.3 - 3.5 - 51.4 DARE 95.5 - 84.0 - 15.8 49.9 Ours 95.2 75.8 - 26.0 - 50.9 Ours 95.3 - 41.7 - 47.5 44.6		(Combined:	BadNet	+ LWS				Cor	nbined: In	sertSent	+ Hidde	rn		
DARE Ours 95.4 99.3 - 3.5 - 51.4 DARE Ours 95.5 - 84.0 - 15.8 49.9 Combined: BadNet + Hidden Combined: LWS + Hidden Combined: LWS + Hidden WAG 95.2 73.2 37.2 55.2 WAG 95.1 31.7 62.6 47.2 TIES 95.3 91.9 71.9 81.9 TIES 95.1 67.5 92.2 79.9 DARE 95.4 66.7 40.4 53.6 DARE 95.3 2.5 99.9 51.2 Ours 95.2 56.5 38.1 47.3 Ours 95.2 33.5 60.5 47.0 Combined: Benign + BadNet Combined: Benign + LWS WAG 95.4 65.4 65.4 WAG 95.2 - 14.0 - 14.0 TIES 95.4 87.4 87.4 TIES 95.2 - 47.1 - 47.1 47.1 - 47.1 DARE 95.6 33.6 36.6 DARE 95.6 2.6 - 2.6 2.6 - 2.6 Ours 95.4 46.4 46.4 Ours 95.2 15.7 - 15.7 15.7 Combined: Benign + InsertSent Combined: Benign + Hidden WAG 95.3 - 93.2 - 93.2 TIES 95.3 68.8 68.8 DARE 95.6 - 3.1 - 7.4 7.4	WAG	95.2	76.1	-	28.1	-	52.1	WAG	95.4	-	61.4	-	43.6	52.5	
Ours 95.2 75.8 - 26.0 - 50.9 Ours 95.3 - 41.7 - 47.5 44.6 Combined: BadNet + Hidden WAG 95.2 73.2 - - 37.2 55.2 WAG 95.1 - - 31.7 62.6 47.2 TIES 95.3 91.9 - - 71.9 81.9 TIES 95.1 - - 67.5 92.2 79.9 DARE 95.4 66.7 - - 40.4 53.6 DARE 95.3 - - 2.5 99.9 51.2 Combined: Benign + BadNet Combined: Benign + LWS WAG 95.4 65.4 - - 65.4 WAG 95.2 - - 14.0 - 14.0 TIES 95.4 87.4 - - 65.4 WAG 95.2 - - 14.0 - 14.0 </td <td>TIES</td> <td>95.1</td> <td>95.6</td> <td>-</td> <td>64.4</td> <td>_</td> <td>80.0</td> <td>TIES</td> <td>95.3</td> <td>-</td> <td>93.4</td> <td>-</td> <td>75.3</td> <td>84.4</td>	TIES	95.1	95.6	-	64.4	_	80.0	TIES	95.3	-	93.4	-	75.3	84.4	
Combined: BadNet + Hidden	DARE	95.4	99.3	-	3.5	-	51.4	DARE	95.5	-	84.0	-	15.8	49.9	
WAG 95.2 73.2 - 37.2 55.2 WAG 95.1 - - 31.7 62.6 47.2 TIES 95.3 91.9 - - 71.9 81.9 TIES 95.1 - - 67.5 92.2 79.9 DARE 95.4 66.7 - - 40.4 53.6 DARE 95.3 - - 2.5 99.9 51.2 Cours 95.2 56.5 - - 38.1 47.3 Ours 95.2 - - 33.5 60.5 47.0 Combined: Benign + BadNet Combined: Benign + LWS WAG 95.4 65.4 - - 65.4 WAG 95.2 - - 14.0 - 14.0 TIES 95.4 87.4 - - 87.4 TIES 95.2 - - 47.1 - 47.1 DARE 95.6 33.6	Ours	95.2	75.8	-	26.0	-	50.9	Ours	95.3	-	41.7	-	47.5	44.6	
TIES 95.3 91.9 - 71.9 81.9 TIES 95.1 - - 67.5 92.2 79.9 DARE 95.4 66.7 - - 40.4 53.6 DARE 95.3 - - 2.5 99.9 51.2 Combined: Benign + BadNet Combined: Benign + LWS WAG 95.4 65.4 - - 65.4 WAG 95.2 - - 14.0 - 14.0 TIES 95.4 87.4 - - 87.4 TIES 95.2 - - 47.1 - 47.1 DARE 95.6 33.6 - - - 87.4 TIES 95.2 - - 47.1 - 47.1 DARE 95.6 33.6 - - - 33.6 DARE 95.6 - 2.6 - 2.6 Ours 95.4 46.4 - -		Co	ombined: I	BadNet +	Hidden	:			(Combined:	LWS + I	Hidden			
DARE Ours 95.4 66.7 - - 40.4 53.6 Afr. 95.3 - - 2.5 99.9 51.2 95.2 - 33.5 60.5 47.0	WAG	95.2	73.2	_	-	37.2	55.2	WAG	95.1	_	_	31.7	62.6	47.2	
Ours 95.2 56.5 - - 38.1 47.3 Ours 95.2 - - 33.5 60.5 47.0 Combined: Benign + BadNet Combined: Benign + LWS WAG 95.4 65.4 - - 65.4 WAG 95.2 - - 14.0 - 14.0 TIES 95.4 87.4 - - 87.4 TIES 95.2 - - 47.1 - 47.1 DARE 95.6 33.6 - - - 87.4 TIES 95.6 - - 2.6 - 2.6 Ours 95.4 46.4 - - - 46.4 Ours 95.2 - - 15.7 - 15.7 Combined: Benign + InsertSent Combined: Benign + Hidden WAG 95.4 - 56.6 - - 56.6 WAG 95.3 - - - 36.4	TIES	95.3	91.9	-	_	71.9	81.9	TIES	95.1	-	-	67.5	92.2	79.9	
Combined: Benign + BadNet Combined: Benign + LWS WAG 95.4 65.4 - - 65.4 WAG 95.2 - - 14.0 - 14.0 TIES 95.4 87.4 - - 87.4 TIES 95.2 - - 47.1 - 47.1 DARE 95.6 33.6 - - - 33.6 DARE 95.6 - - 2.6 - 2.6 Ours 95.4 46.4 - - - 46.4 Ours 95.2 - - 15.7 - 15.7 Combined: Benign + InsertSent Combined: Benign + Hidden WAG 95.4 - 56.6 - - 56.6 WAG 95.3 - - 36.4 36.4 TIES 95.3 - 93.2 TIES 95.3 - - 68.8 68.8 DARE 95.6 -	DARE	95.4	66.7	-	-	40.4	53.6	DARE	95.3	-	-	2.5	99.9	51.2	
WAG 95.4 65.4 - - 65.4 WAG 95.2 - - 14.0 - 14.0 TIES 95.4 87.4 - - - 87.4 TIES 95.2 - - 47.1 - 47.1 DARE 95.6 33.6 - - - 33.6 DARE 95.6 - - 2.6 - 2.6 Ours 95.4 46.4 - - - 46.4 Ours 95.2 - - 15.7 - 15.7 Combined: Benign + InsertSent Combined: Benign + Hidden WAG 95.4 - 56.6 - - 56.6 WAG 95.3 - - - 36.4 36.4 TIES 95.3 - 93.2 - - 93.2 TIES 95.3 - - - 68.8 68.8 DARE 95.6 - <td>Ours</td> <td>95.2</td> <td>56.5</td> <td>-</td> <td>-</td> <td>38.1</td> <td>47.3</td> <td>Ours</td> <td>95.2</td> <td>-</td> <td>-</td> <td>33.5</td> <td>60.5</td> <td>47.0</td>	Ours	95.2	56.5	-	-	38.1	47.3	Ours	95.2	-	-	33.5	60.5	47.0	
TIES 95.4 87.4 - - - 87.4 TIES 95.2 - - 47.1 - 47.1 DARE 95.6 33.6 - - - 33.6 DARE 95.6 - - 2.6 - 2.6 Ours 95.4 46.4 - - 46.4 Ours 95.2 - - 15.7 - 15.7 Combined: Benign + InsertSent Combined: Benign + Hidden WAG 95.4 - 56.6 - - 56.6 WAG 95.3 - - - 36.4 36.4 TIES 95.3 - 93.2 - - 93.2 TIES 95.3 - - - 68.8 68.8 DARE 95.6 - 3.1 - - 3.1 DARE 95.5 - - - 7.4 7.4		Co	ombined: I	Benign +	BadNet				(Combined:	Benign	+ LWS			
DARE Ours 95.6 ours 33.6 ours	WAG	95.4	65.4	-	-	-	65.4	WAG	95.2	-	-	14.0	-	14.0	
Ours 95.4 46.4 - - 46.4 Ours 95.2 - - 15.7 - 15.7 Combined: Benign + InsertSent Combined: Benign + Hidden WAG 95.4 - 56.6 - - 56.6 WAG 95.3 - - 36.4 36.4 TIES 95.3 - 93.2 TIES 95.3 - - 68.8 68.8 DARE 95.6 - 3.1 - - 3.1 DARE 95.5 - - 7.4 7.4	TIES	95.4	87.4	-	-	-	87.4	TIES	95.2	-	-	47.1	-	47.1	
Combined: Benign + InsertSent Combined: Benign + Hidden WAG 95.4 - 56.6 - - 55.6 WAG 95.3 - - - 36.4 36.4 TIES 95.3 - - - 68.8 68.8 DARE 95.6 - 3.1 - - 3.1 DARE 95.5 - - 7.4 7.4	DARE	95.6	33.6	-	-	-	33.6	DARE	95.6	-	-	2.6	-	2.6	
WAG 95.4 - 56.6 - - 56.6 WAG 95.3 - - - 36.4 36.4 TIES 95.3 - 93.2 - - 93.2 TIES 95.3 - - - 68.8 68.8 DARE 95.6 - 3.1 - - 3.1 DARE 95.5 - - - 7.4 7.4	Ours	95.4	46.4	-	-	-	46.4	Ours	95.2	-	-	15.7	-	15.7	
TIES 95.3 - 93.2 93.2 TIES 95.3 68.8 68.8 DARE 95.6 - 3.1 3.1 DARE 95.5 7.4 7.4		Cor	nbined: Be	enign + I	nsertSer	ıt			C	ombined: I	Benign +	Hidden			
DARE 95.6 - 3.1 3.1 DARE 95.5 7.4 7.4	WAG	95.4	-	56.6	_	_	56.6	WAG	95.3	-	_	_	36.4	36.4	
	TIES	95.3	-	93.2	-	-	93.2	TIES	95.3	-	-	-	68.8	68.8	
Ours 95.3 - 16.6 - 16.6 Ours 95.3 - - 48.0 48.0	DARE	95.6	-	3.1	-	-	3.1	DARE	95.5	-	-	-	7.4	7.4	
	Ours	95.3	-	16.6	-	-	16.6	Ours	95.3	-	-	-	48.0	48.0	

Table 9: Performance comparison on the CIFAR-10 dataset using the ViT model.

Benign 98.8 10.1 10.2 7.7 10.1 9.5 CutMix 97.7* 87.1 70.6 99.9 64.9 80.6 Victim 98.5* 96.3 84.7 99.9 89.4 92.6 ShrinkPad 97.3* 14.4 51.3 99.9 68.3 63.5	Defense	CACC	BadNet	WaNet	BATT	PBA	AVG.	Defense	CACC	BadNet	WaNet	BATT	PBA	AVG.	
Combined: BadNet + WaNet	Benign	98.8	10.1	10.2	7.7	10.1	9.5	CutMix	97.7*	87.1	70.6	99.9	64.9	80.6	
WAG	Victim	98.5*	96.3	84.7	99.9	89.4	92.6	ShrinkPad	97.3*	14.4	51.3	99.9	88.3	63.5	
TIES		Ce	ombined: I	BadNet +	WaNet			Combined: WaNet + BATT							
DARE 98.8 83.3 10.2 - - 46.7 DARE 98.9 - 10.2 45.8 - 28.0	WAG	98.7	13.8	10.6	-	-	12.2	WAG	98.7	-	10.2	22.3	-	16.3	
Ours 98.7 12.3 10.5 - - 11.4 Ours 98.7 - 10.3 19.1 - 14.7 Combined: BadNet + BATT Combined: WaNet + PhysicalBA WAG 98.9 10.1 - 42.7 - 26.4 WAG 98.8 - 10.2 - 10.2 10.2 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.3 <td>TIES</td> <td>98.6</td> <td>11.9</td> <td>10.6</td> <td>-</td> <td>-</td> <td>11.3</td> <td>TIES</td> <td>98.9</td> <td>-</td> <td>10.2</td> <td>23.9</td> <td>-</td> <td>17.0</td>	TIES	98.6	11.9	10.6	-	-	11.3	TIES	98.9	-	10.2	23.9	-	17.0	
Combined: BadNet + BATT	DARE	98.8	83.3	10.2	-	-	46.7	DARE	98.9	-	10.2	45.8	-	28.0	
WAG 98.9 10.1 - 42.7 - 26.4 WAG 98.8 - 10.2 - 10.2 TIES 98.9 10.1 - 55.8 - 33.0 TIES 98.9 - 10.1 - 10.3 10.2 DARE 99.0 69.2 - 26.8 - 48.0 DARE 98.9 - 10.1 - 21.0 15.6 Ours 98.7 10.2 - 32.6 - 21.4 Ours 98.7 - 10.3 - 10.2 10.2 Combined: BadNet + PhysicalBA WAG 99.0 39.5 - - 39.5 WAG 98.9 - - 26.8 10.0 18.4 TIES 98.9 43.1 - - 43.1 43.1 TIES 98.7 - - 23.4 10.0 16.7 DARE 99.0 72.2 - 72.2	Ours	98.7	12.3	10.5	-	-	11.4	Ours	98.7	-	10.3	19.1	-	14.7	
TIES 98.9 10.1 - 55.8 - 33.0 TIES 98.9 - 10.1 - 10.3 10.2 DARE 99.0 69.2 - 26.8 - 48.0 DARE 98.9 - 10.1 - 21.0 15.6 Ours 98.7 10.2 - 32.6 - 21.4 Ours 98.7 - 10.3 - 10.2 10.2 10.2 **Combined: BadNet + PhysicalBA** WAG 99.0 39.5 - 39.5 39.5 WAG 98.9 - 26.8 10.0 18.4 TIES 98.9 43.1 - 43.1 43.1 TIES 98.9 - 23.4 10.0 16.7 DARE 99.0 72.2 - 72.2 72.2 DARE 98.9 - 23.0 10.1 16.5 Ours 98.7 18.5 - 18.4 18.5 Ours 98.8 - 9.8 10.0 9.9 **Combined: Benign + BadNet** **Combined: Benign + WaNet** WAG 98.8 19.4 19.4 WAG 98.9 - 10.2 - 10.2 TIES 98.8 10.3 - 10.3 DARE 98.8 - 10.2 - 10.3 DARE 98.8 10.3 - 10.3 DARE 98.8 - 10.2 - 10.3 DARE 98.8 10.3 - 10.3 DARE 98.8 - 10.2 - 10.3 DARE 98.8 10.3 - 10.3 DARE 98.8 - 10.2 - 10.3 DARE 98.8 10.3 - 10.3 DARE 98.8 - 10.2 - 10.3 DARE 98.8 - 10.3 - 10.3 DARE 99.0 - 1 - 10.1 DALE DAR		С	ombined:	BadNet +	BATT				Comi	bined: Wal	Vet + Phy	sicalBA			
DARE Ours 99.0 69.2 - 26.8 - 48.0 DARE Ours 98.9 - 10.1 - 21.0 15.6 Combined: BadNet + PhysicalBA WAG 99.0 39.5 - - 39.5 WAG 98.9 - - 26.8 10.0 18.4 TIES 98.9 43.1 - - 43.1 43.1 TIES 98.7 - - 23.4 10.0 16.7 DARE 99.0 72.2 - 72.2 72.2 DARE 98.9 - - 23.4 10.0 16.7 DARE 99.0 72.2 - 72.2 72.2 DARE 98.9 - - 23.0 10.1 16.5 Ours 98.7 18.5 - - 18.4 18.5 Ours 98.8 - - 9.8 10.0 9.9 WAG 98.8 10.2 - - 10.2 </td <td>WAG</td> <td>98.9</td> <td>10.1</td> <td>-</td> <td>42.7</td> <td>-</td> <td>26.4</td> <td>WAG</td> <td>98.8</td> <td>-</td> <td>10.2</td> <td>-</td> <td>10.2</td> <td>10.2</td>	WAG	98.9	10.1	-	42.7	-	26.4	WAG	98.8	-	10.2	-	10.2	10.2	
Ours 98.7 10.2 - 32.6 - 21.4 Ours 98.7 - 10.3 - 10.2 10.2 Combined: BadNet + PhysicalBA WAG 99.0 39.5 - - 39.5 WAG 98.9 - - 26.8 10.0 18.4 TIES 98.9 43.1 - - 43.1 43.1 TIES 98.7 - - 23.4 10.0 16.7 DARE 99.0 72.2 - - 72.2 72.2 DARE 98.9 - - 23.0 10.1 16.5 Ours 98.7 18.5 - - 18.4 18.5 Ours 98.8 - - 23.0 10.1 16.5 Ours 98.8 19.4 - - 19.4 WAG 98.9 - 10.2 - 10.2 TIES 98.8 10.2 - - 10.2 <t< td=""><td>TIES</td><td>98.9</td><td>10.1</td><td>-</td><td>55.8</td><td>-</td><td>33.0</td><td>TIES</td><td>98.9</td><td>-</td><td>10.1</td><td>-</td><td>10.3</td><td>10.2</td></t<>	TIES	98.9	10.1	-	55.8	-	33.0	TIES	98.9	-	10.1	-	10.3	10.2	
Combined: BadNet + PhysicalBA	DARE	99.0	69.2	-	26.8	-	48.0	DARE	98.9	-	10.1	-	21.0	15.6	
WAG 99.0 39.5 - - 39.5 39.5 WAG 98.9 - - 26.8 10.0 18.4 TIES 98.9 43.1 - - 43.1 43.1 TIES 98.7 - - 23.4 10.0 16.7 DARE 99.0 72.2 - - 72.2 72.2 DARE 98.9 - - 23.0 10.1 16.5 Ours 98.7 18.5 - - 18.4 18.5 Ours 98.8 - - 9.8 10.0 9.9 Combined: Benign + BadNet Combined: Benign + WaNet WAG 98.8 19.4 - - 19.4 WAG 98.9 - 10.2 - 10.2 TIES 98.8 10.2 - - 10.2 TIES 98.6 - 10.3 - - 10.2 Ours 98.8	Ours	98.7	10.2	-	32.6	-	21.4	Ours	98.7	-	10.3	-	10.2	10.2	
TIES 98.9 43.1 - - 43.1 43.1 TIES 98.7 - - 23.4 10.0 16.7 DARE 99.0 72.2 - - 72.2 72.2 DARE 98.9 - - 23.0 10.1 16.5 Ours 98.7 18.5 - 18.4 18.5 Ours 98.8 - - 9.8 10.0 9.9 Combined: Benign + BadNet		Com	bined: Bad	dNet + Ph	ysicalBA		J	Combined: BATT + PhysicalBA							
DARE Ours 99.0 yes. 72.2 yes. <t< td=""><td>WAG</td><td>99.0</td><td>39.5</td><td>-</td><td>-</td><td>39.5</td><td>39.5</td><td>WAG</td><td>98.9</td><td>-</td><td>-</td><td>26.8</td><td>10.0</td><td>18.4</td></t<>	WAG	99.0	39.5	-	-	39.5	39.5	WAG	98.9	-	-	26.8	10.0	18.4	
Ours 98.7 18.5 - - 18.4 18.5 Ours 98.8 - - 9.8 10.0 9.9 Combined: Benign + BadNet WAG 98.8 19.4 - - 19.4 WAG 98.9 - 10.2 - - 10.2 TIES 98.8 10.2 - - - 10.3 - - 10.3 DARE 98.8 10.3 - - - 10.3 DARE 98.8 - 10.2 - 10.2 Ours 98.7 10.3 - - - 10.3 Ours 98.7 - 10.3 - - 10.2 Combined: Benign + BATT Combined: Benign + PhysicalBA WAG 98.8 - - 19.4 WAG 99.0 - - 10.1 10.1 TIES 98.8 - - 19.4 WAG 99.0	TIES	98.9	43.1	-	-	43.1	43.1	TIES	98.7	-	-	23.4	10.0	16.7	
Combined: Benign + BadNet	DARE	99.0	72.2	-	-	72.2	72.2	DARE	98.9	-	-	23.0	10.1	16.5	
WAG 98.8 19.4 - - 19.4 WAG 98.9 - 10.2 - 10.2 TIES 98.8 10.2 - - - 10.2 TIES 98.6 - 10.3 - - 10.3 DARE 98.8 10.3 - - - 10.3 DARE 98.8 - 10.2 - 10.2 Ours 98.7 10.3 - - 10.3 Ours 98.7 - 10.3 - - 10.2 Combined: Benign + BATT Combined: Benign + PhysicalBA WAG 98.8 - - 19.4 WAG 99.0 - - - 10.1 10.1 TIES 98.8 - - 19.4 WAG 99.0 - - - 10.2 10.2 DARE 99.0 - - 23.4 TIES 98.8 - - -	Ours	98.7	18.5	-	-	18.4	18.5	Ours	98.8	-	-	9.8	10.0	9.9	
TIES 98.8 10.2 - - - 10.2 TIES 98.6 - 10.3 - - 10.3 DARE 98.8 10.3 - - - 10.3 DARE 98.8 - 10.2 - - 10.2 Ours 98.7 - 10.3 - - 10.3 Combined: Benign + BATT Combined: Benign + PhysicalBA WAG 98.8 - - 19.4 WAG 99.0 - - - 10.1 10.1 TIES 98.8 - - 23.4 TIES 98.8 - - 10.2 10.2 DARE 99.0 - - 28.2 DARE 99.9 - - - 10.1 10.1		Сс	ombined: E	Benign + E	BadNet				Со	mbined: B	enign + W	VaNet			
DARE Ours 98.8 10.3 10.3 -	WAG	98.8	19.4	_	_	-	19.4	WAG	98.9	-	10.2	-	-	10.2	
Ours 98.7 10.3 - - 10.3 Ours 98.7 - 10.3 - - 10.3 Combined: Benign + BATT Combined: Benign + PhysicalBA WAG 98.8 - - 19.4 WAG 99.0 - - - 10.1 10.1 TIES 98.8 - - 23.4 TIES 98.8 - - 10.2 10.2 DARE 99.0 - - 28.2 DARE 99.9 - - - 10.1 10.1	TIES	98.8	10.2	-	-	-	10.2	TIES	98.6	-	10.3	-	-	10.3	
Combined: Benign + BATT Combined: Benign + PhysicalBA WAG 98.8 - - 19.4 WAG 99.0 - - 10.1 10.1 TIES 98.8 - - 23.4 TIES 98.8 - - 10.2 10.2 DARE 99.0 - - 28.2 DARE 99.9 - - 10.1 10.1	DARE	98.8	10.3	-	-	-	10.3	DARE	98.8	-	10.2	-	-	10.2	
WAG 98.8 - - 19.4 - 19.4 WAG 99.0 - - - 10.1 10.1 TIES 98.8 - - 23.4 TIES 98.8 - - - 10.2 10.2 DARE 99.0 - - 28.2 DARE 99.9 - - - 10.1 10.1	Ours	98.7	10.3	-	-	-	10.3	Ours	98.7	-	10.3	-	-	10.3	
TIES 98.8 23.4 - 23.4 TIES 98.8 10.2 10.2 DARE 99.0 - 28.2 DARE 99.9 10.1 10.1		С	Combined:	Benign +	BATT				Comb	bined: Ben	ign + Phy	sicalBA			
DARE 99.0 28.2 - 28.2 DARE 99.9 10.1 10.1	WAG	98.8	-	-	19.4	-	19.4	WAG	99.0	-	-	-	10.1	10.1	
	TIES	98.8	-	-	23.4	-	23.4	TIES	98.8	-	-	-	10.2	10.2	
Ours 98.8 15.8 Ours 98.9 10.1 10.1	DARE		-	-	28.2	-		DARE	99.9	-	-	-	10.1	10.1	
	Ours	98.8	-	-	15.8	-	15.8	Ours	98.9	-	-	-	10.1	10.1	

J.4 FITNESS SCORE COMPARISON OF DIFFERENT STRATEGY

We investigate the defense performance using two different evolutionary search strategies, with and without early stopping, as illustrated in Figure 8 and 7, and present their fitness score breakdown

Table 10: Performance comparison on the **TinyImageNet** dataset using the *ViT* model.

Defense	CACC	BadNet	WaNet	BATT	PBA	AVG.
Benign	89.1	0.51	0.01	0.04	0.03	0.15
Victim	85.8*	97.8	98.9	100.0	90.0	96.6
	Co	ombined: E	BadNet +	WaNet		
WAG	88.2	11.7	5.5	-	-	8.6
Ours	84.2	0.6	0.2	-	-	0.4
	C	ombined: 1	BadNet +	BATT		
WAG	87.3	0.11	-	0.15	-	0.13
Ours	86.8	0.03	-	0.07	-	0.05
	Com	bined: Bac	dNet + Ph	ysicalBA		
WAG	88.5	58.5	-	-	35.9	47.2
Ours	84.8	48.2	-	-	29.1	38.7

Table 11: Results of combining three backdoored models on SST-2. Best results are highlighted.

Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.
	В	adNet + In	sertSent	+ LWS		BadNet + InsertSent + HiddenKiller							
WAG	96.3	9.5	3.4	21.6	-	11.5	WAG	96.7	5.9	2.7	-	19.1	9.2
Ours	96.0	9.2	3.8	25.9	-	13.0	Ours	96.2	5.9	1.6	-	18.7	8.7
	Ba	dNet + LW	S + Hide	lenKille	r			Inse	rtSent + L	WS + Hie	ldenKill	er	
WAG	96.0	10.8	-	30.9	20.3	20.7	WAG	96.0	-	2.7	25.5	19.6	15.9
Ours	96.2	7.9	-	25.7	20.7	18.1	Ours	96.2	-	2.1	24.1	19.4	15.2

in Table 13. The early stopping criterion terminates the search when no improvement in fitness score is observed over 100,000 iterations. We observe a positive correlation between the fitness score and defense performance: the adopted strategy without early stopping achieves a lower fitness score and reduces the ASR by 27.2%. By examining the score breakdowns and the visualized combinations, we attribute this improvement to fewer violations of residual connection rules in the adopted strategy, which helps disrupt subtle spurious correlations more effectively.

J.5 RESULTS OF CANDIDATE SELECTION

As our method asymmetrically allocates modules to models, a set of candidates is generated, for which we design a selection method illustrated in Section 4.4. While the chosen candidate consistently performs well, we analyze unselected candidates' performance, as shown in Table 14. Our selection method correctly identifies the best candidates in most cases, outperforming alternatives by a significant margin. Although some unselected candidates achieve a lower ASR in certain cases, our selected candidate maintains comparable performance.

J.6 IMPORTANCE OF HEURISTIC RULES

 We introduce five heuristic rules in Section 4.2 to guide the evolutionary search for module switching strategies. To assess the contribution of each rule, we perform ablation experiments by individually removing the first three rules, which aim to disconnect adjacent modules at different structural levels, and measure the resulting defense performance under three settings. As shown in Table 15, removing any of these rules generally leads to performance degradation, supporting the complementary nature of the full rule set. We further visualize the searched strategies resulting from each ablation in Figures 10 to 12.

J.7 GENERALIZATION ACROSS MODEL ARCHITECTURES

We evaluate our method across three model architectures—RoBERTa-large, BERT-large, and DeBERTa-v3-large—under three backdoor settings. As shown in Table 16, our defense consistently achieves lower ASR compared to the baseline WAG across all models. Notably, we apply the same

1567

1568

1569

Table 12: Performance comparison in a four-model fusion scenario with backdoor collusion on the SST-2 dataset using the roberta-large model. We combine two pairs of models, where each pair shares the same backdoor attack. Best defensive results (lowest ASR) are **highlighted**.

CACC (%)

 $ASR(\downarrow)$

Atk2

7.4

9.1

50.3

60.3

29.0

24.2

AVG.

31.9

20.5

62.2

55.7

46.4

33.3

1570	
1571	
1572	
1573	
1574	
1575	

Combination	Defense	. ,	
Combination	Defense	(†)	Atk1
BadNet+BadNet+Sent+Sent	WAG	96.3	56.3
Badivet+Badivet+Schit-Schit	Ours (MSD)	96.7	32.0
BadNet+BadNet+LWS+LWS	WAG	96.1	74.0
Badivet+Badivet+EWS+EWS	Ours (MSD)	95.7	51.1
BadNet+BadNet+Hidden+Hidden	WAG	96.2	63.9
Dadivet+Dadivet+HudeH+HudeH	Ours (MSD)	96.2	42.4

1579 1580

1581

1576

Table 13: Comparison of strategy fitness scores and performance in combining Benign with BadNet model.

	_	_	_
1	5	8	4
1	5	8	5
1	5	8	6
1	5	8	7

Early Stopping Strate	Early Stopping Strategy Adopted Strategy								
Fitness Score Components									
Intra Layer Score	-42.00	Intra Layer Score	-48.00						
Inter Layer Score	-21.00	Inter Layer Score	-15.00						
Residual Connection Score	-48.24	Residual Connection Score	-24.02						
Balance Score	0.00	Balance Score	0.00						
Diversity Score	17.00	Diversity Score	12.00						
Total Score	-94.24	Total Score	-75.01						
i	Performan	ce Metrics							
CACC (†)	96.70	CACC (†)	96.10						
$ASR(\downarrow)$	39.40	ASR (↓)	12.20						

1594 1596 1597

unified searched strategy (presented in Figure 7) to all architectures, demonstrating the strong generalization and transferability of our method. This supports its scalability and practicality in real-world applications.

1603

1604

1598

J.8 MINIMUM CLEAN DATA REQUIREMENT

By default, we use 50 clean data points per class to guide the candidate selection process (as described in Section 4.4). To further investigate the minimum clean data required for effective defense, we reduce this to 20 samples per class across all three model architectures on SST-2. As shown in Table 16, our approach continues to select candidates with low ASR even under this constrained setting. These results indicate that the method remains effective in low-resource scenarios with limited clean supervision.

1608 1609 1610

PERFORMANCE UNDER VARYING POISONING RATES

As discussed in Section 5.3, we further evaluate the robustness of our method under varying poisoning rates (20%, 10%, and 1%) on SST-2 dataset using the RoBERTa-large model. As shown in Table 17, our method consistently achieves lower ASR than WAG across settings that combine models poisoned with different attack methods and poisoning ratios.

1615 1616

J.10 Performance under Adaptive Attacks

1617 1618 1619

As discussed in Section 5.3, we evaluate robustness under two adaptive scenarios: (1) when a searched strategy is exposed and exploited by an attacker who adversarially retrains the model by freezing unused modules while continuing to fine-tune the selected ones on poisoned data, aiming

Table 14: Performance comparison of selected and unselected candidates on SST-2.

	Selection	n candidate	Unselect	ted candidate	Overall	WAG
Setting	CACC (†)	AVG. ASR (\(\psi\))	CACC (†)	AVG. ASR (↓)	Mean ASR (↓)	Mean ASR (↓)
BadNet+InsertSent	96.2	22.0	96.5	31.2	26.6	31.9
BadNet+LWS	96.0	40.4	95.9	72.4	56.4	62.2
BadNet+Hidden	96.1	34.1	96.0	48.5	41.3	46.5
InsertSent+LWS	96.0	25.8	96.0	30.3	28.1	29.2
InsertSent+Hidden	95.8	19.4	96.1	19.2	19.3	20.5
LWS+Hidden	96.0	52.9	96.2	49.6	51.3	51.1
Average	96.0	32.4	96.1	41.9	37.2	40.2

Table 15: Impact of heuristic rule ablations under different combinations of backdoor settings on **SST-2** using the *RoBERTa-large* model. Δ denotes the change in average ASR relative to the full rule set.

1638	ru
1639	
1640	

Setting	Ablation	CACC		ASI	R (↓)	
Setting	Ablation	(†)	Atk1	Atk2	22.0 25.9 37.3 24.6 40.4 48.7 65.4 57.7 34.1 23.4	Δ
	All rules (full)	96.2	36.9	7.1	22.0	_
BadNet + InsertSent	w/o rule 1	96.0	33.2	18.7	25.9	+3.9
Daunet + Ilisertsellt	w/o rule 2	96.3	60.6	14.1	37.3	+15.3
	w/o rule 3	96.3	43.1	6.2	24.6	+2.6
	All rules (full)	96.0	41.7	39.0	40.4	_
BadNet + LWS	w/o rule 1	95.9	46.2	51.2	48.7	+8.3
Daunet + LWS	w/o rule 2	96.0	68.1	62.8	65.4	+25.0
	w/o rule 3	96.0	69.1	46.3	57.7	+17.3
	All rules (full)	96.1	40.5	27.7	34.1	_
BadNet + Hidden	w/o rule 1	95.9	14.0	32.8	23.4	-10.7
Dauriet + Middell	w/o rule 2	96.1	59.4	29.4	44.4	+10.3
	w/o rule 3	96.0	56.6	29.1	42.9	+8.8

to preserve them after module switching; (2) advanced adaptive backdoor attacks such as Adaptive-Patch (Qi et al., 2023).

For (1), there is no single fixed strategy: the defender can rerun the search with different seeds to obtain diverse strategies. This flexibility provides protection even if the attacker has adapted to a known one. For example, when the adversary adapts to Strategy Figure 7, alternative strategies from different seeds (Figure 9) still mitigate the attack. We simulate an attacker aware of Strategy 1 (S1) and defend using Strategy 2 (S2) and Strategy 3 (S3), with results on SST-2 (*RoBERTa-large*) reported in Table 18.

For (2), we evaluate the **Adaptive-Patch** attack (Qi et al., 2023). Following the transferability strategy in Figure 13, our method consistently demonstrates strong performance against this more challenging setting, as shown in Table 19.

J.11 PERFORMANCE UNDER LABEL-INCONSISTENT AND IDENTICAL BACKDOOR ATTACKS

A practical consideration for model merging is that the obtained models may be trained by different attackers targeting different labels, or they may encode identical backdoor attacks. We therefore examine two challenging settings: (1) models with inconsistent target labels, and (2) models trained with the same backdoor. In the first case, where each model has a different target label, our method maintains strong defensive performance. In the second case, when models are attacked with the

Table 16: Cross-model evaluation under varying clean data budgets on SST-2. N=50 and N=20 indicate the number of clean samples per class used for validation.

		1	RoBERT	Ta-large			BERT	large		De	BERTa	-v3-larg	e
Setting	Defense	CACC		ASR (↓))	CACC		ASR (↓))	CACC		ASR (↓))
		(†)	Atk1	Atk2	AVG.	(†)	Atk1	Atk2	AVG.	(†)	Atk1	Atk2	AVG.
BadNet +	WAG	96.3	56.3	7.4	31.9	93.3	40.2	60.1	50.2	96.1	47.4	5.2	26.3
InsertSent	Ours $(N = 50)$	96.2	36.9	7.1	22.0	93.5	39.7	38.1	38.9	96.3	40.4	5.2	22.8
msensem	Ours $(N=20)$	96.2	47.7	6.6	27.1	93.5	39.7	38.1	38.9	96.3	32.8	5.1	19.0
BadNet +	WAG	96.2	74.0	50.3	62.2	93.1	76.9	63.0	69.9	96.2	63.4	79.5	71.5
LWS	Ours $(N = 50)$	96.0	41.7	39.0	40.4	93.0	73.9	61.3	67.6	96.0	48.7	73.0	60.8
LWS	Ours $(N=20)$	96.0	41.7	39.0	40.4	93.0	76.5	63.6	70.0	96.0	48.7	73.0	60.8
BadNet +	WAG	96.1	63.9	29.0	46.5	93.3	56.9	43.8	50.3	96.2	48.3	39.6	43.9
Hidden	Ours ($N = 50$)	96.1	40.5	27.7	34.1	93.4	50.3	37.9	44.1	96.1	22.7	41.0	31.8
Hiddell	Ours $(N=20)$	96.2	34.9	25.6	30.3	93.4	50.3	37.9	44.1	96.3	22.7	41.0	31.8

Table 17: Performance comparison under varying poison rates on **SST-2** using the *RoBERTa-large* model

		Poison Rate: 20%			Pe	oison Ra	ate: 10%	ío	P	Poison Rate: 1%			
Setting	Defense	CACC		ASR (↓)	CACC		ASR (↓)	CACC		ASR (↓))
		(†)	Atk1	Atk2	AVG.	(†)	Atk1	Atk2	AVG.	(†)	Atk1	Atk2	AVG.
BadNet + InsertSent	WAG Ours (MSD)	96.3 96.2	56.3 36.9	7.4 7.1	31.9 22.0	96.1 96.0	66.6 55.1	8.9 9.3	37.9 32.3	96.4 96.3	58.3 57.4	27.2 44.4	42.8 50.9
BadNet + LWS	WAG Ours (MSD)	96.2 96.0	74.0 41.7	50.3 39.0	62.2 40.4	95.1 94.9	83.7 70.6	46.3 40.1	65.0 55.3	96.3 96.4	62.7 59.9	28.9 27.6	45.8 43.7
BadNet + Hidden	WAG Ours (MSD)	96.1 96.1	63.9 40.5	29.0 27.7	46.5 34.1	95.9 95.5	67.9 51.9	26.9 25.8	47.4 38.9	96.1 96.1	64.9 59.2	30.5 30.0	47.7 44.6

same method but different labels, our method again substantially reduces ASR compared to WAG, as shown in Table 20.

Table 18: Robustness against attacker adapted to Strategy 1 (S1) on SST-2 with RoBERTa-large.

No.	Defense	Variant	CACC	ASR (\downarrow)					
110.	Detense	variant	(†)	Atk1	Atk2	Avg			
1	No Defense	BadNet	96.0	100.0	_	_			
2	No Defense	InsertSent	96.3	_	100.0	_			
3	No Defense	BadNet (adaptive, S1 known)	95.6	100.0	_	_			
4		WAG	96.7	56.3	7.4	31.9			
5	Merge 1+2	Ours (w/ S2)	96.0	39.0	8.0	23.5			
6		Ours (w/ S3)	96.0	39.4	20.6	30.0			
7		WAG	95.8	59.8	9.2	34.5			
8	Merge 2+3	Ours (w/ S2)	96.1	21.3	7.2	14.3			
9		Ours (w/S3)	96.0	57.5	5.4	31.5			

Table 19: Defense performance under Adaptive-Patch attacks on CIFAR-10 using ViT.

Setting	Defense	CACC	.	ASR (↓)			
Setting	Defense	(†)	Atk1	Atk2	Avg		
BadNet		98.4	97.3	_	_		
BATT	No Defense	98.4	99.4	_	_		
Adaptive Patch		98.0	–	86.1	_		
BadNet + Adaptive Patch	WAG	98.5	24.3	17.6	20.9		
Dauret + Auaptive Fatch	Ours	98.5	13.9	16.5	15.2		
DATT Adoptive Detah	WAG	98.7	0.8	10.3	5.5		
BATT + Adaptive Patch	Ours	98.6	1.3	10.3	5.8		

Table 20: Results under inconsistent-target-label and identical backdoor attacks cases.

Dataset	Combination	Method	CACC (†)	ASR (↓)			
	Combination			Atk1	Atk2	Avg	
	Label-Inconsiste	ent Cases					
SST-2	BadNet (label=0) + InsertSent (label=1)	WAG	96.4	47.2	71.2	59.2	
331-2	Badivet (label=0) + HisertSelft (label=1)	Ours	96.2	20.0	65.9	43.0	
CIFAR-10	BadNet (label=1) + BATT (label=2)	WAG	98.7	0.3	18.8	9.6	
CIIAK-10	Badivet (label=1) + BAI I (label=2)	Ours	98.6	0.4	19.1	9.8	
	Identical-Attack Cases (Different La	abels)				
SST-2	BadNet (label=0) + BadNet (label=1)	WAG	96.3	78.0	2.4	40.2	
331-2	Badivet (label-1)	Ours	96.1	38.7	16.0	27.4	

EXAMPLES OF SEARCHED STRATEGIES

We present several representative examples of module-switching strategies discovered by our evolutionary algorithm:

- Adopted merging strategy for two *RoBERTa-large* models (24 layers), shown in Figure 7, with a fitness score of -75.0.
- An early-stage merging strategy for two RoBERTa-large models, illustrated in Figure 8, yielding a fitness score of -94.2.
- Two alternative full-search strategies obtained with distinct random seeds, shown in Figure 9, achieving fitness scores of -76.5 and -72.0.
- Strategies derived by ablating individual heuristic rules (Figures 10–12), used to assess the contribution of each rule.
- Adopted strategy for merging two 12-layer models (e.g., ViT), presented in Figure 13, with a fitness score of -39.5.
- Adopted strategy for merging three RoBERTa-large models (24 layers), depicted in Figure 14, with a fitness score of -26.2.
- Adopted strategy for merging four models, shown in Figure 15, with a fitness score of -11.0.

ness score of -75.0).

Figure 7: Adopted merging strategy (with a fit- Figure 8: Early stopping strategy (with a fitness score of -94.2).

Figure 9: Two alternative discovered full search merging strategies using distinct random seeds. The strategies yielded comparable fitness scores of -76.5 and -72.0, respectively.

Figure 10: Strategy of Ablating Figure 11: Strategy of ablating rule 1. Figure 12: Strategy of ablating rule 3.

Figure 13: Adopted strategy for merging two 12-layer models (e.g., ViT) (fitness score: -39.5).

Figure 14: Adopted merging strategy for merging three models (fitness score -26.2).

Figure 15: Adopted strategy for merging four models (fitness score -11.0).