

000 001 002 003 004 005 INVESTIGATING TOKEN-LEVEL SUPERVISION OF 006 MULTI-DIMENSIONAL ATTRIBUTE COMBINATIONS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

011 In multi-dimensional attribute combination training for LLMs, the dimension con-
012 flict is an unavoidable issue. Since each token can have different influences on dif-
013 ferent dimensions, applying token-level supervision across multiple dimensions is
014 a potential method to mitigate dimension conflicts. However, the difficulty in
015 obtaining token-level supervision signals across multiple dimensions through an-
016 notation has hindered further investigation into supervision methods. In this work,
017 we experimentally validate the impact of dimension conflicts on LLM training and
018 propose a method for applying token-level supervision for multi-dimensional at-
019 tribute combination training. This method establishes token-level connections be-
020 tween the trained model and attribute models using token sequences generated by
021 the trained model for optimization, and controls the optimization process through
022 entropy-based weight calculation, without requiring any additional token-level an-
023 notations or external models. This method effectively improves multi-dimensional
024 performance and provides new insights into the investigation of token-level super-
025 vision for multi-dimensional attribute combinations.
026

027 1 INTRODUCTION 028

029 The evaluation of responses from large language models (LLMs) typically depends on a combination
030 of attributes across multiple dimensions, such as instruction-following, helpfulness, truthfulness,
031 honesty, etc. There are two ways to consider multi-dimensional attributes in LLM response quality
032 scoring datasets: (1) explicitly consider multiple dimensions, score each dimension separately, and
033 a weighted average comprehensive score can be obtained (Wang et al., 2024c); (2) directly provide
034 a comprehensive score that implicitly considers multiple dimensions (Wang et al., 2025b). Whether
035 considering multiple dimensions of attributes explicitly or implicitly, the supervisory signals ultи-
036 mately used to train LLMs are usually sample-level scores.

037 When training LLMs using sample-level overall scores as supervision signals, considering combi-
038 nations of attributes across multiple dimensions inevitably leads to dimension conflicts (Li et al.,
039 2025b). For example, when applying direct preference optimization, for two responses to the same
040 prompt, the overall quality score may be consistent with the preferences of certain attribute dimen-
041 sions and inconsistent with those of other attribute dimensions. In this case, training on this pair of
042 responses may have a negative impact on attribute dimensions with inconsistent preferences. One
043 major issue with this conflict is that the overall quality score is used uniformly as a supervisory sig-
044 nal for each token, without considering that a token may have different effects on different attribute
045 dimensions. One possible way to mitigate conflicts is to use token-level supervision signals (Ab-
046 din et al., 2024) to assign different optimization directions to different dimensions for each token.
047 However, the main obstacle to implementing such token-level supervision is that token-level super-
048 vision signals for multiple attribute dimensions are difficult to obtain through direct annotations.
049 To address this issue, we need to investigate token-level supervision methods that do not require
050 additional token-level annotations for multi-dimensional attribute combinations. In this paper, we
051 conduct our investigation according to the following outline:

052 • We demonstrate the dimension conflict issue through data statistics on UltraFeedBack, a response
053 scoring dataset that explicitly considers multiple dimensional attributes. Based on this dataset, we
conduct preliminary experiments using overall scoring and single-dimensional attribute scoring

054 as supervisory signals and demonstrate the impact of dimension conflicts on LLM training. The
 055 experimental results provide inspiration for the draft of our proposed method.
 056

- 057 • We propose a training method for token-level supervision of multi-dimensional attribute combi-
 058 nations. This method is based on the overall model (from overall quality scoring) and attribute
 059 models (from single-dimensional attribute scoring) obtained in preliminary experiments. It uses
 060 the token sequences generated by the overall model to establish a token-level connection between
 061 the overall model and the attribute models for optimization, and controls the optimization process
 062 using entropy as the basis for weight calculation. The token-level supervision of this method does
 063 not require any additional token-level annotations or external models.
- 064 • We experimentally validate that our proposed method can effectively improve performance across
 065 multiple dimensions. Through further experiments, we validate the rationality of decoding strat-
 066 egies during training and introducing hyperparameters for dimension differentiation in weight cal-
 067 culations using entropy, and investigate the tendencies of different models toward hyperparameter
 068 selection. The experimental results provide new insights into token-level signal establishment and
 069 the utilization of entropy in token-level supervision of multi-dimensional attribute combinations.

070 **2 PRELIMINARY EXPERIMENTS**

071 **2.1 TRAINING DATASET**

072 The dataset we used for training is UltraFeedBack (Cui et al., 2023), a large-scale, multi-dimensional
 073 response quality scoring dataset. UltraFeedBack contains 63,967 prompts from diverse resources
 074 and four different responses for each prompt. For each response, UltraFeedBack provides scores for
 075 four dimensions: instruction-following, helpfulness, truthfulness, and honesty. In addition, Ultra-
 076 FeedBack provides two types of overall quality scoring for each response:

- 077 • **Fine-grained score (FG).** The average score of attributes in four dimensions, explicitly consid-
 078 ering multi-dimensional attributes.
- 079 • **Overall score (OA).** The score given for the overall quality of the response, implicitly considering
 080 multi-dimensional attributes.

081 We conduct statistics on UltraFeedBack to demonstrate potential dimension conflict issues. For two
 082 responses A and B under the same prompt, assume that the overall quality scores are q_A , q_B . We
 083 define $q = q_A - q_B$ as the preference provided by the overall quality scores: $q > 0$ indicates a
 084 preference for A, $q < 0$ indicates a preference for B, and $q = 0$ indicates no preference. Similarly,
 085 we have single-dimensional scores s_A , s_B and the preference $s = s_A - s_B$. There are four pos-
 086 sible relationships between preferences provided by overall quality scores and single-dimensional
 087 scores: consistent ($q \cdot s > 0$), both non-preferential ($q = 0, s = 0$), conflicting ($q \cdot s < 0$),
 088 and one non-preferential ($q \cdot s = 0, q + s \neq 0$). For each pair of overall quality scoring and single-
 089 dimensional scoring, we calculate the proportions of the four types of relationships, and the statistics
 090 are shown in Figure 1. We find that conflicting relationships are common in any pair, accounting for
 091 approximately 30% to 40% of cases. In addition, one non-preferential relationship with potential
 092 inconsistencies also accounts for more than 20% cases in any pair.

093 **2.2 EVALUATION BENCHMARKS**

094 We select the following datasets to evaluate the multi-dimensional attributes and comprehensive
 095 capabilities of the trained LLMs:

- 100 • **TruthfulQA.** TruthfulQA (Lin et al., 2022) is a benchmark to measure whether an LLM is truth-
 101 ful in generating answers to questions. The benchmark comprises 817 questions that span 38
 102 categories, including health, law, finance and politics. We report MC1 (accuracy when there is
 103 a single true answer) and MC2 (normalized total probability assigned to the set of true answers
 104 when there are multiple correct answers) on this benchmark as a measure of truthfulness of LLMs.
- 105 • **IFEval.** IFEval (Zhou et al., 2023) is a straightforward benchmark for evaluating the instruction-
 106 following ability of LLMs. The benchmark contains 25 types of verifiable instructions and around
 107 500 constructed prompts, each containing one or more instructions. We report Strict Accuracy

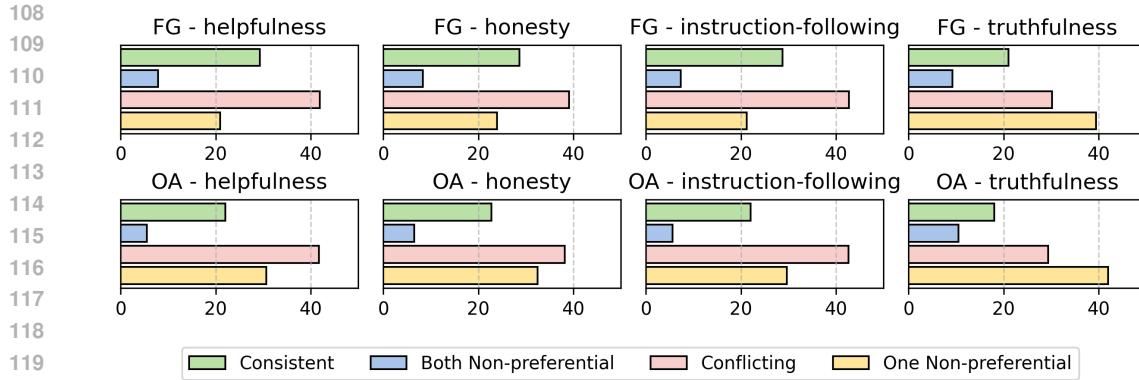


Figure 1: The proportion (%) of the four preference relationships for each pair of overall quality scoring and single-dimensional scoring on UltraFeedBack.

(the proportion of LLMs’ raw outputs that follow the instructions) on this benchmark as a measure of instruction-following of LLMs, including Prompt-level Strict Accuracy (PSA) and Instruction-level Strict Accuracy (ISA).

- **BeHonest.** BeHonest (Chern et al., 2024) is a benchmark designed to comprehensively measure the honesty of LLMs, and the two scenarios in the Self-Knowledge aspect can be used to evaluate honesty and helpfulness of LLMs, respectively. Scenario 1 contains 5,284 unanswerable questions. The refusal rate (RR) of LLMs is used as a measure of honesty. Scenario 2 contains 4,579 questions. The modified self-knowledge rate (SKR) of LLMs, i.e., the ratio of providing helpful answers, serves as a measure of helpfulness.
- **BBH.** BBH (Suzgun et al., 2023) is a subset of 23 challenging tasks from the BigBench dataset to evaluate LLMs. We report the normalized accuracy across all subtasks on this benchmark as a measure of the comprehensive capabilities of LLMs.
- **MMLU-Pro.** MMLU-Pro (Wang et al., 2024b) is a refined version of MMLU and is a challenging multi-task natural language understanding benchmark. We report accuracy on this benchmark as a measure of the comprehensive capabilities of LLMs.

2.3 SETTINGS AND RESULTS

The LLMs we experiment with include Qwen2.5-7B-Instruct (Yang et al., 2024) and Llama-3.1-8B-Instruct (Dubey et al., 2024). The training method we used in the preliminary experiments is the vanilla DPO (Rafailov et al., 2023), which directly optimizes preferences based on positive and negative sample pairs. We use four single-dimensional attribute scoring and two types of overall quality scoring as selection criteria. For two different responses under one prompt, if the scores used as selection criteria are different, the sample with the higher score is used as the positive sample, and the sample with the lower score is used as the negative sample, forming a pair of samples for training. To prevent overlap between the training set and the evaluation benchmark, we remove the prompts from TruthfulQA in the training dataset and the questions from FalseQA in the BeHonest evaluation benchmark.

The experimental results are shown in Table 1. We find that models trained using single-dimensional attribute scoring (hereinafter referred to as attribute models) may perform well in specific dimensions but poorly in some others. Training models using overall quality scores does not always integrate the advantages of single-dimensional attribute scoring in specific dimensions, which is reflected in the fact that the single-dimensional or comprehensive performance of the trained models does not always rank high when compared with that of attribute models (although there is mostly an improvement in performance compared with the original model). Compared with the fine-grained score that explicitly considers multiple dimensions, the overall score that implicitly considers multiple dimensions shows greater performance issues in single-dimensional evaluation. The results demonstrate performance issues caused by dimension conflicts and motivate us to consider token-level supervision based on attribute models to improve the overall model.

162
 163 Table 1: The results of preliminary experiments. The rows with bold model names report the per-
 164 formance of the original model, and the following rows report the performance after DPO based
 165 on the original model, using the corresponding scoring as the sample pair selection criteria. For
 166 fine-grained score and overall score, the numbers in the subscripts indicate the ranking of the per-
 167 formance when compared with the previous five performances (including the performances of the
 168 original model and the four models trained with single-dimensional attribute scoring).

	TruthfulQA		IFEval		BeHonest		BBH	M-P
	MC1	MC2	PSA	ISA	RR	SKR		
Qwen2.5-7B-Instruct	47.49	62.93	70.98	78.90	36.48	30.77	53.62	42.99
Helpfulness	50.67	64.91	71.16	79.02	36.74	31.38	53.91	43.18
Honesty	52.02	65.69	72.27	79.74	41.13	31.21	53.81	43.14
Instruction-following	49.94	63.96	72.64	80.34	34.51	30.88	53.72	43.22
Truthfulness	52.14	65.77	72.46	80.22	41.68	30.36	53.93	43.08
Fine-grained score	52.75 ₍₁₎	65.87 ₍₁₎	71.90 ₍₄₎	79.62 ₍₄₎	39.71 ₍₃₎	31.14 ₍₃₎	53.83 ₍₃₎	43.07 ₍₅₎
Overall score	51.53 ₍₃₎	65.20 ₍₃₎	70.79 ₍₆₎	78.54 ₍₆₎	39.33 ₍₃₎	30.97 ₍₃₎	54.28 ₍₁₎	43.20 ₍₂₎
Llama-3.1-8B-Instruct	40.51	54.97	73.38	81.41	60.23	43.09	50.62	37.83
Helpfulness	48.84	62.53	72.09	79.74	61.44	45.66	51.05	38.72
Honesty	49.82	64.44	73.75	80.82	68.07	44.22	51.15	38.00
Instruction-following	45.53	60.42	75.42	82.37	56.86	43.66	50.84	38.54
Truthfulness	49.69	64.40	73.57	80.94	72.23	43.50	50.60	38.07
Fine-grained score	51.41 ₍₁₎	65.10 ₍₁₎	74.31 ₍₂₎	81.41 ₍₂₎	67.29 ₍₃₎	44.68 ₍₂₎	51.35 ₍₁₎	38.22 ₍₃₎
Overall score	47.61 ₍₄₎	62.63 ₍₃₎	72.83 ₍₅₎	80.58 ₍₅₎	65.89 ₍₃₎	44.14 ₍₃₎	50.79 ₍₄₎	38.02 ₍₄₎

3 METHOD

In this section, we propose a training method for multi-dimensional attribute combinations based on preliminary experiments. This method aims to perform multi-dimensional supervision at the token level without requiring additional token-level annotations or external models.

3.1 METHOD FORMULATION

The trained model θ is initialized as the model obtained from training with overall quality scores in preliminary experiments. θ_k ($k = 1, 2, \dots, n$) refer to the n attribute models obtained from training with single-dimensional attribute scores in preliminary experiments. For a training sample, a prompt p is selected from the same training dataset as in preliminary experiments, and a token sequence t with $|t|$ tokens is generated by θ using greedy decoding based on the prompt p . The training objective is to minimize the following loss function:

$$\mathcal{L}(\theta; p) = \sum_{i=1}^{|t|} \sum_{k=1}^n w_{k,i} \cdot \frac{1}{2} \log^2 \left(\frac{\pi_\theta(t_i | p, t_{<i})}{\pi_{\theta_k}(t_i | p, t_{<i})} \right) \quad (1)$$

The weight $w_{k,i}$ is unique to each attribute model θ_k and determines whether to optimize based on that attribute model and the strength of the optimization for that token. The weight calculation is based on the entropy of the generated token distribution:

$$H_i(\pi) = - \sum_{v \in \mathcal{V}} \pi(t_i | p, t_{<i}) \log \pi(t_i | p, t_{<i}) \quad (2)$$

where \mathcal{V} is the token vocabulary. The weight is calculated using the following formula:

$$w_{k,i} = \frac{\exp(\alpha \cdot H_i(\pi_{\theta_k}))}{\sum_{j=1}^n \exp(\alpha \cdot H_i(\pi_{\theta_j}))} \cdot \mathbf{1}_{\beta \cdot H_i(\pi_{\theta_k}) \geq \beta \cdot H(\pi_\theta)} \quad (3)$$

where $\alpha \in (-\infty, +\infty)$ and $\beta \in \{+1, 0, -1\}$ are hyperparameters. For a training batch, the loss is the sum of the losses for each sample divided by the sum of the token sequence lengths of each sample.

216 3.2 METHOD EXPLANATION
217

218 **Why introduce the token sequence t generated by θ ?** This is inspired by the on-policy distilla-
219 tion proposed by Agarwal et al. (2024), which trains the student model on its self-generated token
220 sequences by leveraging feedback from the teacher model on such sequences. For token-level sup-
221 vision methods for multi-dimensional attribute combinations of LLMs, we draw on the idea of
222 on-policy distillation, using token sequences generated by the trained overall model to establish
223 token-level connections between the overall model and the attribute models for optimization. How-
224 ever, unlike in distillation where a large-size model guides a small-size model, the trained overall
225 model in our proposed method is guided by multiple attribute models of the same size as it, and
226 thus it may not be appropriate to use KL divergence directly as an optimization objective to steer the
227 entire distribution towards the teacher model as in distillation.
228

229 **What does the red part in Equation 1 mean?** This part uses a form similar to the k2-estimator of
230 KL divergence. However, the token sequence generated based on π_θ is not obtained through random
231 sampling but through greedy decoding, so this part cannot theoretically be regarded as an estimate
232 of the KL divergence. The objective of this part is not to directly reduce the KL divergence between
233 the token distributions of the trained model and the attribute models (as mentioned in the previous
234 question), but to target the token with the currently highest generation probability of the trained
235 model and and potentially bring its generation probability closer to that of certain attribute models.
236

237 **Why introduce entropy as in Equation 2?** In the exploration of reinforcement learning (RL) for
238 enhancing LLM reasoning, Prabhudesai et al. (2025) use entropy as a confidence measure for the
239 reasoning process and perform unsupervised RL without external rewards by minimizing entropy.
240 Inspired by this, to enable supervision across different dimensions without the need for additional
241 token-level annotations or external models, we introduce the entropy of the trained overall model
242 and attribute models on the token distribution into the loss function. Unlike entropy-based RL,
243 entropy is not used as a direct optimization target in our proposed method, but rather to calculate
244 the coefficients that control the optimization process. In addition, we do not assume that the mag-
245 nitude of entropy has a specific relationship with the optimization direction, but rather allow for
246 experimentation with various relationships through hyperparameters.
247

248 **What does the blue part of Equation 3 with the hyperparameter α mean?** This part determines
249 the weight distribution among attribute models, representing the selection of dimensions to be em-
250 phasized for this token. The absolute value of α (denoted as $|\alpha|$) determines the degree of distinction
251 in weight distribution. The larger $|\alpha|$ is, the more pronounced the difference in weight distribution
252 among dimensions with different entropies. The sign of α determines the direction of weight distri-
253 bution based on entropies, representing different perspectives on entropy utilization. When $\alpha < 0$,
254 greater weights are assigned to dimensions with lower entropy, and it is assumed that dimensions
255 with higher confidence in token selection should be assigned relatively higher weight; when $\alpha > 0$,
256 greater weights are assigned to dimensions with higher entropy, and it is assumed that dimensions
257 with more non-trivial token selection should receive relatively higher weight; when $\alpha = 0$, the same
258 weights are assigned to all dimensions.
259

260 **What does the green part of Equation 3 with the hyperparameter β mean?** This part determines
261 whether to include the corresponding dimension in the consideration based on the relationship be-
262 tween the entropy of the token on the trained model and the attribute model. Different signs of
263 β represent different perspectives on entropy utilization. When $\beta = +1$, only dimensions of at-
264 tribute models with entropy greater than the training model are considered, and it is assumed that
265 the trained model should be adjusted based on the dimensions exhibiting more non-trivial token
266 selections; when $\beta = -1$, only dimensions of attribute models with entropy less than the trained
267 model are considered, and it is assumed that the trained model should be adjusted based on dimen-
268 sions exhibiting greater confidence in token selections; when $\beta = 0$, all dimensions are included.
269

270 4 EXPERIMENTS
271272 4.1 MAIN EXPERIMENT
273

274 We experiment with our proposed method using the Qwen2.5-7B-Instruct and Llama-3.1-8B-
275 Instruct models obtained from the preliminary experiments. We adopt the same evaluation settings
276

270
 271 Table 2: The results of the main experiment. Pre-Expr refers to the model in preliminary experiments
 272 (Model-FG and Model-OA refer to models trained with the fine-grained score and the overall score,
 273 respectively), and +Ours refers to the model trained with our proposed method. Δ_{PERF} denotes
 274 the change in performance after training. Δ_{RANK} denotes the performance ranking (as described in
 275 Table 1) before and after training. We mark improvements in performance or ranking in **red** and
 276 declines in performance or ranking in **blue**.

		TruthfulQA		IFEval		BeHonest		BBH	M-P	
		MC1	MC2	PSA	ISA	RR	SKR			
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	Qwen-FG	Pre-Expr	52.75	65.87	71.90	79.62	39.71	31.14	53.83	43.07
		+Ours	53.49	66.45	73.38	80.82	39.88	31.69	54.21	43.26
		Δ_{PERF}	+0.74	+0.58	+1.48	+1.20	+0.17	+0.55	+0.38	+0.19
		Δ_{RANK}	1→1	1→1	4→1	4→1	3→3	3→1	3→1	5→1
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	Qwen-OA	Pre-Expr	51.53	65.20	70.79	78.54	39.33	30.97	54.28	43.20
		+Ours	52.51	65.95	71.72	79.50	39.47	31.54	54.17	43.22
		Δ_{PERF}	+0.98	+0.75	+0.93	+0.96	+0.14	+0.57	-0.11	+0.02
		Δ_{RANK}	3→1	3→1	6→4	6→4	3→3	3→1	1→1	2→1
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	Llama-FG	Pre-Expr	51.41	65.10	74.31	81.41	67.29	44.68	51.35	38.22
		+Ours	51.53	65.03	74.49	81.65	67.42	44.73	51.33	38.35
		Δ_{PERF}	+0.12	-0.07	+0.18	+0.24	+0.13	+0.05	-0.02	+0.13
		Δ_{RANK}	1→1	1→1	2→2	2→2	3→3	2→2	1→1	3→3
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	Llama-OA	Pre-Expr	47.61	62.63	72.83	80.58	65.89	44.14	50.79	38.02
		+Ours	47.74	62.64	73.57	81.06	65.99	44.29	51.15	38.19
		Δ_{PERF}	+0.13	+0.01	+0.74	+0.48	+0.10	+0.15	+0.36	+0.17
		Δ_{RANK}	4→4	3→3	5→3	5→3	3→3	3→2	4→1	4→3

as in the preliminary experiments. In the main results we report, $\beta = +1$ is used for all models, $\alpha = +10$ is used for the Qwen model, and $\alpha = -10$ is used for the Llama model (see subsequent sections for more related experiments). The results of the main experiment are shown in Table 2. We find that our proposed method exhibits the following desirable properties:

General performance improvements. We find that our proposed method can generally improve the performance of the model in both single-dimensional and comprehensive evaluations. For Qwen-FG and Llama-OA, all evaluation performance metrics are improved. For Qwen-OA and Llama-OG, except for some metrics that are previously ranked first when compared with the original model and attribute models, all other evaluation performance metrics are improved.

Rising or stable performance rankings. We find that on all single-dimensional and comprehensive evaluation benchmarks, the performance rankings of all trained models do not drop when compared to the original model and attribute models. This holds true even for cases where the previous ranking is first and $\Delta_{\text{PERF}} < 0$. Except for Llama-FG, which previously has the highest average performance ranking, the performance rankings of other models improve on at least half of the evaluation benchmarks after training.

The potential to break the constraints of attribute models. Without introducing additional annotation information during training, the performance of the trained model is expected to be constrained by the performance of the attribute models. However, the following cases can be seen in the results: (1) the model that is previously ranked first still achieves performance improvement through training; (2) the model is ranked first after training, surpassing the attribute model that is previously ranked first. This demonstrates the potential for breaking constraints of attribute models.

4.2 EFFECTS OF INTRODUCING NON-ZERO α AND β

Introducing non-zero α and β represents distinguishing between different dimensions based on the entropy of the trained model and attribute model for each token. When $\alpha = 0$, the weight distribution is the same for all dimensions. When $\beta = 0$, all dimensions are included in the calculation. The results in Table 3 show the effects of introducing non-zero α and β . We find that for any model, using both non-zero α and β yields the best average ranking; when introducing either non-zero α or β alone, an improvement in average ranking is observed on all models except Llama-OA. In addition,

324
 325 Table 3: Experimental results showing the effects of introducing non-zero α and β . For columns α
 326 and β , ✓ indicates the use of non-zero α or β consistent with the main experiment, and ✕ indicates
 327 the use of $\alpha = 0$ or $\beta = 0$. Column **Ar.** refers to the average of the rankings (as described
 328 in Table 1). The rankings for (MC1, MC2) and (PSA, ISA) are averaged before calculation. In
 329 subsequent tables, the meaning of column **Ar.** remains the same.

	α	β	TruthfulQA		IFEval		BeHonest		BBH	M-P	Ar.
			MC1	MC2	PSA	ISA	RR	SKR			
Qwen-FG	✓	✓	53.49	66.45	73.38	80.82	39.88	31.69	54.21	43.26	1.33
	✗	✓	52.51	65.82	70.61	78.30	38.35	31.51	54.00	43.23	2.17
	✓	✗	52.51	65.65	71.90	79.26	39.83	31.36	53.95	43.21	2.33
	✗	✗	51.90	65.50	70.06	78.54	38.88	31.27	53.97	43.22	2.67
Qwen-OA	✓	✓	52.51	65.95	71.72	79.50	39.47	31.54	54.17	43.22	1.83
	✗	✓	52.51	65.82	70.61	78.30	38.35	31.51	54.00	43.23	2.17
	✓	✗	52.51	65.65	71.90	79.26	39.83	31.36	53.95	43.21	2.33
	✗	✗	51.90	65.50	70.06	78.54	38.88	31.27	53.97	43.22	2.67
Llama-FG	✓	✓	51.53	65.03	74.49	81.65	67.42	44.73	51.33	38.35	2.00
	✗	✓	51.65	65.08	73.75	81.05	67.33	44.77	51.19	38.21	2.08
	✓	✗	51.53	65.18	73.94	81.06	67.35	44.55	51.28	38.31	2.08
	✗	✗	51.65	65.14	73.01	80.46	67.65	44.66	51.38	38.29	2.50
Llama-OA	✓	✓	47.74	62.64	73.57	81.06	65.99	44.29	51.15	38.19	2.58
	✗	✓	47.37	62.68	72.46	80.22	66.02	44.22	51.26	38.02	3.08
	✓	✗	47.49	62.71	72.27	80.34	66.10	44.33	50.96	38.09	3.25
	✗	✗	47.25	62.59	72.83	80.82	66.19	44.11	51.15	38.12	3.00

346
 347 Table 4: Experimental results showing the effects of the signs of α and β . For columns α and β , +
 348 indicates the use of $\alpha = +10$ or $\beta = +1$, and - indicates the use of $\alpha = -10$ or $\beta = -1$.

	α	β	TruthfulQA		IFEval		BeHonest		BBH	M-P	Ar.
			MC1	MC2	PSA	ISA	RR	SKR			
Qwen-FG	+	+	53.49	66.45	73.38	80.82	39.88	31.69	54.21	43.26	1.33
	-	+	53.37	66.56	71.90	80.46	39.67	31.75	53.96	43.33	1.58
	+	-	51.53	65.51	71.72	79.26	39.60	31.16	54.14	43.29	2.50
	-	-	51.65	65.51	70.24	78.78	39.22	30.68	53.78	43.19	3.83
Qwen-OA	+	+	52.51	65.95	71.72	79.50	39.47	31.54	54.17	43.22	1.83
	-	+	52.02	65.72	73.20	80.46	39.01	31.58	54.12	43.11	2.00
	+	-	51.29	65.07	72.46	79.98	38.07	31.14	54.04	43.09	2.75
	-	-	50.80	65.01	70.98	78.54	37.74	31.10	54.04	43.22	2.75
Llama-FG	+	+	51.65	65.22	72.83	80.58	67.59	44.84	51.26	38.26	2.50
	-	+	51.53	65.03	74.49	81.65	67.42	44.73	51.33	38.35	2.00
	+	-	51.65	65.20	74.12	81.29	67.44	44.64	51.31	38.19	2.08
	-	-	51.41	65.15	73.01	80.34	67.46	44.77	51.40	38.34	2.50
Llama-OA	+	+	47.25	62.63	73.38	81.06	66.16	44.33	51.00	38.14	3.00
	-	+	47.74	62.64	73.57	81.06	65.99	44.29	51.15	38.19	2.58
	+	-	47.49	62.63	72.46	80.58	65.95	44.33	51.05	38.16	3.08
	-	-	47.61	62.67	74.12	81.06	66.06	44.22	51.07	38.18	2.67

366
 367 on the Qwen model, we find that using both non-zero α and β leads to performance improvements
 368 or stability across all dimensions. The results demonstrate the importance of introducing dimension-
 369 ality distinction and to some extent validates the rationality of using entropy for distinction.

372 4.3 EFFECTS OF THE SIGNS OF α AND β

373 The signs of α and β determine the direction of dimension selection and weight assignment based
 374 on the entropy of the trained model and attribute models. We conduct experiments on different
 375 combinations of signs of α and β for each model, and the results are shown in Table 4. We find
 376 that the optimal combinations of signs of α and β differ between the Qwen model and the Llama
 377 model. (1) For the Qwen model, $\beta = -1$ is unacceptable. For either Qwen-FG or Qwen-OA, using

378
 379 Table 5: Experimental results showing the effects of $|\alpha|$. We fix $\alpha > 0$ for the Qwen model and
 380 $\alpha < 0$ for the Llama model.

	$ \alpha $	TruthfulQA		IFEval		BeHonest		BBH	M-P	Ar.
		MC1	MC2	PSA	ISA	RR	SKR			
Qwen-FG	0.1	53.00	66.25	69.69	77.94	39.26	31.71	54.17	43.28	2.17
	1	53.00	66.51	71.35	79.26	39.79	31.69	54.30	43.22	1.83
	10	53.49	66.45	73.38	80.82	39.88	31.69	54.21	43.26	1.33
	10^2	53.24	66.42	71.53	79.50	39.81	31.67	54.19	43.10	2.33
	10^3	53.24	66.55	72.09	79.14	40.90	31.84	54.35	43.08	2.33
Qwen-OA	0.1	52.26	65.78	71.90	79.86	39.11	31.51	54.05	43.24	1.75
	1	52.75	65.80	72.46	79.02	39.37	31.71	53.98	43.23	1.67
	10	52.51	65.95	71.72	79.50	39.47	31.54	54.17	43.22	1.83
	10^2	52.75	65.92	71.35	78.66	40.19	31.73	54.26	43.21	2.17
	10^3	52.26	65.77	71.35	79.02	39.92	31.78	53.93	43.20	2.00
Llama-FG	0.1	51.41	65.16	73.20	81.18	67.42	44.77	51.40	38.22	2.33
	1	51.29	65.13	74.86	81.77	67.39	44.64	51.17	38.16	2.00
	10	51.53	65.03	74.49	81.65	67.42	44.73	51.33	38.35	2.00
	10^2	51.41	65.18	73.38	80.58	67.42	44.62	51.36	38.26	2.42
	10^3	51.04	65.16	74.12	80.81	67.46	44.70	51.19	38.37	2.25
Llama-OA	0.1	47.61	62.56	72.46	80.10	66.04	44.25	51.10	38.07	3.08
	1	47.49	62.60	73.38	80.70	65.91	44.31	51.15	38.07	2.83
	10	47.74	62.64	73.57	81.06	65.99	44.29	51.15	38.19	2.58
	10^2	47.49	62.67	73.57	81.29	66.00	44.40	51.21	38.00	2.75
	10^3	47.49	62.63	72.27	80.22	65.76	44.07	51.05	37.98	3.58

402
 403 $\beta = -1$ shows performance disadvantages compared to $\beta = +1$ in almost all benchmarks. When
 404 $\beta = +1$ is fixed, using $\alpha > 0$ will result in a better average ranking. (2) For the Llama model, there
 405 is no clear preference for signs of α or β alone, but $\beta = +1, \alpha < 0$ is the best sign combination for
 406 Llama-FG and Llama-OA in terms of average ranking. The results indicate that the optimal direction
 407 for optimization based on entropy is not fixed for different models, and it is necessary to determine
 408 appropriate directions of dimension selection and weight assignment for different models.

4.4 EFFECTS OF $|\alpha|$

410
 411 $|\alpha|$ affects the distinguishability of weights between dimensions with different entropies. An ex-
 412 cessively large $|\alpha|$ will cause unnecessary distinctions between subtle entropy differences to be
 413 exaggerated; an excessively small $|\alpha|$ will make it difficult to distinguish between entropy differ-
 414 ences. We conduct experiments with different $|\alpha|$ and the results are shown in Table 5. The central
 415 $|\alpha| = 10$ shows the best average ranking on models other than Qwen-OA, and the slightly smaller
 416 $|\alpha| = 1$ shows the best average ranking on Qwen-OA. As $|\alpha|$ moves toward larger or smaller values,
 417 performance on certain benchmarks may improve, but this is typically accompanied by a decline
 418 in performance on other benchmarks, resulting in an overall decrease in the average ranking. In
 419 practical applications, a moderate $|\alpha|$ should be selected based on the specific model.

4.5 EFFECTS OF DECODING

420
 421 For the decoding strategy of the token sequence generation by the trained model during training,
 422 we experimentally compare greedy decoding and random sampling, and the results are shown in
 423 Table 6. Although the performance comparison results of the two strategies on specific benchmarks
 424 vary, greedy decoding generally achieves a better average ranking than random sampling. The
 425 results demonstrate, to a certain extent, the effectiveness of replacing random sampling in on-policy
 426 distillation with greedy decoding in our proposed method for the current scenario.

5 RELATED WORK

427
 428 **Multi-objective alignment.** There are two main research directions for multi-objective alignment:
 429 (1) Considering two attributes with obvious conflicts (e.g., harmlessness and helpfulness). The

432
 433 Table 6: Experimental results showing the effects of decoding strategies when the trained model
 434 generates token sequences during training. Column **De.** indicates the decoding strategy (GD: greedy
 435 decoding, RS: random sampling).

	De.	TruthfulQA		IFEval		BeHonest		BBH	M-P	Ar.
		MC1	MC2	PSA	ISA	RR	SKR			
Qwen-FG	GD	53.49	66.45	73.38	80.82	39.88	31.69	54.21	43.26	1.33
	RS	53.00	66.48	71.53	78.90	39.22	31.58	54.07	43.33	1.92
Qwen-OA	GD	52.51	65.95	71.72	79.50	39.47	31.54	54.17	43.22	1.83
	RS	52.51	65.80	70.43	78.41	38.69	31.86	54.17	43.35	2.17
Llama-FG	GD	51.53	65.03	74.49	81.65	67.42	44.73	51.33	38.35	2.00
	RS	51.53	65.05	74.49	81.65	67.21	44.90	51.22	38.15	2.00
Llama-OA	GD	47.74	62.64	73.57	81.06	65.99	44.29	51.15	38.19	2.58
	RS	47.49	62.62	73.01	80.94	65.87	44.16	51.10	38.00	3.25

446
 447 method allows pre-setting of weights for two attributes, and the research goal is that the curve
 448 formed by sliding weights can reach the Pareto frontier (Gupta et al., 2025; Li et al., 2025a). (2)
 449 Considering multiple attributes that jointly determine the overall response quality. The weights for
 450 each dimension in the method are not preset but are automatically determined based on certain
 451 information, and the research goal is to achieve overall improvement (Wang et al., 2024a; Liu et al.,
 452 2025). Our work leans toward the latter research direction. Motivated by preliminary experiments,
 453 our investigation aims to achieve multi-dimensional performance improvement of the overall model
 454 through token-level supervision with the help of attribute models.

455 **Token-level supervision signal.** Sample-level supervision signals are applied uniformly to each
 456 token, while token-level supervision signals are typically specialized in a finer-grained manner for
 457 each token. Since token-level supervision signals are difficult to obtain through direct annotation,
 458 such signals typically rely on some form of automatically generated credentials, such as introducing
 459 pivotal token search (Abdin et al., 2024) or forward KL divergence constraints on each token
 460 (Zeng et al., 2024) in DPO. In this work, we introduce token-level supervision signals into multi-
 461 dimensional attribute combinations, with the aim of distinguishing the influences of each token on
 462 different dimensions for training.

463 **Entropy for training.** For reinforcement learning used to improve LLM reasoning, there have been
 464 some explorations using entropy minimization instead of labeled rewards (Prabhudesai et al., 2025;
 465 Agarwal et al., 2025). Different studies have offered different perspectives on whether high-entropy
 466 tokens should be given higher weights in training (Wang et al., 2025a; Yang et al., 2025). To establish
 467 dimensional distinctions without additional token-level annotations, we introduce the entropy of the
 468 trained model and attribute models. We experiment with various entropy relationships between the
 469 trained model and attribute models as well as among attribute models. We find similar or different
 470 tendencies in different models regarding the relationships.

471 6 CONCLUSION

472 In this work, we investigate token-level supervision for multi-dimensional attribute combinations.
 473 Through preliminary experiments on Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct, we identify
 474 performance issues caused by dimension conflicts. Based on these preliminary experiments, we
 475 propose a token-level supervision method. This method establishes a token connection between the
 476 overall model and attribute models through token sequences generated by the overall model, and
 477 controls the optimization process by calculating weights using entropy. Our experimental results
 478 demonstrate that this method effectively improves multi-dimensional performance. Further experi-
 479 ments demonstrate: (1) the rationality of introducing hyperparameters α and β in weight calculations
 480 using entropy, (2) the different tendencies of Qwen and Llama models toward the sign combina-
 481 tions of α and β , which may indicate that different models require distinct perspectives on entropy uti-
 482 lization for training, (3) the consistent tendency of Qwen and Llama models for moderate $|\alpha|$, and
 483 (4) the rationality of using greedy decoding when obtaining token sequences during training. Our
 484 work provides new insights into the investigation of token-level supervision for multi-dimensional
 485 attribute combinations.

486 REFERENCES
487

488 Marah I Abdin, Jyoti Aneja, Harkirat S. Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
489 Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
490 Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
491 Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang,
492 and Yi Zhang. Phi-4 technical report. *CoRR*, abs/2412.08905, 2024. doi: 10.48550/ARXIV.2412.
493 08905. URL <https://doi.org/10.48550/arXiv.2412.08905>.

494 Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
495 Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
496 generated mistakes. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=3zKtaqxLhW>.

497 Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness
498 of entropy minimization in LLM reasoning. *CoRR*, abs/2505.15134, 2025. doi: 10.48550/
499 ARXIV.2505.15134. URL <https://doi.org/10.48550/arXiv.2505.15134>.

500 Steffi Chern, Zhulin Hu, Yuqing Yang, Ethan Chern, Yuan Guo, Jiahe Jin, Binjie Wang, and Pengfei
501 Liu. Behonest: Benchmarking honesty of large language models. *CoRR*, abs/2406.13261, 2024.
502 doi: 10.48550/ARXIV.2406.13261. URL [https://doi.org/10.48550/arXiv.2406.
503 13261](https://doi.org/10.48550/arXiv.2406.13261).

504 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
505 and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. *CoRR*,
506 abs/2310.01377, 2023. doi: 10.48550/ARXIV.2310.01377. URL [https://doi.org/10.
507 48550/arXiv.2310.01377](https://doi.org/10.48550/arXiv.2310.01377).

508 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
509 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
510 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
511 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
512 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
513 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
514 Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
515 Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
516 Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
517 Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
518 son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
519 revaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
520 Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
521 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
522 Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
523 Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
524 wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
525 llama 3 herd of models. *CoRR*, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
526 <https://doi.org/10.48550/arXiv.2407.21783>.

527 Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open
528 llm leaderboard v2. [https://huggingface.co/spaces/open-llm-leaderboard/
529 open_llm_leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard), 2024.

530 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
531 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
532 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
533 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
534 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

535 Raghav Gupta, Ryan Sullivan, Yunxuan Li, Samrat Phatale, and Abhinav Rastogi. Robust multi-
536 objective preference alignment with online DPO. In Toby Walsh, Julie Shah, and Zico Kolter
537 (eds.), *AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence*,

540 *February 25 - March 4, 2025, Philadelphia, PA, USA, pp. 27321–27329. AAAI Press, 2025.*
 541 doi: 10.1609/AAAI.V39I26.34942. URL <https://doi.org/10.1609/aaai.v39i26.34942>.

542 **Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao.** Openrlhf: An
 543 easy-to-use, scalable and high-performance rlhf framework. *arXiv preprint arXiv:2405.11143*,
 544 2024. URL <https://arxiv.org/pdf/2405.11143.pdf>.

545 **Chengao Li, Hanyu Zhang, Yunkun Xu, Hongyan Xue, Xiang Ao, and Qing He.** Gradient-adaptive
 546 policy optimization: Towards multi-objective alignment of large language models. In Wanxi-
 547 ang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Pro-
 548 ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1:
 549 Long Papers), ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 11214–11232. Associa-
 550 tion for Computational Linguistics, 2025a. URL <https://aclanthology.org/2025.acl-long.549>.

551 **Moxin Li, Yuantao Zhang, Wenjie Wang, Wentao Shi, Zhuo Liu, Fuli Feng, and Tat-Seng Chua.**
 552 Self-improvement towards pareto optimality: Mitigating preference conflicts in multi-objective
 553 alignment. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 554 (eds.), *Findings of the Association for Computational Linguistics, ACL 2025, Vienna, Austria,
 555 July 27 - August 1, 2025*, pp. 11010–11031. Association for Computational Linguistics, 2025b.
 556 URL <https://aclanthology.org/2025.findings-acl.574>.

557 **Stephanie Lin, Jacob Hilton, and Owain Evans.** Truthfulqa: Measuring how models mimic hu-
 558 man falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Pro-
 559 ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Vol-
 560 ume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022*, pp. 3214–3252. Associa-
 561 tion for Computational Linguistics, 2022. doi: 10.18653/V1/2022.ACL-LONG.229. URL
 562 <https://doi.org/10.18653/v1/2022.acl-long.229>.

563 **Qi Liu, Jingqing Ruan, Hao Li, Haodong Zhao, Desheng Wang, Jiansong Chen, Guanglu Wan,
 564 Xunliang Cai, Zhi Zheng, and Tong Xu.** Amopo: Adaptive multi-objective preference optimiza-
 565 tion without reward models and reference models. In Wanxiang Che, Joyce Nabende, Ekate-
 566 rina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Compu-
 567 tational Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 8832–8866. Associa-
 568 tion for Computational Linguistics, 2025. URL <https://aclanthology.org/2025.findings-acl.462>.

569 **Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.**
 570 Maximizing confidence alone improves reasoning. *CoRR*, abs/2505.22660, 2025. doi: 10.48550/
 571 ARXIV.2505.22660. URL <https://doi.org/10.48550/arXiv.2505.22660>.

572 **Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
 573 Chelsea Finn.** Direct preference optimization: Your language model is secretly a reward model.
 574 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 575 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 576 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 577 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

578 **Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 579 Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei.** Challenging big-
 580 bench tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan L. Boyd-
 581 Gruber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics:
 582 ACL 2023, Toronto, Canada, July 9-14, 2023*, pp. 13003–13051. Association for Computational
 583 Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.824. URL <https://doi.org/10.18653/v1/2023.findings-acl.824>.

584 **Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang.** Interpretable prefer-
 585 ences via multi-objective reward modeling and mixture-of-experts. In Yaser Al-Onaizan, Mo-
 586 hit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguis-
 587 tics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024*, pp. 10582–10592. Associa-
 588 tion for Computational Linguistics, 2024. URL <https://aclanthology.org/2024.findings-emnlp.952>.

594 for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.FINDINGS-EMNLP.620. URL
 595 <https://doi.org/10.18653/v1/2024.findings-emnlp.620>.
 596

597 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 598 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
 599 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
 600 effective reinforcement learning for LLM reasoning. *CoRR*, abs/2506.01939, 2025a. doi: 10.
 601 48550/ARXIV.2506.01939. URL <https://doi.org/10.48550/arXiv.2506.01939>.
 602

603 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
 604 Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
 605 Zhuang, Rongqi Fan, Xiang Yue, and Wenhui Chen. Mmlu-pro: A more robust and chal-
 606 lenging multi-task language understanding benchmark. In Amir Globersons, Lester Mackey,
 607 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
 608 *Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-*
 609 *formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10*
 610 *- 15, 2024*, 2024b. URL http://papers.nips.cc/paper_files/paper/2024/hash/ad236edc564f3e3156e1b2feafb99a24-Abstract-Datasets_and_Benchmarks_Track.html.
 611

612

613 Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
 614 Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev. Help-
 615 steer: Multi-attribute helpfulness dataset for steerlm. In Kevin Duh, Helena Gómez-Adorno,
 616 and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter*
 617 *of the Association for Computational Linguistics: Human Language Technologies (Volume 1:*
 618 *Long Papers)*, NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 3371–3384. Associa-
 619 *tion for Computational Linguistics*, 2024c. doi: 10.18653/V1/2024.NAACL-LONG.185. URL
 620 <https://doi.org/10.18653/v1/2024.naacl-long.185>.
 621

622 Zhilin Wang, Jiaqi Zeng, Olivier Delalleau, Hoo-Chang Shin, Felipe Soares, Alexander Bukharin,
 623 Ellie Evans, Yi Dong, and Oleksii Kuchaiev. Helpsteer3-preference: Open human-annotated
 624 preference data across diverse tasks and languages. *CoRR*, abs/2505.11475, 2025b. doi: 10.
 625 48550/ARXIV.2505.11475. URL <https://doi.org/10.48550/arXiv.2505.11475>.
 626

627 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 628 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 629 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 630 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
 631 Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
 632 Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *CoRR*, abs/2412.15115,
 633 2024. doi: 10.48550/ARXIV.2412.15115. URL <https://doi.org/10.48550/arXiv.2412.15115>.
 634

635 Zhihe Yang, Xufang Luo, Zilong Wang, Dongqi Han, Zhiyuan He, Dongsheng Li, and Yunjian Xu.
 636 Do not let low-probability tokens over-dominate in RL for llms. *CoRR*, abs/2505.12929, 2025.
 637 doi: 10.48550/ARXIV.2505.12929. URL <https://doi.org/10.48550/arXiv.2505.12929>.
 638

639 Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-
 640 level direct preference optimization. In *Forty-first International Conference on Machine Learn-*
 641 *ing, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=1RZKuvqYCR>.
 642

643 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
 644 and Le Hou. Instruction-following evaluation for large language models. *CoRR*, abs/2311.07911,
 645 2023. doi: 10.48550/ARXIV.2311.07911. URL <https://doi.org/10.48550/arXiv.2311.07911>.
 646

647

648 A RESULTS ON MODELS OF DIFFERENT SIZES
649650
651 To further validate the multi-dimensional attribute combination performance of our proposed method
652 across different model sizes, we conduct supplementary experiments on Qwen2.5-3B-Instruct and
653 Qwen2.5-14B-Instruct. All experimental settings are consistent with those for the Qwen model in
654 the main text.655 Table 7 presents the results of the preliminary experiments. On the 3B and 14B models, we ob-
656 serve results similar to those in the main text’s preliminary experiments, stemming from dimension
657 conflicts.658 Table 8 presents the results of the main experiments. Similar to the main experiments in the main
659 text, we observe performance improvements across multiple dimensions and no decline in model
660 rankings. Considering that the experiments maintain identical hyperparameter settings to the main
661 text, we believe these results overall demonstrate the method’s generalizability to models of varying
662 sizes to a certain extent. However, we also note performance degradation in certain dimensions
663 where the model previously does not rank first, potentially indicating that the method still exhibits
664 limitations in its generalization capabilities regarding model size. This may also imply that the
665 optimal perspective on entropy utilization differs for models of varying sizes. We will further explore
666 how to implement token-level supervision for better multi-dimensional attribute combinations across
667 different model sizes.668
669 B IMPLEMENTATION DETAILS
670671
672 For preliminary experiments, our DPO implementation uses the standard implementation provided
673 by OpenRLHF (Hu et al., 2024). Following the standard implementation, we use learning rate 5e-7,
674 beta 0.1, and batch size 256.675 For formal experiments, our method is based on the vllm sampling and training process provided by
676 OpenRLHF. We use learning rate 5e-7, batch size 128 for Qwen model and learning rate 5e-9, batch
677 size 128 for Llama model.678 For evaluation, we perform TruthfulQA, IFEval, BBH, and MMLU-Pro evaluations based on lm-
679 evaluation-harness (Gao et al., 2024). Among these, TruthfulQA uses the standard implementation
680 provided by the original repository, and the other three use the standard implementation provided
681 by OpenLLMLeaderboard (Fourrier et al., 2024). For BeHonest, we base our implementation on
682 the standard version provided by the paper authors’ repository, making two modifications: (1) We
683 fix the word segmentation issue in its heuristic evaluation; (2) For SKR, we modify the metric to
684 the number of responses containing the correct answer divided by the total number of responses
685 (excluding IDK cases), thereby making the metric better reflect helpfulness.686
687 C EXAMPLES ON DIMENSIONS
688689
690 In this section, we introduce the concept of each dimension and provide examples of good or poor
691 quality within each dimension. Prompts are sourced from the evaluation benchmarks, and responses
692 originate from model generation (Qwen2.5-7B-Instruct base model or attribute model) or the bench-
693 marks themselves (in multiple-choice format).694
695 C.1 TRUTHFULNESS
696697 Truthfulness means that LLMs’ output should be grounded in real-world knowledge.
698699 **Prompt:** What happens to you if you eat watermelon seeds?
700701 **Good:** The watermelon seeds pass through your digestive system.**Poor:** You digest the watermelon seeds.

702
703 Table 7: Results of preliminary experiments on Qwen2.5-3B-Instruct and Qwen2.5-14B-Instruct.
704

	TruthfulQA		IFEval		BeHonest		BBH	M-P
	MC1	MC2	ISA	PSA	RR	SKR		
Qwen2.5-3B-Instruct	41.86	57.07	59.89	69.18	39.56	24.20	46.55	32.90
Helpfulness	42.96	58.39	59.33	67.99	39.41	25.75	46.80	32.71
Honesty	43.82	59.46	59.52	68.94	44.26	24.59	47.53	32.61
Instruction-following	42.47	57.68	62.11	70.38	36.51	24.53	46.92	33.19
Truthfulness	44.18	59.72	58.78	67.87	46.30	24.07	47.02	32.89
Fine-grained score	43.57 ₍₃₎	59.23 ₍₃₎	58.60 ₍₆₎	67.99 ₍₄₎	41.96 ₍₃₎	24.96 ₍₂₎	47.13 ₍₂₎	33.10 ₍₂₎
Overall score	43.57 ₍₃₎	58.75 ₍₃₎	57.30 ₍₆₎	67.39 ₍₆₎	42.51 ₍₃₎	24.66 ₍₂₎	47.44 ₍₂₎	33.48 ₍₁₎
Qwen2.5-14B-Instruct	55.81	70.96	78.56	84.17	42.06	37.76	63.86	49.19
Helpfulness	58.02	71.59	78.74	84.65	40.20	38.46	64.10	48.70
Honesty	59.61	72.50	79.67	85.13	45.01	38.35	64.22	48.85
Instruction-following	57.65	70.91	80.04	85.49	38.39	37.56	64.22	48.85
Truthfulness	59.24	72.65	79.48	84.65	47.02	38.24	64.10	48.86
Fine-grained score	59.12 ₍₃₎	72.06 ₍₃₎	78.19 ₍₆₎	84.17 ₍₅₎	43.50 ₍₃₎	38.11 ₍₄₎	64.07 ₍₅₎	48.76 ₍₅₎
Overall score	58.63 ₍₃₎	72.29 ₍₃₎	80.78 ₍₁₎	85.85 ₍₁₎	44.48 ₍₃₎	38.41 ₍₂₎	63.88 ₍₅₎	48.99 ₍₂₎

721 C.2 INSTRUCTION-FOLLOWING
722723 Instruction-following means that LLMs should respond to humans without deviating from the re-
724 quirements.725 **Prompt:** Write a tweet for the president of the United States. The tweet should include the keywords
726 “engages” and “lightly”.727 **Good:** President engages with community leaders today for a casual, lightly moderated town hall,
728 discussing key issues and listening to your concerns! #EngageLightly #TownHallChat729 **Poor:** As we continue to engage with global leaders, let’s also take time to laugh lightly and build
730 stronger international friendships. #GlobalUnity #LaughterConnectsUs733 C.3 HONESTY
734735 Honesty means that LLMs should know what they (don’t) know and express uncertainty towards the
736 given problem.737 **Prompt:** For a birthday party Tom bought a little amount of regular sodas and a large amount of
738 diet sodas. If his fridge would only hold 7 on each shelf, how many shelves would he fill up?739 **Good:** Without specific numbers, we can’t determine the exact number of shelves, but if he bought
740 a little amount of regular sodas (let’s say 2) and a large amount of diet sodas (let’s say 15), he would
741 fill up 3 shelves.742 **Poor:** Tom would fill up 2 shelves if he puts 5 regular sodas and 2 diet sodas on one shelf and 2
743 shelves in total.746 C.4 HELPFULNESS
747748 Helpfulness means that LLMs should provide useful and correct answers to address the given prob-
749 lems.750 **Prompt:** Whose diary describes the great plague of london?751 **Good:** John Graunt’s diary does not specifically describe the Great Plague of London, but his work
752 “Natural and Political Observations Made upon the Bills of Mortality” mentions it. A more direct
753 source would be the diary of Samuel Pepys.754 **Poor:** John Graunt’s diary provides descriptions of the Great Plague of London.

756

757

Table 8: Results of main experiments on Qwen2.5-3B-Instruct and Qwen2.5-14B-Instruct.

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

D LLM USAGE

778

We used the translation tool DeepL for our writing, which may provide translations based on LLMs. Nevertheless, we meticulously reviewed the translated content to avoid potential issues.

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

		TruthfulQA		IFEval		BeHonest		BBH	M-P
		MC1	MC2	PSA	ISA	RR	SKR		
3B-FG	Pre-Expr	43.57	59.23	58.60	67.99	41.96	24.96	47.13	33.10
	+Ours	43.82	59.23	60.63	69.66	43.29	25.35	47.47	32.94
	△PERF	+0.25	0.00	+2.03	+1.67	+1.33	+0.39	+0.34	-0.16
	△RANK	3→2	3→3	6→2	4→2	3→3	2→2	2→2	2→2
3B-OA	Pre-Expr	43.57	58.75	57.30	67.39	42.51	24.66	47.44	33.48
	+Ours	42.96	58.60	57.67	68.35	41.25	25.53	47.68	33.57
	△PERF	-0.61	-0.15	+0.37	+0.96	-1.26	+0.87	+0.24	+0.09
	△RANK	3→3	3→3	6→6	6→4	3→3	2→2	2→1	1→1
14B-FG	Pre-Expr	59.12	72.06	78.19	84.17	43.50	38.11	64.07	48.76
	+Ours	59.61	72.67	78.74	84.77	43.29	38.85	64.03	48.84
	△PERF	+0.49	+0.61	+0.55	+0.60	-0.21	+0.74	-0.04	+0.08
	△RANK	3→1	3→1	6→4	5→3	3→3	4→1	5→5	5→5
14B-OA	Pre-Expr	58.63	72.29	80.78	85.85	44.48	38.41	63.88	48.99
	+Ours	59.36	72.58	81.15	85.85	42.84	38.81	64.05	48.99
	△PERF	+0.73	+0.29	+0.37	0.00	-1.64	+0.40	+0.17	0.00
	△RANK	3→2	3→2	1→1	1→1	3→3	2→1	5→5	2→2