
Addressing the Challenges of Planning Language Generation

Anonymous ACL submission

Abstract

Using LLMs to generate formal planning lan-001
guages such as PDDL that invokes symbolic002
solvers to deterministically derive plans has003
been shown to outperform generating plans di-004
rectly. While this success has been limited005
to closed-sourced models or particular LLM006
pipelines, we design and evaluate 8 different007
PDDL generation pipelines with open-source008
models under 50 billion parameters previously009
shown to be incapable of this task. We find010
that intuitive approaches such as using a high-011
resource language wrapper or constrained de-012
coding with grammar decrease performance.013
However, inference-time scaling approaches014
such as revision with feedback from the solver015
and plan validator more than double the perfor-016
mance.1017

1 Introduction018

Recently, Large Language Models (LLMs) have019

been extensively applied to planning tasks. Promi-020

nently, LLMs are given a description of the plan-021

ning domain and problem, and are utilized as plan-022

ners to directly generate a plan (Parmar et al., 2025;023

Majumder et al., 2023; Silver et al., 2024), or as024

formalizers to generate a formal language that is025

input into a formal solver to calculate a plan (Li026

et al., 2024; Hu et al., 2025; Zuo et al., 2024; Zhang027

et al., 2024a,b). LLM-as-formalizer (Figure 1) has028

been widely advocated in literature due to its re-029

portedly better performance and formal guarantees030

compared to LLM-as-planner.031

Although LLM-as-formalizer could be instan-032

tiated with several planning languages including033

satisfiability modulo theories (SMT) (Hao et al.,034

2025), linear temporal logic (LTL) (Li et al., 2024),035

Answer Set Programming (Lin et al., 2024), among036

others (Ishay and Lee, 2025; Guo et al., 2024), we037

follow most work and focus on the planning do-038

main definition language (PDDL) (Li et al., 2024;039

1Our resources are attached with the submission.

Figure 1: An illustration of using LLM as a planner or
a formalizer in planning.

Hu et al., 2025; Zuo et al., 2024; Zhang et al., 040

2024a,b) due to its dominant popularity, though our 041

experiments apply to any language. Previous work 042

evaluating PDDL generation focused primarily on 043

closed-course and huge LLMs over 100 billion pa- 044

rameters such as gpt-4o (OpenAI et al., 2024) or 045

DeepSeek-R1 (DeepSeek-AI et al., 2025) using 046

some particular LLM pipeline. Moreover, much 047

work concluded even large, closed-source models 048

have limited ability to generate syntactically and 049

semantically correct PDDL due to its specificity 050

and lack of training data (Huang and Zhang, 2025; 051

Zuo et al., 2024), while small, open-source models 052

achieve close to zero performance. This greatly 053

hinders progress in automatic planning. 054

This work is the first to evaluate mid-size open- 055

source LLMs less than 50 billion parameters on 056

zero-shot PDDL generation. We experiment with 057

8 different modular pipelines, including prompt- 058

ing techniques such as providing extensive PDDL 059

knowledge as a prefix, or pre-inference techniques 060

such as generating a natural language summary be- 061

fore the PDDL, sequentially generating domain and 062

problem files, using a Python wrapper of PDDL, or 063

constraining decoding with PDDL grammar. We 064

also consider inference-time techniques such as 065

generating multiple responses, revising generated 066

PDDL with feedback from the formal solver or 067

the plan validator. Our best performing pipeline 068

decreases Qwen-3 32B model’s syntax errors by 069

97% and semantic errors by 47% on the common 070

BlocksWorld benchmark, enabling planning in low- 071

compute scenarios that require safety, and privacy, 072

1

Baseline
Prompt

Knowledge
Prompt

Python

DF PF

PFDF

Summary

DF PF

DF PF

DF PF

DF PF

DF PF

Solver
Feedback

Solver+
Validator
Feedback

LLM

LLM

LLM

py2pddl

Constrained Decoding

DD PD

1

2

3

4

5

6

7

8

9

Prompting Techniques Pre-inference Techniques Inference-time Techniques

Figure 2: Our modular approach that includes prompting (1. Baseline prompt, 2. Knowledge prompt), pre-inference
(3. Python wrapper, 4. Constrained decoding, 5. Summary, 6. Sequential), and inference-time techniques (7.
Pass@N, 8. Revision with solver feedback, 9. Revision with solver + validator feedback.)

and domain-specific finetuning.073

Our key findings include:074

• Qwen-3 32B model is capable of generating cor-075

rect PDDL but Qwen-3 8B model is not.076

• Inference-time scaling approaches such as re-077

vision with feedback from solver and validator078

roughly doubles semantic accuracy on both do-079

mains.080

• Generating PDDL with a Python wrapper and081

constrained decoding with PDDL grammar de-082

crease performance.083

• Modularly generating a summary before PDDL084

or generating domain and problem files sequen-085

tially do not improve semantic accuracy com-086

pared to baseline.087

2 Methodology088

To address challenges of zero-shot PDDL genera-089

tion, for medium size open-source models (Huang090

and Zhang, 2025), we identify techniques grouped091

into three stages in a pipeline (Figure 2).092

First, we consider two prompting techniques. A093

baseline prompt which is just minimal instruc-094

tion to generate PDDL. In contrast, a knowledge095

prompt first introduces PDDL components includ-096

ing the domain file (DF, types, predicates, action097

declaration, action semantics) and the problem file098

(PF, object initialization, initial states, and goal099

states), along with a domain-agnostic example.100

Second, we implement an array of pre-inference101

techniques, including:102

Summary. The LLM is first prompted to generate103

a textual summary with all necessary information104

before it generates the PDDL accordingly. 105

Sequential generation. LLM is prompted to first 106

only generate the DF before the PF. 107

Python wrapper. LLM is prompted to generate 108

PDDL in a Python wrapper2, following success 109

of generating low-resource languages with high- 110

resource wrappers (Cassano et al., 2024). 111

Constrained decoding. We translate the formal 112

BNF definition of PDDL 3.13 into a LALR(1)- 113

compatible EBNF grammar used to limit LLMs’ 114

decoding to trivially syntactically correct PDDL. 115

Third, we consider several inference-time tech- 116

niques, including: 117

Pass@N. We evaluate N independent LLM genera- 118

tions, counted as correct if any is correct. 119

Revision with solver feedback. LLM is prompted 120

to generate PDDL and to revise based on the 121

solver’s error feedback. 122

Revision with solver + validator feedback. Same 123

as the above, but additional revision is performed 124

based on the feedback of a plan validator. 125

Prompts and example outputs are provided in 126

Appendix. Baseline prompt: Fig. 9, Knowledge 127

prompt: Fig. 10, Python wrapper prompt: Fig. 12, 128

Python wrapper model response: Fig. 14, and 129

Python translated to PDDL: Fig. 16. 130

3 Evaluation: Datasets, Metrics, Models 131

We adopt datasets and metrics from Huang and 132

Zhang (2025). 133

2https://github.com/remykarem/py2pddl
3Kovacs, 2011: http://pddl4j.imag.fr/repository/

wiki/BNF-PDDL-3.1.pdf

2

https://github.com/remykarem/py2pddl
http://pddl4j.imag.fr/repository/wiki/BNF-PDDL-3.1.pdf
http://pddl4j.imag.fr/repository/wiki/BNF-PDDL-3.1.pdf

Figure 3: Performance of all the techniques implemented. DF: Domain File, PF: Problem File, DD: Domain
Description, PD: Problem Description.

3.1 Datasets134

We consider three simulated planning environ-135

ments, BlocksWorld, Logistics, and Barman from136

the International Planning Competition (IPC, 1998).137

Each dataset comes with ground-truth PDDL do-138

main (DF) and problem files (PF) that can be used139

to validate a predicted plan. The input to the model140

is a natural language description of the domain141

(DD) that includes the names and parameters of142

the actions, and the problem (PD). An example143

of DD and PD is provided in Fig. 7 and Fig. 8 re-144

spectively. The output of an LLM-as-formalizer is145

the predicted DF and PF, which are used with a146

planner to search for a plan. The dataset of each147

environment have 100 problems with varying lev-148

els of complexity. We use moderately templated149

descriptions from Huang and Zhang (2025) which150

are common in literature.151

3.2 Metrics152

We use syntactic and semantic accuracy to assess153

the DF and PF generated by an LLM. Syntactic154

accuracy is the percentage of problems where no155

syntax error are returned by the planning solver.156

Semantic accuracy is the percentage of problems157

where a plan is not only found but also correct.158

We use the dual-bfws-ffparser planner (Muise,159

2016) to solve for the plan and the VAL4 (Howey160

et al., 2004) to validate the plan against the ground-161

truth DF and PF.162

4nms.kcl.ac.uk/planning/software/val.html

3.3 Models 163

We evaluate two recent and best performing open- 164

source LLMs, Qwen-3 32B and Qwen-3 8B5, for 165

their small size and strong performance in other 166

tasks. While Huang and Zhang (2025) report zero 167

performance with 8B and 70B DeepSeek-R1 (Guo 168

et al., 2025) and Llama-3.1 (Dubey et al., 2024) 169

models, we attempt to push their limits via our tech- 170

niques and inference-time scaling. We follow previ- 171

ous work to only consider zero-shot prompting for 172

to emulate real-life application with minimal user 173

interference and need for training data.((Huang and 174

Zhang, 2025)) We use vLLM (Kwon et al., 2023) 175

to speed up inference and set temperature of 0.4 for 176

all our experiments. For constrained decoding we 177

used HugginFace Transformers (Wolf et al., 2020) 178

backend with Outlines (Willard and Louf, 2023). 179

All of our experiments for the main results are run 180

for approximately 72 hours on 4 H100 GPUs. 181

4 Results and Observations 182

The results are shown in Figure 3. Using the 183

baseline prompt without no techniques, Qwen-3 184

32B can generate correct PDDL, while Qwen-3 8B 185

struggled with semantic accuracy near zero. None 186

of the techniques were able to improve 8B model’s 187

performance informing the lower bound of reason- 188

ing capabilities needed for PDDL generation. 189

Prompting with PDDL knowledge is helpful, 190

but no pre-inference techniques help. PDDL 191

knowledge prompt improves semantic accuracy 192

5https://github.com/QwenLM/Qwen3

3

nms.kcl.ac.uk/planning/software/val.html
https://github.com/QwenLM/Qwen3

from 7% to 23% in BlocksWorld but decreases193

in Logistics from 57% to 54% where the baseline194

itself is comparatively stronger. Multi-stage LLM195

pipelines such as summary before PDDL and sepa-196

rate domain and problem files does not improve se-197

mantic accuracy in BlocksWorld and significantly198

decreases performance in Logistics compared to199

single-stage LLM pipelines such as baseline and200

knowledge prompt.201

Python wrapper decreases performance. As202

LLMs are adept at generating Python in gen-203

eral, one may expect generating PDDL via a204

Python wrapper would greatly decrease syntax205

errors. In contrast, we conclude that generating206

code in Py2PDDL format before converting it to207

PDDL to be compatible with the planner performs208

worse than directing generating PDDL. The gener-209

ated python code failed to be converted to PDDL210

more than half of the time even with extensive211

Py2PDDL documentation in the prompt. We sus-212

pect Py2PDDL couldn’t exploit better python gen-213

eration capability of LLMs as it is too similar to214

PDDL syntax than Python syntax.215

Constrained decoding with PDDL grammar216

decrease performance. To be compatible with217

constrained decoding, we evaluate non-reasoning218

model, Qwen-2.5-32B-Instruct (Team, 2024) with219

blocksworld domain. There were no syntactic er-220

rors, by definition, but 98% of the generated DF221

and PF have semantic errors. The strict PDDL222

grammar might have suppressed the "semantic"223

tokens to get semantics of generation correct.224

Test-time scaling techniques greatly improve225

performance. As seen in Figure 3, pass@N and226

revision methods improved performance of 32B227

model upto 2x and 1.5x in BlocksWorld and Lo-228

gistics respectively. Interestingly, revision with229

solver, in Logistics domain, with feedback only on230

syntactic errors, reached the semantic accuracy of231

pass@N and revision with solver+VAL which are232

informed by both syntactic and semantic errors. To233

assess the performance improvement through revi-234

sion, we contrasted against pass@4 performance235

which needs the same inference budget. As seen in236

Figure 4, three rounds of revision with the solver237

and validator recovered the performance of pass@4238

in both domains.239

Undefined symbols and action semantics are240

corrected during revisions. We qualitatively ob-241

serve that most of the syntax errors that are cor-242

Figure 4: Performance improvement by revision with
feedback for 3 rounds and comparison against Pass@4.

rected are imbalanced parenthesis or undefined 243

symbols and most of the semantic errors that are 244

corrected are mistakes in generating DFs, espe- 245

cially, action semantics: either missing necessary 246

parameters or incorrect logical expressions for pre- 247

condition and effects. Examples of corrected syn- 248

tax and corrected semantics by revision are pro- 249

vided in Figure 17 and Figure 18 respectively. 250

5 Conclusion 251

We identify different LLM pipelines to address 252

the challenges of PDDL generation and evalu- 253

ate medium-size open source models on differ- 254

ent domains. We find that python wrapper and 255

constrained decoding with PDDL grammar do 256

not work, but inference-time techniques improve 257

the performance for both the domains. This 258

work shows feasibility of using mid-size open 259

source models to generate planning formalisms in 260

PDDL and provides scope for extending LLM-as- 261

formalizer to multiple formalisms. 262

6 Acknowledgements 263

The code for the experiments in this work is written 264

partially with the help of AI coding tools to auto- 265

complete boilerplate code and occasionally few 266

methods. Authors used these tools to accelerate the 267

experimentation but not to get ideas on different 268

LLM pipelines or evaluation strategies. 269

4

7 Limitations270

For all the experiments we performed we were271

only able to do a single run, which might not be272

as reliable as doing multiple runs and reporting273

average and standard deviation.274

Some of the techniques implemented gave mixed275

results on the two datasets we considered, for ex-276

ample, revision with solver is better than revision277

with solver+validator in Logistics but not in block-278

world. Having more datasets would have drawn279

out the clear pattern on which technique is better280

comparatively and how much.281

We worked with moderately templated data as282

input that is easier than more natural version of the283

data. While we observed increased performance284

with some of the techniques implemented, it is285

still to be determined whether we would get the286

same performance increase with natural data. This287

reduces the applicability of our findings.288

References289

Federico Cassano, John Gouwar, Francesca Lucchetti,290
Claire Schlesinger, Anders Freeman, Carolyn Jane291
Anderson, Molly Q Feldman, Michael Greenberg,292
Abhinav Jangda, and Arjun Guha. 2024. Knowl-293
edge transfer from high-resource to low-resource294
programming languages for code llms. Preprint,295
arXiv:2308.09895.296

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,297
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,298
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,299
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong300
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,301
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,302
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,303
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,304
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,305
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,306
Han Bao, Hanwei Xu, Haocheng Wang, Honghui307
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,308
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang309
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.310
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai311
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai312
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong313
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan314
Zhang, Minghua Zhang, Minghui Tang, Meng Li,315
Miaojun Wang, Mingming Li, Ning Tian, Panpan316
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,317
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,318
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,319
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,320
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng321
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing322
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,323
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,324

Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao 325
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan 326
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin 327
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, 328
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, 329
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi- 330
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, 331
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang 332
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng 333
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, 334
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, 335
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 336
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu- 337
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, 338
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, 339
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, 340
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, 341
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean 342
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, 343
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi- 344
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, 345
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu 346
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen- 347
tivizing reasoning capability in llms via reinforce- 348
ment learning. Preprint, arXiv:2501.12948. 349

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 350
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 351
Akhil Mathur, Alan Schelten, Amy Yang, Angela 352
Fan, et al. 2024. The llama 3 herd of models. arXiv 353
preprint arXiv:2407.21783. 354

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 355
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 356
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 357
centivizing reasoning capability in llms via reinforce- 358
ment learning. arXiv preprint arXiv:2501.12948. 359

Weihang Guo, Zachary Kingston, and Lydia E. Kavraki. 360
2024. Castl: Constraints as specifications through 361
llm translation for long-horizon task and motion plan- 362
ning. Preprint, arXiv:2410.22225. 363

Yilun Hao, Yang Zhang, and Chuchu Fan. 2025. Plan- 364
ning anything with rigor: General-purpose zero-shot 365
planning with llm-based formalized programming. 366
Preprint, arXiv:2410.12112. 367

R. Howey, D. Long, and M. Fox. 2004. Val: auto- 368
matic plan validation, continuous effects and mixed 369
initiative planning using pddl. In 16th IEEE Inter- 370
national Conference on Tools with Artificial Intelli- 371
gence, pages 294–301. 372

Mengkang Hu, Tianxing Chen, Yude Zou, Yuheng 373
Lei, Qiguang Chen, Ming Li, Yao Mu, Hongyuan 374
Zhang, Wenqi Shao, and Ping Luo. 2025. 375
Text2world: Benchmarking large language models 376
for symbolic world model generation. Preprint, 377
arXiv:2502.13092. 378

Cassie Huang and Li Zhang. 2025. On the limit of 379
language models as planning formalizers. Preprint, 380
arXiv:2412.09879. 381

5

https://arxiv.org/abs/2308.09895
https://arxiv.org/abs/2308.09895
https://arxiv.org/abs/2308.09895
https://arxiv.org/abs/2308.09895
https://arxiv.org/abs/2308.09895
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://arxiv.org/abs/2410.12112
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://arxiv.org/abs/2502.13092
https://arxiv.org/abs/2502.13092
https://arxiv.org/abs/2502.13092
https://arxiv.org/abs/2412.09879
https://arxiv.org/abs/2412.09879
https://arxiv.org/abs/2412.09879

IPC. 1998. International planning competition. https:382
//www.icaps-conference.org/competitions.383

Adam Ishay and Joohyung Lee. 2025. Llm+al: Bridg-384
ing large language models and action languages385
for complex reasoning about actions. Preprint,386
arXiv:2501.00830.387

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying388
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.389
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-390
cient memory management for large language model391
serving with pagedattention. In Proceedings of the392
ACM SIGOPS 29th Symposium on Operating Systems393
Principles.394

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang,395
Yu Zhou, Sanjana Srivastava, Cem Gokmen, Tony396
Lee, Li Erran Li, Ruohan Zhang, et al. 2024. Embod-397
ied agent interface: Benchmarking llms for embodied398
decision making. arXiv preprint arXiv:2410.07166.399

Xinrui Lin, Yangfan Wu, Huanyu Yang, Yu Zhang,400
Yanyong Zhang, and Jianmin Ji. 2024. Clmasp:401
Coupling large language models with answer set402
programming for robotic task planning. Preprint,403
arXiv:2406.03367.404

Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra,405
Peter Jansen, Oyvind Tafjord, Niket Tandon,406
Li Zhang, Chris Callison-Burch, and Peter Clark.407
2023. Clin: A continually learning language agent408
for rapid task adaptation and generalization. Preprint,409
arXiv:2310.10134.410

Christian Muise. 2016. Planning.Domains. In The411
26th International Conference on Automated Plan-412
ning and Scheduling - Demonstrations.413

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,414
Adam Perelman, Aditya Ramesh, Aidan Clark,415
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec416
Radford, Aleksander Mądry, Alex Baker-Whitcomb,417
Alex Beutel, Alex Borzunov, Alex Carney, Alex418
Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex419
Renzin, Alex Tachard Passos, Alexander Kirillov,420
Alexi Christakis, Alexis Conneau, Ali Kamali, Allan421
Jabri, Allison Moyer, Allison Tam, Amadou Crookes,422
Amin Tootoochian, Amin Tootoonchian, Ananya423
Kumar, Andrea Vallone, Andrej Karpathy, Andrew424
Braunstein, Andrew Cann, Andrew Codispoti, An-425
drew Galu, Andrew Kondrich, Andrew Tulloch, An-426
drey Mishchenko, Angela Baek, Angela Jiang, An-427
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka428
Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver,429
Barret Zoph, Behrooz Ghorbani, Ben Leimberger,430
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin431
Zweig, Beth Hoover, Blake Samic, Bob McGrew,432
Bobby Spero, Bogo Giertler, Bowen Cheng, Brad433
Lightcap, Brandon Walkin, Brendan Quinn, Brian434
Guarraci, Brian Hsu, Bright Kellogg, Brydon East-435
man, Camillo Lugaresi, Carroll Wainwright, Cary436
Bassin, Cary Hudson, Casey Chu, Chad Nelson,437
Chak Li, Chan Jun Shern, Channing Conger, Char-438
lotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,439

Chong Zhang, Chris Beaumont, Chris Hallacy, Chris 440
Koch, Christian Gibson, Christina Kim, Christine 441
Choi, Christine McLeavey, Christopher Hesse, Clau- 442
dia Fischer, Clemens Winter, Coley Czarnecki, Colin 443
Jarvis, Colin Wei, Constantin Koumouzelis, Dane 444
Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy, 445
David Carr, David Farhi, David Mely, David Robin- 446
son, David Sasaki, Denny Jin, Dev Valladares, Dim- 447
itris Tsipras, Doug Li, Duc Phong Nguyen, Duncan 448
Findlay, Edede Oiwoh, Edmund Wong, Ehsan As- 449
dar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, 450
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wal- 451
lace, Eugene Brevdo, Evan Mays, Farzad Khorasani, 452
Felipe Petroski Such, Filippo Raso, Francis Zhang, 453
Fred von Lohmann, Freddie Sulit, Gabriel Goh, 454
Gene Oden, Geoff Salmon, Giulio Starace, Greg 455
Brockman, Hadi Salman, Haiming Bao, Haitang 456
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, 457
Heather Whitney, Heewoo Jun, Hendrik Kirchner, 458
Henrique Ponde de Oliveira Pinto, Hongyu Ren, 459
Huiwen Chang, Hyung Won Chung, Ian Kivlichan, 460
Ian O’Connell, Ian O’Connell, Ian Osband, Ian Sil- 461
ber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya 462
Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, 463
Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub 464
Pachocki, James Aung, James Betker, James Crooks, 465
James Lennon, Jamie Kiros, Jan Leike, Jane Park, 466
Jason Kwon, Jason Phang, Jason Teplitz, Jason 467
Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Var- 468
avva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui 469
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, 470
Joaquin Quinonero Candela, Joe Beutler, Joe Lan- 471
ders, Joel Parish, Johannes Heidecke, John Schul- 472
man, Jonathan Lachman, Jonathan McKay, Jonathan 473
Uesato, Jonathan Ward, Jong Wook Kim, Joost 474
Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, 475
Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, 476
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai 477
Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin 478
Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, 479
Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, 480
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle 481
Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lau- 482
ren Workman, Leher Pathak, Leo Chen, Li Jing, Lia 483
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lil- 484
ian Weng, Lindsay McCallum, Lindsey Held, Long 485
Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon- 486
draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, 487
Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine 488
Boyd, Madeleine Thompson, Marat Dukhan, Mark 489
Chen, Mark Gray, Mark Hudnall, Marvin Zhang, 490
Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, 491
Max Johnson, Maya Shetty, Mayank Gupta, Meghan 492
Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao 493
Zhong, Mia Glaese, Mianna Chen, Michael Jan- 494
ner, Michael Lampe, Michael Petrov, Michael Wu, 495
Michele Wang, Michelle Fradin, Michelle Pokrass, 496
Miguel Castro, Miguel Oom Temudo de Castro, 497
Mikhail Pavlov, Miles Brundage, Miles Wang, Mi- 498
nal Khan, Mira Murati, Mo Bavarian, Molly Lin, 499
Murat Yesildal, Nacho Soto, Natalia Gimelshein, Na- 500
talie Cone, Natalie Staudacher, Natalie Summers, 501
Natan LaFontaine, Neil Chowdhury, Nick Ryder, 502
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, 503

6

https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://arxiv.org/abs/2501.00830
https://arxiv.org/abs/2501.00830
https://arxiv.org/abs/2501.00830
https://arxiv.org/abs/2501.00830
https://arxiv.org/abs/2501.00830
https://arxiv.org/abs/2406.03367
https://arxiv.org/abs/2406.03367
https://arxiv.org/abs/2406.03367
https://arxiv.org/abs/2406.03367
https://arxiv.org/abs/2406.03367
https://arxiv.org/abs/2310.10134
https://arxiv.org/abs/2310.10134
https://arxiv.org/abs/2310.10134

Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel504
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola,505
Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins,506
Olivier Godement, Owen Campbell-Moore, Patrick507
Chao, Paul McMillan, Pavel Belov, Peng Su, Pe-508
ter Bak, Peter Bakkum, Peter Deng, Peter Dolan,509
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip510
Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming511
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Ra-512
jan Troll, Randall Lin, Rapha Gontijo Lopes, Raul513
Puri, Reah Miyara, Reimar Leike, Renaud Gaubert,514
Reza Zamani, Ricky Wang, Rob Donnelly, Rob515
Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-516
dani, Romain Huet, Rory Carmichael, Rowan Zellers,517
Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan518
Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,519
Sam Toizer, Samuel Miserendino, Sandhini Agar-520
wal, Sara Culver, Scott Ethersmith, Scott Gray, Sean521
Grove, Sean Metzger, Shamez Hermani, Shantanu522
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shi-523
rong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay,524
Srinivas Narayanan, Steve Coffey, Steve Lee, Stew-525
art Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao526
Xu, Tarun Gogineni, Taya Christianson, Ted Sanders,527
Tejal Patwardhan, Thomas Cunninghman, Thomas528
Degry, Thomas Dimson, Thomas Raoux, Thomas529
Shadwell, Tianhao Zheng, Todd Underwood, Todor530
Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,531
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce532
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller,533
Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne534
Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,535
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian,536
Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen537
He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and538
Yury Malkov. 2024. Gpt-4o system card. Preprint,539
arXiv:2410.21276.540

Mihir Parmar, Xin Liu, Palash Goyal, Yanfei Chen,541
Long Le, Swaroop Mishra, Hossein Mobahi, Jindong542
Gu, Zifeng Wang, Hootan Nakhost, Chitta Baral,543
Chen-Yu Lee, Tomas Pfister, and Hamid Palangi.544
2025. Plangen: A multi-agent framework for gener-545
ating planning and reasoning trajectories for complex546
problem solving. Preprint, arXiv:2502.16111.547

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B548
Tenenbaum, Leslie Kaelbling, and Michael Katz.549
2024. Generalized planning in pddl domains with550
pretrained large language models. In Proceedings551
of the AAAI Conference on Artificial Intelligence,552
volume 38, pages 20256–20264.553

Qwen Team. 2024. Qwen2.5: A party of foundation554
models.555

Brandon T Willard and Rémi Louf. 2023. Effi-556
cient guided generation for llms. arXiv preprint557
arXiv:2307.09702.558

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien559
Chaumond, Clement Delangue, Anthony Moi, Pier-560
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-561
icz, Joe Davison, Sam Shleifer, Patrick von Platen,562
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,563

Teven Le Scao, Sylvain Gugger, Mariama Drame, 564
Quentin Lhoest, and Alexander Rush. 2020. Trans- 565
formers: State-of-the-art natural language processing. 566
In Proceedings of the 2020 Conference on Empirical 567
Methods in Natural Language Processing: System 568
Demonstrations, pages 38–45, Online. Association 569
for Computational Linguistics. 570

Li Zhang, Peter Jansen, Tianyi Zhang, Peter Clark, 571
Chris Callison-Burch, and Niket Tandon. 2024a. 572
PDDLEGO: Iterative planning in textual environ- 573
ments. In Proceedings of the 13th Joint Conference 574
on Lexical and Computational Semantics (*SEM 575
2024), pages 212–221, Mexico City, Mexico. As- 576
sociation for Computational Linguistics. 577

Tianyi Zhang, Li Zhang, Zhaoyi Hou, Ziyu Wang, Yul- 578
ing Gu, Peter Clark, Chris Callison-Burch, and Niket 579
Tandon. 2024b. PROC2PDDL: Open-domain plan- 580
ning representations from texts. In Proceedings of 581
the 2nd Workshop on Natural Language Reasoning 582
and Structured Explanations (@ACL 2024), pages 583
13–24, Bangkok, Thailand. Association for Compu- 584
tational Linguistics. 585

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li, 586
Michael L Littman, and Stephen H Bach. 2024. Plan- 587
etarium: A rigorous benchmark for translating text 588
to structured planning languages. arXiv preprint 589
arXiv:2407.03321. 590

A Input, Prompts, and Examples 591

7

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2502.16111
https://arxiv.org/abs/2502.16111
https://arxiv.org/abs/2502.16111
https://arxiv.org/abs/2502.16111
https://arxiv.org/abs/2502.16111
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://aclanthology.org/2024.nlrse-1.2/
https://aclanthology.org/2024.nlrse-1.2/
https://aclanthology.org/2024.nlrse-1.2/

1 (define (domain blocksworld)
2 (:requirements :strips)
3 (:predicates (clear ?x)
4 (on-table ?x)
5 (arm-empty)
6 (holding ?x)
7 (on ?x ?y))
8

9 (:action pickup
10 :parameters (?ob)
11 :precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
12 :effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob))
13 (not (arm-empty))))
14

15 (:action putdown
16 :parameters (?ob)
17 :precondition (holding ?ob)
18 :effect (and (clear ?ob) (arm-empty) (on-table ?ob)
19 (not (holding ?ob))))
20

21 (:action stack
22 :parameters (?ob ?underob)
23 :precondition (and (clear ?underob) (holding ?ob))
24 :effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)
25 (not (clear ?underob)) (not (holding ?ob))))
26

27 (:action unstack
28 :parameters (?ob ?underob)
29 :precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty))
30 :effect (and (holding ?ob) (clear ?underob)
31 (not (on ?ob ?underob)) (not (clear ?ob)) (not (arm-empty)))))

Figure 5: DF for the BlocksWorld domain.

1 (define (problem blocksworld-p01)
2 (:domain blocksworld)
3 (:objects block1 block2 block3 block4)
4 (:init
5 (on-table block3)
6 (clear block3)
7 (on-table block4)
8 (clear block4)
9 (on-table block1)

10 (clear block1)
11 (on-table block2)
12 (clear block2)
13 (arm-empty)
14)
15 (:goal (and
16 (on-table block4)
17 (on-table block2)
18 (on-table block1)
19 (on-table block3)
20))
21)

Figure 6: PF for the BlocksWorld domain.

8

1 I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
↪→ actions I can do

2

3 Pick up a block
4 Unstack a block from on top of another block
5 Put down a block
6 Stack a block on top of another block
7

8 I have the following restrictions on my actions:
9 I can only pick up or unstack one block at a time.

10 I can only pick up or unstack a block if my hand is empty.
11 I can only pick up a block if the block is on the table and the block is clear. A block is

↪→ clear if the block has no other blocks on top of it and if the block is not picked up.
12 I can only unstack a block from on top of another block if the block I am unstacking was

↪→ really on top of the other block.
13 I can only unstack a block from on top of another block if the block I am unstacking is clear.
14 Once I pick up or unstack a block, I am holding the block.
15 I can only put down a block that I am holding.
16 I can only stack a block on top of another block if I am holding the block being stacked.
17 I can only stack a block on top of another block if the block onto which I am stacking the

↪→ block is clear.
18 Once I put down or stack a block, my hand becomes empty.
19 Once you stack a block on top of a second block, the second block is no longer clear.

Figure 7: DD for the BlocksWorld domain.

1 As initial conditions I have that, block 1 is clear, block 2 is clear, block 3 is clear, block 4
↪→ is clear, the hand is empty, block 1 is on the table, block 2 is on the table, block 3 is
↪→ on the table, and block 4 is on the table.

2 My goal is to have that block 1 is on the table, block 2 is on the table, block 3 is on the table
↪→ , and block 4 is on the table.

Figure 8: Problem Description for the BlocksWorld domain.

1 Domain description:
2 {domain_description}
3

4 Problem description:
5 {problem_description}
6

7 Write the domain and problem files in minimal PDDL.
8 Wrap PDDL domain file inside <domain_file></domain_file> and PDDL problem file inside <

↪→ problem_file></problem_file>.
9 <think>

Figure 9: Baseline Prompt

9

1 PDDL domain file contains domain name, requirements, types of objects in the domain, predicates,
↪→ and actions.

2 Based on the natural language domain description, identify the actions that are possible.
3 Identify action sematics i.e. understand the preconditions under which that action could be done

↪→ and the effects of the action.
4 Then identify appropriate predicates that could enable action semantics i.e. preconditions and

↪→ effects.
5 PDDL domain file has a definitive syntax that must be followed for any domain. An abstract

↪→ example PDDL domain file is given below:
6

7 <domain_file>
8 (define
9 (domain domain_name)

10 (:requirements :strips :typing)
11 (:types
12 type1
13 type2
14)
15 (:predicates
16 (predicate1 ?arg1 - type1 ?arg2 - type2)
17 (predicate2 ?arg1 - type1 ?arg2 - type2)
18)
19 (:action action1
20 :parameters (?arg1 - type1 ?arg2 - type2 ?arg3 - type2)
21 :precondition (predicate1 ?arg1 ?arg2)
22 :effect (and (predicate1 ?arg1 ?arg2) (predicate2 ?arg1 ?arg3))
23)
24 (:action action2
25 :parameters (?arg1 - type1 ?arg2 - type2 ?arg3 - type2)
26 :precondition (and (predicate1 ?arg1 ?arg2) (predicate2 ?arg1 ?arg3))
27 :effect (predicate2 ?arg1 ?arg3)
28)
29)
30 </domain_file>
31

32 Notes for generating domain file:
33 - type1 & type2 are only representative and should be replaced with appropriate types. There

↪→ could be any number of types.
34 - predicate1 & predicate2 are only representative and should be replaced with appropriate

↪→ predicates. There could be any number of predicates.
35 - action1 & action2 are only representative and should be replaced with appropriate actions.

↪→ There could be any number of actions.
36 - arg1 & arg2 are only representative and should be replaced with appropriate arguments for

↪→ predicates and in preconditions and effects.
37 - predicates with proper arguments could be combined to combine complex boolean expression to

↪→ represent predicondition and effect
38 The braces should be balanced for each section of the PDDL program
39 - Use predicates with arguments of the right type as declared in domain file
40 - All the arguments to any :precondition or :effect of an action should be declared in :

↪→ parameters as input arguments
41

42

43 PDDL problem file contains problem name, domain name, objects in this problem instance, init
↪→ state of objects, and goal state of objects.

44 Based on the natural language problem description, identify the relevant objects for this
↪→ problems with their names and types.

45 Represent the initial state with the appropriate predicates and object arguments. Represent the
↪→ goal state with the appropriate predicates and object arguments.

46 PDDL problem file has a definitive syntax that must be followed for any problem. An abstract
↪→ example PDDL problem file is given below.

Figure 10: Knowledge Prompt

10

1 <problem_file>
2 (define
3 (problem problem_name)
4 (:domain domain_name)
5 (:objects
6 obj1 obj2 - type1
7 obj3, obj4 - type2
8)
9 (:init (predicate1 obj1 obj3) (predicate2 obj2 obj3))

10 (:goal (and (predicate1 obj1 obj4) (predicate2 obj2 obj3)))
11)
12 </problem_file>
13

14 Notes for generating problem file:
15 - obj1, obj2, ... are only representative and should be replaced with appropriate objects. There

↪→ could be any number of obects with their types.
16 - init state with predicate1 & predicate2 is only representative and should be replaced with

↪→ appropriate predicates that define init state
17 - goal state with predicate1 & predicate2 is only representative and should be replaced with

↪→ appropriate predicates that define goal state
18 - predicates with proper arguments could be combined to combine complex boolean expression to

↪→ represent init and goal states
19 - The braces should be balanced for each section of the PDDL program
20 - Use predicates with arguments of the right type as declared in domain file
21 - All the objects that would be arguments of predicates in init and goal states should be

↪→ declared in :objects
22

23 Domain description:
24 {domain_description}
25

26 Problem description:
27 {problem_description}
28

29 Write the domain and problem files in minimal PDDL.
30 Wrap PDDL domain file inside <domain_file></domain_file> and PDDL problem file inside <

↪→ problem_file></problem_file>.
31 <think>

Figure 11: Knowledge Prompt (continued)

11

1 Python representation of PDDL domain file contains domain name, requirements, types of objects in
↪→ the domain, predicates, and actions.

2 Based on the natural language domain description, identify the actions that are possible.
3 Identify action sematics i.e. understand the preconditions under which that action could be done

↪→ and the effects of the action.
4 Then identify appropriate predicates that could enable action semantics i.e. preconditions and

↪→ effects.
5 Python representation of PDDL domain file has a definitive syntax that must be followed for any

↪→ domain. An abstract example is given below:
6

7 In the following python domain file, the AirCargoDomain class has been created. The structure of
↪→ the class is similar to how a PDDL domain should be defined.

8

9 Name of the domain is the name of the Python class (DomainName).
10 Types are defined as class variables at the top (Type1, Type2).
11 Predicates are defined as instance methods decorated with @predicate.
12 Actions are defined as instance methods decorated with @action
13

14 The positional arguments of @predicate and @action decorators are the types of the respective
↪→ arguments.

15 Methods decorated with @predicate should have empty bodies.
16 Methods decorated with @action return a tuple of two lists
17

18 <domain_file>
19 # imports stays exactly same for all domain files
20 from py2pddl import Domain, create_type
21 from py2pddl import predicate, action
22

23 class DomainName(Domain):
24

25 Type1 = create_type("Type1")
26 Type2 = create_type("Type2")
27

28 @predicate(Type1, Type2)
29 def predicate1(self, arg1, arg2):
30 """Complete the method signature and specify
31 the respective types in the decorator"""
32

33 @predicate(Type1)
34 def predicate2(self, arg1):
35 """Complete the method signature and specify
36 the respective types in the decorator"""
37

38

39 @action(Type1, Type2, Type2)
40 def action1(self, arg1, arg2, arg3):
41 precond = [self.predicate1(arg1, arg3), self.predicate2(arg1)]
42 effect = [~self.predicate1(arg1, arg2), self.predicate2(arg3)]
43 return precond, effect
44

45 @action(Type1)
46 def action2(self, arg1):
47 precond = [self.predicate2(arg1)]
48 effect = [~self.predicate2(arg1)]
49 return precond, effect
50 </domain_file>
51

52 Notes for generating domain file:
53 - the above example file is only for understanding the syntax
54 - type1 & type2 are only representative and should be replaced with appropriate types. There

↪→ could be any number of types.
55 - predicate1 & predicate2 are only representative and should be replaced with appropriate

↪→ predicates. There could be any number of predicates.
56 - action1 & action2 are only representative and should be replaced with appropriate actions.

↪→ There could be any number of actions.
57 - arg1 & arg2 are only representative and should be replaced with appropriate arguments for

↪→ predicates and in preconditions and effects.

Figure 12: Prompt for Py2PDDL

12

1 Python representation of PDDL problem file contains problem name, domain name, objects in this
↪→ problem instance, init state of objects, and goal state of objects.

2 Based on the natural language problem description, identify the relevant objects for this
↪→ problems with their names and types.

3 Represent the initial state with the appropriate predicates and object arguments. Represent the
↪→ goal state with the appropriate predicates and object arguments.

4 Python representation of PDDL problem file has a definitive syntax that must be followed for any
↪→ problem. An abstract example is given below.

5

6 <problem_file>
7 # imports stays the same for all problem files
8 # Assume DomainName is declared just before the problem file
9 from py2pddl import goal, init

10

11 class ProblemName(DomainName):
12

13 def __init__(self):
14 super().__init__()
15 self.type1Objs = DomainName.Type1.create_objs([1, 2], prefix="type1Obj")
16 self.type2Objs = DomainName.Type2.create_objs(["type2Obj1", "type2Obj2"])
17

18 @init
19 def init(self):
20 at = [self.predicate1(self.type1Objs[1], self.type2Objs["type2Obj1"]),
21 self.predicate2(self.type1Objs[1]),]
22 return at
23

24 @goal
25 def goal(self):
26 return [self.predicate1(self.type1Objs[1], self.type2Objs["type2Obj2"]),
27 self.predicate2(self.type1Objs[2])]
28 </problem_file>
29

30 Notes for generating problem file:
31 - No need to import DomainName for python problem file. Python Domain file and python problem

↪→ file would be merged and executed.
32 - type1Objs, type2Oobjs, ... are only representative and should be replaced with appropriate

↪→ objects. There could be any number of obects with their types.
33 - init state with predicate1 & predicate2 is only representative and should be replaced with

↪→ appropriate predicates that define init state
34 - goal state with predicate1 & predicate2 is only representative and should be replaced with

↪→ appropriate predicates that define goal state

Figure 13: Prompt for Py2PDDL (continued)

13

1 from py2pddl import Domain, create_type
2 from py2pddl import predicate, action
3

4 class BlocksWorld(Domain):
5

6 Block = create_type("Block")
7

8 @predicate(Block, Block)
9 def On(self, block1, block2):

10 """Block1 is on top of Block2"""
11

12 @predicate(Block)
13 def Clear(self, block):
14 """Block has nothing on top and is not being held"""
15

16 @predicate(Block)
17 def OnTable(self, block):
18 """Block is on the table"""
19

20 @predicate(Block)
21 def Holding(self, block):
22 """Robot is holding Block"""
23

24 @predicate()
25 def HandEmpty(self):
26 """Robot's hand is empty"""
27

28

29 @action(Block)
30 def Pickup(self, block):
31 precond = [self.HandEmpty(), self.OnTable(block), self.Clear(block)]
32 effect = [self.Holding(block), ~self.HandEmpty(), ~self.Clear(block)]
33 return precond, effect
34

35 @action(Block, Block)
36 def Unstack(self, block, from_block):
37 precond = [self.HandEmpty(), self.On(block, from_block), self.Clear(block)]
38 effect = [self.Holding(block), ~self.HandEmpty(), ~self.On(block, from_block), ~self.Clear

↪→ (block), self.Clear(from_block)]
39 return precond, effect
40

41 @action(Block)
42 def Putdown(self, block):
43 precond = [self.Holding(block)]
44 effect = [self.OnTable(block), self.Clear(block), ~self.Holding(block), self.HandEmpty()]
45 return precond, effect
46

47 @action(Block, Block)
48 def Stack(self, block, on_block):
49 precond = [self.Holding(block), self.Clear(on_block)]
50 effect = [self.On(block, on_block), ~self.Clear(on_block), ~self.Holding(block), self.

↪→ HandEmpty(), ~self.Clear(block)]
51 return precond, effect
52

53 from py2pddl import goal, init
54

55 class BlockProblem(BlocksWorld):
56

57 def __init__(self):
58 super().__init__()
59 self.blocks = BlocksWorld.Block.create_objs([1,2,3,4,5,6,7,8,9,10,11], prefix="block")

Figure 14: Py2PDDL Model Response Example - BlocksWorld

14

1

2

3 @init
4 def init(self):
5 return [
6 self.On(self.blocks[3], self.blocks[6]),
7 self.On(self.blocks[5], self.blocks[4]),
8 self.On(self.blocks[7], self.blocks[11]),
9 self.On(self.blocks[9], self.blocks[5]),

10 self.On(self.blocks[10], self.blocks[7]),
11 self.OnTable(self.blocks[1]),
12 self.OnTable(self.blocks[2]),
13 self.OnTable(self.blocks[4]),
14 self.OnTable(self.blocks[6]),
15 self.OnTable(self.blocks[8]),
16 self.OnTable(self.blocks[11]),
17 self.Clear(self.blocks[1]),
18 self.Clear(self.blocks[2]),
19 self.Clear(self.blocks[3]),
20 self.Clear(self.blocks[8]),
21 self.Clear(self.blocks[9]),
22 self.Clear(self.blocks[10]),
23 self.HandEmpty()
24]
25

26

27 @goal
28 def goal(self):
29 return [
30 self.On(self.blocks[1], self.blocks[8]),
31 self.On(self.blocks[2], self.blocks[4]),
32 self.On(self.blocks[6], self.blocks[1]),
33 self.On(self.blocks[9], self.blocks[6]),
34 self.OnTable(self.blocks[3]),
35 self.OnTable(self.blocks[4]),
36 self.OnTable(self.blocks[5]),
37 self.OnTable(self.blocks[7]),
38 self.OnTable(self.blocks[8]),
39 self.OnTable(self.blocks[10]),
40 self.OnTable(self.blocks[11]),
41 self.Clear(self.blocks[3]),
42 self.Clear(self.blocks[5]),
43 self.Clear(self.blocks[7]),
44 self.Clear(self.blocks[10]),
45 self.Clear(self.blocks[11]),
46]

Figure 15: Py2PDDL Model Response - Correct Example - BlocksWorld (Continued)

15

1 Domain File:
2 (define
3 (domain blocksworld)
4 (:requirements :strips :typing)
5 (:types
6 block
7)
8 (:predicates
9 (Clear ?block - block)

10 (HandEmpty)
11 (Holding ?block - block)
12 (On ?block1 - block ?block2 - block)
13 (OnTable ?block - block)
14)
15 (:action Pickup
16 :parameters (?block - block)
17 :precondition (and (HandEmpty) (OnTable ?block) (Clear ?block))
18 :effect (and (Holding ?block) (not (HandEmpty)) (not (Clear ?block)))
19)
20 (:action Putdown
21 :parameters (?block - block)
22 :precondition (Holding ?block)
23 :effect (and (OnTable ?block) (Clear ?block) (not (Holding ?block)) (HandEmpty))
24)
25 (:action Stack
26 :parameters (?block - block ?on-block - block)
27 :precondition (and (Holding ?block) (Clear ?on-block))
28 :effect (and (On ?block ?on-block) (not (Clear ?on-block)) (not (Holding ?block))

↪→ (HandEmpty) (not (Clear ?block)))
29)
30 (:action Unstack
31 :parameters (?block - block ?from-block - block)
32 :precondition (and (HandEmpty) (On ?block ?from-block) (Clear ?block))
33 :effect (and (Holding ?block) (not (HandEmpty)) (not (On ?block ?from-block)) (

↪→ not (Clear ?block)) (Clear ?from-block))
34)
35)
36

37 Problem File:
38 (define
39 (problem block)
40 (:domain blocksworld)
41 (:objects
42 block1 block2 block3 block4 block5 block6 block7 block8 block9 block10 block11 -

↪→ block
43)
44 (:init (On block3 block6) (On block5 block4) (On block7 block11) (On block9 block5) (On

↪→ block10 block7) (OnTable block1) (OnTable block2) (OnTable block4) (OnTable block6
↪→) (OnTable block8) (OnTable block11) (Clear block1) (Clear block2) (Clear block3)
↪→ (Clear block8) (Clear block9) (Clear block10) (HandEmpty))

45 (:goal (and (On block1 block8) (On block2 block4) (On block6 block1) (On block9 block6) (
↪→ OnTable block3) (OnTable block4) (OnTable block5) (OnTable block7) (OnTable block8
↪→) (OnTable block10) (OnTable block11) (Clear block3) (Clear block5) (Clear block7)
↪→ (Clear block10) (Clear block11)))

46)

Figure 16: Py2PDDL Translated PDDL - Correct Example - BlocksWorld.

16

1 (define
2 (domain blocks-world)
3 (:requirements :strips :typing)
4 (:types
5 block
6)
7 (:predicates
8 (clear ?b - block)
9 (on ?b1 - block ?b2 - block)

10 (on-table ?b - block)
11 (holding ?b - block)
12 (hand-empty)
13)
14 (:action pickup
15 :parameters (?b - block)
16 :precondition (and (hand-empty

↪→) (on-table ?b) (clear
↪→ ?b))

17 :effect (and (holding ?b) (not
↪→ (hand-empty)) (not (
↪→ on-table ?b)) (not (
↪→ clear ?b)))

18)
19 (:action unstack
20 :parameters (?b1 - block)
21 :precondition (and (hand-empty

↪→) (on ?b1 ?b2) (clear
↪→ ?b1))

22 :effect (and (holding ?b1) (
↪→ not (hand-empty)) (not
↪→ (on ?b1 ?b2)) (not (
↪→ clear ?b1)) (clear ?b2
↪→))

23)
24 (:action putdown
25 :parameters (?b - block)
26 :precondition (holding ?b)
27 :effect (and (on-table ?b) (

↪→ clear ?b) (hand-empty)
↪→ (not (holding ?b)))

28)
29 (:action stack
30 :parameters (?b1 - block ?b2 -

↪→ block)
31 :precondition (and (holding ?

↪→ b1) (clear ?b2))
32 :effect (and (on ?b1 ?b2) (

↪→ hand-empty) (not (
↪→ holding ?b1)) (not (
↪→ clear ?b2)) (clear ?b1
↪→))

33)
34)

(a) Syntax incorrect PDDL

1 (define
2 (domain blocks-world)
3 (:requirements :strips :typing)
4 (:types
5 block
6)
7 (:predicates
8 (clear ?b - block)
9 (on ?b1 - block ?b2 - block)

10 (on-table ?b - block)
11 (holding ?b - block)
12 (hand-empty)
13)
14 (:action pickup
15 :parameters (?b - block)
16 :precondition (and (hand-empty

↪→) (on-table ?b) (clear
↪→ ?b))

17 :effect (and (holding ?b) (not
↪→ (hand-empty)) (not (
↪→ on-table ?b)) (not (
↪→ clear ?b)))

18)
19 (:action unstack
20 :parameters (?b1 - block ?b2 -

block)
21 :precondition (and (hand-empty

↪→) (on ?b1 ?b2) (clear
↪→ ?b1))

22 :effect (and (holding ?b1) (
↪→ not (hand-empty)) (not
↪→ (on ?b1 ?b2)) (not (
↪→ clear ?b1)) (clear ?b2
↪→))

23)
24 (:action putdown
25 :parameters (?b - block)
26 :precondition (holding ?b)
27 :effect (and (on-table ?b) (

↪→ clear ?b) (hand-empty)
↪→ (not (holding ?b)))

28)
29 (:action stack
30 :parameters (?b1 - block ?b2 -

↪→ block)
31 :precondition (and (holding ?

↪→ b1) (clear ?b2))
32 :effect (and (on ?b1 ?b2) (

↪→ hand-empty) (not (
↪→ holding ?b1)) (not (
↪→ clear ?b2)) (clear ?b1
↪→))

33)
34)

(b) Syntax corrected PDDL

Figure 17: Revision by Solver feedback example

17

1 (define
2 (domain blocks-world)
3 (:requirements :strips :typing)
4 (:types
5 block
6)
7 (:predicates
8 (on ?x - block ?y - block)
9 (on-table ?x - block)

10 (clear ?x - block)
11 (holding ?x - block)
12 (hand-empty)
13)
14 (:action pickup
15 :parameters (?b - block)
16 :precondition (and (on-table ?

↪→ b) (clear ?b) (hand-
↪→ empty))

17 :effect (and (holding ?b) (not
↪→ (on-table ?b)) (not (
↪→ clear ?b)) (not (hand-
↪→ empty)))

18)
19 (:action unstack
20 :parameters (?b - block ?s -

↪→ block)
21 :precondition (and (on ?b ?s)

↪→ (hand-empty) (clear ?b
↪→))

22 :effect (and (holding ?b) (not
↪→ (on ?b ?s)) (clear ?s
↪→) (not (clear ?b)) (
↪→ not (hand-empty)))

23)
24 (:action putdown
25 :parameters (?b - block)
26 :precondition (holding ?b)
27 :effect (and (on-table ?b) (

↪→ clear ?b) (not (
↪→ holding ?b)) (hand-
↪→ empty))

28)
29 (:action stack
30 :parameters (?b - block ?s -

↪→ block)
31 :precondition (and (holding ?b

↪→) (clear ?s))
32 :effect (and (on ?b ?s) (not (

↪→ clear ?s)) (not (
↪→ holding ?b)) (hand-
↪→ empty))

33 :effect (and (on ?b ?s) (not
(clear ?s)) (not (holding
?b)) (hand-empty))

34)
35)

(a) Semantics incorrect PDDL

1 (define
2 (domain blocks-world)
3 (:requirements :strips :typing)
4 (:types
5 block
6)
7 (:predicates
8 (on ?x - block ?y - block)
9 (on-table ?x - block)

10 (clear ?x - block)
11 (holding ?x - block)
12 (hand-empty)
13)
14 (:action pickup
15 :parameters (?b - block)
16 :precondition (and (on-table ?

↪→ b) (clear ?b) (hand-
↪→ empty))

17 :effect (and (holding ?b) (not
↪→ (on-table ?b)) (not (
↪→ clear ?b)) (not (hand-
↪→ empty)))

18)
19 (:action unstack
20 :parameters (?b - block ?s -

↪→ block)
21 :precondition (and (on ?b ?s)

↪→ (hand-empty) (clear ?b
↪→))

22 :effect (and (holding ?b) (not
↪→ (on ?b ?s)) (clear ?s
↪→) (not (clear ?b)) (
↪→ not (hand-empty)))

23)
24 (:action putdown
25 :parameters (?b - block)
26 :precondition (holding ?b)
27 :effect (and (on-table ?b) (

↪→ clear ?b) (not (
↪→ holding ?b)) (hand-
↪→ empty))

28)
29 (:action stack
30 :parameters (?b - block ?s -

↪→ block)
31 :precondition (and (holding ?b

↪→) (clear ?s))
32 :effect (and (on ?b ?s) (clear

↪→ ?b) (not (clear ?s))
↪→ (not (holding ?b)) (
↪→ hand-empty))

33 :effect (and (on ?b ?s) (clear
?b) (not (clear ?s)) (not
(holding ?b))
(hand-empty))

34)
35)

(b) Semantics corrected PDDL

Figure 18: Revision by Solver+validator feedback example

18

	Introduction
	Methodology
	Evaluation: Datasets, Metrics, Models
	Datasets
	Metrics
	Models

	Results and Observations
	Conclusion
	Acknowledgements
	Limitations
	Input, Prompts, and Examples

