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Abstract

Virtual screenings can accelerate and reduce
the cost of discovering metal-organic frame-
works (MOFs) for their applications in gas
storage, separation, and sensing. In molecu-
lar simulations of gas adsorption/diffusion in
MOFs, the adsorbate-MOF electrostatic inter-
action is typically modeled by placing partial
point charges on the atoms of the MOF. For the
virtual screening of large libraries of MOFs, it
is critical to develop computationally inexpen-
sive methods to assign atomic partial charges
to MOFs that accurately reproduce the electro-
static potential in their pores. Herein, we de-
sign and train a message passing neural network
(MPNN) to predict the atomic partial charges
on MOFs under a charge neutral constraint. A
set of ca. 2 250 MOFs labeled with high-fidelity
partial charges, derived from periodic electronic
structure calculations, serves as training exam-
ples. In an end-to-end manner, from charge-
labeled crystal graphs representing MOFs, our
MPNN machine-learns features of the local
bonding environments of the atoms and learns

to predict partial atomic charges from these fea-
tures. Our trained MPNN assigns high-fidelity
partial point charges to MOFs with orders of
magnitude lower computational cost than elec-
tronic structure calculations. To enhance the
accuracy of virtual screenings of large libraries
of MOFs for their adsorption-based applica-
tions, we make our trained MPNN model and
MPNN-charge-assigned computation-ready, ex-
perimental MOF structures publicly available.

1 Introduction

Metal-organic frameworks (MOFs) are nano-
porous materials that often exhibit large inter-
nal surface areas.1 Because MOFs selectively
adsorb gas into their pores/on their internal
surface, MOFs can be used to store,2 sepa-
rate/purify,3 and sense4 gases. Moreover, MOF
structures are highly adjustable and therefore
can be tuned to optimize a target adsorption
property for a given adsorption-based engineer-
ing application.5 The adjustability of MOFs
stems from their modular synthesis: met-
als/metal clusters and organic linker molecules
self-assemble into a crystalline structure.1 By
changing the molecular building blocks, many
MOFs with diverse pore shapes and internal
surface chemistries can be synthesized; on the
order of 10 000 porous MOFs6,7 have been re-
ported to date.

Molecular models and simulations play an
important role in the discovery and deploy-
ment of MOFs for adsorption-based applica-
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tions.8–10 Instead of an Edisonian approach to
find MOFs that meet a target adsorption prop-
erty, classical molecular models and simulations
can quickly and cost-effectively predict the ad-
sorption properties of thousands of MOFs and
shortlist the most promising subset for exper-
imental investigation. High-throughput com-
putational screenings of MOFs have directly
led to the discovery of high-performing MOFs
for carbon dioxide capture,11,12 xenon/krypton
separations,13 oxygen storage,14 hydrogen stor-
age,12 and mustard gas capture.15 In addi-
tion to virtual screening, molecular simula-
tions of gas adsorption in MOFs can eluci-
date the most favorable adsorption sites in a
MOF,16,17 explain anomalous adsorption phe-
nomena,18,19 and uncover structure-property
relationships.20,21

The molecular mechanics description of
adsorbate-MOF interactions∗ used in a molec-
ular simulation typically consists of the sum
of a van der Waals and an electrostatic contri-
bution.10 The electrostatic interaction is par-
ticularly important for adsorbates with polar
bonds, such as CO2 and H2O.22–24 To model
the adsorbate-MOF electrostatic interaction,
we must model the electrostatic potential in the
pores of the MOF, created by the atoms of the
MOF. Typically, the MOF-hosted electrostatic
potential is described by placing (fixed) partial
(i.e. non-integer) point charges at the centers
of the atoms of the MOF.25 Molecular models
for adsorbate molecules, such as CO2 and N2,
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also possess partial point charges, which, dur-
ing a molecular simulation, interact with the
point charges on the MOF via Coulomb’s law to
comprise the adsorbate-MOF electrostatic po-
tential energy of interaction†. There are several
methods to assign partial charges to the atoms
of a MOF,25 which are non-observable. Choos-
ing a charge assignment method for the virtual
screening of a large library of MOFs often in-

∗We focus on classical as opposed to quantum meth-
ods to describe adsorbate-MOF interactions because
quantum methods are too computationally costly to be
used for molecular simulations in thousands of MOFs.

†This electrostatic potential energy of interaction
is usually computed via the Ewald summation27 given
that MOFs are modeled as periodic systems.

volves a trade-off between computational cost
and accuracy of the representations of the elec-
trostatic potential in the pores of the MOFs.
Notably, the simulated adsorption properties
and thus ranking of MOFs in virtual screenings
could be highly dependent on the (accuracy of
the) charge assignment method.22,28–30

Broadly, methods to assign partial point
charges to a MOF25 take two different ap-
proaches: (1) use an electronic structure calcu-
lation (e.g. a density functional theory (DFT)
calculation) to obtain the electrostatic poten-
tial/electron density (a) in the pores of the (pe-
riodic) MOF or (b) surrounding a non-periodic
cluster representation of the MOF, then de-
rive charges that are consistent with this elec-
trostatic potential/electron density; (2) assign
charges using a (semi)empirical model whose
parameters were fit to experimental data or
to charges assigned by approach (1). Ap-
proach (1) includes Repeating Electrostatic Po-
tential Extracted Atomic (REPEAT) charges31

and Density Derived Electrostatic and Chem-
ical (DDEC)32 charges. In molecular build-
ing block-based charge assignment, MOFs in-
herit the charges of their molecular building
blocks,33 so that molecular charges, derived
from electronic structure calculations, on a set
of linker molecules and a set of metal clusters
provide charges for a combinatorial number of
MOFs. Approach (2) includes charge equili-
bration methods (QEq),34,35 statistical machine
learning models,36–39 and nearest-neighbor-like
approaches based on the chemical element and
bonding environment of the atom.40–43 Gen-
erally, approach (1) produces a more accu-
rate electrostatic potential in the pores of the
MOF but incurs a computational cost orders
of magnitude greater than the cost of ap-
proach (2). Thankfully, Nazarian et al.44 per-
formed periodic DFT calculations to obtain
the electron densities in ca. 2 900 experimen-
tally synthesized MOFs45 and assigned chem-
ically meaningful, high-quality partial point
charges to each MOF via the DDEC method.32

Still, a large number of MOFs lack high-quality
charges: (i) the majority of the second version
(v2) of the computation-ready, experimental
(CoRE) MOF dataset7 of ca. 14 000 structures;
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(ii) newly synthesized MOFs that are continu-
ally reported;6 and (iii) libraries of hypothet-
ical/predicted MOF crystal structure models
constructed with the aim of discovering new
MOFs that have not been synthesized in the
laboratory.46–48 Screening these MOFs for gas
storage, separations, and sensing via molecular
simulations demands a computationally cheap
and high-fidelity method for MOF charge as-
signment.

In this work, we develop and train a mes-
sage passing neural network (MPNN)49,50 ar-
chitecture to assign partial point charges to
each atom of a MOF structure under a charge-
neutral constraint. To enable our machine-
learning of high-fidelity charges on MOFs, we
leverage the database of DFT-derived partial
point charges on ca. 2 900 experimentally syn-
thesized MOFs by Nazarian et al.44 as training
examples. Our fundamental hypothesis, sup-
ported by Refs. 41,43, is that the charge of any
given atom in a MOF is primarily determined
by its chemical identity and local bonding envi-
ronment. As opposed to manually engineering
a feature to represent the local bonding envi-
ronments of atoms,51,52 we allow the MPNN
to machine-learn vector representations of lo-
cal bonding environments within MOFs. From
the machine-learned features of the local bond-
ing environments of the atoms, the MPNN then
predicts their partial point charges. We train
the MPNN to do this in an end-to-end manner,
making the features of local bonding environ-
ments dense with information predictive of par-
tial charge. The MOF crystal structures, rep-
resented as undirected graphs (nodes: atoms,
edges: bonds) with node features encoding their
chemical identities, are the direct inputs to
the MPNN. Edges (bonds) across the unit cell
boundary are included to account for periodic-
ity. The MPNN sequentially passes information
along the edges of the graph to learn/construct
the vector representations of the local bond-
ing environments. We enforce charge neutrality
on a MOF by modeling the probabilistic distri-
bution of charge on an atom within its local
bonding environment and invoking the maxi-
mum likelihood principle under a charge neu-
tral constraint. This allows the MPNN to give

more slack to the charge of atoms with high
variance when enforcing charge neutrality. In-
terestingly, our MPNN begins with an embed-
ding layer that learns an information-dense rep-
resentation of the chemical elements, encoding
their typical charge.

Our trained MPNN assigns high-fidelity
(treating the DFT-derived DDEC charges44

as ground truth) charges to MOF atoms (mean
absolute deviation on test MOFs, 0.025), out-
performing a suite of charge equilibration
methods35 (minimum mean absolute devia-
tion, 0.118, by I-QEq53), while incurring orders
of magnitude lower computational cost than
electronic structure calculations. To enable ac-
curate virtual screenings of large libraries of
MOFs for their adsorption-based applications,
we make our trained MPNN model available to
the molecular simulation community for MOF
charge assignment and provide .cif files of
MPNN-charge-assigned v2 computation-ready,
experimental MOFs.7

2 Review of previous work

Ref. 25 reviews methods for assigning atomic
partial charges to MOFs to enable molecu-
lar simulation of gas adsorption and diffu-
sion. The most accurate, but computationally
costly approach is to use an electronic struc-
ture calculation (e.g. DFT) to obtain the pe-
riodic electrostatic potential/electron density
in the pores of the MOF, then derive point
charges that are consistent with this (e.g., RE-
PEAT31 and DDEC32)‡. The less accurate,

‡Consider the case where we use an electronic struc-
ture calculation to obtain the periodic electrostatic po-
tential at a 3D grid of points superimposing the unit cell
of the MOF. Instead of translating this grid into a set
of partial point charges that can reproduce it, directly
interpolating this grid during a molecular simulation of
adsorption28 confers both (i) higher accuracy, as there
may be model error in the translation of the grid into a
set of partial point charges and (ii) greater speed, as us-
ing Ewald summations to compute the electrostatic po-
tential created by the point charges is likely more com-
putationally expensive than grid interpolation. Counter
arguments are that (i) storing the 3D electrostatic po-
tential grid will consume more disk space and memory
during the simulation and (ii) if the MOF is flexible
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but computationally cheap approach is to use
a (semi)empirical model to assign charges to
MOF atoms, whose parameters were fit to ex-
perimental data or charges assigned with elec-
tronic structure calculations as input. Semiem-
pirical charge equilibration (QEq) methods34

are commonly used to assign point charges to
MOFs owing to their low computational cost.
Ongari et al.35 review and compare several QEq
variants and assess their correlation with the
DFT-derived DDEC charges of ca. 2 900 MOFs
by Nazarian et al.44 The ionizing (I)-QEq53

variant produced charges closest to the DDEC
charges (mean absolute deviation 0.118), but
there were significant deviations, which then
propagate onto e.g. carbon dioxide adsorption
in a molecular simulation.

Along the direction of this work, a few
authors trained supervised machine learning
models to assign partial charges to atoms of
molecules (not periodic MOFs), using descrip-
tors/fingerprints of the local environment of
an atom that are either (i) manually engi-
neered36–38 or (ii) learned end-to-end by a mes-
sage passing neural network.39 An interesting
subproblem is that, when a supervised model
predicts the charge of each atom in the molecule
pseudo-independently, based on its local envi-
ronment, charge neutrality of the molecule is
not guaranteed. To enforce charge neutral-
ity, directly after the model assigns (prelimi-
nary) charges to the atoms, Refs. 36,37 dis-
tributed the negative of the excess charge of
the molecule among its atoms, not uniformly,
but based on the variances of the predicted
charges the atoms by an ensemble of decision
tree regressors. Atoms associated with more
(less) variance received more (less) of the excess
charge. Ref. 43 distributed excess charge based
on the magnitude of the predicted charge. Ref.
39 enforced charge neutrality by predicting the
electronegativity and hardness of an atom in its
local bonding environment instead of directly
predicting its charge, then minimizing the po-
tential energy of the atoms of the molecule un-
der a charge neutrality constraint.

during the simulation, the (fixed) partial point charges
that follow the atoms can still be used, whereas the grid
cannot.

Using the molecular graph as direct input,
MPNNs have recently been employed to predict
several different properties of molecules,50,54–62

including antibacterial efficacy, DFT-calculated
properties, solubility, photovoltaic efficiency,
odor, and drug efficacy. The key advan-
tage/novelty of MPNNs is that, instead of man-
ually engineering molecular descriptors,51,52 the
MPNN automatically learns a (task-specific)
descriptor of the molecule and its set of lo-
cal bonding environments from the molecular
graph in an end-to-end manner, while being
trained to perform a prediction task.54 In con-
trast to mapping a molecule (represented as
a graph) to a single property, our MPNN ar-
chitecture is unique in that it maps a crystal
(represented as an undirected graph with edges
across the periodic boundary included) to tar-
gets (partial charges) on each node (atom) un-
der a graph-level (charge neutrality) constraint.

3 Problem formulation

Here, we mathematically formulate the partial
charge assignment problem. Notation is listed
in Tab. 1. We use bold lowercase letters for
vectors and bold uppercase letters for matrices.

We represent the crystal structure of each
MOF as an undirected graph with node fea-
tures, G = (V , E ,X), where V is the set of
nv = |V| nodes or vertices, representing atoms,
E is the set of edges, representing bonds, and
X ∈ Rd×nv is the node feature matrix. The
feature vector of node (atom) v in the graph
(MOF), xv ∈ Rd, is a one-hot encoding of its
chemical element and is column v of X. Let
euv = {u, v} ∈ E denote an edge (bond) be-
tween nodes (atoms) u and v. Let the ad-
jacency matrix of the graph be A ∈ Rnv×nv ,
where Auv = 1 if nodes u and v are connected
by an edge and Auv = 0 otherwise. Together,
the adjacency matrix A and node feature ma-
trix X characterize the crystal graph of a MOF.

Our goal is to learn a function f that takes
the crystal graph G as input and outputs a pre-
dicted charge on each node:

(X,A) 7→ f(X,A) = q, (1)
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Table 1: Notation and definitions.

symbol description

G the graph
V set of nodes in graph
E set of edges in graph
nv number of nodes in graph
ne number of edges in graph
eij edge between nodes i and j
A ∈ Rnv×nv adjacency matrix of graph
xv ∈ Rd feature vector of node v

(one-hot encoding of element)
X ∈ Rd×nv feature matrix of graph
xev ∈ Rr element embedding of node v
Xe ∈ Rr×nv node embedding matrix of graph
t message passing time

h
(t)
v ∈ Rk hidden representation of node v

after t messages
H(t) ∈ Rk×nv hidden node feature matrix of

graph after t messages
qv partial charge on node v

(units: electron charge)
q̂v predicted partial charge on node v

(units: electron charge)
q ∈ Rnv charge vector of graph
N (v) neighbors of node v
β� (B�) vector (matrix) of weights
[a,b] concatenation of vectors a and b

while satisfying the charge neutrality con-
straint:

nv∑
v=1

qv = 0. (2)

Here, qv is the charge on node v and ele-
ment v of the charge vector q ∈ Rnv of the
graph. The function f will be equivariant (i.e.,
f(XP,PAPᵀ) = Pq where P is a permutation
matrix that permutes the nodes) so that the
ordering of the atoms is immaterial.

4 Machine-learning partial

charges

4.1 Converting a MOF crystal
structure to a graph

We first describe how we convert a MOF crys-
tal structure stored in a .cif file into an undi-
rected graph G = (V , E ,X) (nodes/atoms: V ,
edges/bonds: E , node features encoding chem-
ical elements: X). A .cif file of a MOF pro-
vides its unit cell vectors and a list of its atoms
and their coordinates.

Nodes and Edges. For each atom in the
unit cell of the MOF, we create a node to rep-
resent it. To build the adjacency matrix, A,
we must automatically infer which atoms are
bonded based on their identities and atomic co-
ordinates. We used a bond assignment algo-
rithm from Refs. 58,63 that considers both the
typical bond lengths of atoms as well as the ar-
rangements of nearby atoms. We assign an edge
(bond) between nodes u and v if (1) the periodic
Euclidean distance between them is less than
the sum of their covalent radii64 plus a 0.25 Å
tolerance and (2) they share a Voronoi face. By
applying the minimum image convention when
computing the distance, we include edges be-
tween atoms bonded across the periodic bound-
ary. To determine which atoms share a Voroni
face with atom u, we used Scipy65 to compute
the Voronoi diagram of all atoms within a 6 Å
radius of atom u, periodic images included. To
ensure bonds were properly formed with metal
atoms commonly found in MOFs, we increased
the covalent radius for ten metals (see Sec. S2).

Node features. For each node v, we con-
struct its feature vector, xv ∈ Rd, as a one-hot
encoding of its chemical element. i.e., entry i
of xv is one if atom v in the MOF is chemi-
cal element i and zero otherwise. Among the
charge-labeled MOFs,44 there were 74 unique
chemical elements (see Tab. S6), so d = 74.
The node feature vectors comprise the columns
of the node feature matrix X of the MOF.

Target vector. We construct the charge vec-
tor q for the DFT-derived, DDEC charge-
labeled MOFs44 whose .cif files contain a col-
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umn with the partial atomic charge on each
atom.

Ordering, equivariance, rotation- and
translation-invariance. Of course, element
v of the target (charge) vector q, column v of
the node feature matrix X, and row/column
v of the adjacency matrix A all represent the
same atom in the MOF. However, the ordering
of atoms in the crystal structure file is immate-
rial, as the function f in eqn. 1 learned by the
MPNN is equivariant49 to permutations of the
nodes. Notably, the graph representation of the
MOF is also rotation- and translation-invariant.

4.2 Neural architecture

Fig. 1 shows the architecture of our message
passing neural network (MPNN)49 to assign
partial point charges to each node of a graph,
representing a MOF crystal structure, under
a charge neutral constraint. This MPNN, de-
scribed in detail below, constitutes the func-
tion f in eqn. 1 that obeys the constraint in
eqn. 2. Our MPNN architecture is composed of,
sequentially, (1) an element embedding layer to
map the node features (the one-hot encodings
of chemical elements) into information-dense
chemical element representations for initializ-
ing hidden node features, (2) a gated graph
neural network66 that passes messages between
neighboring nodes, along the edges of the graph,
to learn/construct hidden node representations
that encode the local bonding environment of
each node, and (3) node-level charge prediction
under the graph-level charge neutrality con-
straint.

4.2.1 Chemical element embedding

First, we map each node feature vector xv to a
compressed representation, xev ∈ Rr (r << d):

xev = sigmoid.(Bexv). (3)

The learned matrix of weights Be is shared
across all nodes. Because each node feature
xv is a one-hot encoding of a chemical element,
the embeddings of the chemical elements are the

columns of the matrix Be passed through a sig-
moid activation function (. for element-wise) to
limit the range. Thus, the element embedding
layer in eqn. 3 maps each chemical element, one-
hot encoded in xv, to a low-dimensional, dense
feature vector that encodes its typical charge.
The hidden feature vector of node v is initial-
ized using its element embedding xev to facilitate
training in the message passing phase, which we
describe next.

4.2.2 Message passing

In the message passing phase,50 a gated graph
neural network (GGNN)66 iteratively updates
the hidden features (representations) of the
nodes by passing information between neigh-
boring nodes, along the edges of the graph. The
message received by a node is a conglomera-
tion of the information received from its neigh-
bors. The GGNN employs a gated recurrent
unit (GRU)67 to, at each time step, update
the hidden representation of each node using its
current hidden representation and the message
from its neighbors. We perform message pass-
ing for T time steps; at the end, each hidden
node feature encodes the local bonding environ-
ment, which we define more precisely below, of
the atom it represents.

The initial hidden representation of node v,
h
(0)
v ∈ Rk, is set as its chemical element embed-

ding concatenated with a zero vector:

h(0)
v = [xev,0]. (4)

We concatenate with the zero vector of dimen-
sionality k − r to allow the hidden representa-
tion to be higher-dimensional than the element
embedding; conceptually, this is to account for
the higher information content in the hidden
node representation than in the element em-
bedding of the node, as the former encapsulates
both the atomic species of the node (as does the
element embedding) and the surrounding bond-
ing environment of the node (which the element
embedding does not).

In taking a message passing time step from
time t to t + 1, each node collects, sums,
and transforms the hidden representations of
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Figure 1: The architecture of our message passing neural network (MPNN) to predict partial
charges on MOF atoms under a charge neutral constraint. (Top: node-level computations) First,
the one-hot encoding of the atomic species of node v, xv, is mapped to an information-dense chem-
ical element embedding xev by a fully connected layer. The hidden node feature is initialized as h

(0)
v

using xev. Next is the message passing phase, where, in each time step, every node shares informa-
tion with its neighbors and updates its hidden representation. With more time steps, the hidden
representation of the node, h

(t)
v , captures a broader view of its local bonding environment. Modeling

the probabilistic distribution of the charge on each node (within its local bonding environment) as
Gaussian, a fully connected layer outputs the mean ϙv and variance σ2

v from the final, learned hidden

representation h
(T )
v . (Bottom: graph-level computations) The molecular graph G representing the

MOF crystal structure is input to the MPNN. Each node is processed independently, as depicted
on the top, culminating in the predicted means ϙ and variances σ2. Subsequently, a maximum
likelihood estimation under the charge neutral constraint gives the predicted charges q̂.

its neighbors, summarizing the information re-
ceived into a message m

(t+1)
v . Specifically, the

message received by node v is constructed as

m(t+1)
v = Bm

∑
u∈N (v)

h(t)
u (5)

where Bm is a learned matrix shared across all

nodes and N (v) is the neighborhood of node v:

N (v) = {u ∈ V|euv ∈ E}.

The hidden representation of node v is then up-
dated by a GRU67 (shared across all nodes)
based on its message received and its current
hidden representation:

h(t+1)
v = GRU(h(t)

v ,m
(t+1)
v ). (6)
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See Sec. S4 for GRU details. The message pass-
ing phase is comprised of T such time steps.

At the end of the message passing phase, each
node has a hidden representation h

(T )
v that en-

codes both its atomic species and its local bond-
ing environment. Precisely, the local bonding
environment of node v encoded in the hidden
node feature h

(T )
v is the induced subgraph of G

containing all nodes with geodesic distance less
than or equal to T from node v. See Fig. 2.

Figure 2: Illustration of the local bonding en-
vironment of node v after t message passing
time steps (top), encoded in its hidden rep-

resentation, h
(t)
v . Focal node v, representing

a carbon atom in IRMOF-1, is circled in or-
ange. Edges across the unit cell boundary (gray
square) are included to account for periodicity.

As t increases, h
(t)
v contains a broader view of

the bonding environment of the atom.

4.2.3 Charge prediction

Next, we use the learned representations of the
local bonding environments of the nodes to pre-
dict their partial charges.

As opposed to directly predicting the charge
on node v from h

(T )
v , we instead view qv as

a random variable and model its conditional
probability density as a Gaussian with mean

ϙv = ϙv(h
(T )
v ) and variance σ2

v = σ2
v(h

(T )
v ):

qv|h(T )
v ∼ N(ϙv, σ

2
v). (7)

i.e., we aim to learn and predict not only the
typical charge of an atom within a given lo-
cal bonding environment, but also its variance.
The variance will be useful for adjusting the
charges to enforce charge neutrality; charges of
atoms with higher variance will be given more
slack.

We use a fully connected layer comprised of
two neurons, with weights β

ϙ
and βσ shared

across all nodes, to predict ϙv and σ2
v , respec-

tively, from the learned representation of the
local bonding environment of node v, h

(T )
v :

ϙv = βᵀ
ϙ
[h(T )
v , 1] (8)

σ2
v = softplus(βᵀσ[h(T )

v , 1]) (9)

The softplus activation function ensures σ2 > 0.
Finally, to arrive at the predicted charges q̂

on a given MOF, under the charge neutral con-
straint in eqn. 2, we invoke the maximum likeli-
hood principle. Assuming that each qv is condi-
tionally independent given its local bonding en-
vironment and distributed according to eqn. 7,
the log-likelihood L of observing charges q̂ on
a given MOF is:

L(q̂) =
nv∑
v=1

(
log

(
1

σv
√

2π

)
− (ϙv − q̂v)2

2σ2
v

)
(10)

Maximizing L under the charge neutral con-
straint

∑nv

v=1 q̂v = 0, we find (see S5):

q̂v = ϙv −
σ2
v∑nv

u=1 σ
2
u

nv∑
u=1

ϙu. (11)

Interpreting the mean of the Gaussian in eqn. 7,
ϙv, as a before-constraint charge assignment for
node v lends a useful interpretation of eqn. 11.
To enforce charge neutrality, eqn. 11 adjusts
the before-constraint charges by distributing
the negative of the net before-constraint charge∑nv

u=1 ϙu to each atom in proportion to its vari-
ance σ2

v . The idea is that, if the charge of
an atom within its local bonding environment
exhibits high variance among MOFs, then it
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should be given more slack when adjusting it
to achieve charge neutrality. If all local bonding
environments exhibit the same variance, eqn. 11
reduces to uniformly distributing the before-
constraint excess charge among the atoms.
Eqn. 11, the last layer of our MPNN archi-
tecture, can be viewed as the charge-correction
layer. By jointly learning β

ϙ
and βσ, our net-

work not only learns the typical charges of the
atoms within their given local bonding environ-
ments, ϙ, but also the slack we should give them
when adjusting them to enforce charge neutral-
ity, through σ2.

Interestingly, there is a direct analogy be-
tween the variance σ2

v of the charge on a given
atom in its given local bonding environment
and the hardness (the second derivative of en-
ergy with respect to charge) used to enforce
charge neutrality in Ref. 39 (compare eqn. 14
in Ref. 39 with eqn. 11); indeed, a soft atom
will be given more slack for adjusting its charge
to enforce charge neutrality.

4.3 Training of the MPNN

We define the loss function ` to train (i.e., iden-
tify the parameters of) our network as:

` =
1

Nv

M∑
m=1

`m, `m = ||q̂m − qm||1, (12)

whereNv is the total number of nodes among all
of the MOFs, M is the total number of MOFs,
q̂m is the vector of charges on atoms of MOF m
predicted by the MPNN by eqn. 11, qm is the
vector of (taken as ground-truth) DFT-derived,
DDEC charges,44 and || · ||1 is the L1 norm.
The loss ` in eqn. 12 is equivalent to the mean
(over all nodes) absolute deviation (MAD) per-
formance metric.

5 Results

Here, we train the MPNN in Fig. 1 and evaluate
its performance. All computer codes (Python,
Julia) to reproduce our work are available on
Github at github.com/SimonEnsemble/mpn_

charges.

5.1 The train, test, and valida-
tion datasets

Nazarian et al.44 provide 2 932 MOF crys-
tal structures with DFT-derived (PBE func-
tional, DDEC method32) partial point charges
assigned to each atom. We removed 607 du-
plicate MOFs (identified in Ref. 44) and nine
erroneous MOFs (identified manually). Fur-
ther, we automatically discarded MOF struc-
tures that, via our bonding algorithm, pro-
duced invalid bonding motifs (carbon atoms
bonded to > 4 atoms, hydrogen atoms bonded
to > 1 atom). See Sec. S3. Remaining are 2 266
charge-labeled MOFs. Fig. 3 shows the distri-
bution of the partial charges, grouped by chemi-
cal element; many elements exhibit a high vari-
ance in charge, hinting that assigning charges
to each atom solely based on its chemical ele-
ment, without consideration of its bonding en-
vironment, will not give satisfactory charges.
Fig. S1 shows the prevalence of chemical ele-
ments among the MOFs.

We randomly partitioned these 2 266 charge-
labeled MOFs44 into training, validation, and
test sets (70/10/20%). The training set is used
to directly tune the model parameters (weights
and biases) by minimizing the loss in eqn. 12
over training examples via stochastic gradient
descent. The validation set is used for hyper-
parameter selection to avoid overfitting. The
test set provides an unbiased evaluation of the
performance of a final model whose parameters
were fit using the training dataset. We note
that chemical elements {Se, Hf, Cs, Pu, Ir} ap-
pear in only one MOF. Instead of discarding
these MOFs containing these rare elements, we
elected to place them in our training set, with
the justification that we can learn about charges
on other atoms from these MOFs.

5.2 Training and hyper-parameter
tuning

We used the open source PyTorch68 machine
learning library to construct and train our
MPNN.

To minimize the loss ` (see eqn. 12) during
training, we use stochastic gradient descent (the
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Figure 3: The distribution of partial charges, grouped by element, in the 2 266 charge-labeled
MOFs44 comprising our train, validation, and test set, visualized by violins. The number on the
bottom is the total number of atoms in the dataset, grouped by element.

Adam optimizer with a learning rate of 0.005)
and a batch size of 32 graphs. We use the vali-
dation set for early stopping to avoid overtrain-
ing. This is achieved by, while training, contin-
uously monitoring the model performance on
the validation set. Once no improvement is ob-
served for 100 epochs, we stop the training and
output the model with the best performance on
the validation set. See Fig. S3 for an example
learning curve.

The dimension of the element embeddings, r,
dimension of the hidden node features, k, and
number of message passing time steps, T , are
hyper-parameters of our MPNN. We explored
hyper-parameter space by changing one while
holding the others fixed. See Sec S6. We found
the performance of the MPNN to be largely in-
sensitive to k and r for k ≥ 8 and r ≥ 30
(for fixed r = 10 and k = 30, respectively;
see Fig. S2). On the other hand, we found the
MPNN performance to be sensitive to T , which
we discuss in Sec. 5.4. Based on our empirical
hyper-parameter exploration, we select T = 4,
r = 10, k = 30 since these hyperparameters
led to the best performance on the validation
dataset.

5.3 Performance

We evaluate the performance of our MPNN us-
ing the mean absolute deviation (MAD) over
all nodes, equal to the loss in eqn. 12. For
comparison, we consider the following bench-
mark models: (i) all charges are zero (q̂v = 0,
∀v), (ii) the charge of an atom is equal to the
mean charge of atoms of that chemical element,
with charge neutrality enforced by distribut-
ing excess charge among the atoms (a) uni-
formly and (b) proportional to its variance in
the training set, as in eqn. 11, (iii) the I-QEq53

charge equilibration method (MAD reported in
Ref.35). Tab. 2 summarizes the performance
of our trained MPNN and these benchmark
models. Results are the average of ten train-
ing/testing sessions with different (random)
training, validation, and test splits. Our MPNN
outperforms all baseline models, including the
charge equilibration variant I-QEq,53 which was
the most consistent with DFT-derived, DDEC
charges in the study by Ongari et al.35 The
MAD of our MPNN-assigned charges from the
DFT-derived, DDEC (taken as ground truth)
charges44 is 0.025, a factor of four lower MAD
than what I-QEq gives. Fig. 4 visualizes the
joint distribution of the predicted charge q̂v by
our MPNN and the DFT-derived DDEC charge
qv; the density hugs the diagonal line.
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Table 2: Performance benchmarks. The mean absolute deviation (MAD) on the test set for different
charge assignment models/strategies.

Method MAD
(charge neutrality enforcement) mean (std)

q̂v = 0, ∀ v 0.324 (7e−3)
element-mean (uniform dist’n excess charge) 0.154 (2e−3)
element-mean (variance-based dist’n excess charge) 0.153 (2e−3)
I-QEq35,53§ 0.118†

MPNN (uniform dist’n excess charge) 0.026 (8e−4)
MPNN (variance-based dist’n excess charge) 0.025 (5e−4)

Figure 4: Parity plot showing a 2D histogram
of the predicted charge q̂v against the DFT-
derived, DDEC charge qv (treated as ground
truth). Color depicts density of points. Diago-
nal line shows equality.

5.4 The effect of the number of
message passing time steps,
T

We investigate the effect of the number of mes-
sage passing time steps, T , on the MPNN per-
formance because, as Fig. 2 shows, T deter-
mines the scope of the local bonding environ-
ment of node v encoded in h

(T )
v and used to

predict the charge on node v.
Fig. 5 shows the performance of our MPNN as

T changes (with r = 10, k = 30 fixed). Without
a message passing layer (T = 0), information is
not passed between neighboring nodes, and the
neural network learns to assign charge based

Figure 5: The performance of the MPNN
(MAD on test set) as the number of message
passing time steps, T , changes (r = 10, k = 30
fixed). As T increases, a broader view of the
local bonding environment of each atom is used
to predict its charge.

only on the chemical element of the atom, irre-
spective of the atoms to which it is bonded. The
MAD for T = 0 is 0.15, larger than the I-QEq
method. Introducing a single message passing
iteration (T = 1) to bring in information from
immediate neighbors significantly improves the
prediction (T = 1 MAD is 0.06). As we increase
T , each node receives information from a longer
geodesic distance; h

(T )
v encodes a broader scope

of the bonding environment of the node; and,
until T = 4, the predictions improve, albeit
with diminishing returns. Increasing T beyond
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4 slightly diminishes the performance, suggest-
ing that the most useful information for charge
prediction can be somewhat localized. Specif-
ically, all nodes within a geodesic distance of
T = 4 of a node appear sufficient for produc-
ing a quality prediction of the charge, albeit we
fixed r and k for this analysis. Using overly
large T can potentially lead to too much focus
on the global structure of the MOF, diluting
the useful local information. This supports our
underlying hypothesis that the charge of any
given atom in a MOF is largely dictated by its
identity and local bonding environment.

5.5 Latent space of chemical ele-
ments

The chemical element embedding in eqn. 3
maps each chemical element into a low-
dimensional, dense, information-rich represen-
tation of the chemical elements for initializ-
ing the hidden node features. To verify the
MPNN has learned a meaningful element em-
bedding, we visualize these r = 10-dimensional
element embeddings xev via Uniform Mani-
fold Approximation and Projection (UMAP)69

(hyper-parameters: number of neighbors: 8,
minimum distance: 0.05). UMAP is a dimen-
sion reduction technique that aims to keep local
and global structures exhibited by the data in
the high-dimensional space intact in the low-
dimensional representation. Fig. 6 visualizes
the 2D embedding of each of the 74 chemical
elements in the MOFs, colored by the average
charge on that element in the DFT-derived,
DDEC charge-assigned MOFs.44 Judging from
how nearby chemical elements tend to have
a similar mean charge, it appears that the
learned element embeddings indeed are encod-
ing information predictive of partial charge.
Interestingly, although the clustering according
to the family in the periodic table to which the
elements belong (see Fig. S5) is not as promi-
nent as according to the mean partial charge,
some clusters are recovered. For example, the
alkali earth metals {Mg, Ca, Sr, Ba}, the al-
kali metals {Li, Na, K}, halogens {Br, Cl, I},
and many lanthanoids are clustered together,
while the other periodic table families are more

scattered.

Figure 6: Visualization of the embeddings of
the chemical elements learned by our MPNN
and how they encode the mean charge of the
element. We used UMAP69 to reduce the di-
mension of the r = 10-dimensional embeddings
xev to the two dimensions shown here. Each
point, representing the embedding of a chem-
ical element, is colored according to the mean
partial charge of that element in the training
set. Note the mean partial charge tends to in-
crease from top/top left to bottom right.

5.6 Enforcement of charge neu-
trality

We enforced charge neutrality on a given MOF
through the design of our MPNN, by treating
the charge on each atom within its local bond-
ing environment as a conditionally independent
random variable (eqn. 7), predicting the mean
and variance of this distribution (eqns. 8 and
9), and using maximum likelihood to estimate
the charges on the atoms of the MOF whilst
satisfying charge neutrality (eqn. 11). A sim-
pler strategy to enforce charge neutrality is to
use a single (shared) neuron to directly predict
a before-constraint charge on each atom from
the learned node representation h

(T )
v , then uni-

formly distribute the excess before-constraint
charge on the MOF (see Sec. S7). The strategy
to uniformly distribute excess before-constraint
charge does not account for the tendency of
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some atoms within certain local bonding en-
vironments to vary in their charge more than
others; still, interestingly, this crude method of
enforcing charge neutrality in the MPNN suf-
fered in performance only marginally, with a
MAD of 0.026.

Fig. S4 shows the distribution of the ex-
cess preliminary charge per atom, 1

nv

∑
v ϙv,

among the MOFs for both strategies of enforc-
ing charge neutrality. The standard deviation
of 1

nv

∑
v ϙv among the MOFs, with ϙv com-

puted using eqn. 8, is only ≈ 0.02. This shows
that relatively little charge neutrality correction
of the before-constraint charges ϙv is needed
(compare 0.02 with the MADs in Tab. 2). i.e.,
despite predicting charges based on the local
bonding environment of the atoms, the MPNN
outputs before-constraint charges ϙv that are
“close” to satisfying the graph-level (global)
charge neutrality constraint.

5.7 Deployment

For deployment, we re-trained our MPNN (with
fixed hyper-parameters) using more training ex-
amples (2 040 MOFs plus 226 MOFs used for
validation) to maximize its accuracy (setting
aside a test set was necessary only for unbiased
performance evaluation against different mod-
els). Note our MPNN (i) cannot predict charges
for MOFs that contain chemical elements out-
side the set of 74 elements included in the
DFT-derived, DDEC-charge assigned MOFs44

we used for training and (ii) refrains from pre-
dicting charges on the elements {Se, Hf, Cs,
Pu, Ir} since the training examples with these
elements were too scarce to have confidence in
predictions for these elements. See Tab. S6 for
the list of viable chemical elements.

5.7.1 Public availability

Our deployment-ready MPNN model and our
code to convert MOF crystal structures to
graphs are available on Github (github.com/
SimonEnsemble/mpn_charges) so the compu-
tational MOF community can assign high-
quality charges to MOFs without performing
computationally expensive electronic structure

calculations. Moreover, our MPNN can easily
handle MOFs with a large number of atoms, in
contrast to periodic electronic structure calcu-
lations.

5.7.2 MPNN-charge-assigned CoRE
MOFs

The updated computation-ready, experimen-
tal (CoRE) MOF dataset7 contains ca. 14 000
structures, the majority of which are not
present in the DDEC-charge-assigned set of
Nazarian et al.44 We used our deployment-
ready MPNN to assign charges to each MOF in
the v2 CoRE MOF database. To facilitate the
use of these MPNN-assigned charges in molecu-
lar simulation studies, we provide .cif files on
Github of the MPNN-charge-assigned v2 CoRE
MOF structures.

As a caveat, the v2 CoRE MOF dataset is
partitioned into two separate subsets based on
the extent of solvent removal: (1) both bound
and free solvent molecules removed and (2)
only free solvent removed. The charge-assigned
MOFs of Nazarian et al.44 are based on struc-
tures in the v1 CoRE MOF dataset,45 where
both free and bound solvent molecules were re-
moved. Consequently, the charge predictions
by the MPNN may be less accurate on the sub-
set of the v2 CoRE MOFs where only free sol-
vent molecules were removed.

6 Discussion

We developed and trained a message passing
neural network (MPNN)50 to, in an end-to-end
manner, learn representations of the local bond-
ing environments of atoms within MOFs and,
from these representations, predict the partial
charges on the atoms of a MOF under a charge
neutral constraint. The crystalline structure of
the MOF, represented as an undirected graph
with node features encoding the chemical el-
ements, is directly input to the MPNN. The
MPNN constructs features of the local bonding
environments by sequentially passing informa-
tion between bonded atoms. We trained and
evaluated the performance of our MPNN by
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leveraging 2 266 DFT-derived DDEC charge-
labeled MOFs.44 Our MPNN accurately pre-
dicts the partial charges on MOFs (mean ab-
solute deviation from DDEC charges on test
set, 0.025) while incurring orders of magni-
tude lower computational cost than performing
electronic structure calculations and deriving
charges from the electron density/electrostatic
potential. We make our code and trained
MPNN openly available to enable more accu-
rate virtual screenings of thousands of MOFs,
via molecular simulations using atomistic force
fields,8 for their adsorption-based applications
in gas storage, separation/purification, and
sensing. For convenience, we provide MPNN-
charge-labeled v2 computation-ready, experi-
mental MOF structures7 in the widely used
.cif format.

Notably, machine learning models can per-
form differently when employed on data drawn
from a different distribution than the train-
ing data set. The training MOFs used for
this MPNN are experimentally synthesized
MOFs.44,45 Consequently, we are confident that
our MPNN network will perform well on exper-
imentally synthesized MOFs. However, caution
is warranted when using the MPNN on hypo-
thetical MOFs sampled from a dramatically dif-
ferent distribution over MOF-space. For exam-
ple, if hypothetical MOFs are constructed from
elements in atomic environments that are rare
in our training set of MOFs, then the accuracy
of our MPNN could be reduced from what we
report here.

Because we convert each MOF crystal struc-
ture to an undirected graph (with node features
but not edge features), our MPNN will assign
the same charges to (a) all conformations of
the same MOF and (b) all interpenetrated iso-
mers70 of a MOF. To expand on (a), consider
MOFs whose structures are flexible71–73 and
adopt different conformations depending on the
temperature, imposed mechanical stress, and
presence of adsorbed molecules.73 To expand
on (b), some MOFs form interpenetrated net-
works, and the level of interpenetration can be
controlled.70,74 Conceivably, the partial point
charges that reproduce the electrostatic poten-
tial in the pores could differ depending on the

conformation that the MOF adopts and its
level of interpenetration. Our MPNN, however,
would assign the same charges to the atoms of
a MOF regardless of its conformation or level
of interpenetration, since the graph representa-
tions of local bonding environments are invari-
ant to flexing and interpenetration. To instead
learn charges dependent on the conformation
of and level of interpenetration in a MOF, we
can encode the pairwise atomic distances be-
tween the atoms composing the MOF into edge
features and employ MPNNs that handle edge
features.50 That is, we could represent each
MOF as a fully connected graph and include
two classes of edges: one for bonded atoms, and
others for non-bonded atoms. Labeling edge euv
with the distance between atom u and v would
encode the 3D coordinates of the MOF into the
graph.
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Volkringer, C.; Férey, G.; Coudert, F.-X.;
Fuchs, A. H. Breathing Transitions in
MIL-53 (Al) Metal–Organic Framework
Upon Xenon Adsorption. Angewandte
Chemie International Edition 2009, 48,
8314–8317.

(74) Eddaoudi, M.; Kim, J.; Rosi, N.; Vo-
dak, D.; Wachter, J.; O’Keeffe, M.;
Yaghi, O. M. Systematic design of pore
size and functionality in isoreticular
MOFs and their application in methane
storage. Science 2002, 295, 469–472.

19


