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ABSTRACT

With the recent body of work on overparameterized models the gap between the-
ory and practice in contemporary machine learning is shrinking. While many of
the present state-of-the-art models have an encoder-decoder architecture, there is
little theoretical work for this model structure. To improve our understanding in
this direction, we consider linear encoder-decoder models, specifically PCA with
linear regression on data from a low-dimensional manifold. We present an analy-
sis for fundamental guarantees of the risk and asymptotic results for isotropic data
when the model is trained in a supervised manner. The results are also verified in
simulations and compared with experiments from real-world genetics data. Fur-
thermore, we extend our analysis to the popular setting where parts of the model
are pre-trained in an unsupervised manner by pre-training the PCA encoder with
subsequent supervised training of the linear regression. We show that the overall
risk depends on the estimates of the eigenvectors in the encoder and present a sam-
ple complexity requirement through a concentration bound. The results highlight
that using more pre-training data decreases the overall risk only if it improves
the eigenvector estimates. Therefore, we stress that the eigenvalue distribution
determines whether more pre-training data is useful or not.

1 INTRODUCTION

Many recent success stories of deep learning employ an encoder-decoder structure, where parts
of the model are pre-trained in an unsupervised or self-supervised way. Examples can be found
in computer vision (Caron et al., 2020; Chen et al., 2020; Goyal et al., 2021), natural language
processing (Vaswani et al., 2017; Devlin et al., 2019; Raffel et al., 2020) or multi-modal models
(Ramesh et al., 2021; Alayrac et al., 2022). Understanding the properties of this model structure
might shed light on how to reliably build large-scale models.

We add to the theoretical understanding of encoder-decoder based models by studying a model con-
sisting of PCA and a linear regression head. We analyse this model for the supervised case and for
the case where unsupervised pre-training is followed by supervised linear regression. Our model can
be viewed as a simplified, linear example of a large pre-trained deep neural network in combination
with linear probing (Devlin et al., 2019; Schneider et al., 2019). While linear models do not reveal
the whole picture, they are studied as a tractable, first step towards deeper understanding. Indeed, re-
search on linear models has previously provided important insights into relevant mechanisms (Saxe
et al., 2014; Lampinen & Ganguli, 2019; Arora et al., 2019; Gidel et al., 2019; Pesme et al., 2021).

We utilize data generated from a low-dimensional manifold, similar to Goldt et al. (2020). This is
motivated by the manifold hypothesis (Fefferman et al., 2016) which states that real-world high-
dimensional data often have an underlying low-dimensional representation. Our PCA encoder can
exploit this data structure effectively. While we keep the low-dimensional data structure fixed, we
vary the number of features w.r.t. the number of training data points which allows us to analyse
what is often referred to as overparameterization, i.e. data features or model parameters than training
samples (Belkin et al., 2019). We do not consider parameter count, since for our model the number of
parameters, i.e. the linear regressors, stay fixed due to the PCA encoding. Instead we analyse high-
dimensional settings. Studying overparameterization gives theoretical justification of the success of
modern large-scale neural networks such as Szegedy et al. (2016); Dosovitskiy et al. (2021).
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Theoretical grounding is exceeded by the empirical success of machine learning and specifically
deep learning methods through new model structures (Krizhevsky et al., 2017; He et al., 2016;
Vaswani et al., 2017) or training methods (Erhan et al., 2010; Ioffe & Szegedy, 2015; Ba et al.,
2016). In recent years our theoretical understanding grew e.g. through the analysis of implicit regu-
larization (Gunasekar et al., 2017; Chizat & Bach, 2020; Smith et al., 2021). But also experimental
work contributed to our understanding (Keskar et al., 2017; Zhang et al., 2017). The goal of this
paper is to extend our understanding of the successful encoder-decoder model structure through
theoretical analysis of PCA-regression and by extensive numerical simulations. We generalize re-
sults for linear regression and combine classical analysis of overparamterization with pre-training of
model components. Our contributions can be summarized as:

• In the supervised case, we provide theoretical guarantees for the risk and parameter norm
of the PCA-regression model. For isotropic data we extend the results to the limit where
the number of data points n and features m tend to infinity such that m/n → γ.

• Through simulations, we confirm our theory for isotropic data and explain the model be-
havior on data from a low-dimensional manifold. Using genetics data, we validate our
findings in a high-dimensional real-world example.

• We extend our analysis to the popular scenario of unsupervised pre-training of the en-
coder and show that the correct estimation of feature covariance eigenvectors is crucial for
low risk. These estimates are highly dependent on the data structure through the eigenvalue
decay rate. The results provide a link to known asymptotic results by Xu & Hsu (2019).
We challenge the common wisdom that more pre-training data improves the overall risk
and show that this is the case only if it improves the estimate of the eigenvectors in the
encoder which is e.g. the case in data with rapidly decaying eigenvalues.

2 RELATED WORK

Overparameterization The study of overparameterized models offers a natural route to gain the-
oretical understanding when it comes to the successes of large models with good generalization
properties (Neyshabur et al., 2015; Zhang et al., 2017). The double descent was discovered and
analysed in early works (Krogh & Hertz, 1991; Geman et al., 1992; Opper, 1995) but the framing
as ’double descent’ (Belkin et al., 2019) boosted research in this direction even if generalization
of large models was already studied before (Bartlett & Mendelson, 2002; Dziugaite & Roy, 2017;
Belkin et al., 2018; Advani et al., 2020). We add to the understanding of machine learning models
by analysing the neglected class of encoder-decoder models with the PCA-regression model.

Analysis of pre-training The introduction of pre-training of neural networks was a paradigm shift
for deep learning. Empirical work (Erhan et al., 2010; Raghu et al., 2019) but also theoretical work
such as for sample complexity (Tripuraneni et al., 2020; Du et al., 2021) or the out-of-distribution
risk (Kumar et al., 2022) tried to understand the mechanisms. For unsupervised pre-training, con-
trastive methods were studied (Wang & Isola, 2020; Von Kügelgen et al., 2021). Encoder-decoder
based autoencoders are analysed for training dynamics (Nguyen et al., 2019; 2021) or overparame-
terization (Radhakrishnan et al., 2019; 2020; Buhai et al., 2020; Zhang et al., 2020). In contrast, we
study pre-trained PCA encoders and relate the risk to the covariance estimation of the encoder.

Latent variable data generator We generate data via a linear latent variable data generator based
on a low-dimensional manifold. The hidden manifold model (Goldt et al., 2020) and random feature
model (Rahimi & Recht, 2007) present similar but nonlinear models. Goldt et al. (2022); Hu & Lu
(2022) showed that these nonlinear models are asymptotically equivalent to linear Gaussian models
under assumptions such as that the latent dimension d → ∞. In contrast, we keep this dimension
fixed. Asymptotic generalization results for this data generator are presented in Gerace et al. (2020);
Mei & Montanari (2022). Different to our work where we exploit the low-dimensional structure with
the PCA-regression model, they do not use this information by using Ridge or logistic regression.

PCA-regression model Using PCA (Jolliffe, 1982) is common—discussions focus on the choice
of principle components (Breiman & Freedman, 1983) or its use for high-dimensional data (Lee
et al., 2012). PCA-regression is investigated in Xu & Hsu (2019) for general but fully known covari-
ances in the asymptotic regime. Wu & Xu (2020) extend it by showing that the misalignment of true
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and estimated eigenvectors affect the risk. Huang et al. (2022) use misalignment bounds (Loukas,
2017) to remove the known covariance assumption and obtain non-asymptotic risk bounds. Our
work fills the gaps by providing asymptotic results for isotropic data. We generalize Loukas (2017)
to obtain a sample complexity for the covariance estimation in the PCA which is the missing piece
to quantify when the results from Xu & Hsu (2019) can be used in practice with pre-training. It
turns out that the data covariance structure is crucial as Wainwright (2019) points out.

3 PROBLEM FORMULATION

Data generator We generate a data set {xi, yi}ni=1 according to a latent variable data generator
xi = Dzi + ei, (1)

yi = θ⊤zi + εi, (2)

by mapping the latent variable zi ∈ Rd with D ∈ Rm×d into the observed features xi ∈ Rm and
with θ ∈ Rd into the observed outputs yi ∈ R. We create D randomly such that ∥D∥2F = dc2 with
c as correction factor to control the signal-to-noise ratio (SNR), defined in (27). Similarly, to control
the outcome-noise-ratio we create θ such that E

[
∥θ⊤z∥22

]
= r2θ. Feature noise ei ∼ N (0, Im)

and output noise εi ∼ N (0, σ2
y) are added. The latent variables are generated such that the singular

values of the features have an exponential decay controlled by the decay rate α ≥ 0 according to
zi ∼ N (0, λ2

i Id) with λ2
i = exp(−iα). (3)

Our theoretical results do not specifically require an exponential decay of the eigenvalues or a spe-
cific rate. However, fast decaying eigenvalues occur in many real-world examples, see Appendix B.
We distinguish between two data generators:

1. Isotropic data. This is a special case of (1), (2) with d = m, D = Im, α = 0 and e = 0 to
generate isotropic features. It allows us to rewrite the data generator as

yi = θ⊤xi + εi with xi ∼ N (0, Im). (4)
2. Latent variable data. We distinguish between 1) α = 0 leading to an isotropic but low-

dimensional signal and 2) α > 0 which has dominant, but rapidly decaying eigenvalues of
the feature covariance matrix. The latter data generator is motivated since many real-world
data sets have a low-dimensional signal manifold with rapidly decaying eigenvalues.

Note that while our latent variable data generator is similar to the latent space model from Hastie
et al. (2022), we use our PCA-regression model instead of direct regression from features to outputs.
A graphical model of our data generator is provided in Figure 1 and details are in Appendix C.

xi

zi

yi

xi

ẑi

ŷi

PCA lin. reg.

Figure 1: Problem formulation. Left: Data generator. Right: PCA and linear regression model.

Model We use a linear model which resembles an encoder-decoder based architecture. The input
data xi is encoded into a lower d̂-dimensional space ẑi via the use of PCA, where d̂ is chosen during
model selection. When it comes to the decoder we employ a linear regression model with parameters
θ̂ ∈ Rd̂. The resulting model is visualized in Figure 1 and we can formulate it as

ẑi = V̂ ⊤xi, (5)

ŷi = θ̂⊤ẑi. (6)

Collecting the features as rows of the data matrix X =
[
x⊤
1 . . . x⊤

n

]⊤
, we compute the principal

components V̂ ∈ Rm×d̂ as the d̂ first right singular vectors of the rank d̂ reducing SVD X ≈
ÛΣ̂V̂ ⊤. Note that the estimated latent dimension d̂ can be different from the true latent dimension
d of the latent variable data generator. We refer to this construction as the PCA-regression model.
In our numerical results we compare with a model which directly regresses the outcomes from the
features, referred to as the direct regression model.
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4 ANALYZING THE SUPERVISED CASE

Training the complete PCA-regression model in a supervised way represents a situation commonly
encountered in high-dimensional real-world applications. Examples of using this model are in ex-
ploratory statistical research (Massy, 1965), econometrics (Geweke, 1996), genetics (Wang & Ab-
bott, 2008), robotics (Vijayakumar & Schaal, 2000) and many more.

4.1 THEORETICAL ANALYSIS

For our analysis, we are interested in closed form solutions for the risk and parameter norm in order
to obtain fundamental guarantees for the PCA-regression model. We decompose our solution into
bias and variance terms similar to classic decompositions and interpret the results.

Bias-variance decomposition We stack all outputs in the vector y ∈ Rn and all estimated latent
variables as rows in the matrix Ẑ ∈ Rn×d̂. The solution to the unregularized linear regression yields

θ̂ = (Ẑ⊤Ẑ)+Ẑ⊤y = (V̂ ⊤X⊤XV̂ )+V̂ ⊤X⊤y, (7)

where (·)+ denotes the Moore-Penrose pseudoinverse. We can rewrite our data generator directly
from features to outputs as y = Xβ + ϵ with β⊤ = θ⊤D+ ∈ Rm and ϵi ∼ N (0, σ2

ϵ ) where
σ2
ϵ = σ2

y + ||β||22. Following Appendix D.2 the solution becomes

θ̂ = (Σ̂⊤Σ̂)+Σ̂⊤Û⊤(Xβ + ϵ) = V̂ ⊤β + Σ̂+Û⊤ϵ. (8)

Lemma 1. Let the feature sample covariance be Ĉ = 1
nX

⊤X and the true covariance be C.
Define the orthogonal projectors Φ = V̂ V̂ ⊤ and Π = Im −Φ, where Φ is the projection onto the
column space of the d̂ first right singular vectors of X . Then, the risk of the PCA-regression model
R(θ̂) = E(x0,y0)

[
(y0 − ŷ(x0)

2
]

and the parameter norm ∥θ̂∥22 = θ̂⊤θ̂ are given by

Eϵ

[
R(θ̂)

]
= β⊤ΠCΠβ +

σ2
ϵ

n
Tr(V̂ ⊤CV̂ V̂ ⊤Ĉ+V̂ ) + σ2

ϵ , (9)

Eϵ

[
∥θ̂∥22

]
= β⊤Φβ +

σ2
ϵ

n
Tr(V̂ ⊤Ĉ+V̂ ). (10)

The proofs are in Appendices D.3, D.5. In both equations, the variance (second) term is controlled by
the estimated singular vectors V̂ , which project the covariances C, Ĉ to a d̂-dimensional subspace
and therefore contain less noise. Hence, we expect the variance term to decrease constantly for larger
γ and that the PCA-regression model therefore avoids the “interpolation peak” at γ = 1 which linear
regression has. The results generalize Lemma 1 in Hastie et al. (2022) for the risk of direct regression
models since we obtain the same form when choosing d̂ = m, i.e. no dimensionality reduction.

Asymptotics for isotropic features Using results from random matrix theory, and Lemma 1 we
derive asymptotics for the risk and parameter norm in the case of isotropic features C = Im.

Theorem 1. Assume isotropic features C = Im, which implies d = m and choose constant d̂.
Then, as m,n → ∞, such that m

n → γ, the expected risk and parameter norm satisfy almost surely

Eϵ

[
R(θ̂)

]
→ σ2

ϵ

m

n

∫ ∞

s̄

1

s
dFγ(s) + σ2

ϵ +

β⊤β
(
1−min(d̂,m)/m

)
for γ < 1

β⊤β
(
1−min(d̂, n)/m

)
for γ > 1

, (11)

Eϵ

[
∥θ̂∥22

]
→ σ2

ϵ

m

n

∫ ∞

s̄

1

s
dFγ(s) +

{
β⊤βmin(d̂,m)/m for γ < 1

β⊤βmin(d̂, n)/m for γ > 1
, (12)

with Fγ the Marčenko-Pastur law (Marčenko & Pastur, 1967) and s̄ the value in R that satisfies
d̂
m =

∫∞
s̄

dFγ . In both equations, the first term represents the variance and the last one the bias.

The proofs are in Appendices D.4, D.6. Again, we obtain the same risk when choosing d̂ = m as
for direct regression models on isotropic data, see Theorem 1 in Hastie et al. (2022). Contrary to
direct regression, the PCA-model will always have a bias term since d̂ < m, n in general.
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4.2 NUMERICAL RESULTS

In this section we give numerical results for the different data generators and compare these results
with those from the analysis above. We compare our PCA-regression model with 1) the learnt direct
regression model and 2) a model that predicts always zero which we denote as null risk.

Isotropic features We generate n = 400 data points for training and testing according to our
isotropic data generator (4), implying d = m with σ2

ε = 1 and r2θ = 1. Each sample has m = γn
features where we vary γ ∈ [0.3, 20], i.e. from low-dimensional (γ < 1) to high-dimensional (γ >

1) features. We compute risk R(θ̂) and parameter norm ||θ̂||22 as in the definition of Lemma 1 and
average over 200 realizations. The results are compared with analytical solutions from Theorem 1.
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Figure 2: Supervised results on isotropic data: analysis vs simulation. Solid lines: analytical so-
lutions (Theorem 1); ’×’: avg. simulation results; ’◦’: null risk. Left: Risk. Right: Parameter norm.

Figure 2 depicts the results for different values of d̂; we can make several observations: 1) The nu-
merical results, i.e. the ’×’ marks, and the analytical solutions, i.e. the solid lines, align perfectly
and therefore support our theoretical analysis. The expected decrease of the variance term and a
nonzero bias term for all γ can be observed in Figure 10 where we show the bias-variance decom-
position according to Theorem 1; 2) For sufficiently large d̂ the results of the PCA model match the
direct regression results in the limit of small and large γ. For isotropic data, every singular direction
is equally important and the PCA requires sufficiently many components, i.e. large d̂ to achieve
reasonable results; 3) The PCA-regression model does not suffer from the singularity at γ = 1 as we
predicted from Lemma 1. The PCA alleviates the bad conditioning of the matrix X⊤X which has
to be inverted for the least squares solution. Below we will see that ridge regression has a similar
effect; and, 4) The parameter norm is constantly decreasing for larger γ. We observe this for all
models, which implies that we obtain smooth solutions which are beneficial to avoid overfitting.

Latent variable data We use the latent variable data generator with d = 20, r2θ = 1, σ2
y = 0,

feature SNR ρx = 1 and θ as in (33) to generate n = 400 training and testing data points and average
over 200 realizations. The results for the risks are depicted in Figure 3 for eigenvalue decay of α = 0
(left) and for α = 0.25 (right). Corresponding plots for the parameter norm are in Figure 11.

We observe for α = 0 (left plot) if d̂ ≥ d, then the PCA-regression model approaches the direct
regression results for small and large γ. The plots for d̂ = 20 and d̂ = 40 overlay since both are
larger than d and capture all information. However, for misspecified models with d̂ < d the solution
obtained for the PCA-regression is suboptimal. Following Lemma 1, by choosing d̂ < d we remove
important eigendirections and therefore observe an increased risk. Similar conclusions can be drawn
for the results for data with α > 0 (right plot) but with less penalty on the risk for suboptimal d̂.

Real-world example: Genetics To visualize the PCA-regression model under high-dimensional
inputs for a real-world data example, we use the Diverse MAGIC wheat data set (Scott et al., 2021)
from the National Institute for Applied Botany. The data set contains the genome sequence of
504 inbred wheat lines and multiple phenotypes. We split the data in 252 training samples and
equally many test samples. There are 1.1 million nucleotides in the genotype sequences which are
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Figure 3: Supervised risk on latent variable data: simulation. Left: Risk of models for data
generated with feature covariance eigenvalue decay of α = 0. Right: Results with α = 0.25.

binary encoded as difference to a reference sequence. We subsample the genotypes uniformly for a
varying number of features m. As outcome we use one of the real-values phenotypes.
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Figure 4: Supervised risk for real-world exam-
ple. Diverse MAGIC wheat genetics data set.

Figure 4 shows the median results over 100 re-
alizations for different latent dimension d̂. We
observe a qualitative resemblance to the results
for the latent variable model in Figure 3. 1)
The PCA-regression risk decreases monotoni-
cally with increasing γ and 2) higher values of d̂
reach the lowest overall risk. Different is that the
PCA-regression does not reach the same level as
the direct regression for larger γ. However, this
is reasonable since 1) the eigenvalue distribu-
tion in the genetics example is heavy tailed (see
Figure 16) which implies that the true latent di-
mension would be much larger. Further, 2) the
relationship between genotypes and phenotypes
may not be linear in nature.

5 PRE-TRAINING THE PCA ENCODER

So far, we analysed the case when the complete model is trained supervised. Now we extend to
the popular case of pre-training parts of the model in an unsupervised way. In this context we can
view our model as a simple, linear version of large pre-trained neural networks with linear probing.
Our analysis therefore yields insights to their understanding. The pre-training extension requires a
generalization of our theory because we deal with different data sets of varying size.

5.1 GENERALISATION OF PROBLEM FORMULATION

First, we pre-train the PCA on a so called pre-training data set {xi}
np

i=1 without output values yi. It
can therefore only be used for unsupervised pre-training. Second, we train only the linear regression
head on the PCA features with the training data set {xi, yi}ni=1. Note that the number of samples
np in the pre-training data set differs from the number of samples n in the training data set.

Data generator In this section, we focus on the latent variable data generator. We change our
feature generation from (1) to simplify the theoretical analysis. We orthogonalise the signal z (gen-
erated by (3)) and the noise e by introducing D⊥ such that D⊤D⊥ = 0. We use the following
feature generator for both, the training and pre-training data set features

xi = Dzi +D⊥ei. (13)
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Model The model is the same as in the supervised case. Since the PCA is performed on the pre-
training data set, we rename the first d̂ estimated eigenvectors of the feature covariance matrix from
the pre-training data set to Ĥ . We do so to distinguish it from the eigenvectors V̂ estimated using
the training data set as in the supervised case. Hence, in the pre-training case we obtain

ẑi = Ĥ⊤xi. (14)

5.2 THEORETICAL ANALYSIS

As in section 4.1 we want to establish a connection to the complete training risk as fundamental
model guarantee. Since we extend the setting to pre-train the encoder on a different data set, we
have to deal with sample complexities for the estimation of eigenvectors in the PCA.

With the orthogonal feature generator (13), we recover the true latent variables from features

zi = D+(xi −D⊥ei) = D+xi. (15)

Comparing it with the projection from the model in (14), we notice that the estimated latent space
depends on how well Ĥ⊤ estimates D+. Hence, the risk analysis problem in the case with pre-
training turns into a sample complexity problem of the eigenvectors. Note that D+ = D⊤/c2 with
correction factor c for SNR control, see Appendix C.

Estimation of eigenvectors The sample complexity of eigenvectors is thoroughly studied by
Loukas (2017). Here, we review some of their results and adapt them to our setting. The PCA
loss of encoding x into the (estimated) latent space is given by

L(D) = E
[
∥x∥22 − ∥D+x∥22

]
=

m∑
i=d+1

si, (16)

L(Ĥ) = E
[
∥x∥22 − ∥Ĥ⊤x∥22

]
=

m∑
i=1

si −
d̂∑

i=1

m∑
j=1

(ĥ⊤
i hj)

2sj . (17)

Here, si is the ith eigenvalue and hi is the ith eigenvector of the true feature covariance matrix.
The difference of the PCA losses, quantifies how well a sample x is projected with the estimated
eigenvectors Ĥ into the latent space compared to a projection with the true eigenvectors (D+)⊤.

Lemma 2. Define the loss of projecting a sample x with D or Ĥ as in (16), (17). Then, we can
write the loss difference as L(Ĥ)− L(D) = E

[
∥z∥22 − ∥ẑ∥22

]
and formulate it as

L(Ĥ)− L(D) =

min(d,d̂)∑
i=1

m∑
j=1

(ĥ⊤
i hj)

2(si − sj) +
d∑

i=d̂

si︸ ︷︷ ︸
=0 for d̂≥d

+

d̂∑
i=d

m∑
j=1

(ĥ⊤
i hj)

2sj︸ ︷︷ ︸
=0 for d̂≤d

. (18)

The result indicates that if we have perfect encoding (d̂ = d), then only the first term remains. If
also all eigenvalues are equal, then there is no loss difference and the estimation of the direction of
eigenvectors Ĥ does not matter since we are dealing with the isotropic case. However, for more
natural scenarios such as exponentially decaying eigenvalues, the eigenvalue difference is nonzero
and correct estimation of the eigenvectors Ĥ is crucial for a small loss difference. If we are dealing
with imperfect encoding, there is either an additional term due to misalignment of the estimated
eigenvalues (d̂ < d) or due to encoding of noise (d̂ > d). The proof is in Appendix F.1.
Theorem 2. Define a real t > 0, using Corollary 4.1 from Loukas (2017), and with k2j = sj(sj +
Tr(C)) from Corollary 4.3 in Loukas (2017), then we obtain the concentration inequality

P
(
L(Ĥ)− L(D) > t

)
≤

≤ 4

t np

min(d,d̂)∑
i=1

m∑
j=i+1

k2j
|si − sj |

+

d∑
i=d̂

m∑
j=1

k2j si

(si − sj)2
+

d̂∑
i=d

m∑
j=1

k2j sj

(si − sj)2

 .
(19)
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This theorem states, that in addition to the implications of Lemma 2, there are two main scenarios
where we obtain a lower right hand side and therefore tighter bound. 1) When the feature covariance
matrix has rapidly decaying eigenvalues, i.e. large |si − sj | ≥ 0, since j > i or 2) when we have
access to more pre-training samples np. The proof is in Appendix F.2.

Connection to the risk We define the risk between features x and outcomes y in the same way
as for the supervised case, see Lemma 1. The goal is to obtain asymptotic results for the risk for
different eigenvalue decays including our latent variable data generator. Xu & Hsu (2019) presents
asymptotic results for polynomial and more general eigenvalue decays in the PCA-regression model.
However, their analysis relies on the assumption that the eigenvectors are fully known, i.e. Ĥ⊤ =
D+, which is an unrealistic scenario.

A solution to resolve this condition is to estimate the eigenvectors Ĥ from unlabeled data {xi}.
But it is unclear under what conditions the estimate is sufficiently good. The eigenvector estimation
is precisely what is done during the pre-training step. Theorem 2 provides a sample complexity
for the eigenvector estimation quality and therefore provides the missing condition when the results
from Xu & Hsu (2019) hold in practice. Choosing t sufficiently small, we can quantify how many
samples are necessary for the estimated eigenvectors to be close to the true ones. Hence, we provide
conditions when the asymptotic risk results from Xu & Hsu (2019) can be used in practice.

However, if we do not have access to sufficiently many pre-training data samples, then we know that
our estimated eigenvectors Ĥ are misaligned. These eigenvectors will project the features into a
misaligned latent space ẑ. Finally, we perform linear regression from this misaligned space. Quan-
tifying the additional error on the overall risk for misaligned linear regression is an open problem.

5.3 NUMERICAL RESULTS

We present numerical results when using pre-training. We denote the relation of pre-training samples
to training samples as µ =

np

n with µ ≥ 1 as we could use the training data set also for pre-training.
We choose d = 20, r2θ = 1, σ2

y = 0, ρx = 1 and focus on d̂ = d as the effects of misspecified
models is equal as without pre-training and is elaborated in Section 4.2. Experiments to confirm this
behavior for pre-training are in Appendix G. We generate n= 200 training samples and np = nµ
pre-training samples by varying µ ∈ [1, 10] and average the computed risk over 100 realizations.
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Figure 5: Pre-training risk on latent variable data: simulation. On the x-axis we increase the
number of features m and therefore the degree of overparameterization γ. On the y-axis we increase
amount of pre-training np compared to training data n. Left: Risk for latent variable data generated
with feature covariance eigenvalue decay of α = 0. Right: Same setup but for α = 0.25.

In Figure 5 the risk for data with two different eigenvalue decay rates are depicted. We make three
main observations: 1) Horizontally for µ= const., in both plots the risk decreases similar to the
supervised case in Figure 3 and therefore follows Lemma 1. 2) Vertically for γ = const., in the
right plot (α = 0.25) the risk decreases as expected from Theorem 2 when using more pre-training
samples. The effect is most significant for large overparameterization γ. 3) Vertically for γ = const.,
in the left plot (α = 0), we notice that more pre-training data does not decrease the risk. Since we
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have perfect encoding d̂ = d and two blocks of constant eigenvalues, the eigenvector estimation is
by Lemma 2 almost perfect and barely improves with more pre-training, see Theorem 2. Therefore,
using more pre-training data does also not improve the overall risk. The observation supports our
finding that more pre-training data decreases the risk only if it improves the eigenvector estimation.
Hence, the eigenvalue distribution is crucial for the necessity of pre-training.

Figure 6 shows horizontal slices of Figure 5 (right) and compares it with fully supervised models. We
notice that all pre-trained models outperform the fully supervised models for γ > 1. Interestingly,
in the results for µ = 1 (blue ’×’) we use the same amount of data to learn the PCA np = n as in
the fully supervised case (black triangles). While for the pre-trained model we use a different data
set of the same size to learn the regression, we use use the exact same data in the supervised case.
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Figure 6: Pre-training risk for different µ:
simulation. Comparing horizontal slices of
Figure 5 (right, α = 0.25) for pre-trained
models with different amount of pre-training
data µ to 1) a fully supervised direct regres-
sion model and 2) a fully supervised PCA-
regression model, comparable to Figure 3.

6 CONCLUSION

Limitations Our proofs in the supervised case rely on random matrix theory for which we present
asymptotic results for isotropic data. However, it is not trivial to find solutions for the general case,
including our latent variable data generator, which requires more research. Similarly, it is an open
question how to obtain a closed form solution for the complete risk in the scenario with pre-training
based on eigenvector alignment which leads to our sample complexity bounds. Furthermore, while
we observe key phenomena for our real-world example, the data here is not approximately on a
low-dimensional manifold as our latent variable data generator and hence not fully comparable.

Supervised case Our theoretical analysis generalizes the results for linear regression (Hastie et al.,
2022) which is a special case of PCA-regression without dimensionality reduction (d̂ = m). In the
non-asymptotic regime, Huang et al. (2022) describe similar results and hence they independently
support our theory. Selecting the correct latent dimension d̂ for data from a low dimensional mani-
fold is crucial for the risk as Lemma 2 suggests. This is in line with the discovery of latent factors
in variational autoencoders from the disentanglement literature (Higgins et al., 2017; Kumar et al.,
2018). While our results that PCA mitigates the “interpolation peak” due to its regularizing behavior
may not surprise, they provide formal guarantees for the performance of a commonly used model
on real-world data structures. Practitioners can now rely on these fundamental guarantees for model
development, but more research is needed for general data structures.

Pre-training Our results from Figure 5 that a certain decay rate of the data covariance eigenvalues
is necessary for pre-training to have its expected effect (more pre-training data is better) may be
surprising at first. However, from Theorem 2 it becomes clear that more pre-training data only helps
to improve the eigenvector estimation. If however, the eigenvectors are already estimated perfectly
such as for two blocks of isotropic data (e.g. latent variable data with decay rate α = 0), then using
more pre-training data has no effect. Hence, we provide a fundamental insight into the mechanisms
of pre-training which highlight that we have to be aware of the data structure instead of following
the general philosophy of adding more pre-training data. Our results provide the missing link to
Xu & Hsu (2019) when their asymptotic generalisation results can be used in practice. We believe
that our simple PCA-regression model is suitable for extensive studies of pre-training phenomena.
Therefore, this study lays the groundwork for future research and opens up many questions.

9



Under review as a conference paper at ICLR 2023

REPRODUCIBILITY

Code for reproducibility is attached as Jupyter notebook in the supplementary material and will be
published online upon acceptance; all simulation parameters are explained in detail in the paper
and copied in the code. All of our numerical simulations are run on Intel Core i7-6850K CPUs @
3.60GHz in a matter of minutes. The computationally most heavy experiment is for pre-training
with large µ, see Figure 5 which takes for one run about 15 minutes for the fine-grained grid that we
show in the paper. Averaging over multiple runs for more accurate results increase the computational
cost linearly.
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A ADDITIONAL RELATED WORK

This section complements the related work in Section 2.

Overparameterization—additional related work While the double descent has been observed
in deep and state-of-the-art models (d’Ascoli et al., 2020; Nakkiran et al., 2021), most theoretical
studies focus on simple models: Examples are found for linear regression (Bartlett et al., 2020;
Muthukumar et al., 2020; Hastie et al., 2022), ensembles (LeJeune et al., 2020; Loureiro et al., 2021),
classification (Gerace et al., 2020; Wang et al., 2021; Deng et al., 2022), random features (Belkin
et al., 2019; Mei & Montanari, 2022) or small neural networks trained using gradient descent (Goldt
et al., 2019; Advani et al., 2020).

PCA-regression in applications The PCA-regression model is also known as principle compo-
nent regression (PCR) (Xu & Hsu, 2019) or PCA-OLS (Huang et al., 2022). The number of chosen
principal components or eigenvectors d̂ is subject to model selection, see for example Xu & Hsu
(2019) for an analysis if the true feature covariance matrix is fully known. Selecting d̂ is a crucial
step. While we do not specify how to select d̂, we discuss the implication of model misspecification
with d̂ ̸= d. When using a supervised setup as in Section 4, there are plenty examples when it comes
to use of PCA-regression models: Early work use the de-correlating property of PCA for their in-
puts in small scale examples (Massy, 1965). Tran et al. (2018) uses 10 years of data from Seoul to
analyse the impact of air pollution on the health of the population using PCA-regression. Wang &
Abbott (2008) makes use of PCA-regression for genetic association to determine genetic variants of
human diseases with a large number of features and few samples. Metwally (2008) uses the model
for spectrophotometry. When using pre-training as in Section 5, the PCA-regression model is a
simplified, linear surrogate for large, nonlinear encoder-decoder models. Examples in this setting
are is the transformer based BERT model (Devlin et al., 2019) or DALL-E Ramesh et al. (2021). In
these models, parts of the model are pre-trained on a large corpus on unlabeled data. The pre-trained
model can then be used by other developers to fine-tune or adapt the last layer, see Kumar et al.
(2022).
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B EIGENVALUE DISTRIBUTION OF REAL-WORLD DATA SETS

In Figure 7 we plot the eigenvalue distribution of four real-world data sets. Each of them has a low
number of significant eigenvalues with a sharp exponential decay. For some data sets such as e.g.
Steel Plates Fault there is even a low-dimensional data embedding up to about eigenvalue 12 visible.
All data sets except MNIST were downloaded from the UCI Machine Learning Repository (Dua &
Graff, 2017) through the OpenML interface.
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Figure 7: Eigenvalue distribution of real-world data sets. Top left: Distribution for MNIST digit
0 of the test data set (LeCun et al., 2010). Notice that many of the 784 eigenvalues are almost zero.
Top right: Complete features of the spambase data set from UCI (Dua & Graff, 2017). Bottom
left: Breastcancer data set from UCI (Dua & Graff, 2017). Bottom right: Steel-plates-fault data
set provided by Semeion, Research of Sciences of Communication, Via Sersale 117, 00128, Rome,
Italy.
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C DETAILS ON THE DATA GENERATOR

In this appendix we concentrate without loss of generality on the latent variable data generator with
orthogonal features introduced in (2) and (13). In matrix notation when collecting all features in
rows we can write the data generator as

X = ZD⊤ +ED⊤
⊥, (20)

y = Zθ + ε. (21)

Singular value and eigenvalue decomposition Approximating the data matrix with an estimated
singular values decomposition and reducing the rank to d̂ yields

X = ÛΣ̂V̂ ⊤, (22)

with estimated singular values Σ̂ = diag(σ̂1, . . . , σ̂d). Similarly we can define the eigenvalue
decomposition of the sample covariance matrix as

Ĉ =
1

n
X⊤X =

1

n
V̂ Σ̂⊤Σ̂V̂ ⊤ = V̂ ŜV̂ ⊤, (23)

with estimated eigenvalue matrix S = diag(ŝ1, . . . , ŝd).

Covariance matrices The feature covariance matrix can be written as

C = E
[
X⊤X

]
= [D D⊥]E

[[
Z⊤Z Z⊤E
E⊤Z E⊤E

]] [
D⊤

D⊤
⊥

]
= V SV ⊤, (24)

where V := [D D⊥] are the true eigenvectors—compare with the sample eigenvectors denoted
by V̂ . The eigenvalue matrix S can be written as

S = diag(s1, . . . , sm) = diag(λ1, . . . , λd, 1, . . . , 1) =

[
Λ 0
0 Im−d

]
. (25)

Signal-to-noise ratio control For the orthogonal latent variable data generator we can compute
the SNR ρx of the features as

ρx =
E
[
∥Dz∥22

]
E [∥ED⊥∥22]

=
Tr(DΛD⊤)

Tr(D⊥D⊤
⊥)

=
Tr(c2Λ)

m− d
, (26)

since Tr(DD⊤) = Tr(Im−d) and D⊤D = c2Id. Here c is a correction factor which controls the
SNR. We define is as

c =

√
ρx(m− d)

d

√
d

Tr(Λ)
. (27)

If non-orthogonal noise is used, then the first factor reduces to
√

ρxm/d.

In the same way, we can compute the SNR ρy of the outputs as

ρy =
E
[
∥θ⊤z∥22

]
E [∥ε∥22]

=
Tr(θ⊤Λθ)

σ2
y

=
r2θ
σ2
y

, (28)

with r2θ = 1 usually.

Implementation details for data generation For our latent variable orthogonal feature generator,
we generate the matrices D and D⊥ by first sampling an auxiliary random variable A ∈ Rm×d and
then orthogonalizing it with a QR-decomposition

Ai,j ∼ N (0, 1), (29)
QR = A, (30)
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where the columns of Q are orthogonal. Hence, we can define

D = cQ:d,:, (31)
D⊥ = Qd:,:, (32)

where the SNR-correction factor c is defined in (27).

In order to hold that E
[
∥θ⊤z∥22

]
= r2θ, we generate θ as

θ =

√
r2θd√

dTr(Λ)

1...
1


d

. (33)
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D PROOFS FOR THE SUPERVISED CASE

In this appendix we detail and proof the results shown in section 4.1. After stating some notation
and definition in D.1, we first show the result for the linear regression solution in D.2. Subsequently,
we will derive the result for the parameter norm in D.3 and its asymptotic in the isotropic case in
D.4. Finally, the result for the risk is proven in D.5 and its asymptotic in the isotropic case is derived
in D.6. For simplicity of notation, we will replace in the indices d̂ by d–it is clear from context that
we use d̂ for the estimated latent space and d for the true one.

D.1 GENERAL

Note on notation in main text While in the main paper for the derivation of the linear regression
solution in (8) we denote for simplicity the estimated singular value matrix of the data X as Σ̂, here
we are more precise. We distinguish between the case of γ > 1 with m > n (left) and the case of
γ < 1 with m < n (right)

Σ̂ =

 σ̂1 0
. . . 0

0 σ̂n

 ∈ Rn×m, Σ̂ =


σ̂1 0

. . .
0 σ̂m

0

 ∈ Rn×m. (34)

When truncating with d ≪ min(m,n) singular values, we obtain in both cases

Σ̂d =


σ̂1 0

. . .
0 σ̂d

0n−d×d

 ∈ Rn×d̂. (35)

In (8) we write Σ̂ instead of Σ̂d and Σ̂−1 instead of (Σ̂⊤
d Σ̂d)

−1Σ̂⊤
d in order to not overload notation

and simplify reading without harming the results. In the following we will use the notation with
subscript in order to highlight the zero rows or columns. Further, below we simplify the square
matrix with only the first d̂ singular values on the diagonal as Σ̂dd to indicate its dimensions.

Sample covariance matrix We can define the feature sample covariance matrix Ĉ ∈ Rm×m and
its Moore-Penrose pseudoinverse as

Ĉ =
1

n
X⊤X, Ĉ+ = n(X⊤X)+. (36)

Using the definition of the truncated SVD, we can rewrite the sample covariance as

Ĉ =
1

n
V̂ Σ̂⊤

d Û
⊤ÛΣ̂dV̂

⊤ =
1

n
V̂ Σ̂⊤

d Σ̂dV̂
⊤ =

1

n
V̂ Σ̂2

ddV̂
⊤ = V̂ ŜV̂ ⊤, (37)

Ĉ+ = n(V̂ Σ̂⊤
d Σ̂dV̂

⊤)+ = nV̂ (Σ̂⊤
d )

+Σ̂+
d V̂

⊤ = nV̂ Σ̂−2
dd V̂

⊤ = V̂ Ŝ−1V̂ ⊤. (38)
The above formulation also implies the following which will be useful

Σ̂−2
dd =

1

n
V̂ ⊤Ĉ+V̂ . (39)

D.2 LINEAR REGRESSION

We consider the unregularized linear regression solution between the latent variables Ẑ and the
outcome y:

θ̂ = (Ẑ⊤Ẑ)+Ẑ⊤y (40)

= (Σ̂⊤
d Û

⊤ÛΣ̂d)
+Σ̂⊤

d Û
⊤y (41)

with Û⊤Û = I and y = Xβ + ϵ

θ̂ = (Σ̂⊤
d Σ̂d)

+Σ̂⊤
d Û

⊤(Xβ + ϵ) (42)

= (Σ̂⊤
d Σ̂d)

+Σ̂⊤
d Σ̂V̂ ⊤β + (Σ̂⊤

d Σ̂d)
+Σ̂⊤

d Û
⊤ϵ (43)
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Where we used X = ÛΣ̂V̂ ⊤. Now we combine the singular value matrices. We indicate dimen-
sions of combined matrices. Note that Σ̂d and Σ̂ are of different sizes.

θ̂ =


1
σ̂2
1

0

. . .
0 1

σ̂2
d


d×d

 σ̂2
1 0

. . . 0
0 σ̂2

d


d×m

V̂ ⊤β +

+


1
σ̂1

0
. . . 0

0 1
σ̂d


d×n

Û⊤ϵ

(44)

= [Id 0] V̂ ⊤β +
[
Σ̂−1

dd 0
]
Û⊤ϵ (45)

Summarizing the matrices by truncating V̂ ⊤ and Û⊤ yields the following solution for the regression
parameter estimation

θ̂ = V̂ ⊤
d β + Σ̂−1

dd Û
⊤
d ϵ (46)

D.3 PARAMETER NORM

Here, we prove the parameter norm part of Lemma 1.

Proof. In order to evaluate the parameter norm ∥θ̂∥22 = θ̂⊤θ̂, we consider

θ̂⊤θ̂ = β⊤V̂ V̂ ⊤β +Tr(ϵ⊤ÛΣ̂−1
dd Σ̂

−1
dd Û

⊤ϵ) + 2β⊤V̂ Σ̂−1
dd Û

⊤ϵ (47)

where the second term is scalar and hence equal to its trace. Now, we can make use of the cyclic
property of the trace. Furthermore, define Φ := V̂ V̂ ⊤ as an orthogonal projector.

θ̂⊤θ̂ = β⊤Φβ +Tr(Û⊤ϵϵ⊤ÛΣ̂−2
dd ) + 2β⊤V̂ Σ̂−1

dd Û
⊤ϵ (48)

Note that the properties of the orthogonal projector with Φ⊤ = Φ and ΦΦ = Φ hold for our
definition.

We take the expectation with respect to the noise

Eϵ

[
θ̂⊤θ̂

]
= β⊤Φβ +Tr(Û⊤Eϵ

[
ϵϵ⊤

]
ÛΣ̂−2

dd ) (49)

= β⊤Φβ + σ2
ε Tr(Û

⊤ÛΣ̂−2
dd ) (50)

= β⊤Φβ + σ2
ε Tr(Σ̂

−2
dd ) (51)

using (39) we can write

Eϵ

[
θ̂⊤θ̂

]
= β⊤Φβ +

σ2
ϵ

n
Tr(V̂ ⊤Ĉ+V̂ ) (52)

The second term uses the sample covariance matrix Ĉ projected down on the d̂ dimensional eigen-
vector space using V̂ .

D.4 LIMITING PARAMETER NORM FOR ISOTROPIC FEATURES

Here, we prove the parameter norm part of Theorem 1.

Proof. We can analyze the two terms in (52) independently in the limit of m,n → ∞ such that
m
n → γ ∈ (0,∞) almost surely. Furthermore we assume isotropic features Cov(xi) = C = Im.
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First term We can write with the definition of our orthogonal projector.

β⊤Φβ = β⊤V̂ V̂ ⊤β (53)

We can write V̂ ⊤ with the SVD definition as V̂ ⊤ = Σ̂+
d Û

⊤X which yields

β⊤Φβ = β⊤X⊤ÛΣ̂+⊤
d Σ̂+

d Û
⊤Xβ (54)

For the special case of i.i.d. matrix entries xi ∼ N (0, 1) we have by rotational invariance that the
distribution of X and XP are equal for any orthogonal P ∈ Rm×m

β⊤Φβ = β⊤P⊤X⊤ÛΣ̂+⊤
d Σ̂+

d Û
⊤XPβ (55)

Choose P such that Pβ = βei with ei as the ith normal vector and then average over i = 1, . . . ,m

β⊤Φβ = β⊤βTr(X⊤ÛΣ̂+⊤
d Σ̂+

d Û
⊤X)/m (56)

Now use again the definition of X = ÛΣ̂V̂ ⊤ yields

β⊤Φβ = β⊤βTr(V̂ Σ̂⊤Û⊤ÛΣ̂+⊤
d Σ̂+

d Û
⊤ÛΣ̂V̂ ⊤)/m (57)

= β⊤βTr(V̂ Σ̂⊤Σ̂+⊤
d Σ̂+

d Σ̂V̂ ⊤)/m (58)

Using the same arguments as for the linear regression parameter solution by combining the singular
value matrices, we obtain

β⊤Φβ = β⊤βTr(V̂ V̂ ⊤)/m (59)

Here we again identify our orthogonal projector Φ

= β⊤βTr(Φ)/m (60)

Since Φ is symmetric positive definite and since its components V̂ are orthogonal, all eigenvalues
of Φ are equal to one, yielding

β⊤Φβ = β⊤β rank(Φ)/m (61)

For m/n → γ we have to distinguish between γ < 1 and γ > 1. Therefore, we obtain the final
version for the first term of the limiting parameter norm:

β⊤Φβ =

{
β⊤βmin(d̂,m)/m for γ < 1

β⊤βmin(d̂, n)/m for γ > 1
(62)

Checking the results with considering all principal components, i.e. choosing d̂ = m (with m > n
for γ > 1), we obtain

β⊤Φβ =

{
β⊤β for γ < 1

β⊤β 1
γ for γ > 1

which is the same results as for the case of direct regression between X and y.

Second term For the second term of the parameter norm we can write the trace as the sum over
the eigenvalues si of Ĉ but limited to the first d̂ eigenvalues due to the projection using V̂

σ2
ϵ

n
Tr(V̂ ⊤Ĉ+V̂ ) = σ2

ϵ

1

n

d̂∑
i=1

1

si
(63)

= σ2
ϵ

m

n

∫ ∞

sf

1

s
dFĈ(s) (64)

where the summation is rewritten as integral over the spectral measure FĈ of Ĉ as and sf is the d̂

largest eigenvalue of Ĉ. We know that in the limit m,n → ∞ the spectral measure will almost surely
converge to the Marčenko-Pastur distribution Fγ which describes the distribution of the eigenvalues
of Ĉ

σ2
ϵ

n
Tr(V̂ ⊤Ĉ+V̂ ) → σ2

ϵ

m

n

∫ ∞

sf

1

s
dFγ(s) (65)
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There are now two steps to solve this integral. First, we need to find out the lower integral bound
sf and second, solve the integral itself. For sf = −∞, one can use the closed form solution of the
Stieltjes transformation f(z) of the Marčenko-Pastur distribution and evaluate it at z = 0. However,
there is no known closed form solution for general sf . We therefore solve this part numerically.

Step 1 obtain the lower bound sf : We can view the spectral measure as FΣ̂ as a series of m impulses
at si with magnitude 1/m because the sum is normalized to 1. Since we only consider the d̂ largest
eigenvalues, we know that their sum is d̂/m, see Figure 8a. This sum is the same as the integral from
sf over the Marčenko-Pastur distribution, see Figure 8b. Therefore we can find the lower integral
bound sf by solving

d̂

m
=

∫ ∞

sf

dFγ(s) (66)

=

∫ s+

sf

1

2π

√
(s+ − s)(s− s−)

γs
ds (67)

for sf numerically with s± = (1 ± √
γ)2 where s± is the lowest/highest eigenvalue. Note that

s ∈ [s−, s+].

Step 2 solve integral of interest: Now we can solve the integral in (65) numerically from sf to
the upper bound s+. Therefore, we obtain a solution for the second term, which is not based on
data but the properties of our data matrix, especially γ and d̂. This concludes the full proof for the
asymptotics of the parameter norm.

R

FΣ̂

s1

1
m

s2

1
m

. . .

1
m

sm−d̂

1
m

. . .

1
m

sm

1
m

sf

(a)

s

Fγ(s)

sf

d̂
m

(b)

Figure 8: Visualization of steps for variance term derivation. (a) spectral measure impulses and
and lower integral bound of integral sf . (b) Marčenko-Pastur distribution (Marčenko & Pastur,
1967) for γ = 0.3 with specific lower integration bound. The area under the distribution from that
threshold is equal to d̂/m.

D.5 RISK

Here, we prove the risk part of Lemma 1.

Proof. We define the risk as the expectation over the mean squared error, and then use y0 = β⊤x0+

ϵ, ŷ(x0) = θ̂⊤ẑ and ẑ = V̂ ⊤x0 to obtain

R(θ̂) = E(x0,y0)

[
(y0 − ŷ(x0))

2
]

(68)

= Ex0

[
(β⊤x0 + ϵ− ŷ(x0))

2
]

(69)

= Ex0

[
(β⊤x0 + ϵ− θ̂⊤ẑ)2

]
(70)

= Ex0

[
(β⊤x0 + ϵ− θ̂⊤V̂ ⊤x0)

2
]

(71)

= Ex0

[
((β − V̂ θ̂)⊤x0 + ϵ)2

]
(72)

= (β − V̂ θ̂)⊤C(β − V̂ θ̂) + ϵϵ⊤ (73)
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For simplicity we first rephrase the term in the bracket using the solution of the regression parameter
estimation in (46). We re-use our orthogonal projector Φ = V̂ V̂ ⊤ and define another orthogonal
projector with Π = Im −Φ to obtain

β − V̂ θ̂ = β − V̂ (V̂ ⊤β + Σ̂−1
dd Û

⊤ϵ) (74)

= β − V̂ V̂ ⊤β − V̂ Σ̂−1
dd Û

⊤ϵ (75)

= (Im −Φ)β − V̂ Σ̂−1
dd Û

⊤ϵ (76)

= Πβ − V̂ Σ̂−1
dd Û

⊤ϵ (77)

Now we use this expression to take the expectation of the risk with respect to the noise. This yields

Eϵ

[
R(θ̂)

]
= β⊤ΠCΠβ + Eϵ

[
Tr(ϵ⊤ÛΣ̂−1

dd V̂
⊤CV̂ Σ̂−1

dd Û
⊤ϵ)

]
+ Eϵ

[
ϵϵ⊤

]
(78)

Here we made use of the Trace since the expression is scalar. Hence, we can use the cyclic property
of the trace and pull the expectation inside

= β⊤ΠCΠβ +Tr(V̂ ⊤CV̂ Σ̂−1
dd Û

⊤Eϵ

[
ϵϵ⊤

]
ÛΣ̂−1

dd ) + Eϵ

[
ϵϵ⊤

]
(79)

with Eϵ

[
ϵϵ⊤

]
= σ2

ϵ and Û⊤Û = I

= β⊤ΠCΠβ + σ2
ϵ Tr(V̂

⊤CV̂ Σ̂−2
dd ) + σ2

ϵ (80)

using (39) for Σ̂−2
dd

= β⊤ΠCΠβ +
σ2
ϵ

n
Tr(V̂ ⊤CV̂ V̂ ⊤Ĉ+V̂ ) + σ2

ϵ (81)

Again, similarly to the parameter norm, the second term here uses the covariance matrices projected
onto the d̂ dimensional eigenvector space.

D.6 LIMITING RISK FOR ISOTROPIC FEATURES

Here, we prove the risk part of Theorem 1.

Proof. Since we use isotropic features, we have C = Im. Similar to the limiting parameter norm
we split the analysis for the two first parts of (81).

First term: limiting bias Using isotopic features and the definition of the orthogonal projector,
we have

β⊤ΠCΠβ = β⊤Πβ (82)

= β⊤(Im − V̂ V̂ ⊤)β (83)

now we can use the same arguments as for the first term in the parameter norm. Namely, rewrite
V̂ ⊤ = Σ̂+

d Û
⊤X in terms of X , assume xi ∼ N (0, 1) and by rotation invariance the distribution of

X and XP are equal, where P is any orthogonal matrix. Then we choose Pβ = βei and average
over all i = 1, . . . ,m.

= β⊤
(
Im − P⊤X⊤ÛΣ̂+⊤

d Σ̂+
d Û

⊤XP
)
β (84)

= β⊤β
(
1− Tr(X⊤ÛΣ̂+⊤

d Σ̂+
d Û

⊤X)/m
)

(85)

= β⊤β
(
1− Tr(V̂ V̂ ⊤)/m

)
(86)

= β⊤β (1− Tr(Φ)/m) (87)

= β⊤β (1− rank(Φ)/m) (88)
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in the limit of m,n → ∞ we have m
n → γ almost surely. We therefore obtain the final solution for

the limiting bias as

β⊤ΠCΠβ =

β⊤β
(
1−min(d̂,m)/m

)
for γ < 1

β⊤β
(
1−min(d̂, n)/m

)
for γ > 1

(89)

Again, checking the results with considering all principal components, i.e. choosing d̂ = m (with
m > n for γ > 1), we obtain

β⊤Φβ =

{
0 for γ < 1

β⊤β
(
1− 1

γ

)
for γ > 1

which is the same results as for the case of direct regression between X and y.

Second term: limiting variance Using isotropic features we have

σ2
ϵ

n
Tr(V̂ ⊤CV̂ V̂ ⊤Ĉ+V̂ ) =

σ2
ϵ

n
Tr(V̂ ⊤Ĉ+V̂ ) (90)

this is the same form as the second term for the parameter norm and therefore yields the same
numeric solution by solving

σ2
ϵ

n
Tr(V̂ ⊤CV̂ V̂ ⊤Ĉ+V̂ ) = σ2

ϵ

m

n

∫ ∞

sf

1

s
dFγ(s) (91)
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E ADDITIONAL NUMERICAL RESULTS FOR SUPERVISED CASE

E.1 ISOTROPIC DATA: BIAS-VARIANCE DECOMPOSITION

In Figure 9 we extend Figure 2. We additionally show the results for the PCA-regression model with
d̂ = m, which corresponds to a PCA without compression and therefore a direct regression between
input x and output y. We compare the analytical results from Theorem 1 of the PCA-model to 1) the
direction regression model from simulations (solid line) and 2) the analytical solution for direct
regression of isotropic data from Hastie et al. (2022). The authors give the solution for the risk in
their Lemma 1 and we derive the parameter norm in the same way:

Eϵ

[
R(θ̂)

]
→ σ2

ϵ +

{
0 + σ2

ϵ
γ

1−γ for γ < 1

β⊤β
(
1− 1

γ

)
+ σ2

ϵ
1

γ−1 for γ > 1
, (92)

Eϵ

[
∥θ̂∥22

]
→

{
β⊤β + σ2

ϵ
γ

1−γ for γ < 1

β⊤β 1
γ + σ2

ϵ
1

γ−1 for γ > 1
, (93)

We see in Figure 9 that the theory form Hastie et al. (2022) for direct regression, the numerical
results for direct regression and our PCA-regression results without compression (d̂ = m) match
and therefore further support our theory.
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Figure 9: Supervised results on isotropic data: analysis. We compare analytical solutions from
Theorem 1 for the PCA-regression without compression (d̂ = m) with 1) analytical solution for
direct regression and 2) simulations for direct regression

Complementary to Figure 2, we can decompose the risk and parameter norm according to Theorem 1
in a bias and variance term. The results for this decomposition are shown in Figure 10. We can see
that the bias term is nonzero for all γ and increases for larger γ. Further, we observe a decrease of
the variance term. In contrast, in the direct regression model, the variance term reaches a peak at
γ = 1 and therefore forms the classical bias-variance decomposition trade-off for γ < 1.
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Figure 10: Bias-variance decomposition of supervised results on isotropic data: analysis. Same
as Figure 2 but decomposed in the bias and variance terms of Theorem 1. In all plots the direct
regression results are given as comparison. Left: Risk. Right: Parameter norm. Top: Bias terms.
Bottom: Variance terms.

E.2 LATENT VARIABLE DATA

Complementary result for parameter norm Complementary to the results of the risk for α = 0
and α = 0.25 in Figure 3, we show the results for the parameter norm in Figure 11. We observe
that similarly to the isotropic case, the parameter norm decreases monotonically for larger γ. This
indicates simpler solution for larger γ also in the latent variable data case.
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Figure 11: Supervised parameter norm on latent variable data: simulation. Left: Parameter
norm of models for data generated with α = 0. Right: Equivalent results with α = 0.25. This figure
complements Figure 3
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Varying noise levels In Figure 12 we show the results for risk and parameter norm for different
values of σ2

y . In the main text we only present results for σ2
y = 0 but the results here show that

our conclusion hold also for additive output noise. Of course, the associated risk increases with the
noise level but interestingly, the found solution as the same parameter norm.
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Figure 12: Supervised results for different σ2
y: simulation. We have the same experimental setup

as in Figure 3 with α = 0 but vary the amount of output noise. Full lines show the PCA-model with
d̂ = d; dashed lines show the direct regression model for the specific noise level.

Details of phenomenon for α > 0 In Figure 3 one could observe for α > 0 that for a certain
range of γ > 1, the optimal PCA-regression model is worse than the direct regression model. We
investigated the details of this observation in the following ways, which we visualized in Figure 13:

1. We increased the range of γ for higher values. Doing so, we can observe that results for
direct regression (dashed line) and the PCA-regression model (×-marks) converge again.

2. We conduct more experiments with a wider range of values for α. In all tested values, the
same phenomenon is visible.

3. Analysing the uncertainty of our risk estimates over the 200 averaged simulations, we note
that the difference lies within the standard deviation of our risk estimates. This originates
from the limited number of test samples (=400) to estimate the risk.

Therefore, we conclude that this phenomenon is an artifact of our experimental setup.
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Figure 13: Supervised risk on latent variable data: simulation. Top row is a repetition of Fig-
ure 3. Remaining rows are for higher values of α = {0.5, 1, 1.5}.

E.3 CONNECTION TO RIDGE REGRESSION

In the main paper, we focused on the unregularized linear regression problem. In this part we
compare the PCA-regression model with the regularized Ridge regression solution and λ as the
Ridge parameter

θ̂ = (X⊤X + λIm)+X⊤y. (94)

In the first part, we look at isotropic data where we have analytical solution. In the second part we
compare numerical simulation for the latent variable data generator.

E.3.1 ISOTROPIC DATA

For isotropic data we can compare the results from Theorem 1 for the asymptotic risk in the PCA-
regression model with Ridge regression. Corollary 6 in Hastie et al. (2022) provides asymptotic
results of Ridge regression for isotropic data. For completeness we state the asymptotic Ridge
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result:

Eϵ

[
R(θ̂λ)

]
→ β⊤βλ2m′(−λ) + σ2

ϵγ (m(−λ)− λm′(−λ)) + σ2
ϵ , (95)

with m(z) =
1−γ−z−

√
(1−γ−z)2−4γz

2γz and m′(z) as the derivative w.r.t z. The optimal Ridge regu-
larization is achieved at λ∗ = σ2

ϵγ/β
⊤β which then yields the optimal risk

Eϵ

[
R(θ̂λ∗)

]
→ σ2

ϵγm(−λ∗) + σ2
ϵ . (96)

Note that the optimal Ridge regularization strength is a function of γ and monotonically increases
with γ. Optimal regularization is not achieved by a single regularization value.

Figure 14 visualizes the comparison of the analytical solutions. The lowest risk for all γ is obtained
for the optimal Ridge regression solution. Comparing the solutions from Ridge regularization with
different λ with the solution from PCA-regression with different choices of d̂ shows qualitative
different behavior for isotropic data. While Ridge regression smoothens out the interpolation peak
of direct regression with well tuned λ, for PCA-regression we require a sufficiently large amount of
eigenvectors, i.e. large d̂ to obtain a risk lower than the null risk. Overall, optimally tunes Ridge
regression outperforms PCA-regression for all γ.
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Figure 14: PCA-regression comparison with ridge regression for isotropic data: analysis. Solid
lines depict the Ridge regularized models. Note that the red solid line with very low λ is equal to the
unregularized direct regression. Dashed lines depict the analytical PCA-regression model results.

E.3.2 LATENT VARIABLE DATA GENERATOR

In this setting, we use the latent variable data generator without eigenvalue decay (α = 0) and
compare our PCA-regression model without model misspecifications, i.e. d̂ = d, to solutions using
different Ridge parameters. We rely on numerical solutions in this section. The results are in Fig-
ure 15. While for isotropic data, the comparison between both models shows qualitative different
behavior, here for the latent variable data the results indicate a clear connection between both models
for large values of λ. This observation is theoretically justified from the known relationship of both
methods on the eigenvalues. Ridge regression lifts all eigenvalues S of the features by a value of λ

X⊤X + λIm = V ⊤(S + λId)V . (97)

Here, V are the true, non-truncated eigenvectors. In contrast, the PCA-regression model cuts the
eigenvalues off at a threshold chosen by d̂, which is clear in (7). The main difference is that with
ridge regression, there is a smooth change of the risk controlled by the ridge parameter whereas with
PCA-regression there is a hard cut-off.

Figure 15 may imply that the optimal Ridge penalty is at λ → ∞ as it avoids the interpolation
peak at no additional cost. Previous studies have concluded that finite Ridge regularization is better.
Gerace et al. (2020) uses the hidden manifold model from Goldt et al. (2020) and Mei & Montanari
(2022) use random features model by Rahimi & Recht (2007) which can be seen as a two-layer
neural network. Both studies conclude that finite λ achieves optimal regularization. However, we
are working with linearly separable data, which is closer to the latent space model in Hastie et al.
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(2022). The difference to our setup is, that for us both, the data generating process and the PCA-
regression model have a low-dimensional embedding. The conclusion in Hastie et al. (2022) that
the best Ridge regularization is λ = 0 and achieved in γ > 1 may hold for us as well but is difficult
to proof with our numerical results in Figure 15.

Optimal penalty at λ → ∞ for Ridge regularized problems was also observed in previous studies
with different setups to ours. Both Mignacco et al. (2020) and Loureiro et al. (2021) study the
classification of high-dimensional (isotropic) Gaussian-mixtures of balanced data from each mixture
and show that large λ are necessary to reach the Bayes-optimal performance. Thrampoulidis et al.
(2020) studies a similar model for the classification of Gaussian mixtures as well as for a multinomial
logit model where they identify that the class averaging algorithm, which is equal to Ridge regression
with λ = ∞, performs optimal in some settings.
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Figure 15: PCA-regression comparison with ridge regression for latent variable data: simu-
lation. We highlight the similarity of the results obtained with large ridge parameter to our PCA-
regression model. Left: Risk. Right: Parameter norm.

E.4 REAL-WORLD EXAMPLE: GENETICS

Background The Diverse MAGIC Wheat data set1 is based on 16 founding wheat varieties which
were listed between 1935 and 2004. These varieties were interbred to obtain new wheat varieties.
From the resulting wheat types the genome of total of 502 wheats were sequenced. This genome
sequence consists of ≈ 1.1 M single nucleotide polymorphisms. Furthermore, phenotypes of the
502 wheat types were analysed, see Scott et al. (2021).

Data processing The genotypes consist of binary features. The binary variables represent equality
or difference to a reference genotype. The phenotypes are real-values variables. We choose the phe-
notype column named ’HET 2’ in this example. Missing values for both, genotype and phenotype
are replaced with the mean value of the variable. We select a subset of genotypes as inputs randomly
at uniform to obtain the necessary m features. Then, we normalize both, genotype and phenotype
by z-transformation.
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10−1

100

101

Genetics data set

Figure 16: Eigenvalue distribution of the Di-
verse MAGIC Wheat genetics data set.

Data analysis In Figure 16 we plot the eigen-
value distribution for the Diverse MAGIC Wheat
data set, similar to the ones in Appendix B. We
observe that the eigenvalue distribution is heavy
tailed. It does not depict a clear example of a
low dimensional latent manifold. Therefore, us-
ing the PCA-regression model will discard some
useful information similar to the isotropic case.

1http://mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/
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F PROOFS FOR THE CASE WITH PRE-TRAINING

This appendix derives and proofs the results of section 5.2. First, we derive the results for the
estimation of the eigenvectors with the PCA loss in F.1. Then, we show derive the concentration
inequality for the PCA loss in F.2.

F.1 ESTIMATION OF EIGENVECTORS

Here, we prove Lemma 2 for the loss difference for the projection into the true or estimated latent
space from (18). We will look at both losses induced by the two projections separately,

Proof. First, define the loss for the projection into the true latent space as in (16)

L(D) = E
[
∥x∥22 − ∥D+x∥22

]
. (98)

We can write the second term as the following where we use the cyclic property of the trace on
scalars and apply the expectation on xx⊤

E
[
∥D+x∥22

]
= E

[
x⊤(D+)⊤D+x

]
(99)

= E
[
Tr(x⊤(D+)⊤D+x)

]
(100)

= Tr(D+V SV ⊤(D+)⊤) (101)

Since V = [D D⊥] defined in (24), we obtain

E
[
∥D+x∥22

]
= Tr

(
[Id 0d×m−m]S

[
Id

0m−m×d

])
(102)

= Tr(Λ) =

d∑
i=1

si (103)

Hence, the loss L(D) becomes

L(D) =

m∑
i=1

si −
d∑

i=1

si =

m∑
i=d+1

si =

m∑
i=d+1

si (104)

Second, define the loss for the projection into the estimated latent space as in (17)

L(Ĥ) = E
[
∥x∥22 − ∥Ĥ⊤x∥22

]
. (105)

Again, we can write the second term as the following by using the same arguments as for the first
term

E
[
∥Ĥx∥22

]
= Tr(Ĥ⊤V SV ⊤Ĥ) =

d̂∑
i=1

m∑
j=1

(ĥ⊤
i vj)

2sj . (106)

The last equality holds by switching to vector notation where factors can be combined to squared
terms. Hence, the loss L(Ĥ) becomes

L(Ĥ) =

m∑
i=1

si −
d̂∑

i=1

m∑
j=1

(ĥ⊤
i vj)

2sj . (107)

Combining both solutions, the loss difference yields

L(Ĥ)− L(D) =

m∑
i=d+1

si −
m∑
i=1

si +

d̂∑
i=1

m∑
j=1

(ĥ⊤
i vj)

2sj (108)

=

d∑
i=1

si +

d̂∑
i=1

m∑
j=1

(ĥ⊤
i vj)

2sj (109)
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We can multiply the first term by 1 = ∥vj∥22 = v⊤
j Ivj = v⊤

j ĥiĥ
⊤
i vj = ∥ĥ⊤

i vj∥22,

L(Ĥ)− L(D) =

d∑
i=1

(ĥivj)
2si +

d̂∑
i=1

m∑
j=1

(ĥ⊤
i vj)

2sj (110)

Now we can combine terms but have to be careful due to different end indices of the sum

L(Ĥ)− L(D) =


∑d̂

i=1

∑m
j=1(ĥ

⊤
i vj)

2(si − sj) +
∑d

i=d̂ si for d̂ < d∑d̂
i=1

∑m
j=1(ĥ

⊤
i vj)

2(si − sj) for d̂ = d∑d
i=1

∑m
j=1(ĥ

⊤
i vj)

2(si − sj) +
∑d̂

i=d

∑m
j=1(ĥ

⊤
i vj)

2sj for d̂ > d

(111)
which we can combine into

L(Ĥ)− L(D) =

min(d,d̂)∑
i=1

m∑
j=1

(ĥ⊤
i vj)

2(si − sj) +

d∑
i=d̂

si︸ ︷︷ ︸
=0 for d̂≥d

+

d̂∑
i=d

m∑
j=1

(ĥ⊤
i vj)

2sj︸ ︷︷ ︸
=0 for d̂≤d

. (112)

which concludes the proof.

F.2 CONCENTRATION INEQUALITY

Here, we prove the concentration inequality presented in Theorem 2.

Proof. Write the loss difference (18) with the same argument as in its derivation by including the
factor ∥vj∥22 = 1 to the second summation yields

L(Ĥ)− L(D) =

min(d,d̂)∑
i=1

m∑
j=1

(ĥ⊤
i vj)

2(si − sj) +

d∑
i=d̂

m∑
j=1

(ĥ⊤
i vj)

2si +

d̂∑
i=d

m∑
j=1

(ĥ⊤
i vj)

2sj

(113)
Notice that si − sj ≥ 0 for j > i and si − sj ≤ 0 for j < i. Therefore, we can upper bound it by
removing the negative indices from the first summation

L(Ĥ)− L(D) ≤
min(d,d̂)∑

i=1

m∑
j>i

(ĥ⊤
i vj)

2|si − sj |+
d∑

i=d̂

m∑
j=1

(ĥ⊤
i vj)

2si +

d̂∑
i=d

m∑
j=1

(ĥ⊤
i vj)

2sj (114)

We simplify by denoting the three terms as

L(Ĥ)− L(D) = a+ b+ c (115)
Now we define the probability that this upper bound on the loss difference is larger than a chosen
real t. We can upper bound this expression by applying the union bound

P (a+ b+ c > t) ≤ P (a > t) + P (b > t) + P (c > t) (116)

Recall Corollary 4.1 from Loukas (2017): We have that for any weights wij and real t > 0 that

P

∑
i̸=j

wij(ĥ
⊤
i vj)

2 > t

 ≤
∑
i̸=j

4wijk
2
j

npt(si − sj)2
(117)

where k2j = E
[
∥xx⊤vj∥22

]
− s2j and wij ̸= 0 when si ̸= sj and sgn(si − sj)2si > sgn(si −

sj)(si + sj).

In accordance with this Corollary, we define

wij =


|si − sj | for i ≤ min(d, d̂), j > i

si for d̂ ≤ i ≤ d,∀j
sj for d ≤ i ≤ d̂,∀j
0 otherwise

(118)
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Hence, we obtain

P
(
L(Ĥ)− L(D) > t

)
≤

≤ 4

t np

min(d,d̂)∑
i=1

m∑
j=i+1

k2j
|si − sj |

+

d∑
i=d̂

m∑
j=1

k2j si

(si − sj)2
+

d̂∑
i=d

m∑
j=1

k2j sj

(si − sj)2

 ,
(119)

with k2j = sj(sj +Tr(C)) from Corollary 4.3 in Loukas (2017). This Corollary holds for our latent
variable data generator. This concludes the proof.
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G ADDITIONAL NUMERICAL RESULTS FOR THE CASE WITH PRE-TRAINING

While in Section 5.3 we concentrate on the well specified case with d̂ = d, here we show the
effect of model misspecification. Specifically for the same data generator with d = 20 we choose
d̂ = {15, 20, 40}. The results for the full risk over all µ is in Figure 17 and slices of this figure are
in Figure 18. We can observe a qualitatively similar behavior to model misspecification as when
we train fully supervised, see Section 4.2 or Figure 3: For d̂ < d, the risk is high and does not
decrease significantly for larger γ. For d̂ ≥ d, the risk decreases as expected. Therefore, from our
observations the conclusions for model misspecification from the supervised case translates to the
case with pre-training.
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Figure 17: Pre-training risk on latent variable data: simulation. We use the latent variable data
generator with d = 20. In this simulations we show the effect of model misspecification. Left: Risk
for data with feature covariance eigenvalue decay of α = 0. Right: Same setup but for α = 0.25.
Top row: d̂ < d. Middle row: d̂ = d. This is a repetition of Figure 5. Bottom row: d̂ > d.
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Figure 18: Pre-training risk for different horizontal slices of Figure 17: simulation. Left: Risk
for data with feature covariance eigenvalue decay of α = 0. Right: Same setup but for α = 0.25.
Top row: d̂ < d. Middle row: d̂ = d. Bottom row: d̂ > d. The middle right figure is a repetition of
Figure 6.
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