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ABSTRACT

Explaining Graph Neural Network (XGNN) has gained growing attention to facili-
tate the trust of using GNNs, which is the mainstream method to learn on graph
data. Existing XGNNs focus on improving the explanation performance, and their
robustness under attacks is largely unexplored. We noticed that an adversary can
slightly perturb the graph structure such that the explanation result of XGNNs is
largely changed. Such vulnerability of XGNNs could cause serious issues par-
ticularly in safety/security-critical applications. In this paper, we take the first
step to study the robustness of XGNNs against graph perturbation attacks, and
propose XGNNCert, the first provably robust XGNN. Particularly, our XGNNCert
can provably ensure the explanation result for a graph under the worst-case graph
perturbation attack is close to that without the attack, while not affecting the GNN
prediction, when the number of perturbed edges is bounded. Evaluation results on
multiple graph datasets and GNN explainers show the effectiveness of XGNNCert.

1 INTRODUCTION

Explainable Graph Neural Network (XGNN) has emerged recently to foster the trust of using GNNs—
it provides a human-understandable way to interpret the prediction by GNNs. Particularly, given a
graph and a predicted node/graph label by a GNN, XGNN aims to uncover the explanatory edges
(and the connected nodes) from the raw graph that is crucial for predicting the label (see Figure 1(a)
an example). Various XGNN methods (Ying et al., 2019; Luo et al., 2020; Yuan et al., 2021; Zhang
et al., 2022; Wang & Shen, 2023; Vu & Thai, 2020) have been proposed from different perspectives
(more details see Section 5) and they have also been widely adopted in applications including disease
diagnosis (Pfeifer et al., 2022), drug analysis (Yang et al., 2022; Wang et al., 2023b), fake news
spreader detection (Rath et al., 2021), and molecular property prediction Wu et al. (2023).

While existing works all focus on enhancing the explanation performance, the robustness of XGNN
is largely underexplored. Two recent works (Li et al., 2024a;b) observed that the well-known XGNN
methods (e.g., GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020)) are vulnerable to
graph perturbation attacks—Given a graph, a GNN model, and a GNN explainer, an adversary can
slightly perturb a few edges such that the GNN predictions are accurate, but the explanatory edges
outputted by the GNN explainer is drastically changed in the perturbed graph. This attack could
cause serious issues in the safety/security-critical applications such as drug analysis. For instance,
Wang et al. (2023b) designs an XGNN tool (called Drug Explorer) for drug repurposing (reuse
existing drugs for new diseases), where users input a drug graph and the tool outputs the visualized
explanation result (i.e., important chemical structure) useful for curing the diseases. If such tool is
misled on adversarial purposes (i.e., an adversary inputs a carefully designed perturbed graph), it
may recommend invalid drugs with harmful side-effects. Therefore, it is crucial to design defenses
for GNN explainers against these attacks.

Generally, defense strategies can be classified as empirical defense and certified defense. Empirical
defenses often can be broken by stronger/adaptive attacks, as verified in many existing works on
defending against adversarial examples (Carlini et al., 2019) and adversarial graphs (Mujkanovic
et al., 2022). We notice two empirical defense methods (Bajaj et al., 2021; Wang et al., 2023c)
have been proposed to robustify XGNNs against graph perturbations. Likewise, we found they are
ineffective against stronger attacks Li et al. (2024a) (see Table 4). In this paper, we hence focus
on designing certified defense for XGNNs against graph perturbation attacks. An XGNN is said
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certifiably robust against a bounded graph perturbation if, for any graph perturbation attack with
a perturbation budget that does not exceed this bound, the XGNN consistently produces the same
correct explanation (formal definition is in Definition 1). There are several technical challenges. First,
GNN explanation and GNN classification are coupled in XGNNs. Robust GNN classifiers do not
imply robust GNN explainers, and claiming robust explanations without correct GNN classification
is meaningless1. It is thus necessary to ensure both robust GNN classification and robust GNN
explanation. Second, there is a fundamental difference to guarantee the robustness of GNN classifiers
and GNN explainers. This is because GNN classifiers map a graph to a label, while GNN explainers
map a graph to an edge set. All existing certified defenses (Bojchevski et al., 2020; Wang et al.,
2021a; Jin et al., 2020; Xia et al., 2024) against graph perturbations focus on the robustness of GNN
classifiers and cannot be applied to robustify GNN explainers.

In this work, we propose XGNNCert, the first certifiably robust XGNN against graph perturbation
attacks. Given a testing graph, a GNN classifier, and a GNN explainer, XGNNCert consists of three
main steps. First, we are inspired by existing defenses for classification (Levine & Feizi, 2020b; Xiang
et al., 2021; Jia et al., 2021; 2022; Xia et al., 2024) that divide an input (e.g., image) into multiple
non-overlapping parts (e.g., patches). However, directly applying the idea to divide the testing graph
into multiple non-overlapping subgraphs does not work well for robustifying GNN explainers. One
reason is that it is hard for the GNN explainer to determine the groundtruth explanatory edges from
each subgraph due to its sparsity. To address it, we propose to leverage both the testing graph and
its complete graph for "hybrid" subgraph generation. An innovation design here is only a bounded
number of hybrid subgraphs could be affected when the testing graph is adversarially perturbed with
a bounded perturbation, which is the requirement for deriving the robustness guarantee. Second,
we build a majority-vote classifier on GNN predictions for the generated hybrid subgraphs, and a
majority-vote explainer on GNN explanations for interpreting the prediction of the hybrid subgraphs.
Last, we derive the certified robustness guarantee. Particularly, XGNNCert guarantees the majority-
vote classifier yields the same prediction, and majority-vote explainer outputs close explanatory edges
for the perturbed testing graph under arbitrary graph perturbations, when the number of perturbed
edges is bounded (which we call certified perturbation size).

We evaluate XGNNCert on multiple XGNN methods on both synthetic and real-world graph dataset
with groundtruth explanations. Our results show XGNNCert does not affect the normal explanation
accuracy without attack. Moreover, XGNNCert shows it can guarantees at least 2 edges are from the
5 groundtruth explanatory edges, when averaged 6.2 edges are arbitrarily perturbed in testing graphs
from the SG+House dataset. Our major contributions are as follows:

• We propose XGNNCert, to our best knowledge, the first certified defense for explainable GNN
against graph perturbation attacks.

• We derive the deterministic robustness guarantee of XGNNCert.
• We evaluate XGNNCert on multiple graph datasets and GNN explainers and show its effectiveness.

2 BACKGROUND AND PROBLEM FORMULATION

GNN and XGNN: We denote a graph as G = (V, E), that consists of a set of nodes v ∈ V and
edges eu,v ∈ E . A GNN, denoted as f , takes a graph G as input and outputs a predicted label
y = f(G) ∈ C, with C including all possible labels. For instance, y can be defined on the graph G
in graph classification, or on a specific node v ∈ V in node classification. An XGNN, denoted as g,
uncovers the key component in G that contributes to the GNN prediction y. In this paper, we focus
on the widely-studied edge explanations where g takes (G, y) as input and determines the important
edges in G. Particularly, this type of XGNN learns importance scores m for all edges E ; and selects
the edges Ek ⊆ E with the top k scores in m as the explanatory edges, where k is a hyperparameter
of the XGNN. Formally, m = g(G, y), Ek = E .topk(m) = E .topk(g(G, y)).

Adversarial Attack on XGNN: Given a graph G and a prediction y (by a GNN f ), an XGNN g and
its explanatory edges Ek. We notice that an attacker can perturb the graph structure to mislead the
XGNN g. To be specific, the attacker could delete edges from G (to ensure stealthiness, the attacker
does not delete edges in the explanatory edges Ek, as otherwise it can be easily identified) or add new

1Our additional experiments in Figure 12 in Appendix C also validate that if the GNN classifier is deceived,
the explanation result would be drastically different compared with the groundtruth explanation.
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(a) GNN Explanation (b) Adversarial Attack on GNN Explanation

Figure 1: (a) GNN for graph classification and GNN explanation. A GNN classifier f first predicts a
label y for the graph G, and then a GNN explainer g interprets the predicted label y to produce the
explanatory edges Ek. (b) Two possible graph perturbation attacks on the GNN explainer g: 1) the
GNN prediction ŷ on the perturbed graph Ĝ is different from y; 2) the GNN prediction on Ĝ is kept,
but the explanatory edges Êk outputted by g after the attack is largely different from Ek.

edge into G. We denote the adversarially perturbed graph as Ĝ = (V, Ê), with an attack budget M
(i.e., the total number of deleted and added edges is no more than M ). On the perturbed graph Ĝ, f
gives a new prediction ŷ = f(Ĝ), and g produces new explanatory edges Êk = Ê .topk(g(Ĝ, ŷ)).

We assume the attacker has two ways to attack an XGNN, as illustrated in Fig 1 (b).

1. The attacker simply misleads the GNN prediction. Note that if the prediction is changed (i.e.,
ŷ ̸= y), even Êk = Ek, the explanation is not useful as it explains the wrong prediction. This
attack can be achieved via existing evasion attacks on GNNs, e.g., Dai et al. (2018); Zügner et al.
(2018); Xu et al. (2019); Mu et al. (2021); Wang et al. (2022a).

2. A more stealthy attack keeps the correct prediction, but largely deviates the explanation result.
That is, the attacker aims to largely enlarge the difference between Ek and Êk with the prediction
unchanged (Li et al., 2024a).

Problem Formulation: The above results show existing XGNNs are vulnerable to effective and
stealthy graph perturbation attacks. Also, as various works (Carlini et al., 2019; Mujkanovic et al.,
2022) have demonstrated, empirical defenses often can be broken by advanced/stronger attacks. Such
observations and past experiences motivate us to design certifiably robust XGNNs, i.e., that can
defend against the worst-case graph perturbation attacks with a bounded attack budget.

Definition 1 ((Mλ, λ)-Certifiably robust XGNN). We say an XGNN is (Mλ, λ)−certifiably robust,
if, for any graph perturbation attack with a maximal number of Mλ perturbed edges on a graph G,
the GNN prediction on the induced perturbed graph Ĝ always equals to the prediction y on G, and
there are at least λ (≤ k) same edges in the explanatory edges Êk after the attack and the explanatory
edges Ek without the attack. We also call Mλ the certified perturbation size.

Remark: Note that Mλ depends on λ. Under the same setting, obtaining a larger Mλ often requires
a smaller λ. On the other hand, when λ = k, the robust XGNN should guarantee Êk = Ek. In this
paper, we primarily focus on deriving the certifiably robust XGNN for the graph-level classification
task. The adaptation of the proposed defense techniques (in Section 3) to other graph-related tasks,
such as node-level classification and edge-level classification, is discussed in Appendix D.

3 XGNNCERT: OUR CERTIFIABLY ROBUST XGNN

In this section, we propose XGNNCert, our certifiably robust XGNN against graph perturbation
attacks. Given a testing graph, a GNN classifier, and a GNN explainer, XGNNCert consists of three
major steps. 1) Hybrid subgraphs generation: it aims to generate a set of subgraphs that leverage the
edges from both the testing graph and its complete graph. 2) Majority-voting based classification and
explanation: it builds a majority-vote based classifier (called voting classifier) on GNN predictions
for the hybrid subgraphs, as well as a majority-vote based explainer (called voting explainer) on GNN
explanations for interpreting the predicted label of the hybrid subgraphs. 3) Deriving the certified
robustness guarantee: based on the generated subgraphs, our voting classifier and voting explainer, it
derives the maximum perturbed edges, such that our voting classifier guarantees the same prediction
on the perturbed graph and testing graph, and our voting explainer guarantees the explanation results
on the perturbed graph and the clean graph are close. Figure 2 shows an overview of our XGNNCert.
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Figure 2: Overview of the proposed three-step certifiably robust XGNN.

3.1 HYBRID SUBGRAPHS GENERATION

A straightforward idea is to adapt the existing defense strategy for classification (Levine & Feizi,
2020b; Xiang et al., 2021; Jia et al., 2021; 2022; Xia et al., 2024) that divides an input into multiple
non-overlapping parts. Particularly, one can divide a graph into multiple non-overlapping subgraphs,
such that only a bounded number of subgraphs are affected when the graph is adversarially perturbed
under a bounded perturbation. However, this strategy does not work well to robustify GNN explana-
tion (Our results in Section 4 also validate this) due to two reasons: (1) Every edge in a graph appears
only once in all subgraphs. This makes it hard for the GNN explainer to ensure the groundtruth
explanatory edges to have higher scores than non-explanatory edges. (2) All subgraphs only contain
existent edges in the graph, while nonexistent edges can be inserted into the graph during the attack
and their importance for explanation needs to be also considered. To address the challenge, we
develop a hybrid subgraph generation method, that consists of two steps shown below.

Generating Subgraph Indexes via Hash Mapping: We use the hash function (e.g., MD5) to
generate the subgraph indexes as done in Xia et al. (2024)2. A hash function takes input as a bit string
and outputs an integer (e.g., within a range [0, 2128 − 1]). Here, we propose to use the string of edge
index as the input to the hash function. For instance, for an edge e = (u, v), we denote its string as
str(u) + str(v), where the str(·) function transfers the index number into a string in a fixed length
(filled with prefix "0"s), and“+" means the string concatenation3. Then we can map each edge using
the hash function to a unique index. Specifically, we denote the hash function as h and assume T
groups in total. Then for every edge e = (u, v), we compute its subgraph index ie as4.

ie = h[str(u) + str(v)] mod T + 1. (1)

Generating Hybrid Subgraphs: Based on the hash function, we can construct a set of T subgraphs
for any graph. However, instead of only using existent edges in the given graph to construct subgraphs,
we propose to also use nonexistent edges to promote the robustness performance for GNN explainers.
A key requirement is: how to guarantee only a bounded number of subgraphs are affected when the
original graph is adversarially perturbed. To address it, we innovatively propose to use the complete
graph, and our theoretical results in Theorem 2 show the requirement can be satisfied.

Dividing the input graph into subgraphs: For an input graph G = (V, E), we use E i to denote the
set of edges whose subgraph index is i, i.e., E i = {∀e ∈ E : ie = i}. Then, we can construct T
subgraphs for G as {Gi = (V, E i) : i = 1, 2, · · · , T}.

Dividing the complete graph into subgraphs: We denote the complete graph of G as GC =
(V, EC), EC = {(u, v),∀u, v ∈ V : u < v}. Similarly, we can divide GC into T subgraphs using the
same hash function. First, the edges having a subgraph index i is denoted as E i

C = {∀e ∈ EC : ie = i}.
Then, we create the T subgraphs for GC as: {Gi

C = (V, E i
C) : i = 1, 2, · · · , T}.

2Our theoretical results require the graph division function has two important properties: 1) It is deterministic,
such that each edge and node in a graph is deterministically mapped into only one subgraph. This property is the
core to derive our theoretical results. 2) It is independent of the graph structure, as otherwise an attacker may
reverse-engineer the function to find the relation between the output and input, and possibly break the defense.
The used hash function can achieve both properties.

3For instance, with a 4-bit length, an edge 12-21 is represented as the string "0012" and "0021", respectively.
Then the concatenated string between the edge 12-21 is "00120021".

4We put the node with a smaller index (say u) first and let h[str(v) + str(u)] = h[str(u) + str(v)].
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Hybrid subgraphs: Now we combine subgraphs {Gi} with {Gi
C} to construct the hybrid subgraphs.

For each subgraph Gi, we propose to combine it with a fraction (say p) of the subgraphs in {Gi
C}

to generate a hybrid subgraph, denoted as Gi
H . There are many ways for the combination, and the

only constraint is that the subgraph Gi
C with the same subgraph index i as Gi is not chosen in Gi

H , in
order to maintain the information from the original subgraph Gi (otherwise it is overlaid by Gi

C ). Let
T−i = T \ i be the index set not including i. For instance, we can choose ⌊pT ⌋ indexes, denoted as
T p
−i, from T−i uniformly at random. Then a constructed hybrid subgraph is Gi

H = (V, E i
H), where

E i
H = (∪j∈T p

−i
Ej
C) ∪ E i. (2)

Note that a too small or too large p would degrade the explanation performance. This is because a
too large p would make excessive nonexistent edges be added in each Gi

H , and a too small p would
make explanatory edges be difficult to have higher important scores than non-explanatory edges. Our
results show the best performance is often achieved with a modest p, e.g., p ∈ [0.2, 0.4].

With the built hybrid subgraphs, we prove in Theorem 2 that for any two graphs with M different
edges (but same nodes), there are at most M different ones between their respective hybrid subgraphs.
We emphasize this is the key property to derive our certified robustness guarantee in Section 3.3.

Theorem 2 (Bounded number of different subgraphs). For any two graphs G = (V, E), Ĝ = (V, Ê)
satisfying |E \ Ê| = M . The corresponding hybrid subgraphs generated using the above strategy are
denoted as {Gi

H} and {Ĝi
H}, respectively. Then {Gi

H} and {Ĝi
H} have at most M different graphs.

Proof. See Appendix A.1.

3.2 MAJORITY VOTING-BASED CLASSIFICATION AND EXPLANATION

Inspired by existing works (Levine & Feizi, 2020b; Jia et al., 2022; Xia et al., 2024), we propose
to use the majority vote to aggregate the results on the hybrid subgraphs. We then design a voting
classifier and voting explainer that can respectively act as the robust GNN classifier and robust GNN
explainer, as expected. Assume we have a testing graph G with label y, a set of T hybrid subgraphs
{Gi

H} built from G, a GNN classifier f , and a GNN explainer g.

Voting Classifier: We denote by nc the votes of hybrid subgraphs classified as the label c by f , i.e.,

nc =

T∑
i=1

I(f(Gi
H) = c),∀c ∈ C, (3)

where I(·) is an indicator function. Then, we define our voting classifier f̄ 5 as:
f̄(G) = argmax

c∈C
nc. (4)

Voting Explainer: Recall that when a GNN explainer interprets the predicted label for a graph,
it first learns the importance scores for all edges in this graph and then selects the edges with the
highest scores as the explanatory edges. Motivated by this, we apply g on the hybrid subgraphs
having the same predicted label as the majority-voted label to obtain the explanatory edges, and
then vote the explanatory edges from these hybrid subgraphs. Edges with top-k scores are the final
explanatory edges. Specifically, for each Gi

H , we apply g to obtain its edges’ importance scores
mi = g(Gi

H , f̄(G)). We define the votes nγ
e of each edge e ∈ EC as the times that its importance

score mi
e is no less than γ fraction of the largest scores in every hybrid subgraph Gi

H with the
prediction f(Gi

H) = f̄(G):

nγ
e =

T∑
i=1

I(mi
e ≥ mi

(γ)) · I(f(G
i
H) = f̄(G)),∀e ∈ EC , (5)

where x(γ) means the γ · size(x) largest element in x and γ is a tuning hyperparameter (we will
study its impact in our experiments). We denote nγ as the set of votes for all edges in EC . Then we
define our voting explainer ḡγ as outputting the edges from G with the top-k scores in nγ6:

ḡγ(G, f̄(G)) = E .topk(nγ). (6)
5f̄ returns a smaller label index when ties exist.
6When two edges have the same nγ , the edge with a smaller index is selected by ḡγ .
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Remark: Traditional GNN classifiers are designed to be node permutation invariant (Kipf & Welling,
2017; Veličković et al., 2018; Xu et al., 2019). This means, given a graph, the predictions made by the
GNN classifier remain consistent regardless of how the nodes in the graph are permuted. In contrast,
our voting classifier is node permutation variant due to the properties of the hash function. This
implies that both the classification and explanation performances in XGNNCert may vary depending
on the node permutations. However, we empirically observe that the performance of XGNNCert
remains relatively stable under different node permutations (see results in Table 9 in Appendix D).

Furthermore, we note that recent studies (Loukas, 2020; Papp et al., 2021; Huang et al., 2022b)
highlight that node-order sensitivity can enhance the expressivity and generalization capabilities of
GNNs. Additional discussions are provided in Appendix D.

3.3 CERTIFIED ROBUSTNESS GUARANTEE

In this section, we derive the certified robustness guarantee against graph perturbation attacks using
our graph division strategy and introduced robust voting classifier and voting explainer.

We first define some notations. We let y = f̄(G) by assuming the voting classifier f̄ has an accurate
label prediction, and Ek = ḡγ(G, y) by assuming the voting explainer ḡ has an accurate explanation.
We denote Ḡ = (V, Ē) as the complement of G, and ĒM the edges in Ē with top-M scores in nγ . We
introduce the non-existent edges ĒM with top scores by considering that, in the worst-case attack
with M edge perturbations, ĒM would be chosen to compete with the true explanatory edges.
Theorem 3 (Certified perturbation size Mλ for a given λ). Assume y ∈ C and b ∈ C \ {y} be the
class with the highest votes ny and second highest votes by Eqn (3), respectively. Assume further the
edge l ∈ Ek is with the λ-th highest votes nγ

l , and edge hM ∈ ĒM ∪ (E \ Ek) with the (k− λ+ 1)-th
highest votes nγ

hM
in nγ by Eqn (5). Then the certified perturbation size Mλ satisfies:

Mλ =M∗ = min
(
⌊ny − nb + I(y < b)− 1

2
⌋,Mh), where (7)

Mh = max M, s.t. nγ
l − nγ

hM
+ I(l < hM ) > 2M. (8)

Proof. See Appendix A.2.

We have the following remarks from Theorem 3:

• Our voting classifier and voting explainer can tolerate M∗ perturbed edges.
• Our voting classifier can be applied for any GNN classifier and our voting explainer for any GNN

explainer that outputs edge importance score.
• Our certified robustness guarantee is deterministic, i.e., it is true with a probability of 1.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets: As suggested by (Agarwal et al., 2023), we choose datasets with groundtruth explanations
for evaluation. We adopt the synthetic dataset "SG-Motif", where each graph has a label and “Motif"
is the groundtruth explanation that can be "House", "Diamond", and "Wheel". We also adopt two
real-world graph datasets (i.e., Benzene and FC) with groundtruth explanations from Agarwal et al.
(2023). Their dataset statistics are described in Table 5 in Appendix C. For each dataset, we randomly
sample 70% graphs for training, 10% for validation, and use the remaining 20% graphs for testing.

GNN Explainer and Classifier: Recent works (Funke et al., 2022b; Agarwal et al., 2023) show
many GNN explainers (including the well-known GNNExplainer Ying et al. (2019)) are unstable,
i.e., they yield significantly different explanation results under different runs. We also validate this
and show results in Table 8 in Appendix. This makes it hard to evaluate the explanation results in a
consistent or predictable way. To avoid the issue, we carefully select XGNN baselines with stable
explanations: PGExplainer (Luo et al., 2020), Refine (Wang et al., 2021b), and GSAT (Miao et al.,
2022). We also select three well-known GNNs as the GNN classifier: GCN (Kipf & Welling, 2017),
GSAGE (Hamilton et al., 2017), and GIN (Xu et al., 2019). We implement these explainers and
classifiers using their publicly available source code. Appendix C details our training strategy to learn
the voting explainer and voting classifier in XGNNCert.
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Datasets PGExplainer ReFine GSAT

Orig. T Orig. T Orig. T
30 50 70 90 30 50 70 90 30 50 70 90

SG+House 0.740 0.658 0.725 0.725 0.673 0.707 0.588 0.690 0.593 0.564 0.744 0.759 0.716 0.673 0.658
SG+Diamond 0.745 0.704 0.730 0.729 0.620 0.569 0.440 0.499 0.521 0.398 0.564 0.426 0.493 0.558 0.420

SG+Wheel 0.629 0.587 0.612 0.571 0.542 0.604 0.614 0.626 0.606 0.462 0.568 0.491 0.544 0.612 0.562
Benzene 0.552 0.421 0.497 0.468 0.429 0.559 0.463 0.474 0.512 0.440 0.552 0.314 0.430 0.445 0.398

FC 0.531 0.385 0.452 0.373 0.328 0.503 0.369 0.447 0.425 0.314 0.487 0.350 0.392 0.412 0.373

Table 1: Explanation accuracy on the original GNN explainers and our XGNNCert.

Datasets GCN GIN GSAGE
Orig. T Orig. T Orig. T

30 50 70 90 30 50 70 90 30 50 70 90
SG+House 0.920 0.895 0.905 0.905 0.890 0.945 0.915 0.915 0.900 0.905 0.930 0.900 0.890 0.895 0.875

SG+Diamond 0.965 0.935 0.935 0.935 0.930 0.975 0.935 0.955 0.955 0.955 0.965 0.940 0.940 0.940 0.940
SG+Wheel 0.915 0.905 0.905 0.900 0.885 0.930 0.915 0.905 0.900 0.895 0.920 0.910 0.910 0.895 0.890

Benzene 0.758 0.746 0.700 0.723 0.707 0.792 0.736 0.754 0.754 0.754 0.773 0.725 0.760 0.718 0.718
FC 0.711 0.674 0.692 0.692 0.631 0.800 0.662 0.714 0.714 0.703 0.723 0.692 0.692 0.692 0.620

Table 2: Prediction accuracy on the original GNN classifiers and our XGNNCert.

Datasets p γ h
0.0 0.2 0.3 0.4 0.2 0.3 0.4 MD5 SHA1 SHA256

SG+House 0.053 0.695 0.725 0.710 0.715 0.725 0.720 0.725 0.718 0.710
SG+Diamond 0.045 0.620 0.729 0.720 0.712 0.729 0.718 0.729 0.729 0.721

SG+Wheel 0.042 0.511 0.571 0.508 0.550 0.571 0.564 0.571 0.565 0.562
Benzene 0.102 0.433 0.468 0.403 0.440 0.468 0.452 0.468 0.472 0.468

FC 0.096 0.353 0.373 0.288 0.345 0.373 0.385 0.373 0.382 0.390

Table 3: Explanation accuracy of our XGNNCert under different p, γ, and the hash function h

Evaluation Metrics: We adopt three metrics for evaluation. 1) Classification Accuracy: fraction of
testing graphs that are correctly classified, e.g., by our voting classifier; 2) Explanation Accuracy:
fraction of explanatory edges outputted, e.g., by our voting explainer, are in the groundtruth across all
testing graphs; 3) Certified Perturbation Size Mλ at Certified Explanation Accuracy (or λ): Given a
testing graph with groundtruth (k) explanatory edges, and a predefined λ (or certified explanation
accuracy λ/k), our theoretical result outputs (at least) λ explanatory edges on the perturbed testing
graph are from the groundtruth, where the testing graph allows arbitrary Mλ perturbations. Mλ vs λ
then reports the average Mλ of all testing graphs for the given λ.

Parameter Setting: There are several hyperparameters in our XGNNCert. Unless otherwise men-
tioned, we use GCN as the default GNN classifier and PGExplainer as the default GNN explainer. we
use MD5 as the hash function h and we set λ = 3, p = 0.3, T = 70, γ = 0.3 and k as Table 5. We
will also study the impact of these hyperparameters on our defense performance.

4.2 EVALUATION RESULTS

We first show the explanation accuracy and classification accuracy of XGNNCert under no attack, to
validate it can behave similarly to the conventional GNN classifier and GNN explainer. We then show
the guaranteed robustness performance of our XGNNCert against the graph perturbation attack.

4.2.1 EXPLANATION ACCURACY AND CLASSIFICATION ACCURACY

XGNNCert maintains the explanation accuracy and classification accuracy on the original
GNN explainers and GNN classifiers: Table 1 shows the explanation accuracy of our XGNNCert
and the original GNN explainers for reference. We can observe that XGNNCert can achieve close
explanation accuracies (with a suitable number of subgraph T ) as the original GNN explainers (which
have different explanation accuracies, due to their different explanation mechanisms). This shows the
potential of XGNNCert as an ensemble based XGNN. We also show the classification performance of
our voting classifier in XGNNCert in Table 2 and the original GNNs classifier for reference. Similarly,
we can see our voting classifier learnt based on our training strategy can reach close classification
accuracy as the original GNN classifiers.
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(a) SG+House (b) SG+Diamond (c) Beneze
Figure 3: Certified perturbation size over all testing graphs vs. λ on PGExplainer. The maximum λ
in x-axis equals to k, the number of edges in the groundtruth explanation.

(a) SG+House (b) SG+Diamond (c) Beneze
Figure 4: Certified perturbation size over all testing graphs vs. p on PGExplainer.

(a) SG+House (b) SG+Diamond (c) Beneze
Figure 5: Certified perturbation size over all testing graphs vs. γ on PGExplainer.

Impact of hyperparameters in XGNNCert: Next, we will explore the impact of important hyper-
parameters that could affect the performance of XGNNCert.

Impact of T : Table 1 shows the explanation accuracy of XGNNCert with different T . We can see
the performance depends on T and the best T in different datasets is different (often not the largest
or smallest T ). Note that the generated hybrid subgraphs use nonexistent edges from the complete
graph. If T is too small, a hybrid subgraph contains more nonexistent edges, which could exceed the
tolerance of the voting explainer. In contrast, a too large T yields very sparse subgraphs, making the
useful information in the subgraph that can be used by the explainer be insufficient. This thus makes
it hard to ensure explanatory edges have higher important scores than non-explanatory edges.

Impact of p: Table 3 shows the explanation accuracy with different p, the fraction of the subgraphs
generated by the complete graph that are combined with the clean graphs’ subgraphs. We have a
similar observation that a too small or too large p would degrade the explanation performance, with
p = 0.3 obtaining the best performance overall. Note that when p = 0, we only use the information
of the original graphs, and the explanation performance is extremely bad. That means it is almost
impossible to obtain the groundtruth explanatory edges. This thus inspires us to reasonably leverage
extra information not in the original graph to guide finding the groundtruth explanatory edges.

Impact of γ: Table 3 also shows the explanation accuracy with different γ, the fraction of the edges
with the largest scores used for the voting explainer. We can observe the results are relatively stable
in the range γ = [0.2, 0.4]. This is possibly due to that important edges in the original graph are
mostly within these edges with the largest scores.

Impact of h: The explanation accuracy with different hash functions h are shown in Table 3. We see
the results are insensitive to h, suggesting we can simply choose the most efficient one in practice.

4.2.2 CERTIFIED EXPLANATION ACCURACY VS. CERTIFIED PERTURBATION SIZE

The certified robustness results are shown in Figures 3-11. Due to limited space, we only show results
on three datasets and put results on the other datasets and impact of hyperparameters in Appendix C.
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Datasets SG+House SG+Diamond SG+Wheel Benzene FC

Exp. Acc. V-InfoR 0.693 0.419 0.439 0.345 0.217
XGNNCert 0.740 0.729 0.571 0.468 0.403

Difference V-InfoR 48.39% 73.07% 65.35% 83.82% 63.22%
Fraction XGNNCert 7.44% 0.0% 4.20% 1.44% 1.41%

Table 4: Explanation accuracy and the fraction of different edges under attack in (Li et al., 2024a).

Impact of T : Figure 3 and Figures 6-8 in Appendix C show the (average) maximum certified
perturbation vs λ with different T . First, XGNNCert obtains reasonable certified explanation accuracy
(λ/k) against the worst-case graph perturbation, when the number of perturbed edges is bounded
by Mλ. For instance, with average 6.2 edges are arbitrarily perturbed in SG+House, XGNNCert
guarantees at least λ = 2 edges are from the k = 5 groundtruth explanatory edges. Second, there
exists a tradeoff between the clean explanation accuracy and robust explanation accuracy. Specifically,
as T grows, the certified perturbation size increases in general. This means that a larger number of
generated subgraphs can enlarge the gap between the largest and second-largest votes in nγ . On the
other hand, the explanation accuracy (under no attack) can be decreased as shown in Section 4.2.1.

Impact of p: The results are in Figure 4 and Figure 9 in Appendix C. First, we observe the certified
perturbation size is 0 when p = 0. This means, without using information in the complete graph, it is
impossible to provably defend against the graph perturbation attack. Second, the certified explanation
accuracies are close when p is within the range [0.2, 0.4] (which is different from the conclusions on
explanation accuracy without attack). This implies, for each clean graph, we can use 20%-40% of the
subgraphs generated by the complete graph for achieving stable certified explanation accuracy.

Impact of γ: The results are shown in Figure 5 and Figure 10 in Appendix C. Similarly, the certified
results are relatively stable in the range γ = [0.2, 0.4]. The key reason could be that important edges
in the original graph are mostly within the edges in these range.

Impact of h: The results are shown in Figure 11. Like results on explanation accuracy, we can see
the hash function h almost does not affect the certified explanation accuracy. Again, this suggests we
can choose the most efficient one in practice.

4.2.3 DEFENSE EFFECTIVENESS AGAINST ADVERSARIAL ATTACK ON XGNN

We further test XGNNCert in the default setting against the recent adversarial attack on XGNN (Li
et al., 2024a), and compare with the state-of-the-art empirical defense V-InfoR (Wang et al., 2023c).
We evaluate their effectiveness by allowing the attacker to change two non-explanatory edges in
the graph and taking the fraction of different explanatory edges (before and after the attack) as
the metric. The test results are shown in Table 4. We can observe that: Our XGNNCert not only
achieves the theoretical defense performance and higher explanation accuracy, but also shows much
better empirical defense performance than V-InfoR under the powerful attack. This is possibly due
to our subgraph division and voting scheme design, which is “inherently" robust to the strongest
attack—it dilutes the adversarial perturbation effect into subgraphs, and at the same time, the number
of subgraphs that are affected can be bounded. In contrast, V-InfoR is an empirical defense that
constrains the attack capability and is unable to defend against the strong attack.

4.2.4 COMPLEXITY ANALYSIS OF XGNNCERT

Our XGNNCert divides each hybrid graph into T subgraphs and applies a base GNN explainer to
explain each subgraph. The final explanation is obtained via voting the explanation results of the
T subgraphs, whose computational complexity is negligible. Hence, the dominant computational
complexity of XGNNCert is T times of the base GNN explainer’s. For instance, PGExplainer has
a complexity of O(S|V |+ |E|), where S is the number of optimization steps, and |V | and |E| are
the number of nodes and edges, respectively. Therefore, XGNNCert with PGExplainer as the base
explainer has complexity O(TS|V |+ |E|). Note that the explanation on T subgraphs can be run in
parallel, as they are independent of each other. Furthermore, each hybrid subgraph needs to store
p|V |2 more edges from the complete graph, where an edge is represented as a pair of node indexes
in the implementation. Hence, the extra memory cost per graph is O(pT |V |2)). We highlight that
the extra computation and memory cost is to ensure the robustness guarantee. In other words, our
XGNNCert obtains a robustness-efficiency tradeoff.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 RELATED WORK

Explainable GNNs: XGNNs can be roughly classified into decomposition-based, gradient-based,
surrogate-based, generation-based, and perturbation-based methods. Decomposition-based meth-
ods (Pope et al., 2019; Schnake et al., 2021; Feng et al., 2022) treat the GNN prediction as a score
and decompose it backward layer-by-layer until reaching the input. The score of different parts of the
input can be used to explain its importance to the prediction. Gradient-based methods (Baldassarre
& Azizpour, 2019; Pope et al., 2019) take the gradient of the prediction with respect to the input
graph to show the sensitivity of a prediction to the input. The sensitivity can be used to explain the
graph for that prediction. Surrogate-based methods Vu & Thai (2020); Huang et al. (2022a); Duval
& Malliaros (2021); Zhang et al. (2021a); Pereira et al. (2023) replace the complex GNN model
with a simple and interpretable surrogate model. Generation-based methods (Lin et al., 2021; 2022;
Sui et al., 2022; Yuan et al., 2021; Shan et al., 2021; Wang et al., 2023d) use generative models to
generate explanations. For instance, RCExplainer (Wang et al., 2023d) applies reinforcement learning
to generate subgraphs as explanations. Perturbation-based methods (Ying et al., 2019; Luo et al.,
2020; Schlichtkrull et al., 2021; Funke et al., 2022a; Wang et al., 2021b; Duval & Malliaros, 2021;
Zhang et al., 2022) uncover the important subgraph as explanations by perturbing the input graph.

Adversarial attacks on GNN classifiers and explainers: Most of the existing attacks focus on GNN
classifiers and they are classified as test-time evasion attacks (Dai et al., 2018; Zügner et al., 2018;
Xu et al., 2019; Wu et al., 2019b; Ma et al., 2020; Mu et al., 2021; Wang et al., 2022a; 2023a) and
training-time poisoning attacks (Xu et al., 2019; Zügner & Günnemann, 2019; Wang & Gong, 2019;
Wang et al., 2023a). Take GNNs for graph classification as example. Evasion attacks carefully perturb
the testing graphs such that as many as them are misclassified by a pretrained GNN classifier, while
poisoning attacks carefully perturb training graphs during training, such that the learnt GNN classifier
mispredicts as many testing graphs as possible. Two recent attack methods on GNN explainers have
been proposed, including the white-box attack (Li et al., 2024b) and the black-box attack (Li et al.,
2024a). These attacks all aim to corrupt the GNN explanation while preserve the GNN prediction.

Certified defenses for GNN classifiers: Existing certified defenses (Bojchevski et al., 2020; Jin et al.,
2020; Wang et al., 2021a; Zhang et al., 2021b) are for GNN classifiers–they provably guarantee the
same predicted label for a testing graph with arbitrary graph perturbation. For instance, Bojchevski
et al. (2020) and Wang et al. (2021a) generalized randomized smoothing (Lecuyer et al., 2019; Cohen
et al., 2019) from the continuous image domain to the discrete graph domain. Zhang et al. (2021b)
extended randomized ablation (Levine & Feizi, 2020c) to build provably robust graph classifiers.
However, these defenses only provide probabilistic guarantees and cannot be applied to XGNNs.

Majority voting-based certified defenses: This strategy has been widely used for classification
models against adversarial tabular data (Hammoudeh & Lowd, 2023), adversarial texts (Pei et al.,
2023), adversarial 3D points (Zhang et al., 2023), adversarial patches (Levine & Feizi, 2020b; Xiang
et al., 2021), adversarial graphs (Xia et al., 2024), and data poisoning attacks (Levine & Feizi, 2020a;
Jia et al., 2021; Wang et al., 2022b; Jia et al., 2022). The key difference among these defenses is
they create problem-specific voters for majority voting. However, as GNN explainers are drastically
different from classification models, these defenses cannot be applied to robustify GNN explainers.

Certified defenses of explainable non-graph models. A few works (Levine et al., 2019; Liu et al.,
2022; Tan & Tian, 2023) propose to provably robustify explainable non-graph (image) models against
adversarial perturbations. These methods mainly leverage the idea of randomized smoothing (Lecuyer
et al., 2019; Cohen et al., 2019) and only provide probabilistic certificates.

6 CONCLUSION

We propose the first provably robust XGNN (XGNNCert) against graph perturbation attacks.
XGNNCert first generates multiple hybrid subgraphs for a given graph (via hash mapping) such that
only a bounded number of these subgraphs can be affected when the graph is adversarially perturbed.
We then build a robust voting classifier and a robust voting explainer to aggregate the prediction and
explanation results on the hybrid subgraphs. Finally, we can derive the robustness guarantee based
on the built voting classifier and voting explainer against worst-case graph perturbation attacks with
bounded perturbations. Experimental results on multiple datasets and GNN classifiers/explainers
validate the effectiveness of our XGNNCert. In future work, we will enhance the certified robustness
with better subgraph generation strategies and design node permutation invariant certified defenses.
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A PROOFS

A.1 PROOF OF THEOREM 2

When an edge e is added to or deleted from G, only the subgraph Gie = (V, Eie) is corrupted after
hash mapping, and all the other subgraphs {Gj}j ̸=ie are unaffected. Note that the complete graph
GC is fixed and all subgraphs built from it are never affected. Then, with Equation (2), only the
hybrid subgraph Gie

H would be corrupted. Further, when M edges from G are perturbed to form Ĝ,
only hybrid subgraphs containing these edges would be corrupted. As some edges may be mapped to
the same group index, the different subgraphs between {Gi

H} and {Ĝi
H} is at most M .

A.2 PROOF OF THEOREM 3

After the graph perturbation, we want to satisfy two requirements: (1) the voting classifier still predicts
the class y in the perturbed graph Ĝ with more votes than predicting any other class ∀b ∈ C \ {y}; (2)
the voting explainer ensures at least λ edges in Ek are still in Êk, or at most (k − λ) edges in EC \ Ek
have higher votes than the minimum votes of the edges in Ek.

We first achieve (1): Based on Theorem 2, with any M perturbations on a graph G, at most M
hybrid subgraphs from {Gi

H} can be corrupted. Hence, it decreases the largest votes ny at most M ,
while increasing the second-largest votes nb at most M based on Eqn (3). Let n̂y and n̂b denote
the votes of predicting the label y and b on the perturbed graph Ĝ. We have n̂y ≥ ny − M and
n̂b ≤ nb +M . To ensure the voting classifier f̄ still predicts y for the perturbed graph Ĝ, we require
n̂y > n̂b− I(y < b) or n̂y ≥ n̂b− I(y < b)+1, where I(y < b) is due to the tie breaking mechanism
(i.e., we choose a label with a smaller number when ties exist). Combining these inequalities, we
require ny −M ≥ nb +M − I(y < b) + 1, yielding

M ≤ ⌊ny − nb + I(y < b)− 1

2
⌋. (9)

We now achieve (2): Recall ĒM the edges in Ē with top-M scores in nγ , which Ē are edges in the
complement of graph G. Similarly, with M perturbed edges, the votes of every explanatory edge
e ∈ Ek is decreased at most M , while the votes of every other edge e ∈ EC \ Ek is increased at
most M based on Eqn (5). Note that the edge l ∈ Ek has the λ-th highest votes nγ

l , and the edge
hM ∈ ĒM ∪ (E \ Ek) has the (k − λ+ 1)-th highest votes nγ

hM
. Let n̂γ

l and n̂γ
hM

denote the votes
of the edge l and hM on Ĝ for each M . Likewise, we have n̂γ

l ≥ nγ
l −M and n̂γ

hM
≤ nγ

hM
+M

for every hM (note hM depends on M ). If the smallest votes n̂γ
l of edge l after the perturbation

is still larger than the largest votes n̂γ
hM

of the edge hM , then at least λ edges in Ek are still in Êk.
This requires: n̂γ

l > n̂γ
hM

− I(l < hM )) for all hM , where I(l < hM ) is due to the tie breaking.
Combining these inequalities together, we require nγ

l −M > nγ
hM

+M − I(l < hM ),∀M , yielding

nγ
l − nγ

hM
+ I(l < hM ) > 2M (10)

By satisfying both requirements, we force

M ≤ min
(
⌊ny − nb + I(y < b)− 1

2
⌋,Mh

)
,

where Mh = max M, s.t. nγ
l − nγ

hM
+ I(l < hM ) > 2M.

B PSEUDO CODE ON XGNNCERT

Here we provide the pseudo code of our XGNNCert, shown in Algorithm 1.

C EXPERIMENTAL SETUP AND MORE RESULTS

C.1 DETAILED EXPERIMENTAL SETUP

Dataset statistics: Table 5 shows the statistics of the used datasets.
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Algorithm 1 XGNNCert: Classification, Explanation, and Certified Perturbation Size
Input: Graph G = (V, E) with k explanation edges, base classifier f , base explainer g, hyperparameters: ratio
p, ratio γ, number of subgraphs T , hash function h.
Output: Prediction y, explanation Ek, certified perturbation size {Mλ, λ ∈ [1, k]} for G
1: Initialize T subgraphs with empty edges {Gi = (V, Ei = ∅), i = 1, · · · , T}.
2: Initialize T complete subgraphs with empty edges {Gi

C = (V, Ei
C = ∅), i = 1, · · · , T}.

3: Initialize T hybrid subgraphs with empty edges {Gi
H = (V, Ei

H = ∅), i = 1, · · · , T}.
4: Initialize a complete edge set EC = {(u, v),∀u, v ∈ V : u < v}
5: Initialize votes for all classes n = {0}|C|, and all edges: nγ = {0}|EC |

6: for Edge e ∈ EC do
7: Assign index ie = h[str(u) + str(v)] mod T + 1.
8: if e ∈ G then
9: Add e into subgraph Gie by Eie∪ = {e}

10: end if
11: Add e into complete subgraph Gie

C by Eie
C ∪ = {e}

12: end for
13: for i ∈ [1, T ] do
14: Add the i-th subgraph Gi into i-th hybrid subgraph by Ei

H∪ = Ei

15: for j ∈ [1, i− 1] ∪ [i+ 1, T ] do
16: Randomlize a value p̃ ∈ [0, 1)
17: if p̃ ≤ p then
18: Add the j-th complete subgraph into i-th hybrid subgraph by Ei

H∪ = Ei
C

19: end if
20: end for
21: end for
22: for Gi

C , i ∈ [1, T ] do
23: Predict Gi

C ’s label via the base classifier: c = f(Gi
C)

24: Add to the classification vote by 1: nc+ = 1
25: end for
26: Find the class with the most votes: y = argmax

c∈C
nc

27: Find the class with the second most votes: b = argmax
c∈C\{y}

nc

28: Calculate the certified bound w.r.t. the classifier: Mf = ⌊ny−nb+I(y<b)−1

2
⌋.

29: for Gi
C , i ∈ [1, T ] do

30: Explain Gi
C ’s output via the base explainer: mi = g(Gi

H , y)
31: for e ∈ Gi

H do
32: if mi

e ≥ mi
(γ) then

33: nγ
e+ = 1

34: end if
35: end for
36: end for
37: Find the edges with top-k votes in G: Ek = E .topk(nγ)
38: Initialize M = 0, {Mλ = 0, λ = 1, · · · , k}
39: while M1 = M do
40: M+ = 1
41: Find the edges with top-M votes in EC \ E : EM = (EC \ E).topM (nγ)
42: for λ ∈ [1, k] do
43: Find the edge l ∈ Ek is with the λ-th highest votes nγ

l ,
44: Find the edge h ∈ ĒM ∪ (E \ Ek) with the (k − λ+ 1)-th highest votes nγ

h in nγ

45: if nγ
l − nγ

h + I(l < h) > 2M then
46: Mλ = M
47: end if
48: end for
49: end while
50: for λ ∈ [1, k] do
51: Mλ = min(Mλ,Mf )
52: end for
53: Return y, EK , {Mλ, λ ∈ [1, k]}

Hyperparameter and network architecture details in training GNN classifiers and explainers:
We have tested the base GNN classifiers with 2 and 3 layers, the hidden neurons {32, 64, 128, 192},
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Dataset Graphs |V|avg |E|avg Features GT Graphs GT Explanation |EGT|avg k

SG+House 1,000 13.69 15.56 10 693 House Shape 6 6
SG+Diamond 1,000 10.46 14.03 10 486 Diamond Shape 5 5

SG+Wheel 1,000 12.76 14.07 10 589 Wheel Shape 8 8

Benzene 12,000 20.58 43.65 14 6,001 Benzene Ring 6 6
Fluoride-Carbonyl (FC) 8,6716 21.36 45.37 14 3,254 F- and C=O 5 5

Table 5: Datasets and their statistics.

Ratio p SG+House SG+Diamond SG+Wheel Benzene FC
0.0 0.900 0.925 0.905 0.723 0.674
0.02 0.895 0.920 0.900 0.723 0.692
0.03 0.905 0.935 0.900 0.723 0.692
0.04 0.895 0.925 0.900 0.725 0.662

Table 6: Prediction accuracy of XGNNCert with different ρ (default p = 0.3).

Hash function h SG+House SG+Diamond SG+Wheel Benzene FC
MD5 0.905 0.935 0.900 0.723 0.692
SHA1 0.905 0.935 0.895 0.718 0.692
SHA256 0.900 0.935 0.905 0.725 0.674

Table 7: Prediction accuracy of XGNNCert with different hash functions. Default is "MDS".

learning rates {0.001, 0.002, 0.005, 0.01} and training epochs {600, 800, 1000, 1200} with the Adam
optimizer (no weight decay in the training). Finally, our base GNN classifiers are all 3-layer
architectures with 128 hidden neurons, the learning rate as 0.001, and the epochs as 1000.

For base GNN explainers, we simply use the configured hyperparameters in their source code. We set
their hidden sizes as 64, coefficient sizes as 0.0001, coefficient entropy weights as 0.001, learning
rates as 0.01, and epochs as 20. For PG Explainer, we set its first temperature as 5 and last temperature
as 2. For GSAT, we set its final rate as 0.7, decay interval as 10 and decay rate as 0.1. For Refine, we
set its gamma parameter as 1, beta parameter as 1 and tau parameter as 0.1.

Training the GNN classifier and GNN explainer: Traditionally, we only use the training graphs
(with their labels) to train a GNN classifier, which is used to predict the testing graphs. In XGNNCert,
however, the voting classifier uses the hybrid subgraphs (the combination of subgraphs from the
testing graphs and from the corresponding complete graphs) for evaluation. To enhance the testing
performance of our voting classifier, we propose to train the GNN classifier using not only the original
training graphs but also the hybrid subgraphs, whose labels are same as the training graphs’7.

Instead, the GNN explainer is directly trained on raw clean graphs due to two reasons. First, the cost
of training the explainer on subgraphs is high; Second, some subgraphs do not contain groundtruth
explanatory edges, making it unable to explain these subgraphs during training.

C.2 MORE RESULTS

Figure 6—Figure 8 show the certified perturbation size vs. λ on the three GNN explainers.

Figure 9—Figure 11 show the certified perturbation size of XGNNCert vs. p, γ, h on PGExplainer,
respectively. Additionally, Table 6 and Table 7 show the prediction accuracy of XGNNCert vs. p and
h, respectively. We see the results are close, implying XGNNCert is insensitive to p and h.

Figure 12 shows the explanation results when the GNN model is deceived. We see that explaining
wrong predictions yields explanation results that are not meaningful.

7We observe the wrong prediction rate on our test hybrid subgraphs is relatively high, if we use the GNN
classifier trained only on the raw training graphs. For instance, when T = 30, the wrong prediction rate could be
range from 35% to 65% on the five datasets. This is because the training graphs used to train the GNN classifier
and test hybrid subgraphs have drastically different distributions.
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(a) SG+Wheel (b) FC

Figure 6: Certified perturbation size over all testing graphs vs. λ on PGExplainer.

(a) SG+House (b) SG+Diamond (c) SG+Wheel

(d) Beneze (e) FC

Figure 7: Certified perturbation size over all testing graphs vs. λ on ReFine.

(a) SG+House (b) SG+Diamond (c) SG+Wheel

(d) Beneze (e) FC

Figure 8: Certified perturbation size over all testing graphs vs. λ on GSAT.

D DISCUSSION

Instability of GNN explainers: We conduct experiments on the well-known GNNExplainer (Ying
et al., 2019) to show its unstable explanation results. Particularly, we run it 5 times and show the
explanation results in Table 8, where “Std” is the Standard Deviation of the explanation accuracy on
test data across the 5 runs, and “Change Rate” is the average fraction of different explanation edges
among every pair of the 5 runs. We can see both the variance and change rate are large, meaning it is
unreliable and difficult to pick any run of the result to design the robust explainer.
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(a) SG+Wheel (b) FC

Figure 9: Certified perturbation size over all testing graphs vs. p on PGExplainer.

(a) SG+Wheel (b) FC

Figure 10: Certified perturbation size over all testing graphs vs. γ on PGExplainer.

(a) SG+House (b) SG+Diamond (c) SG+Wheel

(d) Beneze (e) FC

Figure 11: Certified perturbation size over all testing graphs vs. h on PGExplainer.

Dataset SG+House SG+Diamond SG+Wheel Benzene FC
Exp. Accuracy 0.624 0.368 0.475 0.276 0.226

Std 9.3% 9.7% 8.1% 10.9% 12.4%
Change Rate 36.8% 64.0% 51.6% 72.6% 76.9%

Table 8: Instability of GNNExplainer

Dataset Pred. Acc. (Avg) Pred. Acc. (Std) Exp. Acc. (Avg) Exp. Acc. (Std)
Benzene 0.722 0.002 0.466 0.007

FC 0.682 0.012 0.358 0.037

Table 9: Averaged prediction and explanation accuracy of XGNNCert on the two real-world datasets
with 5 random node orderings.

Node-order invariant vs. variant GNNs: There exist both node-order invariant GNNs (whose
outputs are insensitive to the node ordering) and node-order variant GNNs (whose outputs depend
on the node ordering). Node-order invariant GNNs typically use, e.g., the mean and convolution
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House Diamond Wheel Benzene FC
Ground-Truth

House Diamond Wheel Benzene FC
Original Explanation

House Diamond Wheel Benzene FC
GNN Deceived Explanation

Figure 12: Examples of how an explanatory subgraph outputted by PGExplainer changes when GNN
is deceived. Top Row: Groundtruth Explanation; Middle Row: Explanation under correct predictions;
Bottom Row: Explanation when GNN is deceived by a graph perturbation (2 edges are perturbed).

aggregator such as GCN (Kipf & Welling, 2017), SGC (Wu et al., 2019a), GIN (Xu et al., 2019),
GAT (Veličković et al., 2018), GSAGE-mean (Hamilton et al., 2017)). Node-order variant GNNs
are based on, e.g., random neighbor sampling (Papp et al., 2021; Rong et al., 2020; Zeng et al.,
2020), LSTM aggregator (Hamilton et al., 2017), relational pooling (Murphy et al., 2019), positional
embedding (Dwivedi et al., 2022; Kreuzer et al., 2021; Zhu et al., 2023).

While node-order invariant GNNs are desirable in certain cases, recent works (Loukas, 2020; Papp
et al., 2021; Huang et al., 2022b) show node-order variant GNNs can produce better expressivity. This
ranges from the classic GSAGE with LSTM to modern graph transformers (Kreuzer et al., 2021; Zhu
et al., 2023). Our GNN voting classifier is node-order variant due to the property of hash function.

To further explore the impact of node permutations on XGNNCert, we randomly permute the input
graphs 5 times and report XGNNCert’s average prediction and explanation accuracies on the two
real-world datasets under the default setting in Table 9. We observe that XGNNCert exhibits stable
prediction and explanation accuracies across the 5 runs. This demonstrates that, though XGNNCert is
not inherently permutation invariant, its classification and explanation performance remain relatively
stable to node permutations. We hypothesize that one possible reason for this stability is that
XGNNCert augments the training graphs with a set of subgraphs to train the GNN classifier. This
augmentation may mitigate the effect of node ordering, as the subgraphs are much smaller in size.

Can this framework be extended to node-level or edge-level tasks? Theoretically, it is possible,
but needs technique adaptation. For example, in the node-level task, we are given a target node and its
prediction by a GNN model, then GNN explainers aim to find the subgraph (usually from the target
node’s neighboring graph) that is most important for the target node’s prediction. When applying the
proposed framework for certifying node-level explainers, it becomes designing a graph division and
voting strategy such that: with an arbitrary graph perturbation under a perturbation budget, 1) the
voting classifier guarantees the correct prediction for the target node on the perturbed graph, and 2)
the voting explainer guarantees the explanation results on the perturbed graph and clean graph are
close. The current graph division strategy is not applicable as all subgraphs have disjoint nodes, while
the target node should be contained in all subgraphs for the node-level task. Hence, a key challenge is
how to adapt the graph division and voting strategy to satisfy 1) and 2), particularly guaranteeing only
a bounded number of subgraphs is affected when predicting the target node, while the explanations
of these subgraphs’ predictions are also retained. We acknowledge it is interesting future work to
extend the proposed framework specially for node/edge-level explanation tasks.
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