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ABSTRACT

Information Bottleneck (IB) Theory is renowned for its ability to learn simple,
compact, and effective data representations. In multi-modal clustering, IB theory
effectively eliminates interfering redundancy and noise from multi-modal data,
while maximally preserving the discriminative information. Existing IB-based
multi-modal clustering methods suffer from low-quality pseudo-labels and over-
reliance on accurate Mutual Information (MI) estimation, which is known to be
challenging. Moreover, unreliable or noisy pseudo-labels may lead to an over-
confident clustering outcome. To address these challenges, this paper proposes a
novel CaLibrated Information Bottleneck (CLIB) framework designed to learn a
clustering that is both accurate and trustworthy. We build a parallel multi-head net-
work architecture—incorporating one primary cluster head and several modality-
specific calibration heads—which achieves three key goals: namely, calibrating
for the distortions introduced by biased MI estimation thus improving the stability
of IB, constructing reliable target variables for IB from multiple modalities and
producing a trustworthy clustering result. Notably, we design a dynamic pseudo-
label selection strategy based on information redundancy theory to extract high-
quality pseudo-labels, thereby enhancing training stability. Experimental results
demonstrate that our model not only achieves competitive clustering accuracy on
multiple benchmark datasets but also exhibits excellent performance on the ex-
pected calibration error metric. Code is available at https://shizhehu.github.io/.

1 INTRODUCTION

Information Bottleneck Theory (Tishby et al., 2000; |[Hu et al.l 2024) provides an elegant theo-
retical framework for learning concise and effective data representations, centered on finding an
optimal balance between data compression and information preservation. This is achieved by creat-
ing a compressed representation 7" for an input X that is optimized to retain features relevant to a
target Y. The optimization is governed by the objective function:

Where I(-;-) denotes the mutual information. The parameter 5 balances the trade-off between
compression and relevance. By minimizing I (X ;T") while simultaneously maximizing I(7;Y"), IB
is able to learn a compact yet informative representation of the input data. In the context of deep
learning, the advent of methods such as the Deep Variational Information Bottleneck (Alemi et al.,
2017) has enabled the integration of the IB principle with neural networks.

Since IB is capable of extracting pure features, it has been utilized in multi-modal clustering meth-
ods. However, applying the IB principle directly to multi-modal clustering faces a fundamental
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Figure 1: Illustration of the proposed CLIB framework. First, compact features H® are extracted
from various modalities using IB. These multi-modal features are then integrated into a fused feature
representation H/. While the features from each modality serve as inputs to multiple calibration
heads, the fused representation is processed by the cluster head. A screening mechanism is employed
to select high-quality pseudo-labels from the output of calibration heads, which in turn supervise
the training of the cluster head. This not only generates high-quality clustering results but also
backpropagates a calibration signal to IB via the gradients from the cluster head, thereby guiding
the learning of IB.

challenge: the efficacy of IB is highly dependent on a reliable target variable. In supervised learn-
ing, this target is typically the ground-truth label; in self-supervised learning, this role is filled by
pseudo-labels, which act as the model’s internal proxy for correctness. In current multi-modal clus-
tering approaches utilizing IB (Hu et al., 2025} Yan et al.|[2024)), model-generated pseudo-labels are
commonly used for guidance. A critical issue arises because these pseudo-labels are often noisy,
particularly during the initial training stages. This creates a vicious cycle: low-quality pseudo-labels
guide the learning of poor representations, which in turn produce flawed pseudo-labels for the next
iteration. This feedback loop can amplify initial errors, causing the model to become progressively
overconfident in its incorrect predictions. Therefore, a calibration mechanism is necessary to break
this degenerative cycle and mitigate model overconfidence.

The Computation of Mutual Information, which measures the degree of association between
two random variables, is critical to the performance of IB. However, calculating MI for high-
dimensional, complex data (e.g., image or text features) using its classical mathematical definition,
which involves integration or summation over the true probability distributions, is extremely diffi-
cult, if not practically infeasible. |Czyz et al. (2023) points out that existing estimators (Belghazi
et al.l 2018} Song & Ermon, [2020) are often evaluated only on simple data distributions (e.g., mul-
tivariate normal distributions), which fails to reflect their performance on complex, real-world data,
further underscoring the difficulty of accurate MI estimation. This difficulty poses a significant
barrier to the effective application of the IB principle in complex, real-world scenarios.

To address these challenges, we propose a novel CLIB framework, which leverages the IB principle
to learn compact representations from each modality. These representations are then integrated via
an adaptive weighted mean fusion strategy to establish a unified cross-modal semantic space. Archi-
tecturally, as shown in [Figure 1| CLIB consists of multiple modality-specific calibration heads and
a single cluster head that operates on the fused representation. These heads engage in a reciprocal
learning process, providing mutual supervision while strategically decoupling the calibration and
final clustering objectives.

Notably, we introduce a pseudo-label selection mechanism based on information redundancy, quan-
tified by entropy, to perceive the clustering quality of individual modalities and subsequently filter
for high-confidence pseudo-labels to supervise the model’s training. Furthermore, we adopt a two-
stage training methodology: IB is first pre-trained to learn robust features before the calibration
module is introduced, which significantly reduces the noise propagated into the calibration stage.
This creates a symbiotic relationship: IB provides compact features for the downstream cluster-
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ing task, while the calibration module offers corrective feedback through backpropagated gradients,
thereby refining the feature extraction process itself. Crucially, this mechanism ensures that the
feature learning is not misled by noisy pseudo-labels. To our knowledge, this is the first work ad-
dressing the trusted multi-modal clustering problem with calibrated IB framework.

Our contributions are threefold:

* We pioneer a method applying IB with calibrated, high-quality, and low-noise target vari-
ables which enhances the robustness of IB to extract compact and discriminative features
from multi-modal data.

* Unlike existing IB methods, CLIB mitigates the over-reliance on precise MI estimation.
Even if the MI estimated for a particular modality is biased, the calibration mechanism al-
lows for its correction by leveraging information from other modalities, thereby enhancing
the overall clustering performance of this framework. To our knowledge, this is the first
work to introduce calibration for the performance issues in IB that arise from the inaccurate
estimation of MIL.

* Benefiting from the calibration mechanism, our proposed method not only achieves supe-
rior accuracy but also demonstrates a significantly lower Expected Calibration Error (ECE)
compared to state-of-the-art multi-modal clustering methods. This enhances the trustwor-
thiness of the IB framework and effectively alleviates the issue of model overconfidence.

2 RELATED WORK

2.1 MUTUAL INFORMATION ESTIMATION

To overcome the challenge of calculating MI for high-dimensional data, previous studies have pre-
dominantly adopted several strategies for approximation: Variational Inference-Based Approxima-
tion method (Barber & Agakov, 2004} |Alemi et al.l 2017) transforms the complex calculation of
MI into an optimizable lower-bound estimation problem by introducing a parameterized variational
distribution to approximate the true posterior distribution. The performance of this method is highly
dependent on the expressive power of the chosen variational distribution, as an overly simplistic
distribution family can result in an inaccurate estimation of MI. Neural Network-Based Estimation
(Belghazi et al, 2018}, [Song & Ermon, 2020) utilizes the strong fitting capabilities of neural net-
works to estimate MI by learning its divergence form directly from samples via gradient descent,
thus circumventing the need for explicit probability density estimation. In a mini-batch stochas-
tic gradient descent training environment, the method’s gradient estimates can be biased, requiring
the introduction of bias-correction techniques to improve its stability and performance. Contrastive
Learning-Based Estimation(van den Oord et al.| 2018; |Qiu et al.l [2021)) transforms the problem of
MI estimation into a contrastive learning task, learning an effective lower bound by maximizing
the similarity between “positive sample pairs” and minimizing it for “negative sample pairs”. The
performance of this approach is sensitive to the quantity and quality of negative samples, as an in-
sufficient number of negative samples can impair the learning of discriminative features and thus
reduce the accuracy of the MI estimation.

The aforementioned analysis reveals that all estimation methods for MI have certain drawbacks and
inherent inaccuracies. In the context of IB-based multi-modal clustering, it is crucial to mitigate the
effects of these potential inaccuracies to obtain more precise clustering results.

2.2 MULTI-MODAL CLUSTERING

Multi-modal data is characterized by complementary modalities, which provide distinct facets of
information about the same object. In recent years, a series of multi-modal clustering methods has
been proposed, including approaches that utilize Attention Mechanisms (Akbari et al., | 2021; Huang
et al.,[2023)), Adversarial Learning (Ganin et al.,2016)). A class of approaches have focused on lever-
aging pseudo-labels in self-supervised frameworks. Pseudo-labels generated using fixed thresholds
(Sohn et al.l [2020; |Gansbeke et al., 2020) often suffer from low quality and are riddled with noise.
Consequently, they can misdirect the model’s learning trajectory. This problem is exacerbated over
iterative training, as the model becomes increasingly confident in its incorrect predictions—a pro-
cess of error accumulation that results in a highly overconfident model.
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Since IB is able to extract compact and discriminative features beneficial for clustering tasks, many
IB-based clustering methods have been proposed. PTIB (Lou et al.,|2025a) proposes a “peer-review”
mechanism to learn modality weights in a parameter-free manner through mutual evaluation and
trustworthiness scoring between modalities. SWIB (Lou et al., 2024)) introduces self-supervised
information from pseudo-labels into the weighted IB, learning weights by combining view quality
with clustering consistency. MSDIB (Hu et al., [2025) proposes a “multi-aspect self-guided” strat-
egy that comprehensively utilizes the private information, shared information, and pseudo-labels of
modalities to learn cluster-friendly representations through the information bottleneck. Overall, due
to its powerful representation learning capabilities, IB has been applied to various clustering algo-
rithms in recent years. However, applying IB in an unsupervised setting requires the construction of
high-quality, reliable target variables, which necessitates a mechanism for filtering pseudo-labels.

2.3 TRUSTWORTHY CLUSTERING

While deep clustering models have achieved significant performance, they often suffer from “over-
confidence,” where the model’s predicted confidence far exceeds its actual accuracy(Jia et al.,[2025)).
Accurate confidence estimation is crucial for building trustworthy decision-making systems, espe-
cially in safety-critical domains such as medical diagnosis (Mimori et al.l 2021) and autonomous
driving (Feng et al.,|2019). PTIB (Lou et al., [2025a) achieves trustworthy clustering by emulating a
“peer-review” mechanism, wherein different data modalities mutually evaluate one another to learn
reliable fusion weights. AGARL (Yang et al.|[2024) employs an “alternating generative adversarial”
strategy to enforce the alignment of feature representations from different views, thereby learning
a consistent and robust shared representation for clustering. TMC (Han et al., |[2021)) quantifies the
uncertainty of each view by treating network outputs as “evidence” and subsequently fuses multi-
view information based on evidence theory to obtain trustworthy results. Most existing confidence
calibration techniques are not applicable to unsupervised clustering. For instance, post-processing
methods like Temperature Scaling (Guo et al.l [2017) require a labeled validation set, which is un-
available in clustering. Meanwhile, regularization techniques like Label Smoothing (Miiller et al.,
2019) excessively penalize high-confidence, reliable samples, preventing the model from effectively
distinguishing between reliable and unreliable predictions. This gap highlights the need for calibra-
tion methods specifically designed for the unsupervised clustering paradigm.

3 PROPOSED METHOD

Problem Definition and Overall Framework. In the multi-modal clustering task, we are given a
dataset X = {x1,x9,..., 2y} containing N samples. Each sample x; is composed of data from
M different modalities, i.e., z; = {z},27,...,2M}, where 2" represents the m-th modality for
sample 7. Our objective is to partition these IV samples into C' predefined clusters. In this section,
we will provide a detailed introduction to our proposed CLIB framework. First, we describe how
the IB principle is applied to learn both effective modality-specific and fused features. Then we
will elaborate on the core of the framework: the calibration and clustering strategy, which consists
of calibration heads and a cluster head, as well as a learning-aware strategy based on information
redundancy for filtering high-quality pseudo-labels. The overall loss function for the framework is
given below, where « is a parameter that balances the contributions of the feature extraction and the
calibration strength.

Liotar = L1p + aLcal 2)

Notably, regarding pseudo-label screening strategies, Jia et al.| (2025) and |L1 et al.| (2022) utilize
the maximum probability value of the distribution to dynamically select pseudo-labels, whereas this
paper employs a pseudo-label screening method based on information redundancy theory.

3.1 REPRESENTATION LEARNING BASED ON INFORMATION BOTTLENECK

Feature Extraction with Information Compression. To extract compact and discriminative fea-
tures from each modality, we have designed the loss function:

M ) ) M M . )
Lo=) I(XLH)=> > I(H H) 3)

i=1 i=1 j=i+1
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Here, X is the input for modality i, and H" is its learned representation. The first term, 1(X?, H),
serves as a compression objective. By minimizing it, we encourage the network to discard irrelevant
information from the input. The second term, —I(H*, H7), aims to maximize MI between repre-
sentations of different modalities. This objective forces the unimodal encoders to learn a shared
semantic space, a process often referred to as feature alignment. The alignment term ensures that
in the process of compression, the model preserves semantic information that is common across
modalities, which is assumed to be discriminative. Minimizing thus produces compact
and aligned unimodal features.

Information Preservation in Fusion. To effectively integrate the features learned from different
modalities, we employ an adaptive weighted-average fusion mechanism. This mechanism assigns a
learnable weight w,,, to the representation of each modality H™, and the final fused representation
Hf = wiHY + woH? -+ - + wyy HM with Z%Zl w,, = 1. This adaptive mechanism allows the
model to dynamically adjust the importance of different modalities based on their contribution to
the final clustering task. The Information Preservation loss function is defined as:

M

Lp= Z I(H™; H) “

m=1

To ensure that the fused global representation retains the specific information from each modality, we
maximize MI between each modal representation H™ and the fused representation /. Combining
the two parts above, the total information bottleneck loss function is defined as:

Lip=Lc—BLp 4)

Here, a larger value for  places greater emphasis on the feature fusion process to yield a more
comprehensive fused representation, albeit at the expense of unimodal feature purity. In contrast, a
smaller (8 is geared towards information compression to obtain more compact features, potentially
at the cost of modality-specific fidelity in fused feature. Through the optimization of
compact modality-specific features are obtained, along with fused features that sufficiently extract
global common semantics.

Notably, because the features extracted in the early stages of training are still noisy and not fully
compressed, prematurely introducing the calibration mechanism would allow a large amount of
noise into the calibration module and propagate erroneous calibration signals, preventing the model
from learning correctly. To address this, we have designed a two-stage training method that warms
up IB, introducing the calibration module only after the learned features have become relatively
stable.

3.2 CALIBRATION MECHANISM OF THE PARALLEL MULTI-HEAD ARCHITECTURE

After the warm-up stage of IB, the model has learned compact and effective features. The goal of
the calibration mechanism is to use multi-head collaboration to resolve potential issues that could
affect the final clustering performance, such as MI estimation bias and low-quality data in a spe-
cific modality, while also addressing the problem of model overconfidence. The overall loss of the
calibration module could be:

ACCal = EcaliH + Een + L:cluH + Econ (6)

Where L.q;;g and L., g optimizes the calibration heads and cluster head respectively, £,.. serves
as an entropy regularization term to prevent trivial solutions, and L,,, is the consistency loss that
forces the model to output a flat distribution when opinions conflict.

3.2.1 CALIBRATION HEADS

The primary task of the calibration heads is to learn a probability distribution for each single modal-
ity and to perceive the learning status of the current modality. A modality with a good learning status
should theoretically produce a more discriminative clustering probability vector, which allows us to
assess whether the modality has been sufficiently learned.

First, we run the K-Means algorithm on the fused feature space to partition the samples into
C pseudo-clusters, denoted as .. Then, for each pseudo-cluster )., we calculate the mean
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of the output probabilities p°‘* from the cluster head for all samples within that cluster: §, =
IQilu\ Zx co. pse. Here, | Q.| is the number of samples in pseudo-cluster Q... This cluster-averaging
strategy leverages the neighborhood structure of samples in the feature space, effectively smoothing
out the noise from individual sample predictions and thus providing a more stable and reliable su-
pervisory signal for the training of the calibration heads. Subsequently, we optimize each calibration
head by minimizing

('(leH i Z Z Z QP 1Og p(zm;fr (7)

C z;€Q.m=1

Where B denotes the batch size, and pc‘” is the output probability from the calibration head for the
m-th modality of sample x;.

Furthermore, to prevent the calibration heads from producing trivial solutions during optimization
an entropy regularization loss L, is introduced:

M
Z cal log cal (8)

m=1

The p¢% denotes the average predicted probability distribution over the entire batch for the m-th
modality’s calibration head. aims to encourage prediction diversity and avoid model
collapse.

Note. As each calibration head acts as a modality-specific “expert” that only observes single-
modality features, which may contain noise or conflicting information between modalities. For
this reason, we stop the gradient backpropagation from the calibration heads to the bottleneck. Not
doing so would require the bottleneck to satisfy multiple, potentially contradictory objectives simul-
taneously, which could lead to training instability or a confused direction in feature learning. This is
not merely theoretical; we also observed this conflict in the ablation study detailed in

3.2.2 PSEUDO-LABEL SCREENING MECHANISM

Corresponding to the calibration heads, the optimization of the cluster head, in turn, relies on the
pseudo-labels generated by each calibration head. As mentioned in the introduction, low-quality
pseudo-labels hinder the performance of unsupervised clustering and the application of information
bottleneck theory. This paper designed a dynamic sample screening mechanism based on informa-
tion redundancy, thoroughly assessing the learning state of the current calibration head and dynam-
ically selecting high-quality pseudo-labels. This filters out ambiguous samples that the model is
“unsure” about, allowing the model to learn from simple and reliable structures first and avoiding
premature, overconfident, and incorrect judgments on difficult samples.

Generally, information redundancy is defined as: R(P) = 1 — % where H(P) =

— Zle pilogy(pi) and Himax = H(Peyen). Information redundancy can perceive the quality of
a probability vector, the more “peaked” the vector, the higher the score. For instance, a one-hot
vector receives the highest score, R(Pone—pot) = 1. The more uniform the vector, the more it
represents an inability to distinguish which cluster it belongs to. For example, a 1 x D vector
Pon = (%, %, cee 5) receives the lowest score, R(Peyen) = 0. Our screening mechanism is a
variant of information redundancy. The quality score for a single sample is:

H(P)

S =1 -

(€))

While computing quality scores, samples are ranked according to their top probability values, and

the top K3 = LZZI\; S(pim)| samples from modality m are selected into the pseudo-label set
S. As training progresses, the model becomes more confident, quality scores generally increase,
and the number of selected samples dynamically grows, allowing the model to learn from more
diverse data. This allows the model to learn from simple and reliable structures first, avoiding
premature overconfident judgments on difficult samples without negatively impacting the cluster

head’s performance. See more discussion in|Appendix A.2)
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3.2.3 CLUSTER HEAD

After screening for high-quality pseudo-labels, since the gradient backpropagation from the cluster
head is not cut off, we use it to optimize our cluster head and the bottleneck. This allows the
calibration signal to be propagated back to the bottleneck, implicitly constructing high-quality target
variables for IB in an unsupervised setting. The cluster head is optimized as:

1
Lot = =15 > i log(p™) (10)

"Einnes

Here, y; m is the pseudo-label generated by the m-th calibration head for sample x;, and p§'* is the
predicted probability distribution from the cluster head for that sample. By leveraging the pseudo-
label set in the calibration signal is delivered to the cluster head. This not only allows
the cluster head to perceive modality-specific features but also mitigates the issue of model overcon-
fidence. Concurrently, the calibration signal is transmitted back to IB through the cluster head.

Since the model’s core task is multi-modal clustering, and the final result is given by the cluster
head which operates on the fused features, the cluster head’s objective aligns well with the IB opti-
mization. Therefore allowing gradient backpropagation from the cluster head means that the update
signal for the backbones primarily comes from the effectiveness of the fused features. This incen-
tivizes the backbones to learn representations that are “most beneficial for fusion” rather than just
optimal for a single modality.

Theorem 1 (Calibration of biased MI estimation) The pseudo-label screening mechanism allows
to selectively learn more or less from the pseudo-labels of a given modality. This
enables our model to autonomously rectify the adverse effects caused by modalities with biased MI

estimation. See[Appendix A.3]

In addition to the aforementioned methods, we also utilize the Kullback-Leibler divergence to en-
force consistency among different heads. This regularization term encourages the representations
of all views to align within a unified semantic space, enhancing the robustness and discriminative
power of the fused representation.

M
Leon =Y Drr® || p™) (11
m=1
Here, pc‘ﬁb represents the clustering result from the m-th view. When different modalities produce

conflicting clustering results for the same sample, the consistency loss forces the model to output a
flatter probability distribution, thereby honestly expressing its uncertainty, effectively lowering ECE
and making our framework trustworthy.

3.3 OPTIMIZATION

To minimize the first term of L, we estimate MI using a variational inference-based approach. As

established in Theorem 2 (See , this yields a tractable upper bound: I(X*% H*) <
= Zf\il Eo, { D r.[p(x?|h?)||q(x")]}. Minimizing this bound serves to minimize the MI. To maxi-
mize the second term, the computation of M1 is thus transformed into the optimization of its tractable
lower bound in Theorem 3 (See |Appendix A.5): I(H*, H’) > log(N) — Lxtxen(H*, H’). This
enables us to maximize the lower bound of MI by minimizing the NT-Xent loss. For the optimiza-
tion of Lp, we use a neural network estimator (Belghazi et al.,|2018)) to approximate I(H™; H f )
because H™ and H/ are both high-dimensional variables. This avoids the explicit estimation of
probability density for high-dimensional data, which is computationally intractable.

Since L, is directly computable from the equations above, the details of its optimization procedure
are omitted here for brevity.

3.4 DiscuUsSION WITH OTHE METHODS

While CLIB shares methodological similarities with SDCIB(Lou et al., 2025b), MSDIB(Hu et al.|
2025)), and DDMC(Wang et al.,[2025)) in their utilization of MI estimation techniques—such as vari-
ational inference or neural estimators—it diverges fundamentally in its underlying philosophy and
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operational mechanisms. Existing works typically operate under the assumption that these tech-
niques can yield precise MI estimates. However, in the context of high-dimensional and complex
data, MI estimation is inherently susceptible to unavoidable estimation bias, thereby compromising
the quality of the features extracted by the IB framework. The distinctive advantage of CLIB lies not
in the pursuit or assumption of a “flawless” estimator, but in its innovative calibration mechanism.
By leveraging complementary cross-modal information, CLIB rectifies the adverse impacts induced
by estimation bias, effectively breaking the vicious cycle of “error accumulation” often triggered
by noisy pseudo-labels in existing frameworks. It is worth noting that while CLIB is designed to
handle biased estimation, the IB framework remains incapable of extracting meaningful features if
the estimator fails entirely from the outset. Consequently, we are still motivated to employ the most
suitable existing estimation techniques for specific targets to provide the best possible initial feature
representation. Furthermore, unlike aforementioned approaches that focus exclusively on clustering
accuracy, CLIB is the first to explicitly incorporate ECE into the optimization objective. This in-
tegration not only enhances clustering robustness but also effectively mitigates the issue of model
overconfidence, providing more reliable decision support for safety-critical applications.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We conducted experiments on five widely used benchmark datasets, and a Multi-Layer
Perceptron (MLP) was adopted as the backbone for all datasets. Caltech-2V (Fei-Fei et al., [2004):
Contains 1,440 images in 7 classes. Each sample is represented by two modalities: Wavelet moments
(Shen & Ipl [1999) and CENTRIST features (Wu & Rehg| [2011). Caltech-3V: Identical to Caltech-
2V in images and classes, but incorporates a third modality, LBP features (Ojala et al., [2002)). ESP-
Game (von Ahn & Dabbishl [2005): Comprises 11,032 images across 7 classes, utilizing image
features and corresponding textual descriptions as two modalities. IAPR (Grubinger et al.l [2006):
A collection of images and semantic descriptions. Our study uses a filtered subset of 7,855 images
from 6 categories, each with at least four labels. The two modalities are image features and text.
MIRFlickr (Huiskes & Lew} 2008)): A denoised dataset of 12,154 images in 6 categories, which also
employs image features and textual descriptions as its two modalities.

Implementation Details. The experiment was conducted with a batch size of 64 using the PyTorch
2.4.1 platform (Python 3.8) on a Windows 10 system equipped with a 24GB NVIDIA RTX-4090D
GPU. The cluster head is implemented as an MLP(512d-BN(loffe & Szegedy, 2015)-ReLU(Nair &
Hintonl [2010)-C'd), and calibration heads are designed with an identical architecture. We select 4
traditional Single/All modal clustering methods and 11 latest multi-modal clustering methods for
comparison to demonstrate the superiority of our method. The classical clustering algorithms are
K-Means(KM), Normalized Cuts(Ncuts) and all-view version of them. We run the single-modal
method on each modality and report the best clustering results. The rest of selected methods are
EAMC (Zhou & Shenl 2020), SIMVC & CoMVC (Trosten et al.,[2021), MFLVC (Xu et al., 2022),
DSMVC (Tang & Liu, 2022)), DealMVC (Yang et al., 2023), ICMVC (Chao et al.,[2024), DIVIDE
(Lu et al.| 2024b), MVCAN (Xu et al., [2024), ROLL (Sun et al.| [2025), COPER (Eisenberg et al.,
2025)).

To ensure that the calibration process is not corrupted by excessive noise, we employ a two-stage
training strategy. The first stage is a 100-epoch warm-up period dedicated to stabilizing the feature
extraction of IB. Only after the IB can reliably extract features do we proceed to the second stage, a
100-epoch calibration period. We ran the model 20 times, selecting the highest accuracy at the lowest
loss to prevent local maxima. For a more comprehensive analysis, the clustering performance was
evaluated using two popular metrics: Clustering Accuracy (ACC) (L1 & Ding}[2006) and Normalized
Mutual Information (NMI) (Strehl & Ghoshl [2002). Higher values of these metrics indicate better
clustering performance. The trustworthiness is evaluated using ECE (Zhu et al., 2022). Lower ECE
values indicate lower over-confidence and therefore suggest better trustworthiness.

4.2 EXPERIMENTAL RESULTS

Results Analysis. As shown in [Table 1} the proposed CLIB model demonstrates comprehensive
superiority, achieving top performance on three evaluation metrics across all five datasets. Re-
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Table 1: Clustering performance ACC, NMI (%) and calibration error ECE (%) on five multi-modal
datasets (The bold denotes the best while underline the second best).

Caltech-2V Caltech-3V ESP-Game MIRFlickr IAPR

ACC NMI ECE | ACC NMI ECE | ACC NMI ECE | ACC NMI ECE | ACC NMI ECE
KM 416 305 N/A | 463 313 N/A | 484 335 N/A | 409 225 NA| 389 172 NA
Ncuts 399 312 N/A | 426 254 N/A | 465 299 N/A | 484 261 N/A | 419 189 N/A
ALLKM 464 314 N/A | 469 315 N/A | 349 203 N/A | 41.0 21.6 N/A | 404 17.0 N/A
ALLNCcuts 428 52 N/A | 437 255 N/A | 336 189 N/A | 482 262 N/A | 422 189 N/A
EAMC (CVPR’20) 403 266 357 | 389 214 19.6 | 27.1 65 2411305 9.1 297 371 164 2438
SiMVC (CVPR’21) 511 369 302 | 569 504 213|353 162 256 | 456 263 354 | 427 185 479
CoMVC (CVPR’21) 59.2 492 38.7 | 541 504 256 | 51.8 382 325|493 306 432 | 467 215 368
DSMVC(CVPR’22) 579 498 312 | 657 542 264 | 324 275 314 | 484 295 318 | 389 153 246
MFLVC (CVPR’22) 61.5 536 303 | 63.1 566 342 | 52.1 401 21.7 | 53.8 328 19.5| 473 226 236
DealMVC (ACM MM’23) 47.6 379 19.1 | 592 562 27.6 | 427 247 235|493 321 219| 35 10.8 2538
ICMVC (AAAT’24) 49.6 379 285 | 647 537 394 | 458 295 252 | 435 244 206 | 37.1 168 438
DIVIDE (AAAI'24) 64.1 529 N/A | 71.6 585 N/A | 465 27 N/A | 523 335 N/A | 456 23 N/A
MVCAN (CVPR’24) 465 375 235 | 70.1 62.6 241 | 502 355 335|505 315 263 | 344 172 224
ROLL (CVPR’25) 457 358 19.7 | 61.8 49.6 169 | 41.5 23.6 257 | 462 273 246 | 382 174 23.1
COPER (ICLR’25) 61.5 551 40.1 | 63.9 567 324 | 50.7 322 29.6 | 464 34.1 315 | 472 255 284
CLIB (Ours) 68.6 60.5 160 | 778 693 109 | 563 399 121 | 554 395 105 | 51.6 291 7.8

garding clustering performance, CLIB substantially surpasses previous approaches. For example,
it achieves an ACC of 77.8% on the Caltech-3V dataset, outperforming DIVIDE by 6.2%, and an
ACC of 56.3% on the ESP-Game dataset, exceeding MFLVC by 4.2%. Similarly, its NMI score of
69.3% on Caltech-3V is significantly higher than the second-best method, MVCAN (62.6%). CLIB
demonstrates exceptional performance on the ECE metric, showcasing its strong model calibration
capabilities and trustworthiness. On ESP-Game and MIRFlickr, CLIB reduced ECE by more than
half compared to the previous best results. Furthermore, on IAPR, its ECE of 7.8% represents a
nearly threefold reduction in error compared to the runner-up, MVCAN (22.4%). Note. ECE metric
is marked as “N/A” for hard-clustering methods like KM and DIVIDE, as ECE is not meaningful
for their frameworks.

Parameter Sensitivity Analysis. We investigated the parameter sensitivity of our method through a
grid search, where hyperparameters « and 3 were varied within the (0,1) interval in 0.1 increments.
The experimental results, presented in[Figure 2] reveal that our method maintains robust performance
across all datasets, with no significant degradation under a wide range of parameter configurations.
Specifically, the ACC variance remained within 20% across all datasets, with an average peak-to-
trough drop of 17.87%. This observation underscores the method’s insensitivity to parameter choices
and highlights its reliable and stable nature.

Convergence Analysis. illustrates the convergence curves of the overall loss function,
ACC, and NMI metrics across all 5 selected datasets. The model’s performance improved signifi-
cantly after the introduction of the calibration module at the 101st epoch. All three metrics stabilized
within 40 epochs after this introduction (i.e., at epoch 140), which indicates that our model can con-
verge both quickly and stably.

4.3 ABLATION STUDY

To validate the effectiveness of each component and configuration of our framework, we conducted
additional ablation experiments. The results in indicate that both £,. and L.,;; g enhance
clustering performance. L.q;; contributes to clustering by filtering high-quality pseudo-labels,
which simultaneously increases ACC and reduces ECE. In contrast, while L.,,, effectively reduces

Figure 2: Parameter analysis on Caltech-2V, Caltech-3V, ESP-Game, MIRFlickr and TAPR dataset.
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Figure 3: Training process of CLIB on multiple datasets.

Table 2: The ablation results of the proposed model.

Caltech-2V Caltech-3V ESP-Game MIRFlickr IAPR
Settings ACC NMI ECE | ACC NMI ECE | ACC NMI ECE | ACC NMI ECE | ACC NMI ECE

L+ Leoun 5777 431 362 | 60.6 525 255 | 438 312 213|510 341 256 | 391 189 354

Lip+ Letun + Lre 612 50.1 200 | 646 574 195 | 456 359 226 | 51.8 354 232|423 182 274
Lig+ Lour + Leaig 617 535 192 | 67.8 593 11.6 | 46.1 353 215 | 538 362 185 | 399 203 189
L+ Leur + Leon 597 478 198 | 61.1 567 124 | 442 310 163 | 515 357 16.1 | 37.8 19.1 150

I. No warm-up for IB 59.6  57.1 194 | 61.7 584 151 | 486 346 219 | 528 388 27.8 | 40.1 224 329
IL. Cali heads backprop ~ 59.9 593 234 | 659 58.8 135 | 485 334 243 | 504 362 313 | 454 244 243

CLIB 68.6 60.5 16.0 | 77.8 69.3 109 | 563 399 12.1 | 554 395 105 | 51.6 291 7.8

ECE by resolving conflicting views, it yields limited clustering gains. The slight ACC drop on IAPR
(39.1% to 37.8%) stems from the constraint preventing the model from making “bold guesses”
on ambiguous samples. In safety-critical scenarios where uncertainty is paramount, we suggest
increasing the weight of L., to enhance trustworthiness. Conversely, for applications prioritizing
clustering accuracy over calibration, we advise decreasing the weight of L.,,. The results of the
ablation study validate the efficacy of the configurations within our framework, confirming that each
component positively contributes to the overall performance of our model.

L.Remove the warm-up stage for IB. As shown in removing the warm-up stage and ap-
plying callibration from the outset introduces substantial noise into the training process. This has
two adverse effects: it reduces the quantity of selected pseudo-labels and increases the likelihood of
these labels being noisy. Consequently, the model experiences a performance degradation but avoids
a complete collapse. This result affirms the necessity of the warm-up stage while simultaneously
illustrating the efficacy of the pseudo-label screening mechanism in filtering noise.

I1.Backpropagating the gradient from calibration heads. Since one calibration head is assigned
to each modality, this approach may allow modality-specific redundant information to enter the
calibration signal. This information is then passed back to IB via gradient backpropagation, which
can impair the bottleneck’s ability to learn high-quality features. This ultimately leads to a decline
in clustering performance.

5 CONCLUSION

This paper introduces CLIB, a novel IB-based multi-modal clustering method. It utilizes a dy-
namic screening mechanism to learn from high-quality pseudo-labels, which in turn calibrates IB to
enhance feature extraction. Supported by theoretical proof and experiments, CLIB achieves compet-
itive clustering performance with lower model overconfidence. Our approach also circumvents the
adverse effects of MI estimation bias in high-dimensional data, creating new application possibili-
ties for IB in multi-modal clustering. However, CLIB is currently limited to complete, single-label
multi-modal datasets and cannot address incomplete or multi-label data scenarios. Moreover, like
many clustering methods shown in|Lu et al.|(2024a), the reliance on a predefined number of clusters
restricts its flexibility. Future research will focus on developing adaptive methods to determine the
number of cluster automatically and extending the calibration mechanism to handle missing modal-
ities and multi-label correlations.

10
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A APPENDIX

In the supplemental material:

. Statement on the use of large language models.

. Discussion about pseudo-label screening mechanism.
. Proof of theorem 1.

. Proof of theorem 2.

. Proof of theorem 3.

. T-SNE visualization analysis.

. Analysis of modality weights.

. Study on difficult samples.

. Complexity analysis.

A.1 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In accordance with academic integrity guidelines, we hereby declare that no Large Language Models
(LLMs) were used in the conceptualization, experimentation, analysis, or writing of this subsection
and the related parts of this paper. All content was produced by the authors independently.

A.2 DISCUSSION ABOUT PSEUDO-LABEL SCREENING MECHANISM

As discussed in pseudo-labels generated using fixed thresholds often suffer from low
quality and are riddled with noise. To overcome this limitation, researchers began exploring more
dynamic pseudo-label refinement strategies. This is evident in the evolution from initial works like
CC(Li et al., 2021)), which used data augmentation for supervision, to its successor, TCL(L1 et al.,
2022). TCL introduced a “confidence-based boosting” strategy specifically to dynamically filter
reliable pseudo-labels from noisy, self-generated signals, demonstrating that handling unreliable
supervision is a critical issue in deep clustering.

For[Table 3] CLIB-S, stands for the version of CLIB applying

H(P)

WP)=1— ——"
S() n X Hpax

12)
for quality score function. CLIB-S; applies the original information redundancy theory and CLIB-
S, is the proposed version. The results indicate that CLIB-S; is the best-performing version. As the
changes become progressively smaller, the performance of CLIB-S4 and subsequent versions (n >
4) began to converge; therefore, they were excluded from further experimentation and presentation.

Using the original information redundancy theory poses a problem: in an extreme case, if all output
vectors from a calibration head are perfectly uniform, then no pseudo-labels from this modality will
be selected to guide the cluster head’s learning, resulting in a very sparse training signal for the
Cluster Head. When a modality is completely unable to distinguish between clusters, but the final
output fails to perceive this confusion, the model is highly likely to make overconfident predictions,
thereby affecting the clustering result. In contrast, the proposed screening method ensures that at
least half of the samples are selected into the pseudo-label set. It is less about selecting high-quality
samples but more about excluding the lowest-quality ones.

Jia et al.| (2025) and |Li et al. (2022)) adopted a pseudo-label selection method based on maximum
probability. However, by focusing only on the maximum probability, this approach tends to overlook
other information provided by the cluster probability vector. As shown in the vector for
cluster 2 provides information not only about the most likely cluster but also about the least likely
ones. Therefore, it should achieve a higher score from quality score function than the vector for
cluster 1 from S(-). If we apply the selection by the maximum probability, they will recieve the
same score. We also experimented with a pseudo-label screening mechanism based on maximum
probability, which did not perform as well as our proposed method.
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Table 3: The results of different screening strategies

Caltech-2V Caltech-3V ESP-Game MIRFlickr IAPR
Screening strategies ACC NMI ECE | ACC NMI ECE | ACC NMI ECE | ACC NMI ECE | ACC NMI ECE
Select by max probability 60.7 546 233 | 70.6 61.0 119 | 49.6 359 27.0 | 539 39 357 | 428 261 217
CLIB-S; 61,1 56.1 26.1 | 65.6 598 232 | 473 325 256 | 477 307 96 | 41.8 186 154
CLIB-S; (Proposed) 68.6 60.5 160 | 778 693 109 | 563 399 121 | 554 395 105 | 516 291 78
CLIB-S;3 632 584 172 | 68.1 600 13.8 | 475 351 147 | 43.1 304 11.3 | 40.8 215 106

o [Label | A [ o [ O] $=0.478 - [Label | A [ o [ O | $=0.6303
BWag Lo [ 06[02]02] " Pu06 Gl Lo [06] 0 [04] " Pu06

Figure 4: Different quality score functions for cluster 1 and cluster 2 respectively.

A.3 PROOF OF THEOREM 1

This proof demonstrates that the proposed calibration mechanism effectively mitigates the adverse
effects of estimation biases within IB.

Let ¢,,, represent the bias in the mutual information estimation for a given modality m. The estimated
mutual information, I(H™; H'), is related to the true mutual information, I(H™; H'), by:

IH™ H)Y =I(H™, H) + €,

A large estimation bias, indicated by a large |e,, |, leads IB to produce a less discriminative feature
representation ™. This reduction in discriminative power results in the calibration head generating
a more uniform, or “flatter,” probability distribution p¢? for the samples of that modality. A flatter
distribution is characterized by higher entropy.

Consider two modalities, m, and me, with biases €,,, and €,,,, respectively. If modality m; has a
negligible bias (¢,,, — 0) and modality mo has a significant bias (|€,,,| > 0), the resulting entropy
of their respective calibrated probability distributions will satisfy:

H(pyyy) > H(py))
The sample quality score, S(P), is designed to be negatively correlated with the entropy H (P), as

shown by its derivative:

osp) 1
DH(P) ~  2Hp "

The number of high-quality samples selected for modality 1, denoted K 3¢, is calculated as K 3¢ =

{Zfil S (pf%)J . This establishes a direct link between estimation bias and the number of selected
samples. The logical chain is as follows:

H(piy) > H(pg)) = SWis) < S(pp)) = Ky < Koy
In summary, a modality with a larger estimation bias will have fewer samples selected for the sub-
sequent training step.

We now analyze how this sample selection mechanism influences the parameter updates of 1B,
denoted by 6. The objective is to minimize the cluster head loss, L., rr, which is computed using
the union of selected samples from all modalities. The total gradient of the loss with respect to the
IB parameters 6 is the sum of contributions from each modality:

M
VoLeoun = Z Gm

m=1

where G, is the gradient contribution originating from the set of samples .5,,, selected for modality
m, with |S,,,| = K2¢. From [Equation 10} this contribution is defined as the gradient of the loss

computed exclusively on these selected samples:

G = VoL =V | 3 —yimlogp™)

T;€Sm
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By linearity of the gradient operator, this can be expressed as:

Gy = Z va —Yi,m IOg( Clu))

;E€ESm

The magnitude of this gradient contribution, ||G,||, is determined by the vector sum of the indi-
vidual sample gradients. We assume that for a given modality, the gradient vectors for each sample
are directionally coherent, as they all contribute to optimizing the same feature extraction param-
eters €. Under this reasonable assumption, the magnitude of the summed vector is approximately
proportional to the number of terms in the summation:

Gl = || D Vo (=yimlog®™)) || o< [Sm| = Kt

T;€ESm

Combining the findings from both sections, we see that for our two modalities m; (low bias) and
me (high bias), we have K¢ > K ﬁfj . This directly implies that the magnitude of their respective

my
gradient contributions will satlsfy:

1G> 1Gms
During optimization, the total gradient Vo L., g = G1+G2+- - -+G )y is a vector sum. In this sum,
the gradient vector (G1, originating from the more reliable modality with a smaller estimation bias,
possesses a significantly greater magnitude. Consequently, the direction of the total gradient update
will be predominantly influenced by GG;. This ensures that IB’s parameters are primarily updated
based on information from more reliable modalities, effectively mitigating the negative impact of
modalities corrupted by high estimation bias.

A.4 PROOF OF THEOREM 2

In our model, a key optimization objective is to minimize the mutual information I(X"; t H') be-
tween the input data X° and its compact representation H*. However, the direct computation of
this mutual information is intractable as it involves the posterior probability p(x?|h?), which is dif-
ficult to handle. Similar to|Hu et al.| (2025), we employ a variational inference approach to derive a
trainable approximate upper bound, and by lowering it, we could minimize I(X*; H?).

First, the mutual information I(X?; H?) is defined as:

16 = [ ot B

Since the posterior probability p(z*|h) is unknown, we introduce a parameterized variational distri-
bution ¢(z*) to approximate the true marginal probability p(x*). To ensure the effectiveness of this
approximation, we utilize the Kullback-Leibler (KL) divergence to constrain the distance between
q(x") and p(z*). Based on the non-negativity of KL divergence:

_— oy o)
Dgr(p(z*)||g(x" :/pxllog ,
(p(z")[lq(2")) (=) )
Through a simple transformation, we can obtain:
/p(wi)logp(a?") - /p(wi)logq(wi) >0
= p(z') = g(a).

This implies that substituting p(z*) with g(z*) provides an upper bound for the original mutual
information expression:

I(X% HY) // zt hY) log Z|hl // z' ") log ((Z|)z)

Next, by leveraging the property of the joint probability distribution, p(x?, h*) = p(h*)p(xt|h?), we
can rewrite the inequality as:

1) < [ [ oot o p(qj"))
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Table 4: Variable definitions of Theorem 3
Variable Definition

H, H, A batch of feature representations from modalities u and v.
N The batch size.
hi € H, The feature vector of the ¢-th sample from modality u.

hi € H, The feature vector of the i-th sample from modality v.
(h¥, hY) A “positive pair,” sampled from the joint distribution p(h*, h¥).

sim(hy,ha) A similarity metric for feature vectors, typically cosine similarity:

. ~ hThs
sim(ha, h2) = ey
T A temperature hyperparameter.

To eliminate extraneous elements, we use Monte Carlo sampling (Hastings, |1970) to approximate
the integral over h*, which yields:

p(a’|h’)
q(z?)
We assume that p(z?|h?) follows a Gaussian distribution, with its mean and variance learned by the

sharing specific encoder network (Alemi et al.} [2017; Mao et al.,[2021). Here we use the reparame-
terization trick, expressing h’ as:

Rt = p(z®) + o(z*) -6, where 6~ N(0,1).

166 < [ plafli) o

The upper bound of the mutual information can thus be expressed as an expectation with respect to
6, and is ultimately simplified to the expectation of a KL divergence:

p(z’|h?)
q(z*)

To prevent the model from producing a trivial solution by assigning all samples to a few clusters, we

impose a constraint on ¢(x;) to enforce a uniform distribution over the classes: va q(z;) = %,

I(X'; HY) < E, [log ] < Ep {Dir[p(z'[n")]|q(")]}.

where N is the total number of samples and |C/ is the number of clusters. Finally, by averaging over
all samples in the dataset, we obtain the final optimizable objective function:

N
[(XT: HY) < %Zn«:ai{DKL[p<xi|hi>||q<xi>]}.

A.5 PROOF OF THEOREM 3

The core idea of this proof is that the NT-Xent loss function is, in fact, an estimator for a lower
bound on the mutual information between the representations of two modalities. Consequently, by
minimizing the NT-Xent loss, we are effectively maximizing this lower bound, which serves as a
proxy for estimating the mutual information itself.

The standard definition of the mutual information can be expressed as the KL divergence between the
joint distribution p(h*, h¥) and the product of the marginal distributions p(h*)p(h"). In expectation
form, this is:

p(h*, h?) p(h?|h™)
I(H,, H,) = E,pupoy [log —~| = E,(pu pv) |log ———=
( ) p(h*,h?) {og p(h*)p(h*) p(h*,hv) 108 p(h?)

Directly computing this Ml is intractable, as it requires knowledge of the high-dimensional probabil-
ity density functions p(h¥|h*) and p(h"). The Noise-Contrastive Estimation (InfoNCE) framework
provides a way to estimate a lower bound on this quantity.

The core idea of InfoNCE is to introduce a scoring function (or critic), f(h*,h"), designed to
approximate the log-density ratio:
p(h”|h™)
f(R* h?) ~ log ————=
( ) p(h?)

18
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We can formalize this by stating that the density ratio is proportional to the exponentiated score
function:
p(h"|h")

p(h)
To convert this proportionality into an equation, we must normalize the expression. The normaliza-
tion term is found by ensuring that the probability distribution integrates to one, which is achieved
by taking the expectation over all possible A" drawn from the marginal distribution p(h?):
p(h"p") _ exp(f(h", h"))
p(hv) ]E}L/”Np(h”)[exp(f(hua h/v))]

Substituting this back into the definition of mutual information yields an expression based on our
critic f:

oc exp(f(h", "))

I(Hua H ) Ep(h“ hv) [f(huv hv) - log (Eh”’wp(h”)[exp(f(hu7 hlv))])]

The expectation term Ej,.v (50 [-] in the denominator is still intractable. We can, however, approx-
imate it using a Monte Carlo method. We draw [V independent and identically distributed samples
{hy é\le from the marginal distribution p(h"). For a sufficiently large N, the Law of Large Numbers
states:

Epromp(noy lexp(f (R, B'7))] Zexp F(R",hY))

By substituting this Monte Carlo approximation, we 1ntroduce an inequality. Because the logarithm
log(+) is a concave function, Jensen’s Inequality (E[log(X)] < log(E[X])) tells us that replacing the
log of the true expectation with the log of the sample mean results in a lower bound. Therefore:

I(Hu7 Hv) > E(hy,h;’)wp(h“,hv) f(hz 7h;} log Z exp h77 h;) )

This expression is the InfoNCE lower bound on mutual 1nf0rmat1on.

The NT-Xent loss is a specific instance of the InfoNCE objective. In this context, the scoring func-
tion f(hy, ha) is defined as the temperature-scaled cosine similarity:

f(hl, hg) = sim(hl, hg)/T
The NT-Xent loss for a batch is defined as:

exp(sim(h', hy
ENTXem(HuvH N Zl Xp ( L u)/:)
> j=1 N exp(sim(h¥, V) /7)

1) ]
We can now show the direct relationship between the InfoNCE bound and this loss function. In
a practical implementation, the expectation over positive pairs, E(ju pv), is approximated by the
empirical mean over the N pairs in the batch. Starting with the InfoNCE lower bound:

=

I(H,, H,) > L F(h¥, hY) —log Zexp f(h*, hY))

1 Z 117

N
=+ D |los(exp(f(h{',n}))) — log Z (f(hi b))

1 exp(f(hi, hY))
= E lo
T ¢ £ 3N exp(f(hy,hY))

1 exp(f(ht, hy)) ]
= — 10 10 N
N Zl et

(L5, cxp(f(hE ) sy,
— (NZI gzjilexp(f(h“ hv))) + (Ni;l g(N)>

7 J

= _ENT-Xent(Hua Hv) + IOg(N)
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Figure 5: T-sne visualization results on multiple datasets.

This final expression, I(H,,, H,) > log(N) — Lnt-Xent(Hw, H., ), demonstrates the connection. For a
fixed batch size N, a smaller N may result in a looser lower bound for the MI estimation. However,
since log(N) is a constant, its derivative with respect to the model parameters is zero. Therefore,
this term does not influence the direction of the gradient update in From the above,
minimizing the NT-Xent loss is equivalent to maximizing a variational lower bound on the mutual
information I(H,,, H,).

A.6 T-SNE VISUALIZATION ANALYSIS

To further illustrate the impact of the calibration mechanism on the final clustering structure,
[ure 3] presents t-SNE visualizations for all datasets at epoch 100 (prior to the introduction of calibra-
tion) and epoch 200 (after calibration). It can be observed that following 100 epochs of calibration,
the clustering structures across all datasets become significantly more compact and well-separated.
On the Caltech-3V dataset, where the model achieves its best performance, the clusters are clearly
distinct; data samples within most clusters are densely distributed, while samples from different

clusters maintain a substantial separation distance.

A.7 ANALYSIS OF MODALITY WEIGHTS

To investigate the dynamic adjustment capability of the CLIB framework during multi-modal fu-
sion, we tracked the evolution of modality weights (w,,,) throughout the training process across five
datasets. As illustrated in the weight variations in all datasets exhibit a distinct two-stage
characteristic, which aligns consistently with our designed training strategy. In the MIRFlickr, ESP-
Game, and IAPR datasets, the weights diverged rapidly, with the model tending to assign excessively
high weights to a dominant modality. However, upon the introduction of the Calibration Mechanism
at epoch 100, significant turning points appeared in the weight curves of all datasets, verifying the
effectiveness of the calibration signals. Following this shift, the weights stabilized quickly. This
demonstrates that CLIB’s adaptive weighted-average fusion mechanism is capable of dynamically
allocating weights based on the actual discriminability of each modality.

Caltech-2V Caltech-3V ESP-Game MIRFlickr IAPR

75 s 75 10 135 150 15 200 T S 75 160 135 130 135 200 T 50 75 10 135 130 135 200 T S0 75 1o 135 130 175 200 75 S5 75 100 135 150 175 200
Epoch Epoch Epoch Epoch Epoch

Figure 6: Evolution of modality fusion weights on multiple datasets
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Table 5: Clustering performance on difficult samples.

Caltech-2V Caltech-3V ESP-Game MIRFlickr IAPR
ACC NMI ECE | ACC NMI ECE | ACC NMI ECE | ACC NMI ECE | ACC NMI ECE

Atepoch 101  28.6 272 282 | 189 244 255|272 152 219|279 172 274 | 268 146 329
Atepoch200 43.1 395 214 | 467 283 196 | 352 197 198 | 305 21.6 215 | 397 179 243

A.8 STUDY ON DIFFICULT SAMPLES

During the initial stage of calibration, samples with low quality score were excluded from the
pseudo-label set to filter out noise. To investigate the final clustering performance of these sam-
ples, we defined the bottom 20% of samples—ranked by their quality score at the 101st epoch—as
“difficult samples.” Their final performance is presented in We recorded the clustering per-
formance at epochs 101 and 200. The results indicate that after 100 epochs of calibration, the per-
formance of hard samples improved. This is attributed to the fact that, although hard samples were
initially excluded from the pseudo-label set, the quality scores for all samples gradually increased
as the model learned. Consequently, an increasing number of samples entered the pseudo-label set,
enabling the model to eventually learn from these hard samples.

A.9 COMPLEXITY ANALYSIS

Let D denote the input dimension of the samples, Lp and Pp represent the number of layers
and the hidden dimension of the backbone network, respectively, and Hp be the dimension of
the features output by the backbone. The I(X*, H) term has a complexity of Tgackbone ~
O(N - M - (DPg + (Lg — 1)P3 + PgHp)). Concurrently, the I(H*, H?) term’s total com-
plexity is O(M2N2Hp). Finally, the I(H™, HY) term, calculated via a neural network estimator,
incurs a cost of O(NM PyrrnE), assuming a cost of O(N Py g) per modality. Therefore, the
total complexity for L;5 is T = TBackbone + O(M2 N?Hp) + O(NMPyiNE).

The computational cost of L¢; is determined by three primary operations. First, the M + 1 heads,
which map Hp-dimensional inputs to C' outputs via a Py-dimensional hidden layer, introduce a
complexity of Tgeqas = O(M+1)-N-(Hp P+ PyC)). Second, the L4 i calculation requires
a preceding K-Means step, running K, iterations for C' clusters on N H p-dimensional features,
which incurs a cost of O(K p; NC Hp). Third, the pseudo-label screening for V- M samples requires
approximately O(N M C). The remaining losses are computed in O(N M C') or less. Thus, the total
complexity for the L module is Toar = Theads + O(KyNCHp) + O(NMCO).

Let K yarmup be the number of warm-up epochs and K.,; be the number of calibration epochs. The
total time complexity Tiotar = Kwarmup - TiB + Keat - (T1B + Tcal)-
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