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ABSTRACT
Dynamic pricing algorithms have been widely studied to manage
hotel and platform revenue over online travel platforms (OTPs).
For better dynamic pricing, the accurate estimation of the mar-
ket demand and the market competitiveness are crucial. However,
the existing approaches obtain a pricing strategy tailored to each
specific scenario using data only from that scenario. They are not
considering the shared information between different scenarios,
i.e., the data from different scenarios are not fully utilized. So we
propose a Multi Scenario Pricing model (MSP) with a novel sharing
structure design that leverages cross-scenario and specific informa-
tion to capture more accurate market demand and competitiveness.
Specifically, the model structure explicitly separates information
into shared components as market demand and specific information
as scenario-wise price competitiveness to prevent domain seesaw.
To capture the inherent correlation between listings in different
scenarios, an attention network named Price Competitiveness Rep-
resentation Extraction (PCRE) is well-designed. Meanwhile, tra-
ditional metrics are skewed towards model that tends to reduce
the price regardless of sample distribution. Thus we propose new
offline evaluation metrics that shift attention with sample distri-
bution to avoid biased pricing strategies, which is proved to be
more closely related to actual business revenue. Our proposed MSP
shows superiority under both offline and online experiments on
real-world datasets. The multi-scenario industry dataset 1 and our
code2 are available. To the best of our knowledge, it will be the first
real-industry multi-scenario pricing data.
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Platform A

Scenario A Scenario B Scenario C
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View,
Search,
Click,
Order

Platform B Platform C

Pricing Decision

Market Response

TP OrderOrder RP

TP: Take-home Price

RP: Reserve Price

Figure 1: Intuition of Three Scenarios.

1 INTRODUCTION
With the explosive growth of online information and services, many
online travel platforms (OTPs) have developed a multi-scenario
sales mode to increase exposure and improve brand awareness so
as to reach potential customers and cover more market demand.
Platform A is an online travel platform with three distribution
scenarios, where customers can query about listed prices of each
room type on different check-in dates (referred to as listing). And
listed prices are determined by dynamic pricing algorithms. All
these scenarios share market demand, hotel characteristics, and
contextual environment while having different pricing power and
targeting customers with different consumption habits. On the one
hand, in scenario A, we make a complete price decision on the take-
home price that is directly shown to customers, while in scenario B
and C, facing downstream distributors, we give a relatively lower
reserve price so that distributor can have their own price-raising
strategy over it. On the other hand, customer portraits vary with
the scenario. While scenario A and C are more general, scenario B
is attached to a map app. So scenario B naturally attracts consumers
on the journey, who are inclined to choose hotels near airports and
railway stations. Besides, data reflects market demand including
historical search, view, click and order is available only for scenario
A, as for scenario B and C, we receive order information from
downstream distributors as summarized in Figure 1. In this paper,
we are going to consider the problem in multi-scenario pricing.

As a lever to better match supply and demand, pricing strategy
has been a pivotal tool in managing the overall revenue of OTPs.
Traditionally, the pricing models are usually developed respectively
under each certain scenario, but not multi-scenario. However, un-
der the multi-scenario distribution mode, the traditional dynamic
pricing approach that solely considers its own data for each sce-
nario would lead to many challenges: 1) Hard to utilize the shared
knowledge across scenarios like market demand especially for some
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scenarios with sparse data, considering that there exists overlapping
items and listings with similar characteristics in multiple scenar-
ios. Specifically, in our pricing problem, historical exposure data,
including user view, click, and search is only available in scenario
A. 2) If we feed all the data into one model, the differences between
scenarios would be completely ignored and all the data would be
projected in the same feature space despite data heterogeneity in
different scenarios, which easily causes the domain seesaw problem
[28], especially considering that price competitiveness varies signif-
icantly between scenarios according to various pricing power and
customer portraits. 3) Training a pricing model solely on its own
data for each scenario can lead to considerably high calculation and
maintenance costs as the number of pricing scenarios increases.

To tackle the above issues, we propose a Multi-Scenario Pricing
model (MSP) with progressive demand extraction layers to utilize
demand information across scenarios and scenario-wise attention
network that explicitly separates scenario specific price competi-
tiveness information. In Demand Representation Extraction (DRE),
through the shared expert and multi-level structure, the informa-
tion of multiple scenarios can be integrated to learn the market
demand more accurately. With attention networks in the Price
Competitiveness Representation Extraction module (PCRE), this
model measures the similarity of hotels and temporal price fluc-
tuation to enhance the learning process of price competitiveness.
In this manner, critical pricing information, including demand and
competitiveness, is well extracted from the multi-scenario dataset,
which helps to comprehensively make a rational pricing suggestion.

Our main contributions are summarized as follows:

• We propose a novel Multi-Scenario Pricing model (MSP),
which explicitly separates extraction modules to capture
shared demand information and scenario-wise price com-
petitiveness for better modeling complex correlation be-
tween scenarios and listings and addresses the negative
transfer further to prevent domain seesaw problem. Exten-
sive experiments on large-scale industrial data and online
A/B tests show that our proposed method significantly out-
performs existing methods both on multi-scenario pricing
and single-scenario pricing problem.

• Wepropose amore comprehensive pricingmetric that shifts
attention according to sample distribution to accommodate
class imbalance, which is well correlated with the online
business metrics.

• A large-scale production dataset on hotel pricing collected
from the online travel platform A is released with this paper.
To the best of our knowledge, this is the first industrial
production dataset with multi-scenario pricing. We hope
this could help facilitate future research in dynamic pricing.

2 RELATEDWORK
Existing approaches for dynamic pricing can be categorized into
the following two categories: 1) model-driven approaches, 2) data-
driven approaches.

Model-driven approaches perform revenue management based
on the estimated demand function with explicit parameters [2, 3,
5, 6, 10, 11, 23]. For instance, Aviv and Pazgal [3] study the finite
horizon dynamic pricing problem for the perishable products. They

assume the prior distribution of the intensity is the gamma distri-
bution, which is a conjugate distribution for the Poisson demand
process. But they consider the demand function from is known. Şen
and Zhang [23] try to resolve uncertainty about the demand func-
tion. They haven’t assumed the function form of demand function,
but also assume demand function come from a family of functions.
The former approaches are trying to resolve the dynamic pricing
problem in the finite horizon setting for the perishable products.
For the perishable products, a fixed parameter to model the mar-
ket condition is well suited with the selling season. But for the
nonperishable products, the market condition would change over
time. To overcome this issue, Araman and Caldentey [2] model
the distribution of low and high market size with two-point prior.
However, these priors may not meet with the real-world scenarios.

Data-driven approaches are utilizing the machine learning tech-
niques to predict the optimal price based on the multiple factors that
influence the demand [7, 8, 16, 18, 19, 21, 29, 30, 33, 34]. Rana and
Oliveira [22] formulate the dynamic pricing problem as a discrete
finite horizon Markov Decision Process (MDP) and use model-free
reinforcement learning technique to learn an optimal pricing policy
for maximizing revenue. AmalNick and Qorbanian [1] utilizing the
wavelet neural network to predict the future demand, and com-
bining the evolutionary algorithms to obtain the optimal pricing
policy. Ye et al. [31] utilizing Gradient Boosting Machine (GBM)
[12] to predict the booking probability of listing night and regress
the optimal price with the model which is guiding by customized
loss function. Zhang et al. [33] propose a novel sequence learning
model which integrates DeepFM [13] and the seq2seq model [26]
for predicting occupancy and predict the suggested price with a
DNN model. Zhu et al. [34] proposed a multi-task learning pro-
cedure to tackle the data sparseness, which can provide a more
robustness of occupancy prediction. Mussi et al. [20] consider the
volume discounts setting. They estimate the demand curve to re-
trieves the optimal average price, then obtain the discounts for each
volume threshold. However, they all ignore the shared information
across multiple scenarios.

3 OUR PROPOSED METHOD
In this section, we introduce the pricing strategy and technical
details of our proposed MSP. Since there are no accurate labels for
pricing problem, we define listings with room nights higher than
the past-month average room nights as good-day listings.

As discussed in Section 1, one general accurate demand curve
that models the correlation between price and occupancy is hard
to be extracted from different scenarios and easily causes domain
seesaw. To overcome this, inspired by Ye et al. [31], we divide
the solving process into two steps to model the highly non-linear
relation between market value and product features.

First, we build a progressive extraction model with attention net-
work that well extracts shared demand over the market and specific
scenario price competitiveness. Next, tower modules learn the map-
ping from extracted information to good-day probability as well
as parameters of the price suggestion function. Finally, the good-
day probability is mapped to price suggestion via a non-linear
price suggestion function [31] as the model output. Accordingly,
we design the pricing network model as below.

2
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3.1 Problem Formula
We define the multi-scenario pricing problem as 𝑣 𝑗

𝑖
= 𝑓

𝑗
𝑖
(x𝑗

𝑖
, 𝑝

𝑗
𝑖
),

where 𝑖 denotes the 𝑖-th scenario and 𝑗 denotes a specific listing, 𝑣 𝑗
𝑖

is the price adjustment ratio for listing 𝑗 under scenario 𝑖 given the
current calendar price 𝑝 𝑗

𝑖
, x𝑗

𝑖
contains all the other raw features of

listing 𝑗 in scenario 𝑖 in following categories:

• hotel profile xp 𝑗 ∈ R𝑚 : brand, rating, hotel star, location,
business district, bed size, etc.

• contextual features xt ∈ R𝑛 : week-of-year, event, holiday-
or-not, etc.

• demand features X𝑗

𝑑𝑖
∈ R𝑢×𝑡 in scenario 𝑖: historical clicks,

search, uv, ipv, order nights, etc. (𝑢: categories of demand
sequences, 𝑡 : length of time sequence)

• competitiveness features X𝑗
𝑐𝑖

∈ R𝑟×𝑡 in scenario 𝑖: ratios of
the current listed price 𝑝 𝑗

𝑖
to the competitive price, average

historical order payment, similar hotels order payment, etc.
(𝑟 : categories of price ratio sequences, 𝑡 : length of time
sequence)

3.2 Network Structure
3.2.1 Good-day probability prediction. Market demand experience
would change with seasonality and events, transferring across the
whole supply chain network. However, the transmission usually
has a time lag between different scenarios. Sharing of demand infor-
mation can tackle the scenario-wise information missing problem
and enhance the accuracy and efficiency of information-lagging sce-
nario pricing decisions. In the meanwhile, user portraits in different
scenarios distinguish from each other, which results in distinguish-
ing price competitiveness in different scenarios.

Considering this, we explicitly decouple the scenario-sharing
and scenario-specific information into demand and price competi-
tiveness and correspondingly decompose our model into two sub-
modules as illustrated in Fig 2: Demand Representation Extraction
(DRE) and Price Competitive Representation Extraction (PCRE).

• Demand Representation Extraction (DRE) This module
plays the role of transferring and sharing valuable demand infor-
mation as well as extracting specific scenario demand. To address
the domain seesaw problem, in DRE, shown as the yellow part in
Fig. 2. We employ the Progressive Layered Extraction (PLE) with
multiple-layer information extraction structure inspired by [27],
which allows the model to learn more complex demand correla-
tion between scenarios progressively. Each layer is composed of
scenario-shared expert and scenario-specific experts that explic-
itly separates shared demand information and scenario-specific
information of the current scenario. Since the following discussion
all takes listing 𝑗 as example, the superscripts 𝑗 are omitted for
the sake of formula brevity. Given a listing 𝑗 in scenario 𝑖 with
demand features X𝑗

𝑑𝑖
∈ R𝑢×𝑡 . Firstly, we generate demand em-

bedding 𝐸𝑚𝑏𝑑𝑖 ∈ R𝑢 with Gate Recurrent Unit (GRU) to capture
the temporal correlation [17]. And then, scenario-specific expert
𝐸𝑥𝑝𝑒𝑟𝑡𝑖 takes its corresponding scenario demand embedding 𝐸𝑚𝑏𝑑𝑖
as input, while the scenario-shared expert absorb knowledge from
all scenario demand embeddings. Which means the parameters
of scenario-specific experts are only related to the corresponding

scenario demand while the shared experts are related to all the
scenarios.

To learn the complex demand information progressively, DRE is
composed of multiple similar extraction layers. For brevity, we take
the 𝑙-th extraction layer as an example to demonstrate the struc-
ture details. The input are the demand representations 𝐷𝑙−1

𝑖
which

are extracted by the former layer (𝐸𝑚𝑏𝑖 for the first layer) and the
shared demand and scenario-specific demands are extracted sepa-
rately as 𝐸𝑙

𝑠ℎ𝑎𝑟𝑒
and 𝐸𝑙

𝑖
by experts and then are combined through

a gating network as the output of layer-𝑙 , namely the demand rep-
resentation 𝐷𝑙

𝑖
. The structure of the gating network of scenario 𝑖 in

layer 𝑙 , denoted as 𝑔𝑙
𝑑𝑖
(·), is based on a single-layer feed-forward

network with Softmax as the activation function, taking input as
the selector to generate the weighted sum of the output of experts.
More precisely, the output of scenario 𝑖’s gating network within
𝑙-th extraction layer is formulated as :

𝐷𝑙
𝑖 = 𝑔

𝑙
𝑑𝑖
(𝐷𝑙−1

𝑖 )Concat(𝐸𝑙𝑖 , 𝐸
𝑙
𝑠ℎ𝑎𝑟𝑒

), (1)

where 𝑔𝑙
𝑑𝑖
(𝐷𝑙−1

𝑖
) denotes a gating network to calculate the scenario

𝑖’s weight vector as:

𝑔𝑙
𝑑𝑖
(𝐷𝑙−1

𝑖 ) = Softmax(𝑊 𝑙
𝑖 𝐷

𝑙−1
𝑖 ), (2)

where𝑊 𝑙
𝑖
∈ R𝑚×𝑑 is a parameter matrix, with dimension𝑚 as the

number of experts and 𝑑 as the length of input representation 𝐷𝑙−1
𝑖

,
particularly, 𝐷0

𝑖
is exactly 𝐸𝑚𝑏𝑑𝑖 .

•Price Competitiveness Representation Extraction (PCRE)
In this module, scenario-wise price competitiveness is separately
captured by attention mechanism [4]. Considering that even under
the same scenario, the price competitiveness of different listing con-
tributes to each other in a complex way. To model this pattern, We
propose PCRE module that is composed with Price Competitive-
ness Extraction (PCE) and Price Competitiveness Integration
(PCI). Firstly, PCE decomposes price competitiveness into three
parts: internal competitiveness (competitiveness among similar
competing hotels at the same platform), external competitiveness
(compared to same-hotel prices on other platforms within recent 30
days) and self competitiveness (compare current price to recent
30-day same-listing prices to capture temporal demand fluctuation).
Sub-module 𝑃𝐶𝐸𝐼 , 𝑃𝐶𝐸𝐸 and 𝑃𝐶𝐸𝑆 of 𝑃𝐶𝐸 are designed based on
attention networks to learn the three competitiveness, denotes as
𝐶𝐼
𝑖
, 𝐶𝐸

𝑖
, 𝐶𝑆

𝑖
respectively. After that, PCI integrates the three ab-

stracted competitiveness representation, denoted as 𝐶′
𝑖
through a

gating network. All the following demonstration takes target listing
𝑗 in scenario 𝑖 as an example, thus for brevity, we omit the notation
𝑖 and 𝑗 in these formulas.
𝑃𝐶𝐸𝐼 is an attention module, designed to capture the internal

competitiveness. More precisely, it learns the competitiveness of
the current listing price among a group of competing hotels, where
hotels have similar qualities. Thus, they compete with each other
in the shared market. Inspired by [34], to identify the competing
room groups, we apply K-means clustering algorithm to cluster
the rooms into K subgroups (K equals to the number of business
districts) according to profile features such as brand, rating, location,
etc. Based on this, 𝑃𝐶𝐸𝐼 takes the embedding of hotel profile as
well as the counterpart of 5 pre-selected similar hotels as input to
calculate the importance weights of similar hotels to the current

3
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Figure 2: The Architecture of Proposed Multi-scenario Pricing Model (MSP).

one through a gating network with Softmax function. Specifically,
for the target listing room 𝑗 in scenario 𝑖 , we denote the target
hotel profile features as xp 𝑗 ∈ R𝑚 and its embedding vector as
𝑄𝐼 ∈ R𝑚 , which serves as the query in this attention module.
Similarly,𝐾 𝐼 ∈ R5×𝑚 denotes the key matrix, the embedding vector
of its similar hotel profiles and𝑉 𝐼 ∈ R5×30 denotes the value matrix,
the corresponding embedded competitiveness features X𝑗

𝑐𝑖
, where

each raw feature is a price ratios sequence with length 30 (current
price over similar hotel historical average prices within recent
30 days). This neural attention network adopts 𝑄𝐼 as query, and
calculates attention 𝑎𝑡𝑡 𝐼 ∈ R5 as scaled-dot product of 𝐾 𝐼 and 𝑄𝐼 :

𝑎𝑡𝑡 𝐼 =
𝐾 𝐼𝑄𝐼

√
𝑚

. (3)

The final output of 𝑃𝐶𝐸𝐼 is the weighted sum of values 𝑉 𝐼 , repre-
sented as 𝐶𝐼

𝑖
for scenario 𝑖:

𝐶𝐼
𝑖 =

5∑︁
𝑘

𝑒𝑎𝑡𝑡
𝐼
𝑘∑5

𝑗 𝑒
𝑎𝑡𝑡 𝐼

𝑗

∗𝑉 𝐼
𝑘
. (4)

Similarly, the output of sub attention modules 𝑃𝐶𝐸𝐸 and 𝑃𝐶𝐸𝑆 are
calculated as:

𝐶𝐸
𝑖 =

30∑︁
𝑘

𝑒𝑎𝑡𝑡
𝐸
𝑘∑30

𝑗 𝑒
𝑎𝑡𝑡𝐸

𝑗

∗𝑉 𝐸
𝑘
,

𝐶𝑆𝑖 =

30∑︁
𝑘

𝑒𝑎𝑡𝑡
𝑆
𝑘∑30

𝑗 𝑒
𝑎𝑡𝑡𝑆

𝑗

∗𝑉 𝑆
𝑘
,

(5)

where in 𝑃𝐶𝐸𝐸 , 𝑄𝐸 ∈ R𝑛 denotes the embedding of today’s con-
textual features xt ∈ R𝑛 and 𝐾𝐸 ∈ R30×𝑛 denotes context feature
embedding of nearest 30 days with prices of the same room from

competitor platforms. While in 𝑃𝐶𝐸𝑆 , 𝑄𝑆 ∈ R30×𝑛 is the same
as 𝑄𝐸 and 𝐾𝑆

𝑖
∈ R𝑛 is instead the context feature embedding of

nearest 30 days with the price from our platform of the same room.
PCE then concatenate all three price competitiveness represen-

tations as 𝐶𝑖 = Concat(𝐶𝐼
𝑖
,𝐶𝐸

𝑖
,𝐶𝑆

𝑖
) as the input of Price Competi-

tiveness Integration (PCI) module.
Considering that PCE extracts price competitiveness representa-

tion separately and inspired byMoE [9, 14, 15, 24, 32], we design PCI
to better integrate the three competitiveness representations in 𝐶𝑖
and extracts deeper information through multiple MLP structures
with a Softmax gating network to calculate the importance wight,
and finally outputs the weighted summation 𝐶′

𝑖
as the synthetic

price competitiveness representation of this listing in scenario 𝑖 ,
which is formulated as:

𝐶′
𝑖 = 𝑔𝑐𝑖 (𝐶𝑖 )𝑆𝑖 (𝐶𝑖 ), (6)

where 𝐶𝑖 is the concatenated price competitiveness representation
as mention above, and 𝑔𝑐𝑖 (·) is a weighting function with the same
structure as 𝑔𝑑𝑖 (·) to calculate the weight vector of different experts
(MLP) knowledge 𝐸𝑘 (𝐶𝑖 ). Concatenation is denoted as 𝑆𝑖 (𝐶𝑖 ):

𝑆𝑖 (𝐶𝑖 ) = Concat(𝐸1 (𝐶𝑖 ), ..., 𝐸𝑘 (𝐶𝑖 )). (7)

3.2.2 Price suggestion. Price adjustment ratio 𝑉 is then derived
from the good-day probability 𝑞 according to a non-linear function.
Several assumptions are behind this function:

(1) Price adjustment ratio 𝑉 is positively correlated with cur-
rent good-day probability 𝑞.

(2) Price adjustment ratio 𝑉 is centered around 1, such that
the suggested price always falls within a reasonable upper
and lower range of the current price where we believe the
theoretical optimal price lies.

4
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Based on the assumptions, we introduce an adjustment function as
𝑉 = 1 + 𝛼𝑞𝐴−𝑞 − 𝛽 , where 𝛼 controls the increasing magnitude. It
falls between 0 and 1 to ensure that𝑉 monotonically increases with
𝑞. 𝛽 controls the decreasing magnitude and keeps 𝑉 positive. A is
a hyper-parameter that shapes the curve bend of the non-linear
relation between price adjustment rate 𝑉 and good-day probability
𝑞. In our MSP, after extracting demand representation 𝐷𝑖 and price
competitiveness 𝐶′

𝑖
through DRE and PCRE, tower modules then

learn the mapping from extracted information to good-day probabil-
ity 𝑞 as well as parameters 𝛼 and 𝛽 of the price suggestion function.
Specially, to enhance the model awareness of more real-time price
competitiveness information, 𝑡𝑜𝑤𝑒𝑟𝛼 and 𝑡𝑜𝑤𝑒𝑟𝛽 takes 𝐶′

𝑖
solely

as input. Finally, the suggested price adjustment ratio 𝑣 𝑗
𝑖
of listing

𝑗 in scenario 𝑖 can be calculated as:

𝑞𝑖 = 𝑡
𝑞

𝑖
(Concat(𝐷𝑖 ,𝐶

′
𝑖 )),

𝛼𝑖 = 𝑡
𝛼
𝑖 (𝐶

′
𝑖 ),

𝛽𝑖 = 𝑡
𝛽

𝑖
(𝐶′

𝑖 ),

𝑣
𝑗
𝑖
= 1 + 𝛼𝑖𝑞𝐴

−𝑞𝑖
𝑖 − 𝛽𝑖 ,

(8)

where 𝑡𝑞
𝑖
(·), 𝑡𝛼

𝑖
(·), 𝑡𝛽

𝑖
(·) denotes the tower networks of scenario 𝑖 .

3.2.3 Training objective. The final loss function consists of two
parts, good-day probability 𝑙𝑜𝑠𝑠𝑞𝑖 and price suggestion 𝑙𝑜𝑠𝑠𝑣𝑖 for
each scenario 𝑖 [31] as follows:

𝑙𝑜𝑠𝑠𝑖 = 𝑤𝑞

∑︁
𝑖

𝑙𝑜𝑠𝑠𝑞𝑖 +𝑤𝑣

∑︁
𝑖

𝑙𝑜𝑠𝑠𝑣𝑖 ,

𝑙𝑜𝑠𝑠𝑞𝑖 = −
∑︁
𝑗

𝑦
𝑗
𝑖
∗ log𝑞 𝑗

𝑖
,

𝑙𝑜𝑠𝑠𝑣𝑖 =
∑︁
𝑗

(max(0, 𝐿(𝑦 𝑗
𝑖
) −𝑉 ) +max(0,𝑉 −𝑈 (𝑦 𝑗

𝑖
))),

(9)

where 𝑙𝑜𝑠𝑠𝑞𝑖 is the cross-entropy loss of our good-day probability
prediction 𝑞 𝑗

𝑖
and good-day label 𝑦 𝑗

𝑖
in scenario 𝑖 , and 𝑙𝑜𝑠𝑠𝑣𝑖 mainly

measures the gap between our suggested price and the theoretical
optimal price. Besides,𝑤𝑞 and𝑤𝑣 are hyper-parameters that adjust
the ratio of the two loss.

Note that in our case, the exact optimal price is unavailable.
Based on assumption 2, we introduce hyper-parameters 𝑐1 and 𝑐2 to
control the range [𝐿(𝑦 𝑗

𝑖
),𝑈 (𝑦 𝑗

𝑖
)] where we believe the optimal price

adjustment ratio lies in between. Correspondingly, 𝐿(𝑦 𝑗
𝑖
) denotes

the lower bound and𝑈 (𝑦 𝑗
𝑖
) denotes the upper bound of the optimal

price adjustment ratio based on the current calendar price. They
can express as follows:

𝐿(𝑦 𝑗
𝑖
) = 𝑦 𝑗

𝑖
+ (1 − 𝑦 𝑗

𝑖
) ∗ 𝑐1,

𝑈 (𝑦 𝑗
𝑖
) = 𝑦 𝑗

𝑖
∗ 𝑐2 + (1 − 𝑦 𝑗

𝑖
) .

(10)

For those good-day samples, 𝐿(𝑦 𝑗
𝑖
) is exactly 1 to prevent a price

suggestion from decreasing, while the upper bound is blurry but
constrained by 𝑐2. In the counterpart of bad-day samples, 𝐿(𝑦 𝑗

𝑖
) is

higher than 𝑐1 and𝑈 (𝑦 𝑗
𝑖
) is the current price. Since 𝑐1, 𝑐2 are closely

connected to business logic, according to our platform pricing needs,
we set them as 80% and 120%. If our suggested price falls between

Table 1: Occupancy and Suggest Price Cases Summary.

Occupancy Optimal Price Suggested Price Result
Good Day 𝑃𝑜 ≥ 𝑃 𝑃 > 𝑃𝑠𝑢𝑔 bad
Good Day 𝑃𝑜 ≥ 𝑃 𝑃 ≤ 𝑃𝑠𝑢𝑔 good
Bad Day 𝑃𝑜 < 𝑃 𝑃 ≤ 𝑃𝑠𝑢𝑔 bad
Bad Day 𝑃𝑜 < 𝑃 𝑃 > 𝑃𝑠𝑢𝑔 good

Table 2: Number of Samples in Each Four Cases.

Good Day Bad Day
𝑃𝑠𝑢𝑔 ≥ 𝑃 a b
𝑃𝑠𝑢𝑔 ≤ 𝑃 c d

𝐿(𝑦 𝑗
𝑖
) and𝑈 (𝑦 𝑗

𝑖
), the 𝑙𝑜𝑠𝑠𝑖𝑣 is 0, otherwise, it is the distance between

the suggested price and the nearer bound.
When the model performs well according to 𝑙𝑜𝑠𝑠𝑞𝑖 , it makes sure

the validity when the problem is reduced to a binary classification
problem of whether to reduce prices. In this case, our pricing sug-
gestion is at least in the right direction, namely suggesting price
increase for good-day listings while suggesting price decrease for
bad-day listings. As for 𝑙𝑜𝑠𝑠𝑣𝑖 , given the right pricing direction,
𝑙𝑜𝑠𝑠𝑣𝑖 keeps the final suggested price within a reasonable range to
the current price. So we set 𝑤𝑞 to 1 while limit 𝑤𝑣 within range
(0,1), and finally set𝑤𝑣 as 0.1 after hyper-parameters experiments.

4 PERFORMANCE EVALUATION
Wepropose ametric scheme that is compatiblewith different sample
distributions. In this way, a well-rated pricing strategy can reach a
balance between reducing the price of those listings with occupancy
not living up to expectations, and raising the price of the already
good ones. Refinements are based on the traditional evaluation
framework proposed by Ye et al. [31], which is widely adopted
[25, 33]. Let’s denote the current price as 𝑃 , our suggested price
as 𝑃𝑠𝑢𝑔 , and the ideally optimal price as 𝑃𝑜 . As defined before, we
regard it as a good day if actual occupancy is higher than or equal to
the threshold for each listing under a specific scenario. Intuitively,
the optimal price 𝑃𝑜 should be higher than or equal to the current
price 𝑃 for those good days, and 𝑃𝑜 should be lower than 𝑃 to boost
sales for those bad days. We regard 𝑃𝑠𝑢𝑔 as bad when 𝑃𝑠𝑢𝑔 is lower
than 𝑃 for a good-day listing and when 𝑃𝑠𝑢𝑔 is higher than or equal
to 𝑃 for a bad-day listing. All cases with different listing occupancy
and suggest prices are summarized in Table 1.

Assuming the number of suggestions in each case is defined in
Table 2, we define a set of metrics as below:

• Price Decrease Recall (PDR): among all bad-day listings,
the percentage of price-decreasing suggestions.

𝑃𝐷𝑅 =
𝑑

𝑏 + 𝑑 (11)

• Price Increase Recall (PIR): among all good-day listings,
the percentage of price-increasing suggestions.

𝑃𝐼𝑅 =
𝑎

𝑎 + 𝑐 (12)
5
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• Booking Regret (BR):

𝐵𝑅 =𝑚𝑒𝑑𝑖𝑎𝑛𝑔𝑜𝑜𝑑𝑑𝑎𝑦

(
𝑚𝑎𝑥

(
0,
𝑃 − 𝑃𝑠𝑢𝑔

𝑃

))
(13)

• Non-booking Regret (NR):

𝑁𝑅 =𝑚𝑒𝑑𝑖𝑎𝑛𝑏𝑎𝑑𝑑𝑎𝑦

(
𝑚𝑎𝑥

(
0,
𝑃𝑠𝑢𝑔 − 𝑃

𝑃

))
(14)

As the traditional metric proposed by Airbnb [31], PDR and
BR are mainly considered. PDR is used as the main metric and
BR serves as the auxiliary. In particular, PDR measures how likely
our price suggestion is lower than the current listing price for a
bad-day listing. BR measures how close our suggested prices are
to the booked prices when we suggest decreasing. This reflects
how closely the suggested price aligns with the actual price and
indicates how bad the bad cases are among those good-day listings,
thus a pricing strategy with lower BR is more credible. As drawn
by Airbnb, there is a trade-off between the PDR and BR according
to experiment results. It is intuitive since, for a broadly decreasing
strategy, the suggested prices go further away from the calendar
prices, which leads to both increasing PDR and BR.

Both PDR and BR are highly correlated with the booking gain but
partially and with bias. In real-world data sets, class imbalance often
occurs and the distribution of positive and negative samples would
change with time. The traditional metrics can’t handle this since
they solely focus on decreasing pricing suggestions. Let’s consider
a strategy that prefers to decrease price overall, while it helps to
improve the competitiveness of those bad-day listings, it also hurts
the benefit of those good-day ones. Taking an extreme example, a
strategy that decreases all prices by 1% can cheat on the traditional
metrics with PDR=100% and BR=1%. When our samples are all bad-
day listings, it is acceptable, however, as the proportion of good-day
listings increases, such a ’good-rated’ pricing suggestion can be
a nightmare. Apparently, such metrics focus more on decreasing
pricing suggestions so that lead to biased pricing strategy.

To tackle this, we proposed 𝑃𝑅𝐹𝑤 and 𝐵𝑅𝑤 to better accommo-
date the uneven sample. Our proposed metrics measure both price
increasing and reduction suggestions comprehensively and adjust
attention weight according to sample distribution. Similarly, 𝑃𝑅𝐹𝑤
is mainly considered while 𝐵𝑅𝑤 serves as auxiliary.

𝑃𝑅𝐹𝑤 =
𝑃𝐷𝑅 ∗ 𝑃𝐼𝑅

𝑤𝑃𝐷𝑅 + (1 −𝑤)𝑃𝐼𝑅 (15)

𝐵𝑅𝑤 = max(𝐵𝑅, 𝑁𝑅) (16)

where 𝑤 is the average ratio of good-day listings according to
the sample. In the extreme cases, our weighted metrics will be as
in Table 3. Let’s consider again the extreme decreasing strategy
mentioned above. According to our metrics, when all samples are
good-day listings, the simple biased strategy earns scores as 𝑃𝑅𝐹𝑤 =

0 and 𝐵𝑅𝑤 = 1%, which is defeated by the random strategy and is
easily ruled out.

5 EXPERIMENTS
In this section, we conduct extensive offline experiments and online
A/B tests to evaluate the effectiveness of the proposed MSP. We
mainly focus on the following research questions:

Table 3: Metric Score under Extreme Circumstance.

Extreme Case 𝑃𝑅𝐹𝑤 𝐵𝑅𝑤

All Good (w=1) 𝑃𝐼𝑅 𝐵𝑅𝑤
All bad (w=0) 𝑃𝐷𝑅 𝐵𝑅𝑤

Random Strategy 0.5 𝐵𝑅𝑤
Ideal Strategy 1 0

Table 4: Statistics of Multi-scenario Hotel Reservation
Dataset.

Dataset Scenario # deals deal ratio
Training A 327,337 0.2526

2023.06.01 - B 559,915 0.4321
2023.06.30 C 506,709 0.3911
Testing A 90,142 0.2648

2023.07.01 - B 148,483 0.4363
2023.07.07 C 126,711 0.3723

• RQ1: How does MSP perform on the hotel pricing task com-
pared to baseline methods?

• RQ2: Where is the improvement in multi-scenario pricing
strategy compared to single scenario pricing method?

•RQ3: How do different modules of MSP contribute to the model
performance?

• RQ4: How does our proposed MSP perform on the platform’s
live production environment?

5.1 Experiment Setup
5.1.1 Dataset. Single-scenario Dataset.Offline experiments are con-
ducted on hotel pricing datasets Dataset-H and Dataset-L con-
structed in [34] to verify that the multi-scenario pricing model
has stable performance on single-scenario pricing tasks. Dataset-H
contains hotel reservation data at platform A during 2020.12.17 -
2021.01.23 (high-booking season) and Dataset-L contains reserva-
tion data during 2021.03.11 - 2021.04.17 (low-booking season).

Multi-scenario Dataset. As there is no public dataset for multi-
scenario hotel pricing, we construct the first real-world multi-
scenario pricing dataset based on hotel transaction data of 56,949
hotels, 105,102 rooms and 59 check-in dates at platform A from
2023.06.01 to 2023.07.07, providing different pricing scenario based
on three distribution channel, which is released publicly with this
paper. This multi-scenario hotel pricing dataset contains already
constructed features and corresponding label, details of which are
summarized in Table 4. In our experiment, first 30-day data is used
to train the model, and the left 7-day data is used for testing.

5.1.2 Baseline Methods. We compare our MSPwith following base-
lines. Since all the baseline methods are originally proposed for
single-scenario pricing tasks, we treat pricing tasks under different
scenarios as independent and train baseline models for each.

• Meituan pricing [33] adopts a DNN model to regress the sug-
gested price for a certain room at a specific date.

• Airbnb pricing [31] uses a customized regression model to
suggest the price for Airbnb listing-nights and applies personalized
logic to optimize the suggestion.

6
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Figure 3: Experts Utilization in Different Scenarios.

• PEM pricing [34] determines the suggested price by introducing
an elastic demand-based function that captures the price elasticity
of demand in the hotel purchase prediction model.

Table 5: PerformanceComparison on Single-scenario Pricing.

Method Dataset-H Dataset-L
𝑃𝐷𝑅 𝑃𝐼𝑅 𝑃𝑅𝐹𝑤 𝐵𝑅𝑤 𝑃𝐷𝑅 𝑃𝐼𝑅 𝑃𝑅𝐹𝑤 𝐵𝑅𝑤

DNN 54.0 27.8 42.9 7.8 60.6 35.9 53.3 5.6
Airbnb 54.8 27.0 42.7 8.1 60.3 34.3 52.4 5.5
PEM 56.2 30.1 45.4 8.5 61.3 37.9 54.6 6.0

MSP-single 56.9 30.4 45.9 8.3 62.1 37.8 55.1 5.6

5.1.3 Implementation details. In MSP, the embedding size of all
features is set to 8, and the number of units in the GRU structure is
set to 128. The DRE Module contains two information abstraction
layers, and each task contains 3 experts with 128 units. The PCE
Module shifts attention over 5 similar hotels and context features
of the past 30 days. Each MLP deployed in PCI has 2 hidden layers
of sizes 256 and 128. In the loss function,𝑤𝑞 = 1,𝑤𝑣 = 0.1, 𝑐1 = 0.8
and 𝑐2 = 1.2. MSP is trained through the Adam optimizer with
a learning rate of 0.001 and a batch size of 512. For the baseline
methods, scenarios are treated as independent and, in order to
achieve a fair comparison, we keep internal structure complexity
of the baseline models consistent with MSP.

5.2 Offline Experiment
5.2.1 Performance Comparison (RQ1). The performance of all mod-
els in Comparison Experiments is summarized in Table 5 and Table
6 in percentage. We can draw the following conclusion:

(1) Effective pricing strategy Our proposed MSP outperforms
all the baseline models on the 𝑃𝑅𝐹𝑤 metric both on the single-
scenario dataset and the newly released multi-scenario dataset. It
gains an improvement of 20.1% in scenario C, 6.3% in scenario B
and 0.8% in scenario A, compared to the best-performed baseline
models respectively. 𝐵𝑅𝑤 measures how close the suggested prices
are to the actual prices when the pricing suggestion diverges from
the optimal strategy. From this viewpoint, our MSP model wins
in scenarios C and B by 57% and 46% reduction of 𝐵𝑅𝑤 . It’s worth

noting that, single scenario version MSP (MSP-single) that solely
takes data from one scenario as input still gains improvements
compared to the best-performed baseline model in each scenario.
This further validates the effectiveness of MSP pricing strategy and
its compatibility with single- and multi-scenario pricing problems.

(2)Advantageous information extraction abilityMSPmakes
impressive improvement in scenario Cwhich distinguishes from the
other two scenarios for pricing decisions are applied to distributor
prices that won’t be seen directly by customers. Apart from this,
view/search/click data used to extract market demand is unavailable
in this scenario. In this case, the single-scenario pricing model
suffers to capture the demand and price competitiveness.

(3) Comprehensive offline metricsMSP is compared to ran-
dom strategy and the extreme decreasing strategy mentioned in Sec-
tion 4. According to the biased traditional metrics, the extreme de-
creasing strategy defeats any other methods with perfect 𝑃𝐷𝑅 = 1
and considerably small 𝐵𝑅𝑤 = 0.01. However, it gains 𝑃𝑅𝐹𝑤 = 0
in our newly proposed metrics and surely won’t be chosen. This
proves our proposed metrics is more comprehensive and can easily
rule out irrationally biased pricing strategy.

5.2.2 Expert Utilization Analysis (RQ2). The DRE in our model
leverages demand data across scenarios to tackle data sparseness.
To disclose how scenario-specific and shared information are ex-
tracted and aggregated in different scenarios, we investigate expert
utilization of those gate-based sub-modules. Figure 3 shows the
weight distribution of experts utilized by each gate calculated on
test data, where the height of bars are the average weight value. It
shows the combinations of shared and specific experts varies sig-
nificantly between 3 scenarios. Scenario B and C relies much more
on shared experts than scenario A, which explains the significant
performance promotion on pricing task in these two scenarios.

5.2.3 Ablation Study (RQ3). To analyze the effectiveness of our
proposed sub-modules DRE and PCRE (PCI and PCE included) we
design 4 variants in the ablation study:

•MSP w/o DRE: a variant of MSP which replaces DRE with the
embedding of scenario-wise demand features;

•MSPw/o PCRE: a variant of MSP which deletes PCRE, and the
input of DRE contains the embedding of competitiveness sequence
and demand sequence;

• MSP w/o PCI: a variant of MSP which deletes PCI;
• MSP w/o PCE: a variant of MSP which deletes PCE;
Table 7 shows the overall experiment results in persentage. Our

proposed MSP dominates any other variants according to 𝑃𝑅𝐹𝑤
with 𝐵𝑅𝑊 controlled in an acceptable range, which validates the
effectiveness of MSP. It’s worth noting that MSP w/o PCRE has a
serious performance degradation in scenario A with 𝑃𝑅𝐹𝑤 = 0.0001
and 𝐵𝑅𝑊 = 0.1777, while it performs stable in scenario B and
achieves considerable improvement in scenario C. The reason is
that, scenario A, as it has the most comprehensive demand data
and competitive price information, benefits least from the across-
scenario demand sharing structure DRE, and relies more on price
competitiveness information extracted by PCRE. Thus the removal
of PCRE reduces the model effectiveness greatly for scenario A,
while for scenario B and C, it is the opposite. This is clearly a
domain seesaw phenomenon, the performance of some scenarios
get improved at the cost of hurting the performance of others.
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Table 6: Performance Comparison on Multi-scenario Pricing.

Method Scenario A Scenario B Scenario C
𝑃𝐷𝑅 ↑ 𝑃𝐼𝑅 ↑ 𝑃𝑅𝐹𝑤 ↑ 𝐵𝑅𝑤 ↓ 𝑃𝐷𝑅 ↑ 𝑃𝐼𝑅 ↑ 𝑃𝑅𝐹𝑤 ↑ 𝐵𝑅𝑤 ↓ 𝑃𝐷𝑅 ↑ 𝑃𝐼𝑅 ↑ 𝑃𝑅𝐹𝑤 ↑ 𝐵𝑅𝑤 ↓

random 50.0 50.0 50.0 \ 50.0 50.0 50.0 \ 50.0 50.0 50.0 \
extreme decrease 100.0 0.0 0.0 1.0 100.0 0.0 0.0 1.0 100.0 0.0 0.0 1.0

Meituan 60.2 41.0 55.3 4.8 26.9 78.7 31.9 42.7 90.3 13.1 40.4 22.6
Airbnb 60.9 40.3 55.5 14.5 49.0 53.0 49.9 4.4 91.9 22.7 56.2 18.9
PEM 61.1 41.0 55.8 15.3 51.3 55.5 52.3 7.5 90.4 24.0 57.2 20.4

MSP-single 61.5 40.6 55.9 12.6 57.7 46.3 54.5 4.2 77.6 34.0 61.2 9.2
MSP 62.8 39.3 56.3 7.0 59.6 45.6 55.5 2.3 82.2 42.4 68.7 3.8

Table 7: Ablation Study Results.

Method Scenario A Scenario B Scenario C
𝑃𝐷𝑅 ↑ 𝑃𝐼𝑅 ↑ 𝑃𝑅𝐹𝑤 ↑ 𝐵𝑅𝑤 ↓ 𝑃𝐷𝑅 ↑ 𝑃𝐼𝑅 ↑ 𝑃𝑅𝐹𝑤 ↑ 𝐵𝑅𝑤 ↓ 𝑃𝐷𝑅 ↑ 𝑃𝐼𝑅 ↑ 𝑃𝑅𝐹𝑤 ↑ 𝐵𝑅𝑤 ↓

MSP w/o DRE 60.9 41.2 55.7 13.5 54.6 46.9 52.6 6.0 91.5 25.3 59.1 19.8
MSP w/o PCRE 99.9 0.0 0.0 17.7 54.9 51.5 54.0 0.1 84.9 36.4 66.3 9.9
MSP w/o PCI 62.5 38.2 55.7 21.1 59.5 41.6 54.0 4.3 93.6 17.2 48.5 13.2
MSP w/o PCE 60.7 41.0 55.6 15.9 60.1 41.3 54.3 8.8 91.1 24.2 57.8 14.3

MSP 62.8 39.3 56.3 7.0 59.6 45.6 55.5 2.3 82.2 42.4 68.7 3.8

The experiment results verifies the effectiveness of MSP, which
explicitly separates shared demand information and independent
competitiveness information extraction process through DRE and
PCRE modules. Such structure can well prevent from negative
transfer by not introducing unnecessarily noisy information to
scenario A with sufficient data itself while achieves information
sharing for data-sparse scenarios B and C. In addition, variants MSP
w/o PCI andMSPw/o PCE validate the effect of sub-module PCI and
PCE of PCRE in each scenario. Apart from this, for MSP w/o DRE,
𝑃𝑅𝐹𝑤 of scenario A/B/C drops by 1.0%, 5.3% and 14.0% respectively,
which suggests that the shared demand information extracted by
DRE can effectively complement the specific demand representation
especially for scenario B and C. Superior performance of full MSP
structure over MSP w/o PCRE and MSP w/o DRE demonstrates
that the explicitly separated extraction structure of scenario-shared
and scenario-independent information in MSP achieves a balance
between leveraging data and avoiding domain seesaw.

5.3 Online A/B test (RQ4)
To further validate the online performance of the proposed MSP
as well as our proposed offline metrics, we conducted a four-week
online A/B test at platform A against baseline model PEM, one of
the state-of-the-art models that outperforms others in the offline
experiments. Figure 4 shows that MSP averagely achieves 1.4%,
1.9% and 7.3% relative improvement in GMV compared to PEM.
In accord with offline experiment results, scenario C improves
most among the three scenarios by adopting MSP model, which
further demonstrates that MSP leverages data across scenarios
and avoid domain seesaw in addressing the multi-scenario hotel
pricing problem at OTPs. Besides, let’s consider again the extreme
decreasing strategy mentioned in Section 4 that would dominate
any other baseline models according to traditional metrics. Such
a broad but minor decrease-pricing strategy, in fact, won‘t cause
any fluctuation on GMV revenue in the online experiment, and
thus is apparently inferior to MSP strategy according to the online
experiment results. This proves the validity of our newly proposed

offline metrics by demonstrating it is more closely linked to online
business growth.

Figure 4: Online A/B Test Results.

6 CONCLUSION
Previous studies have delved into dynamic pricing strategy and
disclosed that pricing plays a crucial role in user’s purchase behavior
and platform revenue management. However, existing methods
mainly focus on optimizing prices in a specific scenario, which leads
to unsatisfactory performance. In this paper, we conduct in-depth
analysis based on industrial transaction data from platform A and
propose MSP, which leverages the multi-scenario data and optimize
price suggestions in different scenarios. On this basis, the DRE
and PCRE modules capture sharing demand and scenario-specific
price competitiveness separately to enhance the representation
learning of scenarios and avoid domain seesaw. The effectiveness
of MSP is well validated through offline and online experiments,
demonstrating the superiority over state-of-the-art baseline models.
MSP is currently fully deployed in three scenarios at platform A
and continually gains revenue promotion.
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