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Abstract001

This work demonstrates that diffusion models002
can achieve font-controllable multilingual text003
rendering using just raw images without font la-004
bel annotations. Visual text rendering remains005
a significant challenge. While recent methods006
condition diffusion on glyphs, it is impossible007
to retrieve exact font annotations from large-008
scale, real-world datasets, which prevents user-009
specified font control. To address this, we pro-010
pose a data-driven solution that integrates the011
conditional diffusion model with a text segmen-012
tation model, utilizing segmentation masks to013
capture and represent fonts in pixel space in014
a self-supervised manner, thereby eliminating015
the need for any ground-truth labels and en-016
abling users to customize text rendering with017
any multilingual font of their choice. The exper-018
iment provides a proof of concept of our algo-019
rithm in zero-shot text and font editing across020
diverse fonts and languages, providing valuable021
insights for the community and industry toward022
achieving generalized visual text rendering.023

1 Introduction024

Diffusion models have become the dominant025

paradigm in image generation (Ho et al., 2020;026

Saharia et al., 2022; Zhang et al., 2023b; Rombach027

et al., 2022; Betker et al., 2023; Ramesh et al., 2022;028

Esser et al., 2024), because of their iterative denois-029

ing process that allows fine-grained image synthe-030

sis. While these models effectively capture data031

distributions of photorealistic or artistic images,032

they still fall short in generating high-fidelity text.033

Rendering text in images is inherently more chal-034

lenging as it requires precise knowledge of the ge-035

ometric alignment among strokes, the arrangement036

of letters as words, the legibility across varying037

fonts, sizes, and styles, and the integration of text038

into visual backgrounds. At the same time, humans039

are more sensitive to minor errors in text, such as040

a missing character or an incorrectly shaped letter,041

compared to natural elements in a visual scene that 042

allow for a much higher degree of variation. 043

Increasing attention has been paid to visual text 044

rendering (Bai et al., 2024; Han et al., 2024; Li and 045

Lian, 2024) due to its high user demands. Instead 046

of relying solely on diffusion models to remember 047

exactly how to render text, recent research is start- 048

ing to embed the visual attributes of texts, such as 049

glyphs (Tuo et al., 2023; Liu et al., 2024; Ma et al., 050

2024; Yang et al., 2024b), as input conditions to 051

diffusion models. However, it is still difficult for 052

users to specify the desired font in the open world, 053

and there remain open challenges that burden the 054

development of font-controllable text rendering: 055

• No ground-truth font label annotation is avail- 056

able in the massive training dataset, while syn- 057

thetic images often fail to accurately mimic 058

subtle details that appear in reality. 059

• There are numerous fonts available in the open 060

world, but many fonts with different names 061

are very similar which confounds evaluation. 062

• Users like visual designers may want to ex- 063

plore different fonts during their design pro- 064

cess, even creating novel fonts of their own. 065

• State-of-the-art image generation models are 066

either closed-sourced (Betker et al., 2023; 067

Midjourney) or users still cannot edit texts or 068

fonts without altering other parts of the image. 069

This work aims to address the above challenges. 070

To summarize our contributions, we introduce 071

the simplest and, to our best knowledge, one of 072

the few (Ma et al., 2024; Liu et al., 2024) open- 073

source methods for rendering visual text with user- 074

controllable fonts. We provide code in the hope 075

that others can draw inspiration from the underly- 076

ing data-driven algorithm and benefit from the 077

simplicity in the self-supervised training. 078
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Figure 1: Examples of real-world test images with text generated by ControlText in various fonts and languages.
Each row presents both the rendered images and the textual part of the corresponding glyph controls that provide
the text and the intricate font information in pixel space.

We also provide the community a comprehen-079

sive dataset for font-aware glyph controls collected080

from diverse real-world images. We further pro-081

pose a quantitative evaluation metrics for han-082

dling fuzzy fonts in the open world. Experimental083

results demonstrate that our method, ControlText,084

as a text and font editing model, facilitates a human-085

in-the-loop process to generate multilingual text086

with user-controllable fonts in a zero-shot manner.087

2 Related Work088

Generation from Prompts or Text Embeddings089

Text-to-image generation (Zhang et al., 2023a; Bie090

et al., 2023) has advanced significantly in recent091

years, leveraging conditional latent diffusion mod-092

els (Ho et al., 2020; Rombach et al., 2022; Zhang093

et al., 2023b). Foundational image generation094

models (Ramesh et al., 2021; Betker et al., 2023;095

Midjourney; Saharia et al., 2022; AI; Esser et al.,096

2024; Yang et al., 2024a; Zhao et al., 2023; Hoe097

et al., 2024; Sun et al., 2025; Chang et al., 2022)098

have achieved remarkable progress in creating high-099

quality photo-realistic and artistic images.100

Despite these advancements, visual text render-101

ing (Bai et al., 2024; Han et al., 2024; Li and102

Lian, 2024) continues to pose significant chal-103

lenges. Several algorithms rely on text embed-104

dings from user prompts or captions to control105

the diffusion process, such as TextDiffuser (Chen106

et al., 2024b), TextDiffuser2 (Chen et al., 2025), 107

and DeepFloyd’s IF (DeepFloyd-Lab, 2023). Li 108

et al. (2024b) utilizes intermediate features from 109

OCR (Du et al., 2020) as text embeddings, Liu 110

et al. (2022); Wang et al. (2024b); Choi et al. (2024) 111

take one step deeper into the character level, and 112

TextHarmony (Zhao et al., 2024b) queries a fine- 113

tuned vision-language model to generate embed- 114

dings from images and captions. 115

Generation from Glyphs The majority of algo- 116

rithms rely on visual glyphs - pixel-level represen- 117

tations that describe the appearance of texts - to 118

guide the generation process. However, massive 119

real-world images in the training dataset often lack 120

ground-truth font annotations, while it is challeng- 121

ing to extract exact font labels from any real-world 122

photos. Consequently, these approaches utilize a 123

fixed standard font to render the texts on their 124

glyph controls. For instance, GlyphControl (Yang 125

et al., 2024b) and GlyphDraw (Ma et al., 2023) 126

render text detected by OCR models, with the for- 127

mer introducing an additional Glyph ControlNet 128

to regulate the decoder of the original ControlNet 129

model (Zhang et al., 2023b). TextMaster (Wang 130

et al., 2024a), DiffUTE (Chen et al., 2024a), and 131

AnyTrans (Qian et al., 2024) aim to maintain uni- 132

form fonts within the same image. Choi et al. 133

(2024) explores design translation for artistic char- 134
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acters. Similarly, Zhang et al. (2024) employs ran-135

domly chosen fonts and a Canny edge detector.136

Several approaches also incorporate automatic tex-137

tual layout generation (Tuo et al., 2023; Zhu et al.,138

2024; Chen et al., 2024a; Li et al., 2024c; Seol139

et al., 2025; Lakhanpal et al., 2024; Paliwal et al.,140

2024b; Zhao et al., 2024a). For example, (Zhu141

et al., 2024) uses a vision-language model to iden-142

tify suitable layouts, DiffUTE (Chen et al., 2024a)143

leverages language models and OCR detectors to144

propose bounding boxes, and (Seol et al., 2025)145

employs HTML codes. In constrast, we concen-146

trate on human-in-the-loop local text editing rather147

than automatic global layout generation. Our work148

also eliminates the need for any large language or149

multimodal models, streamlining the pipeline.150

Our work builds upon the codebase of Any-151

Text (Tuo et al., 2023), a glyph-based algorithm152

that trains a base ControlNet (Zhang et al., 2023b)153

model to render visual texts. Since ground-truth154

font annotations are not accessible from real-world155

images, glyphs are generated in a fixed standard156

font, leaving the model to infer an appropriate font.157

Font-Controllable Generation Fewer recent158

works are more closely related to ours in enabling159

controllable fonts (Tuo et al., 2024; Ma et al., 2024;160

Li et al., 2024a; Shi et al., 2024; Paliwal et al.,161

2024a; Liu et al., 2025). However, none of these162

works provide a quantitative evaluation metric163

to assess the generated fonts in open-world set-164

tings. AnyText2 (Tuo et al., 2024) is a concurrent165

work developed by the authors of AnyText (Tuo166

et al., 2023). We share a similar architecture, but167

unlike (Tuo et al., 2024), we eliminate its use of168

lengthy language prompts in the inputs, separate169

models to support different languages, and the train-170

able OCR model to encode the font features. In-171

stead, we use OCR solely to filter out low-quality172

glyph controls. Tuo et al. (2024) is also not yet173

open-sourced at the time of our submission.174

Glyph-ByT5 (Liu et al., 2025) and its v2 (Liu175

et al., 2024) also support font control. However,176

unlike (Liu et al., 2025), which pre-specifies font177

labels for each language and focuses on improv-178

ing language understanding, we assume that text179

rendering is independent of the semantic mean-180

ings; in our approach, only pixel-level controls181

matter. GlyphDraw2 (Ma et al., 2024) learns font182

features through cross-attention between glyph fea-183

tures and hidden variables within the image while184

fine-tuning a language model to generate font lay-185

outs. Unfortunately, it lacks quantitative assess- 186

ment on fonts, relying on human evaluations. Joy- 187

Type (Li et al., 2024a) focuses on e-commerce prod- 188

uct images in non-Latin languages using 10 pre- 189

specified fonts with synthetic images and additional 190

vision-language models. It employs an OCR model 191

for font perceptual losses, while we assume OCR 192

to be font-agnostic. FonTS (Shi et al., 2024) uses 193

additional reference images as font style controls 194

and requires users to select fonts from pre-specified 195

integer font labels. Similarly, CustomText (Paliwal 196

et al., 2024a) relies on specific font names provided 197

in extended user prompts and an additional train- 198

ing datasets tailored for smaller fonts. While Liu 199

et al. (2024) emphasizes visual aesthetics and high- 200

lights challenges with small fonts, our work centers 201

on font editing and share the same perspective that 202

smaller fonts pose greater difficulties. However, we 203

show that zooming into localized regions for text 204

editing can already improve the quality of smaller 205

text. Different from those works, we eliminate 206

the need for pre-specified fonts with unique font 207

names or special font tokens (Liu et al., 2024; Shi 208

et al., 2024; Paliwal et al., 2024a) in user prompts, 209

making our method generalizable to unseen lan- 210

guages and fonts. 211

3 Technical Approach 212

We envision this method being used as a modu- 213

lar plug-in for existing text-to-image generation 214

frameworks. It works with images generated by 215

any base models or actual photos. For instance, 216

when incorrect text is generated, or the user wants 217

to replace some text or modify its font, our algo- 218

rithm can be specifically targeted to these localized 219

regions without altering remaining parts in images. 220

By leveraging a human-in-the-loop approach, the 221

model aims to render controllable visual text within 222

the user-specified region, perform background in- 223

painting, and blend the modified region back into 224

the original image, regardless of its original size. 225

3.1 Data-Driven Insights 226

ControlText employs a data-driven approach to un- 227

lock visual text rendering with user-controllable 228

fonts without relying on complex architectural de- 229

signs, aiming to avoid pitfalls associated with the 230

bitter lesson (Sutton, 2019) in foundation models. 231

We feed the model a massive and diverse amount 232

of unsupervised glyphs, each containing detailed 233

font features in pixel space, and train the diffusion 234
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Figure 2: System overview. It consists of two parts (1) Training pipeline: text segmentation masks are extracted as
glyph controls from a large image dataset without ground-truth font annotations. Low-quality masks are filtered
out using an OCR model, and random perturbations are applied to prevent the model from overfitting to exact
pixel locations of the glyphs. (2) Inference pipeline: users upload images, specify text regions, and provide any
desired font file through the user front-end. The model generates an image patch with the rendered text, which is
then seamlessly blended into the original image. Throughout this figure, models marked with a fire icon indicate
trainable weights, while those marked with a snowflake icon are frozen.
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Figure 3: Evaluation pipeline: the cropped regions of
the generated text and the input glyph are processed by
a pretrained font classification model, which may not
have seen the user-specified font. The proposed l2@k
and cos@k metrics for fuzzy fonts assume that similar
fonts have similar output probability vectors, while we
retain only top-k values while zeroing out the rest.

process to reconstruct target images following the235

explicit pixel-level hints in these input glyphs.236

The key insight is that during training, the model237

learns to leverage pixel-level controls provided by238

the glyphs as a shortcut for generating text within239

images. Importantly, the glyphs no longer need to240

use a standard font, but can mimic any font appear241

in the target images. Unlike traditional methods,242

no annotations of font labels are required; the only243

guidance comes from how the text appears in pixel244

space as depicted by the input glyphs.245

In inference, the model should have seen a di-246

verse set of glyphs during training, including247

intricate font features represented by pixel de-248

tails near the textual edges in the glyphs. With 249

this information, it can render unseen languages 250

or unfamiliar text without requiring prior knowl- 251

edge of how to write the text from scratch, how 252

to arrange individual letters or characters, or un- 253

derstanding their semantic meaning. The model 254

just treats text as a collection of pixels rather 255

than linguistic entities. This self-supervised data- 256

driven approach not only enhances the model’s 257

generalizability to open-world scenarios, but also 258

ensures scalability when more image data, compu- 259

tation, and larger base models become available. 260

3.2 Training Pipeline 261

3.2.1 Collection of Font-Aware Glyph 262

Controls 263

Our training pipeline begins with the collection of 264

glyph controls by performing text segmentation on 265

images. We use TexRNet (Xu et al., 2021) as our 266

text segmentation algorithm to identify text regions 267

and provide fine-grained masks, preserving intri- 268

cate features of different fonts in pixel space, It also 269

provides bounding boxes that will serve as position 270

controls (Tuo et al., 2023). The segmentation algo- 271

rithm is a pre-trained deep-learning-based model, 272

so it may occasionally miss masks for certain let- 273

ters or parts of letters. As a result, we introduce an 274

4



OCR model, specifically PaddleOCR-v3 (Du et al.,275

2020), into the pipeline following the segmentation276

process. The OCR model validates the detected277

text by filtering out masks that fail to meet our278

quality criteria, regardless of the font: (1) an OCR279

confidence score no lower than 0.8. (2) an edit dis-280

tance no greater than 20% of the string length. This281

step ensures that only high-quality segmentation282

masks are retained as glyph controls.283

3.2.2 Perspective Distortion284

Segmentation masks, even after quality filtering,285

are not directly usable as glyph controls. In real-286

world scenarios, users are unlikely to specify the287

exact locations of text or precisely align the text288

with the background. To address this issue, we ap-289

ply random perspective transformations to the col-290

lected glyph images, introducing slight translations291

and distortions to the text, without affecting the292

fonts. Specifically, we add random perturbations to293

the four corner points of the text’s bounding box,294

with the perturbation upper-bounded by ϵ pixels.295

We then compute a homography matrix M ∈296

R3×3 that maps the original text region to a slightly297

distorted view. This design ensures that the dif-298

fusion model does not rigidly replicate the exact299

pixel locations of the glyphs but instead learns300

to adaptively position the text in a way that best301

integrates with the output image.302

3.2.3 Main Training Process303

The diffusion process builds upon AnyText (Tuo304

et al., 2023), leveraging ControlNet (Zhang et al.,305

2023b) as the base model. As shown in Figure 2,306

the model takes the following five inputs during307

training. We expect the training dataset to consist308

of images containing text, captions, and polygons309

for the text region. The text and polygons can be310

automatically extracted using an OCR algorithm.311

• Font-aware glyph control cg ∈ Rn×n: A bi-312

nary mask representing the text and its font313

features in pixel space.314

• Position control cp ∈ Rn×n: A binary mask315

for the bounding box of the text region. We re-316

strict ourselves to square local image regions.317

• Masked image cm ∈ Rn×n×3: An RGB im-318

age normalized to the range [−1, 1], where the319

region within the box position cp is masked to320

0. Every other pixel is identical to the target321

image I ∈ Rn×n×3.322

• Image caption cl: We adopt the same handling 323

approach in Tuo et al. (2023), except for us- 324

ing our own cg. We empirically observe that 325

image captions are not crucial for this work. 326

• Random noise input xT ∈ Rm×m×d in the 327

embedding space to initialize the reverse de- 328

noising process (Ho et al., 2020). 329

The model outputs a denoised tensor xT ∈ 330

Rm×m×d after T timesteps, which can be recon- 331

structed back to an image Î ∈ Rn×n×3. In the 332

expressions above, n denotes the edge length of 333

the image, m represents the spatial resolution of 334

the hidden features in the latent diffusion (Ho et al., 335

2020), and d represents the number of channels. 336

We concatenate all input conditions as c and 337

perform the following reverse denoising process: 338

c = φ(cat[ξg(cg), ξp(cp), ξm(cm)]) (1) 339

pθ (xt−1 | xt, c) = N (xt−1;µθ (xt, t, c) ,Σθ(t))
(2)

340

where each ξ is some convolutional layers that 341

transform the input to Rm×m×d, φ is another fusion 342

layer, pθ is the probabilistic model that predicts the 343

distribution of a less noisy image xt−1 from xt 344

with t ∈ [0, T ], and µθ and Σθ are the mean and 345

variance of the normal distribution N . We follow 346

the same training losses in AnyText (Tuo et al., 347

2023) to train this diffusion model. 348

3.3 Inference Pipeline 349

Our philosophy is to design a more streamlined 350

training pipeline that is easily scalable to larger 351

open-world datasets, while shifting additional steps 352

to inference time to provide users with greater con- 353

trol and flexibility as needed. 354

3.3.1 Main Generation Process 355

The reversed denoising process takes the same set 356

of inputs outlined in Section 3.2.3. However, unlike 357

training where the glyph control cg is extracted 358

using the text segmentation model M, it is now 359

provided directly by the user. 360

On the user front-end, the required inputs include 361

the original image I with a short caption cl, the 362

desired text t, the font f (which can be uploaded 363

as a font file), and the polygon points p selected 364

on I to define the region where the text will be 365

rendered. To streamline the process, the pipeline 366

automatically converts polygon points p into the 367

position control cp, generates the masked image 368
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cm, and converts text t into the font-aware glyph369

control cg. Users are allowed to type multiple lines370

of text, possibly in different languages, fonts, or371

orientations, in a single cp, cg, and cm.372

Finally, the reverse denoising process is run over373

t timesteps following the same Equations 1-2 to374

generate the output image x0, whose region within375

the polygon mask cp is will be blended into the376

original image I using normal seamless cloning or377

other blending algorithms. This completes the gen-378

eration process, and the next two subsections illus-379

trate optional steps that can be applied as needed.380

3.3.2 Inpainting Before Editing381

When editing text in an image, the mask cm must382

encompass all the old text in the background. How-383

ever, this mask could be larger than the size of the384

new text t in the new font f , particularly when a385

narrower font is selected. Larger masks may intro-386

duce additional text rendered in the output image387

not specified in the glyph control cg. To address388

this challenge, we minimize the mask size to be389

just large enough to fit the text t in the new font f .390

Following recommendations in (Li et al., 2024c),391

we utilize an off-the-shelf inpainting model (Raz-392

zhigaev et al., 2023) to erase the original text. After393

inpainting, a new polygon p̂ is automatically tight-394

ened from p to match the new text.395

3.3.3 Small Textual Regions396

Handling smaller text remains a challenge (Liu397

et al., 2024; Paliwal et al., 2024a), as the diffu-398

sion process operates in the embedding space with399

potential information loss. To address this, we sim-400

ply zoom into the text region specified by the user401

and interpolate it to the input size of the diffusion402

model. Finally, we blend the generated region with403

the original image I . Figure 4 includes some ex-404

amples of small text rendered with high quality,405

demonstrating effective performance without the406

need for more complex algorithms or datasets.407

3.4 Evaluation Metrics408

3.4.1 Evaluating Text409

We adopt the same evaluation metrics from Any-410

Text (Tuo et al., 2023) to ensure that the gener-411

ated text remains recognizable regardless of the412

font. Specifically, we utilize Sentence Accuracy413

(SenACC) and Node similarity with Edit Distance414

(NED) derived from OCR to assess text recogniz-415

ability. We also employ Fréchet Inception Distance416

(FID) to evaluate the overall image quality.417

3.4.2 Evaluating Fuzzy Fonts 418

Evaluating the accuracy of fonts in visual text re- 419

mains an open question, as ground-truth font labels 420

are typically unavailable in large-scale, real-world 421

datasets. It is also the case that many fonts ap- 422

pear visually similar, making distinctions among 423

them practically meaningless. These challenges 424

highlight the need for a new evaluation metric 425

that can handle fuzzy fonts in an open-world 426

scenario. To address this, we introduce a novel 427

evaluation framework leveraging a pre-trained font 428

classification model F . Specifically, we use the 429

Google Font Classifier by Storia-AI (AI, 2025), 430

an open-source model trained on c = 3474 fonts 431

on both real and AI-generated images. Due to the 432

large value of c, the classifier’s embedding space 433

is expected to provide meaningful representations, 434

even if the model may have never encountered the 435

evaluated font before. For example, two fonts that 436

look similar should have similar embeddings 437

in this pretrained font classification model, and 438

vice versa. Therefore, we propose two metrics 439

l2@k and cos@k to evaluate font fidelity in any 440

generated images with text of any fonts. 441

• Step 1 Embedding Extraction: Both the 442

input glyph cg and the output image x0 443

are forwarded through the font classification 444

model F to obtain their last-layer probabilities 445

pg,px ∈ Rc, respectively, where c is the num- 446

ber of labels F is pretrained on. Optionally, 447

text regions in x0 can be first isolated using a 448

text segmentation model M, eliminating the 449

influence of color and background. 450

• Step 2 Distance Calculation: We retain only 451

the top k largest values in pg and px, zeroing 452

out the others, to ensure that the distance cal- 453

culation focuses on the most likely k labels. 454

It helps reduce disturbances from the accumu- 455

lation of remaining insignificant values. The 456

metric l2@k and cos@k then compute the l2- 457

distance and cos-distance between them. 458

4 Experimental Results 459

4.1 Experimental Setups 460

We finetune the ControlNet (Zhang et al., 2023b) 461

model, with a size of around 1B pretrained by 462

AnyText (Tuo et al., 2023), for 10 epochs using 463

4 NVIDIA V100 GPUs, each with 32 GB memory. 464

We use a batch size of 6, a learning rate of 2×10−5, 465

and focus solely on inpainting masked images. The 466
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Figure 4: Continuation of Figure 1. Examples of real-world and AI-generated images with text generated by
ControlText in various fonts and languages. Each row presents both the rendered images and the textual part of
their glyph controls. We also try the most complex Chinese character, “biang", in the bottom row, accompanied
by a zoomed-in view of the rendered character. ControlText effectively renders text with realistic integration into
backgrounds while maintaining correct letters and characters in their user specified fonts.

Table 1: Results on AnyText-benchmark. “AnyText-v1.1 Font Aware" refers to AnyText (Tuo et al., 2023), but
uses the same font-aware glyph controls from our work without fine-tuning as an ablation, which shows significant
performance drop in text accuracy. Although with little decrease in non-Latin text accuracy, ControlText outperforms
AnyText by a large margin in preserving diverse and detailed font information in input glyph controls.

English

Methods Text Accuracy ↑ Image Quality ↓ Fuzzy Font Accuracy (in Distance) ↓
SenACC NED FID l2@5 l2@20 l2@50 l2@full cos@5 cos@20 cos@50 cos@full

AnyText-v1.1 (Tuo et al., 2023) 0.8315 0.9081 26.18 0.3038 0.2581 0.2496 0.2466 0.1615 0.1599 0.1603 0.1614
AnyText-v1.1 Font-Aware 0.5524 0.6839 24.95 0.3049 0.2589 0.2497 0.2458 0.1601 0.1583 0.1587 0.1597
ControlText (ours) 0.8345 0.9107 25.93 0.2449 0.1850 0.1750 0.1709 0.1305 0.1286 0.1291 0.1301

Chinese

Methods Text Accuracy ↑ Image Quality ↓ Fuzzy Font Accuracy (in Distance) ↓
SenACC NED FID l2@5 l2@20 l2@50 l2@full cos@5 cos@20 cos@50 cos@full

AnyText-v1.1 (Tuo et al., 2023) 0.8591 0.8284 27.08 0.3103 0.2724 0.2643 0.2608 0.1521 0.1513 0.1519 0.1530
AnyText-v1.1 Font-Aware 0.5578 0.3396 27.11 0.3106 0.2799 0.2713 0.2690 0.1478 0.1472 0.1477 0.1488
ControlText (ours) 0.7867 0.7479 28.63 0.2602 0.1992 0.1891 0.1848 0.1274 0.1271 0.1275 0.1286
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dataset is curated from AnyWord-3M (Tuo et al.,467

2023) but with our font-aware glyph. Each RGB468

image of size 512 by 512 has at most 5 lines of text.469

The dataset comprises approximately 1.39 million470

images in English, 1.6 million images in Chinese,471

and 10 thousand images in other languages. Follow-472

ing this, we continue training the model for another473

2 epochs, turning on the textual perception loss474

introduced in (Tuo et al., 2023). We use AnyText-475

benchmark (Tuo et al., 2023) with 1000 test images476

in English and Chinese to show quantitative results.477

4.2 Visual Results478

Figures 1 and 4 showcase open-world images gen-479

erated by our model. We always follow the text480

editing pipeline to either modify existing text or481

render new text. The original images I used in482

our experiment include both real (PIXTA, n.d.; Un-483

splash, n.d.; Business Insider, 2011; CNN Travel,484

n.d.; peterpom211, 2024; Tripadvisor, n.d.; Nipic,485

n.d.) and AI-generated (Wikipedia contributors,486

n.d.; Monks, 2023) examples. ControlText demon-487

strates high-fidelity text rendering, accurately pre-488

serving both the text and the font styles. It automat-489

ically render text in either flat formats or with depth490

and color effects based on the background, such as491

outward-engraved text on a shabby storefront sign492

on the street, a metallic board on wall, a chocolate493

bar, or with neon light effects at night.494

We present images in multiple languages: En-495

glish, French (zero-shot), traditional and simpli-496

fied Chinese (including the most complex charac-497

ter “biang"), Japanese (including Kaomoji), and498

Korean, rendered in either single or multi-line for-499

mats. Additionally, we incorporate various font500

styles, including novel designer fonts sourced from501

the web (Apple Inc., n.d.; Fonts.net.cn, n.d.).502

4.3 Quantitative Results503

Table 1 presents the quantitative results evaluated504

on the AnyText benchmark (Tuo et al., 2023), along505

with our proposed metrics l2@k and cos@k with506

k = 5, 20, 50, and the full logits, i.e., c = 3474507

in the pretrained font classification model to as-508

sess font fidelity. Note that ControlText relies on a509

text segmentation model to generate glyph controls510

for the AnyText benchmark automatically. This511

may produce a small number of low-quality masks.512

However, we are not concerned about this, as hu-513

man users can always type high-quality glyph con-514

trols during the actual use; therefore, those scores515

only serve as lower bounds. To ensure a fair com-516

parison of all methods, we filter out text with low- 517

quality masks based on the same criterion described 518

in Section 3.2.1 before calculating all metrics. 519

While ControlText shows some differences com- 520

pared to AnyText in SenACC and NED on Chi- 521

nese characters, it successfully maintains large 522

gaps across metrics on English data and fuzzy font 523

accuracy. Meanwhile, when using identical font- 524

aware glyph controls in ControlText, AnyText expe- 525

riences a substantial decrease in text accuracy with 526

almost no improvement in font accuracy, as shown 527

in the row marked “AnyText-v1.1 Font Aware" in 528

Table 1. This demonstrates ControlText’s superior 529

ability to handle diverse and nuanced font varia- 530

tions without requiring fine-tuning for each font. 531

5 Discussion 532

This work presents a simple and scalable proof- 533

of-concept for multilingual visual text rendering 534

with user-controllable fonts in the open world. We 535

summarize our key findings as follows: 536

Font controls require no font label annotations 537

A text segmentation model can capture nuanced 538

font information in pixel space without requiring 539

font label annotations in the dataset, enabling zero- 540

shot generation on unseen languages and fonts, 541

as well as scalable training on web-scale image 542

datasets as long as they contain text. 543

Evaluating ambiguous fonts in the open world 544

Fuzzy font accuracy can be measured in the embed- 545

ding space of a pretrained font classification model, 546

utilizing our proposed metrics l2@k and cos@k. 547

Supporting user-driven design flexibility Ran- 548

dom perturbations can be applied to segmented 549

glyphs. While this won’t affect the rendered text 550

quality, it accounts for users not precisely aligning 551

text to best locations and prevents models from 552

rigidly replicating the pixel locations in glyphs. 553

Working with foundation models With limited 554

computational resources, we can still copilot 555

foundational image generation models to perform 556

localized text and font editing. 557

558

Future work will focus on enhancing data effi- 559

ciency, especially reinforcement pipeline and fonts 560

in low-resource languages, as well as enabling 561

more complicated artistic style control of text from 562

user prompts beyond font information, including its 563

interaction with diverse underlying background. 564
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6 Limitations565

Our model is based on ControlNet (Zhang et al.,566

2023b) with a CLIP text embedding model (Rad-567

ford et al., 2021), although modified by Any-568

Text (Tuo et al., 2023) to incorporate glyph line569

information. However, the CLIP-text encoder has570

relatively limited language understanding capabili-571

ties compared to state-of-the-art foundation models.572

Unlike text itself, this limitation affects the model’s573

ability to accurately render complex artistic visual574

features or backgrounds, which users might specify575

in their input prompts, such as asking the text to576

appear like clouds or flames, that go beyond merely577

the font information.578

Additionally, due to limited training resources,579

our experiments were conducted using a smaller580

diffusion model as a proof-of-concept compared581

to commercial ones. Each epoch requires approx-582

imately 380 GPU hours on NVIDIA V100 GPUs583

with 32 GB of memory, but we anticipate signifi-584

cantly improved efficiency on newer hardware and585

with a larger memory. This constraint may result586

in suboptimal inpainting of background regions587

within the text area, as well as instability in the588

quality of rendered text. The users also have lim-589

ited controls of background pixels behind the text.590

Some sacrifice in text quality is observed for591

non-Latin languages on the AnyText-Benchmark592

in exchange for improved font controllability.593

The embedding layers of the glyph controls can594

also lead to reduced text quality, especially when595

the text in a font is very small, thin, or excessively596

long. In such cases, fine details of the font informa-597

tion in the glyphs may be lost.598

As with all other text-to-image algorithms that599

rely on diffusion models, our approach requires600

a certain number of denoising steps to generate a601

single image at inference. End-to-end transformer-602

based models (Xie et al., 2024) may improve the603

time efficiency of the generation process.604

7 Ethical Impact605

This work is intended solely for academic research606

purposes. While our algorithm allows users to gen-607

erate images with customized text, there is a poten-608

tial risk of misuse for producing harmful or hateful609

content or misinformation. However, we do not610

identify any additional ethical concerns compared611

to existing research on visual text rendering.612
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