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Abstract

The sensitivity of optimal transport (OT) to noise has motivated the study of robust
variants. In this paper, we study two such formulations of semi-discrete OT in Rd:
(i) the α-optimal partial transport, which minimizes the cost of transporting a mass
of α; and (ii) the λ-robust optimal transport, which regularizes the OT problem
using the total variation (TV) distance. First, we provide a novel characterization
of the optimal solutions in these settings, showing they can be represented as a
restricted Laguerre diagram. Second, we exploit this characterization to establish a
strong algorithmic connection between the two problems, showing that any solver
for one can be adapted to solve the other with comparable precision. Third, we
overcome key challenges posed in extending the cost-scaling paradigm to compute
these variants of OT and present an algorithm that computes the exact solution up
to log(1/ε) bits of precision in nO(d) log(1/ε) time, where n is the support size of
the discrete distribution. Finally, we present an n1+o(1)ε−O(d) time approximation
algorithm for the above variants of OT.

1 Introduction

Given two distributions µ and ν supported on sets A and B in Rd and a parameter p ≥ 1, the cost of
transporting m units of mass from a ∈ A to b ∈ B is m∥a− b∥p. The optimal transport cost (also
called the p-Wasserstein distance) quantifies the minimum total effort required to move mass from
µ to ν. In many machine learning applications, one wishes to compute the OT cost between model
and target distributions that are continuous. Due to lack of efficient algorithms that work directly on
continuous distributions, practitioners often approximate the OT cost by computing it between two
discrete empirical distributions formed by n samples [5, 17, 18, 39]. This OT between two discrete
distributions can be computed by using a minimum-cost flow algorithm [38].

A more computationally feasible variant is the semi-discrete optimal transport (SDOT) problem,
where one distribution is continuous and the other is discrete. In this case, the OT cost and plan can be
characterized by a set of weights y : B → R≥0 such that, for any point b ∈ B, the additively weighted
Voronoi cell Vy(b) of b (also called the Laguerre cell) has the same probability mass as b. The OT
plan assigns all mass in Vy(b) to b [8]. The semi-discrete OT has found numerous applications in
machine learning [6, 20, 27, 31, 41].

Despite its usefulness, OT cost may be unduly influenced by outliers in either distribution. Two robust
variants help reduce the impact of noise. The first variant, called the α-optimal partial transport
(α-OPT), minimizes the cost of transporting a mass of α ∈ [0, 1] from µ to ν, potentially discarding
outlier mass [14]. The second variant, called the λ-robust OT (λ-ROT), introduces a regularization



via total variation distance. Given a parameter λ > 0, m units of mass can either be transported from
a ∈ A to b ∈ B incurring a cost of m∥a− b∥p or be burnt incurring a cost of λm [34]. The λ-ROT
minimumizes the cost under this burn-or-transport trade-off. In this paper, we study both α-OPT and
λ-ROT in the semi-discrete setting. We provide a characterization of them and design both exact and
approximation algorithms for them.

Related Work. Several algorithms have been presented for additively approximating the semi-discrete
OT using numerical solvers [8, 9, 15, 20, 29, 30, 32, 37] and entropic regularization [4, 10, 24]. These
algorithms take nO(d)poly(1/ε) time to compute this approximation.

Recently, Agarwal et al. [1] adapted the cost-scaling paradigm that is used for the network-flow
algorithm to the semi-discrete settings, obtaining the exact solution with log(1/ε) bits of precision
in nO(d)poly log 1/ε time. Thus, this algorithm achieves a polynomial time exact solution with
poly(n) bits of precision, while prior algorithms required exponential (in n) time to achieve the same
accuracy. Agarwal et al. [3] also developed a near-linear-time Monte Carlo algorithm that provides
a relative approximation. It is worth noting that weighted Voronoi diagrams under ℓp metrics can
have complexity as high as nΩ(d) in the worst case. This inherent geometric complexity suggests that
substantially improving upon the current nO(d)-time bounds for exact solutions may be difficult.

The α-optimal partial transport (α-OPT) problem for discrete distributions was introduced by Chapel
et al. [14] as a means to detect and remove outliers, particularly when the fraction of outliers is
known in advance; see also [21, 35] for useful properties of α-OPT. Phatak et al. [40] later proposed
computing the α-OPT cost as a function of α ∈ [0, 1], allowing automatic outlier detection and
removal without prior knowledge of the proportion of outliers. Although the α-OPT distance is not
a metric, Raghvendra et al. [42] introduced an α-OPT based metric, called the RPW distance, that
enjoys improved statistical robustness compared to the p-Wasserstein distance. In the semi-discrete
settings, it is known that the α-OPT routes mass from each discrete point to a subset of its weighted
Voronoi cell [11], and the support of a partial transport plan satisfies the interior ball condition [12]—
that is, the transported continuous mass lies within the union of balls of a fixed radius centered at the
support of the discrete distribution.

Mukherjee et al. [34] introduced the λ-ROT (originally referred to by ROBOT distance). There is
substantial work in establishing mathematical properties of λ-ROT distance as well as designing
algorithms for it [33, 36]. Most of the existing algorithms for both α-OPT and λ-ROT distances
are restricted to discrete settings and no prior work has extended these robust formulations to the
semi-discrete settings. We address the gap in this paper.

Our Results. We introduce the semi-discrete versions of α-OPT and λ-ROT and make four novel
contributions related to them.

First, we show that the optimal solution for the semi-discrete α-OPT (α-SDOPT) can be characterized
using a restricted Voronoi diagram (see Lemma 2.1). The restricted Voronoi diagram combines the
weighted Voronoi diagram structure [11] with the interior ball condition [12]. We further establish a
stronger characterization than was previously known: in the optimal solution, for each point b ∈ B,
all continuous mass within its restricted Voronoi cell is transported from b and either (i) all mass of b
is transported, or (ii) b attains the maximum weight among all points of B. We also establish a similar
characterization for the semi-discrete λ-ROT (λ-SDROT) problem; see Lemma 2.2 in Section 2. To
our knowledge, this is the first paper to give such a characterization of partial or robust OT in the
semi-discrete setting.

Second, we demonstrate that any approximate solver for λ-SDROT can be used to obtain an approxi-
mate solution to the α-SDOPT problem. Until now, these two problems have been studied separately,
each with its own family of exact and approximation algorithms. The standard reduction used to
establish duality between them [12] does not, however, preserve approximation guarantees, as we
highlight in Section 3. We provide a refined reduction showing that an approximate solution to one
problem can still be transformed into an approximate solution to the other with nearly matching
accuracy.

Third, using our characterization of partial and robust OT in the semi-discrete setting, we design a
cost-scaling algorithm for the SDROT problem. Extending cost-scaling approaches to solve optimal
partial transport is challenging, even in the fully discrete case [43], and these challenges only increase
in the semi-discrete setting. We detail this challenge as well as our approach for resolving them in
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Section 4. Roughly speaking, the cost-scaling algorithm maintains an approximate restricted Voronoi
diagram, which is successively refined at each scale. The algorithm maintains the invariants that
the untransported mass of the continuous distribution lies outside the approximate Voronoi cells.
Ensuring this invariant as we move from one scale to the next is challenging and requires new ideas.
Our algorithm runs in nO(d) log(∆/ε) time and computes a solution to the SDROT problem with
log(1/ε) bits of precision; here n is the support size of the discrete distribution and ∆ is the diameter
of the two distributions. Through our reduction, we can also compute a solution for the α-SDOPT
problem with a similar performance. We develop a preliminary implementation of this algorithm and
experimentally demonstrate that (i) the algorithm executes within the theoretically predicted number
of iterations, and (ii) both SDOPT and SDROT predominantly transport inlier mass. See Section 4.

Finally, we describe an ε-approximation algorithm for the SDROT problem running in near-linear
time in n. Our algorithm first reduces SDROT to the discrete robust OT problem, then reduces
the problem to computing a transport plan on a sparse graph, and finally either uses the recent
minimum-cost flow algorithm [16] or uses the multiplicative-weight update method as in [3, 22, 28].
Although the algorithm builds on the one in [3], new ideas are needed at both reduction steps to
make it work for partial OT. For p-Wasserstein distance, i.e., the cost is ∥a− b∥p, the algorithm takes
n1+o(1)ε−4d log∆ log ε−1 time for any constant value of p. For p = 1, we present a faster Monte
Carlo algorithm that runs in O(nε−4d−4 log3 ∆ log n log ε−1) time. Because of the lack of space,
this algorithm is presented in Appendix A. See Theorem A.1.

2 Characterizing Partial and Robust Semi-Discrete Optimal Transport

In this section, we provide a characterization of partial and robust semi-discrete OT using weighted
Voronoi diagrams. We begin by giving a formal definition of the variants of OT.

Partial and Robust OT. Suppose µ is a continuous probability distribution defined over compact
support A ⊂ Rd and ν is a discrete distribution with support set B of n points in Rd. For a parameter
p ≥ 1, define the distance of each pair of points (a, b) ∈ A × B as d(a, b) := ∥a − b∥p. A
transport plan τ : A × B → R≥0 is a function whose marginals are dominated by µ and ν, i.e.,∑
b∈B τ(a, b) ≤ µ(a) for all a ⊆ A and

∫
A
τ(a, b) da ≤ ν(b) for all b ∈ B. The cost of a transport

plan τ between µ and ν is defined as ¢(τ) :=
∫
A

∑
b∈B d(a, b)τ(a, b) da. Define M(τ) as the total

amount of mass transported by a transport plan τ , i.e., M(τ) :=
∫
A

∑
b∈B τ(a, b)da.

For a parameter α ∈ [0, 1], τ is an α-partial transport plan if M(τ) = α. An α-optimal partial
transport plan, or simply an α-OPT plan, is a minimum-cost α-partial transport plan.

For a parameter λ > 0, define the λ-robust cost of a transport plan τ aswλ(τ) := ¢(τ)+(1−M(τ))λ.
A λ-robust optimal transport plan, or simply a λ-ROT plan, is a transport plan with the minimum
λ-robust cost.

Voronoi cells. For a set of weights y(·) for the points in B, the weighted distance between each point
a ∈ A and b ∈ B is defined as dy(a, b) := d(a, b)− y(b). For any point a ∈ A, define its (weighted)
nearest neighbor as the point b ∈ B with the smallest weighted distance to a. For any point b ∈ B,
the Voronoi cell of b is the set of points of A with b as their weighted nearest neighbor, i.e.,

Vy(b) := {a ∈ A | dy(a, b) ≤ dy(a, b
′)∀b′ ∈ B}.

See Figure 1(left). It is well known that for any set of weights y(·) for B such that µ(Vy(b)) = ν(b)
for all points b ∈ B, the transport plan that transports the mass of each point b ∈ B to the mass of µ
inside Vy(b) is an OT plan. Furthermore, one can prove the existence of such weights using the LP
formulation of semi-discrete OT and the strong LP duality; see [8, 19, 23].

Restricted Voronoi cells. Given a set of non-negative weights y(·) for points in B, for any point
b ∈ B, the restricted Voronoi cell of b captures the points of the Voronoi cell of b that are within a
distance of y(b) from b, i.e.,

RVy(b) := {a ∈ Vy(b) | d(a, b) ≤ y(b)}.

See Figure 1(right). We refer to any point b ∈ B as balanced (resp. surplus, deficit) if
µ(RVy(b)) = ν(b) (resp. µ(RVy(b)) < ν(b), µ(RVy(b)) > ν(b)).

Valid weights, cover, and cap. A weight function y : B → R≥0 is called valid if all points b ∈ B
are either balanced or surplus and the surplus points have the maximum weight, i.e., for all surplus
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Figure 1: (left) Voronoi cells, and (right) restricted Voronoi cells

points b ∈ B, y(b) = maxb′∈B y(b
′). For a valid weight function y, we define the transport plan

induced by y, denoted by τy : A× B → R≥0, as the one that for each point b ∈ B, transports the
mass of b to the continuous mass of µ inside the restricted Voronoi cell RVy(b). Since each point
b ∈ B is surplus or balanced, there is enough mass at b to transport to RVy(b). We define the cover
of y(·) to be Cover(y) :=

∑
b∈B µ(RVy(b)), and its cap to be Cap(y) := maxb∈B y(b).

Characterization of partial and robust OT. The following lemma characterizes an α-OPT plan
using a set of valid weights with a cover of α.
Lemma 2.1 (α-OPT Characterization). Let µ be a continuous distribution over compact support
A ⊂ Rd, ν a discrete distribution over a set B of n points in Rd, and α ∈ [0, 1] a parameter. There
exists a valid weight function y : B → R≥0 with Cover(y) = α such that the transport plan τy
induced by y is an α-OPT plan. Furthermore, this property holds for any valid weight function y
with Cover(y) = α.

Proof Sketch. We provide a brief sketch of the proof below. The complete proof is provided in
Appendix C. The α-partial transport problem is a linear optimization problem with the linear primal
objective function ¢(τ) :=

∫
A

∑
b∈B τ(a, b)d(a, b)da and mass constraints

∫
A
τ(a, b)da ≤ ν(b),∑

b∈B τ(a, b) ≤ µ(a) and
∫
A

∑
b∈B τ(a, b)da = α. We consider its corresponding dual optimization

problem, which can be written as:

max
λ,ϕ,ψ

αλ−
∑
b∈B

ϕ(b)ν(b)−
∫
A

ψ(a)µ(a) da

subject to λ− ϕ(b)− ψ(a) ≤ d(a, b), ∀(a, b) ∈ A×B,
ϕ, ψ ≥ 0. (1)

Set y(b) = λ− ϕ(b). By complementary slackness conditions on the optimal solutions for the primal
and dual problems, one can argue that if primal constraint

∫
A
τ(a, b)da ≤ ν(b) is not tight then

y(b) = λ, and that if primal variable τ(a, b) > 0 then y(b)− ψ(a) = d(a, b). By feasibility of the
optimal dual solution, both of these conditions imply that (i) y(b) = maxb′∈B y(b

′) for every surplus
point b ∈ B, and (ii) τ(a, b) > 0 for pairs (a, b) only if a ∈ RVy(b).
Next, we differentiate the dual objective with respect to the unconstrained variable λ, argue that the
dual objective is maximized when Cover(y) = α, and use strong duality and conclude the existence
of optimal weights y. We finally use the feasibility constraints of the dual problem to argue that any
such weights y satisfying these conditions induce an optimal transport plan.

Next, we characterize a λ-robust optimal transport plan using a set of valid weights with a cap of λ.
Lemma 2.2 (λ-ROT Characterization). Let µ be a continuous distribution over compact support
A ⊂ Rd, ν a discrete distribution over a set B in n points in Rd, and λ > 0 a parameter. There exists
a valid weight function y : B → R≥0 with Cap(y) = λ such that the transport plan induced by y is
a λ-ROT plan. Furthermore, this property holds for any valid weight function y with Cap(y) = λ.

Suppose y(·) is a set of valid weights with a cap of λ and cover of α. A transport plan τ transporting
the mass of each point b ∈ B to the mass of µ inside RVy(b) would be both an α-OPT plan as well
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as a λ-ROT plan. In the next section, we show a strong relationship between the two robust variants
of the semi-discrete OT problem.

Relating the two characterizations. For any value λ ≥ 0, let MaxCover(λ) denote the largest value
α ∈ [0, 1] such that there exists a set of valid weights y(·) for B with a cover of α and a cap of λ. We
note that MaxCover(λ) gives the maximum value of mass that can be transported if we restrict any
mass to be transported at most λ distance. Similarly, for any value α ≥ 0, let MinCap(α) denote the
smallest value λ ≥ 0 such that there exists a set of valid weights y(·) for B with Cover(y) = α and
Cap(y) = λ. That is, the maximum distance the mass has to be transported in any α-OPT plan has
to be at least MinCap(α). We show in the following lemma that both functions are monotonically
non-decreasing.

Lemma 2.3. The mappings MaxCover : R≥0 → [0, 1] and MinCap: [0, 1]→ R≥0 are monotoni-
cally non-decreasing functions.

From Lemmas 2.2 and 2.3, given an exact black-box solver A for the robust OT problem, one can
compute a highly accurate α-OPT plan using a simple binary search on the value of MaxCover(α).
Hence, we obtain the following:

Proposition 2.4. Given a procedure A for computing semi-discrete robust OT, for any parameter
α ∈ [0, 1] that requires m bits of representation, a semi-discrete α-OPT can be computed by making
O(m) calls to A.

3 Relating Approximate Partial Transport Models

In this section, we show that an approximate solver for λ-robust OT can be used to compute a
near-optimal transport plan. We begin by formally defining near-optimal transport plans.

Approximate transport plans. We call an α-partial transport plan (εr, εa)-approximate if ¢(τ) ≤
(1 + εr)¢(τ∗) + εa, i.e., both relative and additive error terms are allowed. Analogously, define
a transport plan τ where M(τ) = α as an (εr, εa)-approximate λ-robust optimal transport plan if
¢(τ)+(1−α)λ ≤ (1+εr) [¢(τ∗) + (1− α∗)λ]+εa, where τ∗ is a λ-ROT and α∗ = M(τ∗). When
εr = 0, we refer to any (0, εa)-approximate α-partial transport plan or any (0, εa)-approximate λ-
robust transport plan as εa-close. We finally define approximate partial transport plans that also allow
for some slack in the amount of mass transported. Define a partial transport plan τ as an (εr, εa, δ)-
approximate α-partial transport plan if (1) M(τ) ≥ (1− δ)α, and (2) ¢(τ) ≤ (1 + εr)¢(τ∗) + εa,
where τ∗ is an optimal α-partial transport plan. The first condition says that the partial transport plan
τ routes at least (1 − δ)α mass, while the second condition says that the partial transport plan is
comparable in cost to the best possible α-partial plan.

Approximation algorithm. We now describe an algorithm APT for partial OT using a λ-robust
OT solver. Let α ∈ (0, 1) and εr, εa ≥ 0 be parameters, and let 0 < δ ≤ αε−1

r be some constant.
Suppose we are given an (εr, εa)-approximation algorithm ART for the λ-SDROT problem that
besides returning an (εr, εa)-approximate λ-robust transport plan τA(λ) also returns the amount of
mass τA(λ) transports. We perform a binary search on λ to compute an approximate α-OPT plan.

First initialize values λL = 1
3 minb1,b2∈B d(b1, b2) and λR =

(
1− εr

δα

)−1
∆+ εa

δα , where ∆ is the
diameter of A ∪B and is finite since it is assumed that µ has compact support. Run algorithm ART
with inputs λL and λR, obtaining approximate partial transport plans τL and τR, respectively. If
M(τR) < α, we send the untrasported mass in a greedy manner and return the resulting transport
plan (As we will see below, if α is close to 1 then ART might transport less than α mass even for
λ = ∆). If τL routes more than α mass, then one can greedily route all α mass within a tiny ball of
radius at most λL around each point of the discrete distribution. Otherwise, we perform a simple
binary search on λ. Set λ = 1

2 (λL + λR) and use algorithm ART to compute an approximate partial
transport plan τλ given input λ. If M(τλ) ≥ α, then assign λR ← λ and τR ← τλ. Otherwise, assign
λL ← λ and τL ← τλ. This maintains the invariant M(τL) ≤ α ≤ M(τR) while decreasing the gap
between λL and λR. The algorithm stops when λR ≤ (1 + εr)λL + εa. If M(τR) > α, we compute
an α-partial transport plan τ̃α from τR by reducing the mass being transported in a greedy manner,
i.e. not sending the mass to the farthest points of A. See the appendix for details.

Pathological example. Before we analyze the performance of this algorithm, we remark that one
cannot guarantee Lemmas 2.1 and 2.2 to hold for an approximate partial transport plan. As a
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consequence, one cannot immediately use the nice structure of Lemma 2.3 to guarantee that the
above binary search returns a near-optimal α-OPT. Roughly speaking, suppose λ∗ = MinCap(α).
Even if we set λ = (1 + ε)λ∗, an (ε, 0)-approximate λ-ROT solver may not transport the mass at
distance close to λ∗ and thus it may return a transport plan τA,λ with M(τA,λ) < α. The problem
becomes more acute as α approaches 1, as M(τA,λ) < α even for λ > ∆. For instance, consider
the following simple example where A = {a}, B = {b}, d(a, b) = 1 and α = 1. Then a transport
plan τλ with M(τλ) = 0 is an (ε, 0)-approximate λ-robust OT plan for λ = 1 + ε. Furthermore,
for λ = 10 a transport plan τλ with M(τλ) = 1− ε

9 is an (ε, 0)-approximate λ-robust OT plan (as
its cost is 10 · ε9 + (1− ε

9 ) = 1 + ε). We, however, show that the binary search returns a transport
plan that has an additive error in the cost or that guarantees to transport at least (1− δ)α mass in a
near-optimal manner.

Analysis. The example above highlights the key phenomenon that allows us to provide a guarantee
on the quality of the transport plan returned by the above algorithm: as λ increases, the maximum
amount of mass that is not transported by an approximate λ-robust transport plan τ decreases. We
make this phenomenon precise in the following lemma.
Lemma 3.1. Suppose τ is an arbitrary (εr, εa)-approximate λ-robust transport plan and δ ∈ (0, 1).

(i) For any α ∈ (0, 1), if M(τ) ≤ (1− δ)α, then λ ≤ (1− εr
δα )

−1MinCap(α) + εa
δα .

(ii) Equivalently, for any α ∈ (0, 1− δ), if M(τ) ≤ α, then λ ≤
(
1− εr

δα

)−1
MinCap

(
α

1−δ

)
+ εa

δα .

The following lemma proves that when the algorithm terminates with interval [λL, λR], the most
expensive mass of τR has a cost comparable to λR.
Lemma 3.2. If λR ≤ (1+εr)λL+εa, then ¢(τR)−¢(τL) ≥ [M(τR)−M(τL)]λR−(4εrλR+4εa).

Using Lemma 3.2, we prove that APT is also an approximation algorithm for the α-OPT problem.
Theorem 3.3. Let µ be a continuous distribution with compact support A ⊂ Rd, and let ν be a
discrete distribution with support B ⊆ Rd and minimum pairwise distance 1. Define ∆ to be the
diameter of A ∪B and let α ∈ (0, 1) be a parameter. Suppose εr, εa ≥ 0 and ART is an arbitrary
(εr, εa)-approximation algorithm for the λ-robust OT problem. For any δ ∈

(
0,min

{
4εr
α , 1−αα , 12

})
,

the algorithm APT is an (εr, η)-approximation algorithm for α-partial transport, where η =
O
(
εr
δα (εrMinCap(α(1 + δ)) + εa)

)
. For εr = 0, APT is an (0, 5εa)-approximation algorithm.

The algorithm APT makes O (log∆) calls to ART .

The challenge for the approximate solver arises when some mass needs to be transported much farther
than the cost of the transport plan (which is the expected distance of mass being transported), as in
cases where µ has a long tail and α is such that some mass from this tail has to be transported. If α is
in the range for which the cost of an α-OPT plan τα is comparable to the maximum distance the mass
is transported in τα+εr , a stronger claim can be made on the quality of the plan returned by APT .
Corollary 3.4. Let µ be a continuous distribution with compact support A ⊂ Rd, and let ν be a
discrete distribution with support B ⊆ Rd. Suppose εr, εa ≥ 0, α ∈ (0, 1− εr) is a parameter, and
ART is an arbitrary (εr, εa)-approximation algorithm for the λ-robust OT problem. Additionally,
suppose ¢(τ∗) ≥ c ·MinCap(α + εr) for some constant c ∈ (0, 1), where τ∗ is an α-OPT plan.
Then, APT is an

(
O( εrc ), O(εa)

)
-approximation algorithm for α-partial transport.

Finally, if we allow some flexibility in the amount of mass transported by the returned partial transport
plan, then one can still obtain a similar cost approximation guarantee for arbitrary distributions by
running the above binary search but with input being α(1− δ).
Theorem 3.5. Let µ be a continuous distribution with compact support A ⊂ Rd, ν a discrete
distribution with support B ⊆ Rd, and α ∈ (0, 1) a parameter. Suppose εr, εa ≥ 0, εr < 1

5α, and
δ > 5εr

α . Then algorithm APT is a (εr, 5εa, δ)-approximation algorithm for α-partial transport
given any arbitrary (εr, εa)-approximation algorithm ART for the λ-robust OT problem.

4 A Highly Accurate Algorithm for the Robust Optimal Transport Problem

In this section, we present an algorithm that computes an ε-close λ-robust transport plan, for λ, ε > 0,
between a continuous distribution µ and a discrete distribution ν in Õ(n4 log(∆/ε)) time in R2 and
in nO(d) log(∆/ε) time in Rd, where ∆ is the diameter of A ∪B.
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Figure 2: (left) The δ-expanded restricted Voronoi cell of RV δy (b), (middle) in a δ-feasible transport
plan, the point b ∈ B can transport mass to its 2δ-expanded restricted Voronoi cell, (right) the
decomposition Xδ .

4.1 Our Combinatorial Framework

We begin by introducing the notion of a δ-feasible transport plan. Given a weight function y(·) on
points of B and a parameter δ ≥ 0, the δ-expanded restricted Voronoi cell of b is defined as

RV δy (b) := {a ∈ A | d(a, b) ≤ y(b) + δ and dy(a, b) ≤ dy(a, b
′) + δ, ∀b′ ∈ B}.

See Figure 2(left). Any transport plan τ along with weights y(·) is δ-feasible if, for any pair
(a, b) ∈ A × B with τ(a, b) > 0, we have a ∈ RV 2δ

y (b), i.e., each point b ∈ B transports mass
only to the regions within the 2δ-expansions of its restricted Voronoi cell (Figure 2(middle)). We
refer to any point b ∈ B (resp. a ∈ A) as surplus (resp. deficit) if

∫
A
τ(a, b) da < ν(b) (resp.∑

b∈B τ(a, b) < µ(a)) and as balanced if
∫
A
τ(a, b) da = ν(b) (resp.

∑
b∈B τ(a, b) = µ(a)).

Given a weight function y(·) for the points in B, we derive a weight ȳ(a) for each point a ∈ A as

ȳ(a) := max{0,max
b∈B
{y(b)− d(a, b)}}. (2)

Note that any 0-feasible transport plan transports the mass of each point b ∈ B to regions inside
its restricted Voronoi cell. From Lemma 2.2, a λ-ROT plan is a 0-feasible transport plan where
Cap(y) = λ, all surplus points b ∈ B have y(b) = λ, and all deficit points a ∈ A have ȳ(a) = 0.
The following lemma shows that any δ-feasible transport plan with similar restrictions on surplus and
deficit points is a 2δ-close λ-robust transport plan.
Lemma 4.1. For any parameter δ > 0, suppose τ, y(·) denotes a δ-feasible transport plan, and
let λ := Cap(y). Suppose the following two conditions hold: (F1) for every deficit point a ∈ A,
ȳ(a) = 0, and (F2) for all surplus points b ∈ B, y(b) = λ. Then, τ is a 2δ-close λ-robust transport
plan.

Challenges in extending cost-scaling technique. Our algorithm builds on the cost-scaling framework
of Agarwal et al. [1], which operates over multiple scales. Their algorithm begins at a coarse scale
δ = ∆ with all weights y(b) = 0. In each scale δ, weights are inherited from the previous scale 2δ.
The algorithm discretizes the continuous support A using an arrangement of 0-, δ-, and 2δ-expansions
of all Voronoi cells and iteratively computes a δ-feasible transport plan by adjusting the weights and
increasing the amount of transported mass using augmenting paths. When the plan transports all the
mass, the resulting weights are passed on to the next scale δ/2. Their algorithm terminates when
δ = ε/2 and returns an ε-close transport plan.

Extending their approach to our setting creates new challenges. Unlike in the standard setting, our
algorithm computes a δ-feasible transport plan that may leave some mass untransported. We must,
therefore, cap the weights assigned to each point b ∈ B by λ (Lemma 4.1 condition (F2)) and restrict
the weights ȳ(a) of all deficit regions in A to 0 (Lemma 4.1 condition (F1)). A naïve implementation
of the scaling paradigm risks generating deficit regions within the restricted Voronoi cells – deficit
points of A with positive weights – violating Lemma 4.1. For example, in Figure 3, the algorithm
creates a deficit region (green region) inside the restricted Voronoi cells, illustrating such a violation.
To resolve this, we introduce “consolidating paths”, which carefully restructure the transport plan to
relocate deficit regions from inside the restricted Voronoi cells to their exterior (Figure 3(right)).
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Figure 3: (left) In scale 2δ, the point b transports mass to a region φ inside its 4δ-expanded
Voronoi cell, and (right) in scale δ, the φ becomes a violating deficit region. A consolidating
path ⟨r0, b1, r1, b2, r2⟩ can be used to bring this deficit to the exterior of the restricted Voronoi cells.

Each scale of our algorithm consists of two steps. Step 1 updates the weights and the transport
plan along a set of consolidating paths to restore condition (F1). Step 2 of our algorithm maintains
δ-feasibility and condition (F1) as invariants, and carefully raises the weight of the surplus points to
λ, enforcing condition (F2). From Lemma 4.1, the resulting transport plan is 2δ-close. We provide a
non-trivial proof that these adjustments do not impact the asymptotic execution time of our algorithm.

4.2 Our Algorithm

We begin by describing the basic terminology required to describe our algorithm.

Decomposition of A. Given a δ-feasible transport plan τ, y(·), let Xδ denote the arrangement of
the restricted Voronoi cell RVy(b) and the δ- and 2δ-expanded restricted Voronoi cells RV δy (b) and
RV 2δ

y (b), for all points b ∈ B, namely, the subdivision of Rd induced by overlaying these cells. See
Figure 2(right). For each region φ ∈ Xδ , pick an arbitrary representative point rφ inside φ and assign
it a mass of µrφ := µ(φ) =

∫
φ
µ(a) da. Let Aδ denote the set of representative points of all regions

in Xδ . We refer to rφ ∈ Aδ as a deficit point if the corresponding region φ ∈ Xδ is deficit. The point
rφ is violating if it is deficit and ȳ(rφ) > 0.

In our algorithm, we store and represent a δ-feasible semi-discrete transport plan τ, y(·) using a
(discrete) transport plan τ̂ over Aδ ×B, where for any point b ∈ B and any region φ ∈ Xδ, we set
τ̂(rφ, b) := τ(φ, b). Note that any δ-feasible transport plan τ̂ , y(·) over Aδ × B can be converted
back to a δ-feasible semi-discrete transport plan τ that arbitrarily transports a mass of τ̂(rφ, b) from b
to φ for any pair (φ, b) ∈ Xδ ×B. We refer to τ̂ as an implicit representation of τ .

Residual Graph. Given a δ-feasible transport plan τ, y(·), define a residual graph Gδ over the point
set Aδ ∪B, where for each pair (rφ, b) ∈ Aδ ×B, we add a forward edge directed from b to rφ if
rφ ∈ RV 2δ

y (b). Additionally, if τ(φ, b) > 0, we add a backward edge directed from rφ to b. For any
triple (b1, rφ, b2) formed by a forward edge followed by a backward edge, the triple (b1, rφ, b2) is
admissible if dy(rφ, b1) < dy(rφ, b2). Any directed path P in the residual graph is an alternating
path. An alternating path P is admissible if all triples (bi, ri, bi+1) ∈ P are admissible. We update τ̂
along P with a mass of β by increasing (resp. decreasing) the mass transported along each forward
(resp. backward) edge of P by β. When P is a path from a surplus point b ∈ B to a deficit point
rφ ∈ Aδ , we refer to P as an augmenting path and to updating τ̂ along P as the augment process.

Consolidating paths. Any alternating path P = ⟨r0, b1, r1, . . . , bk, rk⟩ in the residual graph is called
a consolidating path if r0 is a point with ȳ(r0) = 0 and rk is a deficit point with ȳ(rk) > 0, i.e., P is
a path from a point outside of all 2δ-expanded cells to a violating deficit point. The consolidating
path P is admissible if all triples (bi, ri, bi+1) ∈ P are admissible. Note that updating τ̂ along P
with a mass of β increases the total mass transported to the violating deficit point rk by β (potentially
making it balanced) and decreases the amount of mass transported to the zero-weight point r0 by β.

The scaling algorithm. Our algorithm works in O(log(∆ε−1)) scales, where ∆ is the diameter
of A ∪ B. Each scale is associated with a parameter δ > 0 and computes a δ-feasible λ-robust
transport plan. Our algorithm maintains a set of weights y(·) for B and uses a few subroutines that
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are described in the appendix. At the beginning of the first scale, set δ = ∆ and y(b) = 0 for all
b ∈ B. Execute the following steps while δ > ε/2.

1. Removing violating deficit points: For any point b ∈ B, set τδ(a, b) := τ2δ(a, b) for each point
a ∈ RV 2δ

y (b) and τδ(a, b) = 0 for any point a /∈ RV 2δ
y (b). Compute Gδ and τ̂δ with respect to

τδ, y(·). While there exists a violating deficit point r ∈ Aδ:
(i) Execute the SEARCHANDCONSOLIDATE procedure, which computes a set of admissible

augmenting and consolidating paths in Gδ and updates τ̂δ along these paths. At the end of
this step, there are no admissible augmenting and consolidating paths to the violating deficit
points in the residual graph.

(ii) Execute the REDUCEWEIGHTS procedure, which reduces the weights of all points of B that
have admissible paths to the violating deficit points in Aδ by δ and recomputes Gδ and τ̂δ .

(iii) Execute the ACYCLIFY procedure, which updates τ̂δ and Gδ so that the transport plan τ̂δ is a
forest and the residual graph does not have any admissible cycles.

2. Raising surplus weights to λ: Set all points b ∈ B with y(b) < λ as active. While there are active
surplus points in B:

(i) Execute the SEARCHANDAUGMENT procedure, which computes a set of admissible aug-
menting paths and admissible alternating paths from surplus active points to inactive points
in Gδ and updates τ̂δ along these paths. At the end of this step, there are no admissible
augmenting paths in the residual graph.

(ii) Execute the INCREASEWEIGHTS procedure, which increases the weights of all active points
of B which have admissible paths from the active surplus points by δ, marks any point b ∈ B
with y(b) = λ as inactive, and recomputes Gδ and τ̂δ .

(iii) Execute the ACYCLIFY procedure, which updates τ̂δ and Gδ so that the transport plan τ̂δ is a
forest and the residual graph does not have any admissible cycles.

3. Scale Update: Set δ ← δ/2.

The SEARCHANDAUGMENT , INCREASEWEIGHTS , and ACYCLIFY procedures are straightforward
adaptations of the procedures outlined in [1] and similarly maintain the δ-feasibility conditions. The
following lemma states the properties of the two new procedures.

Lemma 4.2. During the execution of the SEARCHANDCONSOLIDATE and REDUCEWEIGHTS
procedure, the transport plan remains δ-feasible, each balanced point b ∈ B remains balanced, the
weight of each point b ∈ B containing deficit regions inside RVy(b) decreases by δ, and the weight
of each surplus point remains unchanged.

4.3 Analysis

Correctness. In each scale δ, our algorithm begins with a δ-feasible transport plan, restores the
condition (F1) in the step 1, and restores (F2) while maintaining the δ-feasibility condition and (F1)
in step 2. Since both (F1) and (F2) are satisfied, from Lemma 4.1, the computed transport plan at the
end of each scale δ is a 2δ-close λ-ROT plan.

Efficiency. As shown in the appendix, the residual graph contains O(n2) nodes and O(n3) edges in
R2. Using this, we show that each iteration of steps 1 and 2 of our algorithm takesO(n2(Φ+n log n))
time, where Φ denotes the query time of an oracle that computes the continuous mass of µ inside a
query triangle. We also show that both steps run O(n) iterations. Summing over all O(log(∆/ε))
scales, we get a total running time of O(n3(Φ+ n log n) log(∆/ε)) for our algorithm, as claimed. In
the remainder of this section, we provide a sketch of the proof of the number of iterations.

Suppose y2δ(·) denotes the set of weights of B maintained by our algorithm at the end of scale
2δ. For any iteration i of step 1, let τ i, yi(·) denote the δ-feasible transport plan maintained by our
algorithm after the ith iteration and define γi(b) := y2δ(b)− yi(b).
Lemma 4.3. For any subset S ⊂ B, suppose in an iteration i of step 1 of our algorithm, the reduction
in the weight of any point in S is more than 6δ greater than the reduction in the weight of any point
in B \ S, i.e., minb∈S γ

i(b) > maxb′∈B\S γ
i(b′) + 6δ. Then, there are no deficit regions inside the

restricted Voronoi cells of the points in S.
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n Error Iterations path and cycle lengths Regions
Step 1 Step 2 Step 1 Step 2

10 0.009 1 4 41 361 198
20 0.018 2 4 320 991 529
30 0.021 3 5 688 1719 862
40 0.015 3 5 979 2385 1212
50 0.018 4 5 1603 3061 1544
60 0.015 5 6 1973 3673 1855
70 0.017 5 6 2512 4129 2130
80 0.016 6 7 2845 4785 2421

Table 1: The results of our experiments empirically verifying our theoretical claims.

Assume that for some iteration i > 6n, there still remains some violating deficit regions. Using
Lemma 4.2, we show that for each surplus point bs ∈ B, the weight of bs remains unchanged during
step 1 (i.e., γi(bs) = 0) and for each point b ∈ B with deficit regions in inside RVy(b), the weight
of b decreases by δ in all iterations (i.e., γi(b) = iδ). Therefore, for i > 6n, one can compute a set
S where b ∈ S for all points b ∈ B with deficit regions in RVy(b), bs /∈ S for each surplus point
bs ∈ B, and that satisfies the conditions of Lemma 4.3. However, from Lemma 4.3, there are no
deficit regions in the restricted Voronoi cells of points in S, which is a contradiction to our assumption.
Hence, the number of iterations of step 1 is O(n). Using a similar approach, we show that the number
of iterations of step 2 of our algorithm is also O(n). We conclude with the following theorem.

Theorem 4.4. Let µ be a continuous distribution with compact support A ⊂ Rd, ν a discrete
distribution with support of n points B ⊆ Rd, and λ > 0 a parameter. Suppose there exists an
oracle that returns the mass of µ inside any query triangle in Φ time. Then, there is an algorithm
that computes an ε-close λ-robust optimal transport plan in nO(d)Φ log∆/ε time, where ∆ is the
diameter of A ∪B.

Experimental evaluation. We implemented a prototype of our algorithm in Python to empirically
verify its performance. The implementation omits two efficiency-critical components: (i) the compu-
tation of continuous mass within regions defined by restricted Voronoi cells, which we approximate
using a fine uniform grid over the domain by summing the mass of grid points lying inside each
region, and (ii) the dynamic tree data structure, which we simulate by naïvely iterating over all
edges due to the lack of efficient Python implementations. We evaluated our implementation on
a Gaussian distribution with mean [0.5, 0.5] and covariance 0.15I bounded within the unit square,
and added 10% noise to the bottom-left corner by mixing with an exponential distribution with rate
parameter 3. The discrete distribution consists of n samples drawn from the same Gaussian with an
additional 10% noise sampled from an exponential distribution with rate parameter 3 in the top-right
corner. We fixed λ = 0.2 and ε = 0.02, and varied n from 10 to 80. For each value of n, we ran the
program 10 times and reported the averaged statistics in Table 1. We observe that as n increases, the
additive error remains within the target threshold ε = 0.02. Moreover, the number of iterations in
the two main steps of the algorithm consistently stays below the theoretical upper bounds (6n and
12n; see Lemma 4.3 and E.9). Finally, the total lengths of paths and cycles computed in these steps
grow sub-quadratically in n, matching the asymptotic behavior predicted by our complexity analysis
(Section 4.3). Additional experimental results are provided in Section B for the sake of space. The
code is available at https://github.com/pouyansh/Efficient_Partial_and_Robust_SDOT.

5 Discussion

In this paper, we present new characterizations of the semi-discrete partial and robust OT problems,
and design approximation algorithms based on these formulations. Our techniques are stated for | · |pp
costs and extend to any cost function whose weighted Voronoi diagram has bounded complexity. The
presented algorithms assume access to an oracle that, for a polyhedron P of constant complexity, com-
putes the continuous mass contained in P in Φ time. For many natural distributions—such as those
with sample access or simple closed-form densities—one can typically assume Φ = O(poly log n).
Achieving polynomial dependence on d and 1/ε remains an interesting direction for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: We provided the novel characterizations of α-SDOPT and λ-SDROT in
Section 2, the algorithmic connection between the two problems in Section 3, the high-
precision algorithm in Section 4, and the near-linear time approximation algorithm in the
appendix.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our algorithms require the existence of an oracle that returns the amount of
continuous mass inside any given triangle. This assumption is stated clearly in Theorem 4.4
and in Section 5. Another limitation is the exponential dependence of the running time of
our algorithm in Section 4 on the dimension, which we overcame by presenting a near-linear
algorithm (with a lower precision) as our final contribution. The exponential dependence on
the dimension and the assumption of the existence of the oracle are also present in previous
work.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All of the lemmas and theorems are stated including the full set of assumptions,
and the complete proof of all lemmas is included in the appendix.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: The experimental setup is discussed in Appendix B.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: As mentioned in Section 4.3, the code is available at
https://github.com/pouyansh/Efficient_Partial_and_Robust_SDOT.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: The experimental setup is discussed in Appendix B.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA] .
Justification: the paper does not include results that require statistical analysis.

14

https://github.com/pouyansh/Efficient_Partial_and_Robust_SDOT


8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA] .
Justification: the experimental sections does not include any resource specific results, such
as running times.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the research conducted in the paper does not involve human participants, does
not include any datasets, and there are no known potential harmful consequences.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: None of the categories described by the NeurIPS Code of Ethics, namely,
safety, security, discrimination, surveillance, deception and harassment, environment, human
rights, and bias and fairness is impacted by the research conducted in this paper.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: the paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA] .
Justification: the paper does not use existing assets.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: the paper does not release new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: the paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA] .
Justification: the paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: the method development in this research does not involve LLMs.
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A Fast Approximation Algorithms for Robust Optimal Transport

In this appendix, we describe algorithms that compute an (εr, 0)-approximate λ-robust transport plan
between a discrete distribution ν and continuous distribution µ in near-linear time with respect to the
support size of the discrete distribution ν.We keep the description of the algorithm at a high level,
and describe technical details in Appendix F. Our low-precision algorithms can be summarized with
the following high-level sequence of steps.

Figure 4: (left) Cover of A by hypercubes, and (right) graph formed by two trees with cross edges

1. Discretize continuous distribution. First, we decompose the continuous domain A into a near-
linear size set P of hypercubes (see Figure 4). Each hypercube □ is guaranteed to satisfy one of
two properties: (1) □ is within distance εminb′ ̸=b ||b′ − b|| to one of the input points b ∈ B and has
sidelength roughly ε2 minb′ ̸=b ||b′ − b||, or (2) the sidelength of □ is at most roughly ε times the
minimum distance from its center to every point in B. We query the mass of each hypercube and
contract this mass to a single point. If the hypercube is very close to a point of B, we contract its
mass to b. Otherwise, we contract the mass to its center. This induces a discrete distribution µ̂ whose
support B̂ also has near linear size.
2. Reduce to λ-capped transport. Mukherjee et al. [34] showed that for the discrete optimal
transport problem, computing a λ-robust OT plan is equivalent to computing a complete transport
plan under a capped distance function d̂λ(a, b) := min{d(a, b), λ}, which we denote as a λ-capped
transport plan. We compute a (ε, 0)-approximate λ-capped transport plan τ̂ between µ̂ and ν using
some discrete OT solver and discard all mass transported at cost more than λ. The best choice of
near-linear time algorithm for λ-capped OT depends on the choice of cost function d; we provide
efficient algorithms under squared Euclidean distance (Section F.3) and ℓp metrics (Section F.4).
(a) Discrete λ-capped p-Wasserstein. We construct an ε-well separated pair decomposition (ε-

WSPD) [13] to approximate the set of n2 edges with a set of O(nε−d) pairs of regions in
Rd. We then construct two quadtrees, an up-tree T↑ and a down-tree T↓, and a set of cross
edges connecting each WSPD region in the up-tree to each WSPD region in the down-tree (see
Figure 4). This graph satisfies the property that every a in the support of µ̂ has a unique directed
path to each b in B. We cap the edge costs in a natural manner and guarantee the path length
from a to b is at most (1 + ε)d̂λ(a, b), then run a minimum-cost flow algorithm [16] on the
directed graph and shortcut the resulting flow using standard techniques.

(b) Faster λ-capped 1-Wasserstein. A modification to the graph construction above allows for
faster, specialized machinery for the mininum-cost flow problem via the multiplicative weights
method [47]. First, we employ a random shift on the quadtree to incur bounded distortion in
expectation. Instead of making a cross edge between each WSPD pair, we take each WSPD pair
and add a cross edge between the lowest ancestors whose sidelengths are at least ε

log∆ times
their tree distance. Then cap the edge costs as above. One can argue in standard fashion that the
shortest path metric dG satisfies E [dG(a, b)] ≤ (1 + ε)d̂λ(a, b) for all a, b in the supports of µ̂
and ν. We make all edges undirected and run the multiplicative weights method.
Unlike prior works on multiplicative weight update algorithms for the geometric transportation
problem [3, 22, 28], our new approach uses a well-separated pair decomposition to inform what
cross edges are good. This type of technique is necessary if one wants to simultaneously (1)
bound the number of edges by nεO(d) log∆, (2) approximate the capped Euclidean distance
with a shortest path metric, and (3) argue the shortest path metric embeds into a tree metric with
deterministic O(log∆) distortion.
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3. Extract semi-discrete plan. Finally, we design a simple scheme to disperse the discrete transport
plan from the contracted point throughout its corresponding region. The scheme disperses τ̂(c□, b)
uniformly throughout each hypercube□ that is farther than distance εminb′ ̸=b ||b′−b|| from b, where
c□ denotes its center. By conditions (1) and (2) on the set of hypercubes, we argue that every point
a ∈ □ is approximately equidistant from b, and therefore any arbitrary dispersion gives comparable
cost. Additionally for each hypercube □ within distance εminb′ ̸=b ||b′ − b|| from b, we greedily
assign the (approximate) closest τ̂(b, b) mass from µ within a small ball of b to b. The remainder is
uniformly distributed among the remaining b′ ∈ B.

We make the following conclusion about the algorithm.

Theorem A.1. Let µ be a continuous distribution with compact support A ⊂ Rd, ν be a discrete
distribution with support B ⊆ Rd, λ > 0 be a parameter and d, p ≥ 1 be constants. Suppose Q1 is
the time complexity to compute

∫
□ µ(a)da for any hypercube □ ⊆ A and Q2 is the time complexity

to compute, given a point b ∈ Rd and constant c ≥ 0, the radius r ≥ 0 for which the Euclidean
ball B (b, r) of radius r centered at b satisfies

∫
B(b,r)

µ(a)da = c. Then a (ε, 0)-approximate λ-

robust semi-discrete transport plan can be computed in nε−2d log ε−1
(
no(1)ε−2d log∆ +Q1 +Q2

)
time if d(a, b) = ||a − b||p and in O

(
nε−2d log ε−1

(
ε−2d−4 log3 ∆ log n+Q1 +Q2

))
time with

probability at least 1
2 if d(a, b) = ||a− b||.

For simplicity of exposition in the introduction, we assumed Q1, Q2 = O(log∆). If one can
represent the pdf function µ in a way that allows for fast integration over balls and hypercubes,
then Q1, Q2 = O(log∆) amortized complexity holds. Some examples of such distributions include
histograms and Guassian mixtures.

A.1 Comparison with prior work

Before describing the algorithm in full detail, we make some remarks about our algorithm in
comparison with existing work for semi-discrete OT and more generally the geometric transportation
problem. The structure of our algorithm has many similarities with existing algorithms for full semi-
discrete OT [3, 46]: we first discretize the Euclidean space by a dense sampling of the continuous
distribution with hypercubes, then run a fast discrete OT solver using this geometric sampling, and
finally disperse the mass from the discrete OT plan throughout each hypercube. There are a few
major bottlenecks when using their algorithms for λ-capped OT that we overcome in this paper.

First, the algorithms of [3, 46] as described only work for p = 1. To reduce semi-discrete λ-robust
p-Wasserstein to the discrete λ-robust p-Wasserstein problem for p > 1, one cannot simply perform a
greedy routing of the mass within an ε ball of each point b ∈ B as done in [3, 46]. This is because the
triangle inequality does not hold for p > 1, and therefore one cannot charge an ε error to the greedy
routing. We take a slightly different approach, where one greedily routes mass within the ε ball of a
point b only if the discrete transport plan routes mass from b to its ε ball. This change is sufficient to
construct an (ε, 0)-approximation for λ-capped p-Wasserstein distances when p > 1, as proved in
Appendix F.5.

Second, existing algorithms for the discrete geometric transport problem (e.g. [2, 3, 22, 28]) do not
consider λ-capped distances. Approximating this distance with a shortest path metric in a graph
is nontrivial. If one chooses to cap edge costs to guarantee a particular path has length at most λ,
then it is necessary to guarantee that other paths in the graph are not shortened by too much. If too
many edges in the graph have their costs capped, then extraneous paths in the graph may develop
undesirably low costs. To circumvent this challenge, we design geometric graphs whose shortest paths
provably have a bounded number of edges with capped edge costs. This difference is highlighted in
Appendices F.3 and F.4.

B Additional Experimental Results

We first provide figures for our experiments described in Section 4.3, showing the shape of the
transport plan as well as the untransported parts of the mass of the distributions. We then present
results using the Beta distribution.
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Figure 5: (left) The continuous distribution, and (right) the discrete distribution.

λ = 0.12 λ = 0.22 λ = 0.32 λ = 0.42

Figure 6: The parts of the mass of the distributions that are not transported by the λ-ROT plan
computed by our algorithm.

B.1 Experiments on Gaussian Distribution

As described in Section 4.3, in our experiments, we used a continuous distribution as a Gaussian
distribution bounded inside the unit square that is contaminated with 10% noise in the bottom
left corner (See Figure 5 (left)). Our discrete support consists of 0.9n samples from the same
Gaussian distribution (the red points in Figure 5 (right)) along with 0.1n samples from an exponential
distribution centered at the top right corner of the square (the blue points in Figure 5 (right)), each
assigned a mass of 1/n.

Figure 6 shows the parts of the mass of the continuous and discrete distributions that are not
transported by the λ-ROT plans computed by our algorithm, as the value of λ increases from 0.12 to
0.42. Here, the ground distance is the squared Euclidean distance. We observe that by increasing the
value of λ, the λ-ROT plan transports the majority of the inlier mass of the distributions and leaves
the noise parts of the mass untransported.

We extended our experiments to 3 dimensions using a similar framework and constructed continuous
and discrete distributions using the Gaussian distribution inside the unit cube with 10% noise mass
added to the different corners of the cube for continuous and discrete distributions. The average
statistics of our experiments on different values of n are shown in Table 2.

B.2 Results using a Mixture of Beta Distributions

In this experiment, we use mixtures of Beta distributions that induce skewed and dispersed mass.
Specifically, the discrete distribution consists of n samples drawn from a Beta(α = 2, β) distribution,
with β varying in the range [3, 10]. As β increases, the distribution becomes increasingly concentrated
near [0, 0]. The continuous distribution is constructed by contaminating the same base distribution
with 15% noise drawn from a Beta(α = 5, β = 2) distribution (a distribution concentrated close to
[0.9, 0.9]). For smaller values of β, the two components overlap significantly; for larger values, they
become well-separated. Each experiment was repeated 10 times, and we report the averaged results.

Table 3 shows the costs and the percentage of inliers and outliers that are transported by a 0.15-ROT
plan computed by our algorithm. We observe that as β increases (and the inlier and outlier parts
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n Error Iterations path and cycle lengths Regions
Step 1 Step 2 Step 1 Step 2

10 0.002 2 5 25 454 389
20 0.016 5 6 303 2514 1776
30 0.013 5 6 500 4664 3292
40 0.016 11 8 1587 7057 4807
50 0.028 12 11 2820 10954 6681
60 0.024 16 12 3644 13141 8072
70 0.020 15 10 4735 15310 9008

Table 2: The results of our experiments in 3 dimensions.

β Cost Robust cost % Inliers
transported

% Outliers
transported

Total mass
transported

3 0.022 0.041 0.980 0.493 0.907
4 0.020 0.041 0.992 0.350 0.896
5 0.019 0.042 0.995 0.245 0.883
6 0.017 0.041 0.998 0.191 0.877
7 0.015 0.042 0.998 0.091 0.862
8 0.013 0.041 0.999 0.085 0.862
9 0.012 0.040 0.999 0.053 0.857

10 0.011 0.040 1.000 0.048 0.857

Table 3: The results of our experiments on mixtures of Beta distribution.

become more distant from each other), the amount of outlier mass transported by the 0.15-ROT plan
computed by our algorithm decreases, while such transport plans transport almost all of the inlier
mass for all values of β.

These experiments confirm that our algorithm remains reliable even when inliers and outliers overlap.
In particular, the computed partial and robust transport plans consistently focus on the inlier mass
while effectively disregarding much of the outlier mass, especially as the main and noise distributions
become more dissimilar. Performance metrics (shown in Table 4) remain consistent with those
observed in the Gaussian case.

C Missing Proofs and Details from Section 2

Lemma 2.1 (α-OPT Characterization). Let µ be a continuous distribution over compact support
A ⊂ Rd, ν a discrete distribution over a set B of n points in Rd, and α ∈ [0, 1] a parameter. There
exists a valid weight function y : B → R≥0 with Cover(y) = α such that the transport plan τy
induced by y is an α-OPT plan. Furthermore, this property holds for any valid weight function y
with Cover(y) = α.

Proof. We rewrite the primal linear optimization problem for the α-partial transport problem:

min
τ

∑
b∈B

∫
A

τ(a, b)d(a, b)da

s.t.
∫
A

τ(a, b)da ≤ ν(b) ∀b ∈ B,∑
b∈B

τ(a, b) ≤ µ(a) ∀a ∈ A,

∑
b∈B

∫
A

τ(a, b)da = α,

τ ≥ 0.
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β Error Iterations path and cycle lengths Regions
Step 1 Step 2 Step 1 Step 2

3 0.012 4 6 420 993 495
4 0.016 7 8 332 1026 495
5 0.005 6 7 190 986 462
6 0.007 6 8 131 971 435
7 0.010 9 8 229 886 421
8 0.008 3 6 161 810 382
9 0.007 6 8 89 849 388

10 0.007 3 5 55 766 351

Table 4: The performance of our algorithm in our experiments on mixtures of Beta distribution.

Then its corresponding dual linear optimization problem is

max
λ,ϕ,ψ

αλ−
∑
b∈B

ϕ(b)ν(b)−
∫
A

ψ(a)µ(a)da (3)

s.t. λ− ϕ(b)− ψ(a) ≤ d(a, b) ∀a ∈ A, b ∈ B,
ϕ, ψ ≥ 0.

Note for any fixed value of λ and ϕ, the objective is maximized when −ψ is as large as possible.
The largest feasible −ψ one can choose is −ψ(a) = min {minb∈B(d(a, b)− λ+ ϕ(b)), 0} for all
a ∈ A. After making this substitution, using the definition of the restricted Voronoi cells, we obtain
the following optimization problem

max
λ,ϕ

αλ+
∑
b∈B

[∫
RVλ−ϕ(b)

min

{
min
b∈B

(d(a, b)− λ+ ϕ(b)), 0

}
µ(a)da− ϕ(b)ν(b)

]
s.t. ϕ ≥ 0.

This problem is concave and unconstrained on λ; therefore, it is maximized when 0 ∈ ∂Dϕ(λ), where
Dϕ : R→ R is the above dual objective for fixed values of ϕ and ∂Dϕ denotes the superderivative of
Dϕ. For values of ϕ where Dϕ is smooth, we note

dDϕ

dλ
(λ) = α−

∑
b∈B

µ(RVλ−ϕ(b)) = α− Cover(λ− ϕ).

Therefore, dDϕ

dλ (λ) = 0 if Cover(λ− ϕ) = α. Similar observation extends this to the case when Dϕ

is not smooth, where one gets 0 ∈ ∂Dϕ(y) if Cover((λ− δ)− ϕ) ≤ α ≤ Cover((λ+ δ)− ϕ) for
all δ > 0. For choice of weights y(b) = λ− ϕ(b) we conclude Cover(y) = α as desired.

Now suppose we make the substitution y(b) = λ− ϕ(b) into the original dual linear optimization
problem (3) to obtain the equivalent dual optimization problem

max
λ,y,ψ

∑
b∈B

y(b)ν(b)−
∫
A

ψ(a)µ(a)da− (1− α)λ

s.t. y(b)− ψ(a) ≤ d(a, b) ∀a ∈ A, b ∈ B,
y(b) ≤ λ ∀b ∈ B,
ψ ≥ 0.

By complementary slackness, for any optimal primal solution τ and dual solution y, ψ, λ, if
τ(a, b) > 0 for any a, b, then y(b) − ψ(a) = d(a, b). But the objective is minimized when
−ψ(a) = min{minb∈B(d(a, b) − y(b)), 0}, as observed above. Hence, we conclude that if
τ(a, b) > 0 then a ∈ RVy(b). Similarly, if

∫
A
τ(a, b)da < ν(b) then ϕ(b) = 0 or equivalently

y(b) := λ− ϕ(b) = λ. But by feasibility of the optimal dual solution, we note that λ ≥ y(b′) for all
b′ ∈ B. Therefore, if

∫
A
τ(a, b)da < ν(b) then y(b) = maxb′∈B y(b

′).

This proves that if y exists, then y satisfies the desired properties. We then note the optimal solutions
to both primal and dual linear optimization problems exist by strong duality.
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We finally show that for any y where Cover(y) = α and y(b) = maxb′∈B y(b
′) for all free b ∈ B,

the transport plan τ induced by y is an optimal α-transport plan. Let y be some arbitrary set of
weights that satisfy these properties. Define a weight function ψ : A → R that assigns ψ(a) :=
maxb∈B y(b) − d(a, b) to each point a ∈ A. Additionally define ντf (b) := ν(b) −

∫
A
τ(a, b)da

and µτf (a) := µ(a) −
∑
b∈B τ(a, b) as the free mass of b and a with respect to transport plan τ ,

respectively. We can rewrite the cost of τ as:

¢(τ) =
∑
b∈B

∫
A

d(a, b) τ(a, b) da =
∑
b∈B

∫
A

(y(b)− ψ(a))τ(a, b) da

=
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a)−
∑
b∈Bf

y(b)ντf (b) +

∫
Af

ψ(a) dµτf (a)

=
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a)− (1− α)ymax,

where ymax := maxb∈B y(b). Let τ∗ denote any optimal α-partial transport plan between µ and ν.
Then, by the definition of dual weights for points in A,

¢(τ∗) =
∑
b∈B

∫
A

d(a, b) τ∗(a, b) da ≥
∑
b∈B

∫
A

(y(b)− ψ(a))τ∗(a, b) da

=
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a)−
∑
b∈Bf

y(b)ντ
∗

f (b) +

∫
Af

ψ(a) dµτ
∗

f (a)

≥
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a)− (1− α)ymax,

where the last inequality holds since ψ(a) ≥ 0 and y(b) ≤ ymax. Combining the two bounds,

¢(τ) =
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a)− (1− α)ymax ≤ ¢(τ∗).

Since τ∗ is an α-partial OT plan, we conclude that τ is also an α-partial OT plan.

Lemma 2.2 (λ-ROT Characterization). Let µ be a continuous distribution over compact support
A ⊂ Rd, ν a discrete distribution over a set B in n points in Rd, and λ > 0 a parameter. There exists
a valid weight function y : B → R≥0 with Cap(y) = λ such that the transport plan induced by y is
a λ-ROT plan. Furthermore, this property holds for any valid weight function y with Cap(y) = λ.

Proof. The primal linear optimization problem for λ-robust optimal transport is as follows.

min
τ

∑
b∈B

∫
A

τ(a, b)d(a, b) da+ λ

(
1−

∑
b∈B

∫
A

τ(a, b) da

)

s.t.
∫
A

τ(a, b)da ≤ ν(b) ∀b ∈ B,∑
b∈B

τ(a, b) ≤ µ(a) ∀a ∈ A,

τ ≥ 0.

The corresponding dual linear optimization problem is

max
ϕ,ψ

−
∑
b∈B

ϕ(b)ν(b)−
∫
A

ψ(a)µ(a)da

s.t. − ϕ(b)− ψ(a) ≤ d(a, b)− λ ∀a ∈ A, b ∈ B,
ϕ, ψ ≥ 0.
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Define y(b) := λ− ϕ(b). Then, since λ is a given parameter and the total mass at the points of B is
1, the dual problem can be rewritten as

max
y,ψ

∑
b∈B

y(b)ν(b)−
∫
A

ψ(a)µ(a)da− λ

s.t. y(b)− ψ(a) ≤ d(a, b) ∀a ∈ A, b ∈ B,
y(b) ≤ λ, ∀b ∈ B,
ψ ≥ 0.

By complementary slackness, we observe that if
∫
A
τ(a, b)da < ν(b) for some b ∈ B then y(b) = λ.

Then one would have y(b) = maxb′∈B y(b
′) and Cap(y) := maxb∈B y(b) = λ as desired by

dual feasibility constraint y(b′) ≤ λ for all b′ ∈ B. Otherwise if
∫
A
τ(a, b)da = ν(b) for all

b ∈ B, then let ymax := maxb∈B y(b) and define the new dual weights y′(b) := y(b) + (λ− ymax),
ψ′(a) := ψ(a) + (λ − ymax). It follows that y′, ψ′ are feasible and have an equal dual objective
value since both µ and ν are probability distributions. Furthermore, Cap(y′) := maxb∈B y

′(b) = λ,
as desired.

Additionally note that for any choice of weights y(·) for B, the optimal choice for the ψ function
would be ψ(a) := max(0,maxb∈B y(b) − d(a, b)) for each point a ∈ A. By complementary
slackness, for any pair (a, b) ∈ A×B with τ(a, b) > 0, we have y(b)− ψ(a) = d(a, b). Therefore,
the point a has to be inside RVy(b).

We argue by strong duality that choice of y optimizing this dual problem exists. Therefore, we
conclude that there exists a valid weight function satisfying the desired properties that induces a
λ-robust OT plan.

We finally show that for any y where Cap(y) = λ and y(b) = maxb′∈B y(b
′) for all free b ∈ B,

the transport plan τ induced by y is a λ-robust optimal transport plan. Let y be some arbitrary
set of weights that satisfy these properties. Define a weight function ψ : A → R that assigns
ψ(a) := max{0,maxb∈B y(b) − d(a, b)} to each point a ∈ A. Let α =

∑
b∈B

∫
A
τ(a, b)da.

Additionally define ντf (b) := ν(b) −
∫
A
τ(a, b)da and µτf (a) := µ(a) −

∑
b∈B τ(a, b) as the free

mass of b and a with respect to transport plan τ , respectively. Using the assumption that τ is induced
by y, we can rewrite the robust cost of τ as:

wλ(τ) =
∑
b∈B

∫
A

d(a, b) τ(a, b) da+ λ

(
1−

∑
b∈B

∫
A

τ(a, b)da

)

=
∑
b∈B

∫
A

(y(b)− ψ(a))τ(a, b) da+ λ (1− α)

=
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a)−
∑
b∈Bf

y(b)ντf (b) +

∫
Af

ψ(a) dµτf (a) + λ(1− α)

=
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a)− λ(1− α)− λ(1− α)

=
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a).

Let τ∗ denote any optimal λ-robust optimal transport plan between µ and ν. Define α∗ =∑
b∈B

∫
A
τ∗(a, b)da. Then, by the definition of dual weights for points in A,

wλ(τ
∗) =

∑
b∈B

∫
A

d(a, b) τ∗(a, b) da+ λ

(
1−

∑
b∈B

∫
A

τ(a, b)da

)

≥
∑
b∈B

∫
A

(y(b)− ψ(a))τ∗(a, b) da+ λ(1− α∗)

=
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a)−
∑
b∈Bf

y(b)ντ
∗

f (b) +

∫
Af

ψ(a) dµτ
∗

f (a) + λ(1− α∗)

23



≥
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a)− λ(1− α∗) + λ(1− α∗)

=
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a),

where the second to last line above holds since ψ(a) ≥ 0 and y(b) ≤ ymax. Combining the two
bounds,

wλ(τ) =
∑
b∈B

y(b)ν(b)−
∫
A

ψ(a) dµ(a) ≤ wλ(τ∗).

Since τ∗ is a λ-robust OT plan, we conclude that τ is also a λ-robust OT plan.

Lemma 2.3. The mappings MaxCover : R≥0 → [0, 1] and MinCap: [0, 1]→ R≥0 are monotoni-
cally non-decreasing functions.

Proof. Consider any two values 0 < λ1 < λ2. Define α1 := MaxCover(λ1) (resp. α2 :=
MaxCover(λ2)) and let τ1 (resp. τ2) denote the corresponding α1-robust (resp. α2-robust) OT plan.
Since τ1 is an optimal λ1-robust OT plan,

¢(τ1) + (1− α1)λ1 ≤ ¢(τ2) + (1− α2)λ1.

Consequently,
¢(τ1)− ¢(τ2) ≤ (α1 − α2)λ1. (4)

Similarly, since τ2 is an optimal λ2-robust OT plan,

¢(τ2) + (1− α2)λ2 ≤ ¢(τ1) + (1− α1)λ2.

Therefore,
¢(τ1)− ¢(τ2) ≥ (α1 − α2)λ2. (5)

Combining Equations (4) and (5),

(α1 − α2)(λ1 − λ2) ≥ 0.

In words, since λ1 < λ2, then α1 ≤ α2. This proves MaxCover is an increasing function.

We now show MinCap is an increasing function. Let 0 ≤ α1 < α2 ≤ 1 be two constants.
Define λ1 := MinCap(α1) and λ2 := MinCap(α2). Let yi denote the corresponding λi-capped
weight functions for each αi, i ∈ {1, 2} known to exist by definition of MinCap. Additionally
let τi denote the corresponding λi-robust transport plans for i ∈ {1, 2} induced by weights yi by
Lemma 2.2. Then we analogously conclude by Lemma 2.2 that each τi is an optimal λi-robust
transport plan, and therefore ¢(τ1) − ¢(τ2) ≤ (α1 − α2)λ1 and ¢(τ1) − ¢(τ2) ≥ (α1 − α2)λ2.
Combining these inequalities again gives (α1 − α2)(λ1 − λ2) ≥ 0, Therefore if α1 < α2, then
MinCap(α1) ≤ MinCap(α2).

D Missing Proofs and Details from Section 3

We give the subroutine to return a transport plan with precisely α mass in this section, then allocate
the rest of the section to proving various lemmas and theorems from the main text.

D.1 Routing Exactly α Mass

In the binary search procedure as described from the main text, we obtain two transport plans τL and
τR, which satisfy M(τL) ≤ α and M(τR) ≥ α. From these two transport plans, we require a simple
procedure to return precisely α mass, as mentioned in the main text.

We assume it is possible to return a linear combination of two transport plans. Then return the linear
interpolation τA′ = (1− c)τR + cτL for the constant c ≥ 0 which guarantees τPT transports α mass.
The choice of c := M(τR)−α

M(τR)−M(τL) only depends on M(τL), M(τR) and α, and assumes M(τL) ≤ α

and M(τR) ≥ α. This invariant is indeed maintained by construction of the binary search procedure.
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We note that if one possesses stronger oracles on the distributions τλR
and µ, then it is possible to

greedily remove mass from τR until τR transports α mass while guaranteeing comparable precision.
Let τ̂r denote the transport plan defined by τ̂r(a, b) = τR(a, b) for all a, b such that d(a, b) ≤ r and
τ̂r(a, b) = 0 otherwise. If one can compute the value of r∗ ≥ 0 where τ̂r∗ routes precisely α mass,
then we can return τ̂r∗ and guarantee comparable approximation.

D.2 Proofs of Lemmas

Lemma 3.1. Suppose τ is an arbitrary (εr, εa)-approximate λ-robust transport plan and δ ∈ (0, 1).

(i) For any α ∈ (0, 1), if M(τ) ≤ (1− δ)α, then λ ≤ (1− εr
δα )

−1MinCap(α) + εa
δα .

(ii) Equivalently, for any α ∈ (0, 1− δ), if M(τ) ≤ α, then λ ≤
(
1− εr

δα

)−1
MinCap

(
α

1−δ

)
+ εa

δα .

Proof. We prove result (i). Then (ii) follows from substituting α′ = α
1−δ into the bound from (i) and

noting 1
1−δ > 1.

Let ατ =
∫
A

∑
b∈B τ(a, b)da be the total mass routed by the partial transport plan τ . Then since τ

is a (εr, εa)-approximate λ-robust transport plan, we note that

¢(τ) + (1− ατ )λ ≤ (1 + εr) [¢(τ∗α) + (1− α)λ] + εa

where τ∗α is an optimal α-partial transport plan. To get a bound on the cost of transforming (1+εr)
−1τ

into τ∗α, we apply some algebra on the above inequality and observe

¢(τ∗α)−
¢(τ)
1 + εr

≥
(
α− ατ

1 + εr
− εr

1 + εr

)
λ− εa

1 + εr
.

Now let τ∗ατ
denote an optimal ατ -partial transport plan. By optimality of τ∗ατ

, we first note

¢(τ∗ατ
)

1 + εr
− ¢(τ)

1 + εr
≤ 0.

Then by Lemma 2.3 as well as optimality of τ∗α(a, b) and τ∗ατ
(a, b), we observe that

¢(τ∗α)
1 + εr

−
¢(τ∗ατ

)

1 + εr
≤
(

α

1 + εr
− ατ

1 + εr

)
MinCap(α).

Finally, by Lemma 2.1 we observe

¢(τ∗α)−
¢(τ∗α)
1 + εr

≤
(
α− α

1 + εr

)
MinCap(α).

Adding the three above inequalities gives us

¢(τ∗α)−
¢(τ)
1 + εr

≤
(
α− ατ

1 + εr

)
MinCap(α).

Hence, (
α− ατ

1 + εr
− εr

1 + εr

)
λ− εa

1 + εr
≤
(
α− ατ

1 + εr

)
MinCap(α).

The result follows from dividing this inequality by
(
α− ατ

1+εr

)
, which is bounded above by δα by

assumption of the Lemma statement, and isolating λ.

Lemma 3.2. If λR ≤ (1+εr)λL+εa, then ¢(τR)−¢(τL) ≥ [M(τR)−M(τL)]λR−(4εrλR+4εa).

Proof. Since τλL
is a (εr, εa)-approximate λL-robust OT plan, we observe

¢(τλL
) + (1−M(τλL

))λL ≤ (1 + εr) [¢(τλR
) + (1−M(τλR

))λL] + εa.

Additionally, since τλR
is a (εr, εa)-approximate λR-robust OT plan, we observe

¢(τλR
) + (1−M(τλR

))λR ≤ (1 + εr)λR + εa,
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and therefore ¢(τλR
) ≤ (1 + εr)λR + εa since M(τλR

) ≤ 1. Conclude

¢(τλR
)− ¢(τλL

) ≥ [M(τλR
)−M(τλL

)− (1−M(τλR
))εr]λL − εr¢(τλR

)− εa
≥ [M(τλR

)−M(τλL
)− εr]λL − εr [(1 + εr)λR + εa]− εa

≥ [M(τλR
)−M(τλL

)− εr]λL − 2εrλR − 2εa

Now we use the assumption λR ≤ (1 + εr)λL + εa, observation −1 ≤ −(1 + εr)
−1, and bound

0 ≤ M(τλR
)−M(τλL

) ≤ 1 to obtain the inequality

[(M(τλR
)−M(τλL

))− εr]λL ≥ (1 + εr)
−1 [(M(τλR

)−M(τλL
))− εr]λR − (1 + εr)εa

≥ [(M(τλR
)−M(τλL

))− 2εr]λR − 2εa.

Combining inequalities gives the desired result.

Theorem 3.3. Let µ be a continuous distribution with compact support A ⊂ Rd, and let ν be a
discrete distribution with support B ⊆ Rd and minimum pairwise distance 1. Define ∆ to be the
diameter of A ∪B and let α ∈ (0, 1) be a parameter. Suppose εr, εa ≥ 0 and ART is an arbitrary
(εr, εa)-approximation algorithm for the λ-robust OT problem. For any δ ∈

(
0,min

{
4εr
α , 1−αα , 12

})
,

the algorithm APT is an (εr, η)-approximation algorithm for α-partial transport, where η =
O
(
εr
δα (εrMinCap(α(1 + δ)) + εa)

)
. For εr = 0, APT is an (0, 5εa)-approximation algorithm.

The algorithm APT makes O (log∆) calls to ART .

Proof. By the condition of λR

λL
= O(ε−1∆) initially and end criteria λR ≤ (1 + εr)λL + εa, we

know that APT terminates within O(log∆) iterations. Additionally by construction of the plan
τAPT

, M(τAAT
) :=

∫
A

∑
b∈B τAPT

(a, b)da = α as desired. Therefore, it suffices to bound the cost
of τAPT

.

Since τλR
is an (εr, εa)-approximate λR-robust OT plan, we observe

¢(τλR
) + (1−M(τλR

))λR ≤ (1 + εr) [¢(τ∗) + (1− α)λR] + εa. (6)

Now we note that the precise choice of constant c in algorithm APT is c := M(τλR
)−α

M(τλR
)−M(τλL

) . Using
the inequality from Lemma 3.2 and multiplying by c ≤ 1, we observe that

c (¢(τλL
)− ¢(τλR

))− (α−M(τλR
))λR ≤ 4εrλR + 4εa. (7)

By definition, we note τAPT
= τλR

+ c(τλL
− τλR

). Adding Inequalities (6) and (7) gives

¢(τAPT
) + (1− α)λR = ¢(τλR

) + c (¢(τλL
)− ¢(τλR

)) + (1− α)λR
≤ (1 + εr)¢(τ∗) + [(1 + εr)(1− α) + 4εr]λR + 5εa
= (1 + εr)¢(τ∗) + [1− α− εrα+ 5εr]λR + 5εa.

Subtract (1− α)λR from both sides of the inequality to get

¢(τAPT
) ≤ (1 + εr) · ¢(τ∗) + (5εr − εrα)λR + 3εa
≤ (1 + εr) · ¢(τ∗) + 5εrλR + 5εa. (8)

This immediately implies the result when εr = 0. For the remainder of the proof, we assume
εr > 0. Then using Lemma 3.1, we note that λL ≤

(
1− εr

δα

)−1
MinCap

(
α(1− δ)−1

)
+ εa

δα for
any 0 < δ < 1. If δ ≤ 1

2 , then we can use 1 ≤ (1− δ)−1 ≤ 1 + 2δ to simplify

λL ≤
(
1− εr

δα

)−1

MinCap (α(1 + 2δ)) +
εa
δα
.

If additionally δ ≤ 2εr
α , then we use this same trick to obtain

λL ≤
(
1 +

2εr
δα

)
MinCap (α(1 + 2δ)) +

εa
δα
.
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Substituting into the condition λR ≤ (1 + εr)λL + εa gives

λR ≤ (1 + εr)

[(
1 +

2εr
δα

)
MinCap (α(1 + 2δ)) +

εa
δα

]
+ εa

≤
(
1 +

4εr
δα

)
MinCap (α(1 + 2δ)) +

3εa
δα

≤ 6εr
δα
·MinCap (α(1 + 2δ)) +

3εa
δα

.

We conclude the Theorem statement after substituting this bound on λR into Inequality (8).

Corollary 3.4. Let µ be a continuous distribution with compact support A ⊂ Rd, and let ν be a
discrete distribution with support B ⊆ Rd. Suppose εr, εa ≥ 0, α ∈ (0, 1− εr) is a parameter, and
ART is an arbitrary (εr, εa)-approximation algorithm for the λ-robust OT problem. Additionally,
suppose ¢(τ∗) ≥ c ·MinCap(α + εr) for some constant c ∈ (0, 1), where τ∗ is an α-OPT plan.
Then, APT is an

(
O( εrc ), O(εa)

)
-approximation algorithm for α-partial transport.

Proof. By the proof of Theorem 3.3, we note

¢(τAPT
) ≤ (1 + εr) · ¢(τ∗) + 5εrλR + 5εa.

and
λR ≤

6εr
δα
·MinCap (α(1 + 2δ)) +

3εa
δα

.

Substituting this bound on λR gives

¢(τAPT
) ≤ (1 + εr) · ¢(τ∗) + 5εr

[
6εr
δα
·MinCap (α(1 + 2δ)) +

3εa
δα

]
+ 5εa

= (1 + εr) · ¢(τ∗) +
30ε2r
δα
·MinCap (α(1 + 2δ)) +

15εrεa
δα

+ 5εa.

Now choose δ = εr
2α , which is indeed within the range

(
0,min

{
4εr
α , 1−αα , 12

})
for εr small enough.

Substituting this precise choice of δ gives

¢(τAPT
) ≤ (1 + εr) · ¢(τ∗) +

30ε2r(
εr
2α

)
α
·MinCap

(
α
(
1 + 2

( εr
2α

)))
+

15εrεa(
εr
2α

)
α
+ 5εa

= (1 + εr) · ¢(τ∗) + 60εr ·MinCap (α+ εr) + 35εa.

Substituting the assumption of the Corollary gives the desired result:

¢(τAPT
) ≤ (1 + εr) · ¢(τ∗) + 60εr ·MinCap (α+ εr) + 35εa

≤ (1 + εr) · ¢(τ∗) +
60εr
c
· ¢(τ∗) + 35εa

=
(
1 + 60(1 + c) · εr

c

)
¢(τ∗) + 35εa.

Theorem 3.5. Let µ be a continuous distribution with compact support A ⊂ Rd, ν a discrete
distribution with support B ⊆ Rd, and α ∈ (0, 1) a parameter. Suppose εr, εa ≥ 0, εr < 1

5α, and
δ > 5εr

α . Then algorithm APT is a (εr, 5εa, δ)-approximation algorithm for α-partial transport
given any arbitrary (εr, εa)-approximation algorithm ART for the λ-robust OT problem.

Proof. By the condition of λR

λL
= O(ε−1∆) initially and stopping criteria λR ≤ (1 + εr)λL + εa,

we know that APT terminates within O(log∆) iterations. Additionally by construction of the plan
τAPT

, M(τAPT
) :=

∫
A

∑
b∈B τAPT

(a, b)da = (1− δ)α as desired. Therefore, it suffices to bound
the cost of τAPT

.

Since τλR
is an (εr, εa)-approximate λR-robust OT plan, we observe

¢(τλR
) + (1−M(τλR

))λR ≤ (1 + εr) [¢(τ∗) + (1− α)λR] + εa. (9)

27



Now we note that the precise choice of constant c in algorithm APT is c := M(τλR
)−α(1−δ)

M(τλR
)−M(τλL

) . Using
the inequality from Lemma 3.2 and multiplying by c ≤ 1, we observe that

c (¢(τλL
)− ¢(τλR

))− (α(1− δ)−M(τλR
))λR ≤ 4εrλR + 4εa. (10)

By definition, we note τAPT
= τλR

+ c(τλL
− τλR

). Then adding Inequalities (9) and (10) gives

¢(τAPT
) + (1− α(1− δ))λR = ¢(τλR

) + c (¢(τλL
)− ¢(τλR

)) + (1− α(1− δ))λR
≤ (1 + εr)¢(τ∗) + [(1 + εr)(1− α) + 4εr]λR + 5εa
= (1 + εr)¢(τ∗) + [1− α− εrα+ 5εr]λR + 5εa.

Subtract (1− α(1− δ))λR from both sides of the inequality to get

¢(τAPT
) ≤ (1 + εr) · ¢(τ∗) + (5εr − (εr + δ)α)λR + 5εa ≤ (1 + εr) · ¢(τ∗) + 5εa,

where the second inequality above is true if δ ≥ 5εr
α . This concludes the Theorem statement.

E Missing Details and Proofs of Section 4

In this section, we present the missing details and proofs of the lemmas in Section 4. We begin
by presenting missing proofs of our combinatorial framework in Section E.1. We then provide the
details of the implementation of the procedures in Section E.2–E.6. Finally, we provide the proofs of
correctness and efficiency of our algorithm in Section E.7.

E.1 Missing proofs of the combinatorial framework

Lemma 4.1. For any parameter δ > 0, suppose τ, y(·) denotes a δ-feasible transport plan, and
let λ := Cap(y). Suppose the following two conditions hold: (F1) for every deficit point a ∈ A,
ȳ(a) = 0, and (F2) for all surplus points b ∈ B, y(b) = λ. Then, τ is a 2δ-close λ-robust transport
plan.

Proof. For any point a ∈ A, suppose ba ∈ B denotes the weighted nearest neighbor of a with respect
to weights y(·), i.e., ba := argminb∈B dy(a, b). For any transport plan τ ′, let µτ

′
(resp. ντ

′
) denote

the sub-measure of µ (resp. ν) that is transported by τ ′, i.e., µτ
′

(resp. ντ
′
) is the part of the mass of

µ (resp. ν) that is transported by τ ′. Let

µτ
′

f := µ− µτ
′

and ντ
′

f := ν − ντ
′

denote the sub-measures of µ and ν that are not transported by τ ′, i.e., µτ
′

f and ντ
′

f are the untrans-
ported parts of the mass of µ and ν, respectively. We can rewrite the λ-robust cost of the transport
plan τ as

wλ(τ) = ¢(τ) + λ(1−M(τ)) =
∑
b∈B

∫
A

d(a, b)τ(a, b) da+ λ(1−M(τ))

=
∑
b∈B

∫
A

(d(a, b)− y(b) + ȳ(a))τ(a, b) da+ λ(1−M(τ))

+
∑
b∈B

y(b)ντ (b)−
∫
A

ȳ(a)µτ (a) da. (11)

Note that from property (F2), any point b ∈ B with ντf (b) > 0 (i.e., any surplus point b ∈ B) has a
weight y(b) = λ; therefore,∑

b∈B

y(b)ντ (b) =
∑
b∈B

y(b)ν(b)−
∑
b∈B

y(b)ντf (b) =
∑
b∈B

y(b)ν(b)− λ(1−M(τ)). (12)

Similarly, from property (F1), any point a ∈ A with µτf (a) > 0 (i.e., any deficit point a ∈ A) has a
zero weight. Hence,∫

A

ȳ(a)µτ (a) da =

∫
A

ȳ(a)µ(a) da−
∫
A

ȳ(a)µτf (a) da =

∫
A

ȳ(a)µ(a) da. (13)
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Finally, due to the δ-feasibility of τ, y(·), the point a lies inside the 2δ-expanded restricted Voronoi
cell of b, and therefore, by increasing the weights of b by 2δ, the point b becomes the weighted nearest
neighbor of a and also contains a in its dual disc, i.e., ȳ(a) ≤ (y(b) + 2δ)− d(a, b). By rearranging
this inequality,

d(a, b)− y(b) + ȳ(a) ≤ 2δ. (14)
Plugging Equations (12), (13), and (14) into Equation (11),

wλ(τ) =
∑
b∈B

∫
A

(dy(a, b) + ȳ(a))τ(a, b) da+
∑
b∈B

y(b)ντ (b)−
∫
A

ȳ(a)µτ (a) da+ λ(1−M(τ))

=
∑
b∈B

∫
A

(dy(a, b) + ȳ(a))τ(a, b) da+
∑
b∈B

y(b)ν(b)−
∫
A

ȳ(a)µ(a) da

≤
∑
b∈B

∫
A

2δτ(a, b) da+
∑
b∈B

y(b)ν(b)−
∫
A

ȳ(a)µ(a) da

≤ 2δ +
∑
b∈B

y(b)ν(b)−
∫
A

ȳ(a)µ(a) da, (15)

where the last inequality holds since τ transports at most 1 unit of mass, i.e., M(τ) ≤ 1. Next, let τ∗
denote any λ-robust OT plan. We can rewrite the λ-robust cost of τ∗ as

wλ(τ
∗) = ¢(τ∗) + λ(1−M(τ∗)) =

∑
b∈B

∫
A

d(a, b)τ∗(a, b) da+ λ(1−M(τ∗))

=
∑
b∈B

∫
A

(d(a, b)− y(b) + ȳ(a))τ∗(a, b) da+ λ(1−M(τ∗))

+
∑
b∈B

y(b)ντ
∗
(b)−

∫
A

ȳ(a)µτ
∗
(a) da. (16)

Since λ = Cap(y),∑
b∈B

y(b)ντ
∗
(b) =

∑
b∈B

y(b)ν(b)−
∑
b∈B

y(b)ντ
∗

f (b) ≥
∑
b∈B

y(b)ν(b)− λ(1−M(τ)). (17)

Similarly, since all weights ȳ(·) are positive,∫
A

ȳ(a)µτ
∗
(a) da =

∫
A

ȳ(a)µ(a) da−
∫
A

ȳ(a)µτ
∗

f (a) da ≤
∫
A

ȳ(a)µ(a) da. (18)

Finally, by the definition of the derived weights, for any pair of points (a, b) ∈ A×B,

d(a, b)− y(b) + ȳ(a) ≥ 0. (19)

Plugging Equations (17), (18), and (19) into Equation (16),

wλ(τ
∗) =

∑
b∈B

∫
A

(dy(a, b) + ȳ(a))τ∗(a, b) da+ λ(1−M(τ∗))

+
∑
b∈B

y(b)ντ
∗
(b)−

∫
A

ȳ(a)µτ
∗
(a) da

≥
∑
b∈B

∫
A

(dy(a, b) + ȳ(a))τ∗(a, b) da+
∑
b∈B

y(b)ν(b)−
∫
A

ȳ(a)µ(a) da

≥
∑
b∈B

y(b)ν(b)−
∫
A

ȳ(a)µ(a) da, (20)

Combining Equations (15) and (20),

wλ(τ) ≤ 2δ +
∑
b∈B

y(b)ν(b)−
∫
A

ȳ(a)µ(a) da ≤ wλ(τ∗) + 2δ,

and τ is a 2δ-close λ-ROT plan.
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Figure 7: (left) the Voronoi-based boundaries (blue solid lines) and disk-based boundaries (red dashed
lines), (middle) the subset of boundaries of the expansions that lie inside the restricted Voronoi cells,
and (right) the subset of boundaries of the expansions that lies outside of all restricted Voronoi cells.

The following lemma shows that for any δ-feasible transport plan τ, y(·), one can interchangeably
use the implicit representation τ̂ without violating the δ-feasibility conditions.

Lemma E.1. For any δ-feasible semi-discrete transport plan τ, y(·), the implicit representation
τ̂ , y(·) is also δ-feasible. Similarly, for any set of weights y(·), any δ-feasible transport plan τ̂ over
Aδ ×B can be converted into a δ-feasible semi-discrete transport plan τ, y(·) over A×B.

Proof. Recall that for any semi-discrete transport plan τ between µ and ν, the implicit representation
of τ is defined as a transport plan where τ̂(rφ, b) :=

∫
φ
τ(a, b) da for each pair (φ, b) ∈ Xδ ×B. For

each region φ ∈ Xδ , the representative point rφ is inside φ. Furthermore, since RV 2δ
y (b) is included

in the set of cells used in the construction of Xδ , the region φ is either completely inside RV 2δ
y (b) or

is completely outside of it. Hence, due to the δ-feasibility of τ, y(·), for any pair (a, b) ∈ A×B such
that τ(a, b) > 0 (since a ∈ RV 2δ

y (b)), the region φ ∈ Xδ containing a also completely lies inside
RV 2δ

y (b) and rφ ∈ RV 2δ
y (b). Consequently, for any pair (r, b) ∈ Aδ ×B with τ̂(r, b) > 0, the point

r lies inside the 2δ-expanded restricted Voronoi cell of b, and τ̂ , y(·) is δ-feasible.

Next, suppose τ̂ is a δ-feasible transport plan over Aδ × B, i.e., for any pair (r, b) ∈ Aδ × B, if
τ̂(r, b) > 0, then r ∈ RV 2δ

y (b). As discussed above, for any region φ ∈ Xδ, if rφ ∈ RV 2δ
y (b),

then φ would be completely inside RV 2δ
y (b). Hence, if we define a transport plan τ such that

τ(φ, b) = τ̂(rφ, b) for each pair (φ, b) ∈ Xδ × B, then for any pair (a, b) ∈ A × B such that
τ(a, b) > 0, then a ∈ RV 2δ

y (b), and τ, y(·) is δ-feasible.

Size of residual graph. Next, we show that the residual graph has O(nd) points and O(nd+1)
edges for d-dimensional distributions, which will be used in analyzing the running time of different
steps of our algorithm.

Fix any set of weights y(·) for B. For any point b ∈ B, for simplicity in presentation, we omit
the weights y(·) from notation and let RV 0(b) := RV δy (b), RV

1(b) := RV δy (b), and RV 2(b) :=

RV 2δ
y (b) to denote the restricted Voronoi cell, δ-expanded, and 2δ-expanded Voronoi cells of b,

respectively. For any cell RV i(b) for b ∈ B and i ∈ {0, 1, 2}, let RV iV (b) (resp. RV iD(b)) denote
the part of the boundary of RV i(b) that is formed by the Voronoi cell V iδy (b) (resp. disk with radius
y(b) + iδ centered at b). We refer to this subset of boundaries as Voronoi-based (resp. disk-based)
boundaries. See Figure 7(left).

The following lemma provides an important property of these boundaries, which helps us in bounding
the size of the residual graph.

Lemma E.2. SupposeR :=
⋃
b∈B RVy(b) denotes the union (of the interior) of all restricted Voronoi

cells. For any point b ∈ B and any i ∈ {1, 2}, all interior points of the Voronoi-based boundaries
RV iV (b) lies insideR and all interior points of the disk-based boundaries RV iD(b) lies outsideR.
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Proof. Consider any interior point p ∈ RV iV (b). Since this point is determined by the iδ-expanded
Voronoi cell of b, then d(p, b) < y(b) + iδ. Suppose p lies on a weighted bisector between b and
another point b′ ∈ B. In this case,

d(p, b′)− y(b′) = d(p, b)− (y(b) + iδ) > 0.

Since b′ is a weighted nearest neighbor of p and has a positive weighted distance to p, the point p lies
inside the restricted Voronoi cell of b′. See Figure 7(middle).

Similarly, consider any interior point p ∈ RV iD(b). By construction, d(p, b) = y(b) + iδ. Consider
a weight function yib(·) that assigns yib(b) := y(b) + iδ and yib(b

′) := y(b′) for all b′ ̸= b. By the
definition of restricted Voronoi cells, the weighted nearest neighbor of p with weights yib(·) is b, and
any other point b′ ∈ B would have a non-positive weighted distance to p. Since the weighted distance
of each point b′ ̸= b to p is the same with respect to y(·) and yib(·), the point p lies outside of the
restricted Voronoi cell of b′. See Figure 7(right).

From Lemma E.2, any intersection point in the arrangement is formed using either d Voronoi-based
boundaries or d disk-based boundaries. As shown in [1], there are O(nd) intersection points between
the Voronoi-based boundaries. Furthermore, any subset of d disks intersect in at most 2 points.
Therefore, the total number of such intersection points is O(

(
n
d

)
) = O(nd). Hence, the number of

intersection points, and consequently the number of regions in the arrangement is O(nd). Since the
residual graph is a bipartite graph between set Aδ (with size O(nd)) and set B (with size n), the
number of its edges would be O(nd+1), leading to the following lemma.

Lemma E.3. For d-dimensional distributions, for any d ≥ 2, the residual graph has O(nd) nodes
and O(nd+1) edges.

E.2 SEARCHANDCONSOLIDATE Procedure

Define V as the set of all violating deficit points of Aδ . Mark all points of B and all backward edges
as unvisited. Let U := B denote the set of unvisited points, and at any point during the execution of
the algorithm, let Q denote the search path. The SEARCHANDCONSOLIDATE procedure initiates a
partial DFS from each point in V in the graph

←−
Gδ to find admissible consolidating and augmenting

paths. For any point r ∈ V , set Q = ⟨r = r1⟩ and execute the following steps until Q becomes
empty.

1. If Q = ⟨r = r1, b1, . . . , ri, bi⟩,
(a) If bi is a surplus point, then the reverse path P = ⟨bi, ri, bi−1, . . . , r1⟩ is an admissible

augmenting path in Gδ. Augment τ̂δ along P . If r remains a (violating) deficit point,
then set Q = ⟨r = r1⟩ and continue. Otherwise, stop the search from r.

(b) If bi is not a surplus point, for any unvisited backward edge (bi, r
′) in

←−
Gδ, add r′ as

ri+1 to Q. If there are no unvisited backward edges from bi in
←−
Gδ, then mark bi as

visited and remove bi from U and Q. If Q becomes empty, stop the search from b.
2. If Q = ⟨r = r1, b1, . . . , bi, ri+1⟩, let b∗ := argminb′∈U dy(ri+1, b

′) denote the unvisited
point with the minimum weighted distance to ri+1.
(a) If ȳ(ri+1) = 0, then the reverse path P = ⟨ri+1, bi, ri, . . . , r1⟩ is an admissible

consolidating path in Gδ. Update τ̂δ along P . If r remains a (violating) deficit point,
set Q = ⟨r = r1⟩ and continue. Otherwise, stop the search from b.

(b) Otherwise, if (b∗, ri+1, bi) is admissible, i.e., dy(ri+1, b
∗) < dy(ri+1, bi), then add b∗

as bi+1 to Q.
(c) Otherwise, remove ri+1 from Q and mark the backward edge (bi, ri+1) as visited.

The procedure terminates when all partial search procedures from all points in V are terminated.
Lemma E.4. Given a δ-feasible transport plan τδ, y(·), after the execution of the SEARCHANDCON-
SOLIDATE procedure,

(SC1) the transport plan remains δ-feasible,

(SC2) each balanced point b ∈ B remains balanced, and
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(SC3) there are no admissible consolidating paths and no admissible augmenting paths to violating
deficit regions in the residual graph.

Proof. Suppose τδ (resp. τ ′δ) denotes the transport plan maintained by the algorithm after (resp.
before) the execution of the SEARCHANDCONSOLIDATE procedure.

For any edge (r, b) ∈ Aδ ×B with τ̂δ(r, b) > 0, if τ̂ ′δ(r, b) > 0, then by the δ-feasibility of τ̂ ′δ, y(·),
the point r lies inside RV 2δ

y (b). Otherwise, the edge (r, b) was a forward edge on an augmenting or
consolidating path P so that after updating the transport plan along P , it has become a backward edge.
In this case, there is a forward edge from b to r in the residual graph, which means that r ∈ RV 2δ

y (b)
and (SC1) holds.

Next, note that any augmenting path P is from a surplus point b ∈ B to a point rφ ∈ Aδ . Furthermore,
any consolidating path P is from a zero-weight point r′ ∈ Aδ to a violating deficit point rφ ∈ Aδ.
For any point b ∈ B other than the two endpoints of a path P , the amount of mass transported from b
remains unchanged after updating the transport plan along P . Therefore, updating a transport plan
along any augmenting or consolidating path does not change the amount of mass transported from
any balanced point, leading to (SC2).

Finally, to prove property (SC3), we begin by showing the following properties:

(SC4) there are no admissible cycles in the residual graph, and

(SC5) any point b ∈ B and any backward edge that are marked as visited does not form any
admissible augmenting paths to violating deficit points or consolidating paths in the same
execution of the SEARCHANDCONSOLIDATE procedure.

Suppose P 1, . . . , P k denotes the sequence of augmenting and consolidating paths computed by the
SEARCHANDCONSOLIDATE procedure, and for any i ∈ [0, k], let τ̂ iδ and Giδ denote the transport
plan and residual graph maintained after updating the transport plan along P i, respectively. Define
V i (resp. U i) to be the set of visited (resp. unvisited) points of B with respect to τ̂ iδ .

We prove (SC4) using an induction on i. Since τ̂0δ is obtained from the transport plan computed by
the ACYCLIFY procedure, there are no cycles of admissible triples in the residual graph, and (SC4)
holds for G0δ . For any i ∈ [1, k], assuming (SC4) on G0δ , . . . ,G

i−1
δ , we show that (SC4) also holds for

Gi. For any admissible triple (b, r, b′) in Gi formed after updating τ̂ i−1
δ along P i, we show below

that the triple (b, r, b′) does not form admissible cycles and conclude (SC4) on Giδ .

For any visited point b ∈ V i−1 \ V i−2, the search from b did not lead to the computation of an
augmenting or consolidating path; therefore, any point b′ that is reachable from b by an admissible

path in the reverse of residual graph
←−−
Gi−1 (and therefore, is reachable by our partial DFS procedure

from b) would have also been marked as visited. In other words, any point b′ ∈ B that has an
admissible path to the visited point b in the residual graph Gi−1 is also visited. By this observation,
there are no admissible paths from any unvisited point in U i−1 to any visited point in V i−1.

Below, we show that for any newly formed admissible triple (b, r, b′), b ∈ V i−1 and b′ ∈ U i−1.
Assuming this, there are no admissible triples from any visited point to any unvisited point (in the
reversed residual graph), and therefore, the newly formed admissible triples (which are from an
unvisited point to a visited point in the reversed residual graph) do not form any admissible cycles
and (SC4) holds for Giδ as well. Consider any triple (b, r, b′) that is admissible in Giδ but not in
Gi−1
δ . Recall that the SEARCHANDCONSOLIDATE procedure does not change the weights of points,

and therefore, since (b, r, b′) is not admissible in Gi−1
δ , (r, b′) is not a backward edge in Gi−1

δ , i.e.,
(r, b′) ∈ P i as a forward edge. From step 2(b) of the SEARCHANDCONSOLIDATE procedure, b′ is the
weighted nearest unvisited neighbor of r; therefore, since dy(r, b) > dy(r, b

′) (from the admissibility
of (b, r, b′)) and the procedure added b′ to the search path (instead of b), the point b was marked as
visited by the procedure. Therefore, for any newly formed admissible triple (b, r, b′), b ∈ V i−1 and
b′ ∈ U i−1.

Next, we show that (SC5) holds. For any visited point b ∈ V i, as discussed above, all vertices that
are reachable from b by an admissible path in the reversed residual graph are also visited. Since all
surplus points bs ∈ B (resp. points bz ∈ B transporting mass to a zero-weight point r ∈ Aδ) are
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unvisited, bs (resp. bz) is not reachable from any visited point b ∈ B by our search algorithm and
therefore, the visited points do not participate in an admissible augmenting or consolidating path.
Furthermore, the procedure marks a backward edge (r, b) as visited if, for each admissible triple
(b′, r, b), the point b′ is visited. Since the point b′ cannot be included in an admissible augmenting
path to a violating deficit point or a consolidating path, the visited backward edge (r, b) also does not
form an admissible augmenting path to a violating deficit point or a consolidating path.

For any violating deficit point rφ ∈ Aδ with respect to τ̂δ, y(·), the search from rφ has been
terminated since Q was empty; hence, all forward edges incident on rφ are to visited points of B,
which from (SC5) do not form admissible augmenting/consolidating paths; therefore, rφ will not
form any admissible augmenting paths to violating deficit points or consolidating paths during the
same execution of the SEARCHANDCONSOLIDATE procedure, leading to (SC3).

E.3 REDUCEWEIGHTS Procedure

The procedure reduces the weights of all points in B that have admissible alternating paths to some
deficit points r ∈ A with ȳ(r) > 0, leading to the formation of new admissible augmenting and
consolidating paths to the violating free points in the residual graph. The procedure performs partial
DFS from all violating deficit points in the reverse of the residual graph to compute a set K of all
points of B that have admissible alternating paths to the violating deficit points. The procedure then
decreases the weights of all points in K by δ and shrinks their restricted Voronoi cells. It finally
recomputes Aδ , Gδ , and τ̂δ . We describe the steps of the DFS below.

Define V ⊂ Aδ as the set of violating deficit points. Given the reversed residual graph
←−
Gδ, mark all

points b ∈ B and all backward edges (b, r) as unvisited and set K = ∅ and let U = B denote the set
of unvisited points of B. For any point r ∈ V , start a partial DFS in the reverse residual graph

←−
Gδ by

setting Q := ⟨r = r1⟩ as the search path that the algorithm grows. Execute the following steps.

1. If Q = ⟨r = r1, . . . , bi⟩,

(a) If there exists an unvisited backward edge (bi, r
∗) in

←−
Gδ , add r∗ to Q as ri+1.

(b) Otherwise, mark bi as visited and remove bi from U and Q. Add bi to K.

2. If Q = ⟨r = r1, . . . , bi, ri⟩, let b∗ := argminb′∈U dy(ri, b
′).

(a) If dy(ri, b∗) < dy(ri, bi), i.e., (b∗, ri, bi) is admissible, add b∗ as bi+1 to Q.
(b) Otherwise, remove ri from Q and mark (bi, ri) as visited.

After all DFS procedures from all points in V terminate, for each point b ∈ K, set y(b)← y(b)− δ.

Lemma E.5. Given a δ-feasible transport plan τδ, y(·) such that there are no admissible consolidating
paths and no admissible augmenting path to a violating deficit region, after the execution of the
REDUCEWEIGHTS procedure,

(R1) the transport plan remains δ-feasible,

(R2) the weight of each point b ∈ B containing violating deficit regions inside RVy(b) decreases
by δ, and

(R3) the weight of each surplus point b ∈ B remains unchanged.

Proof. Let y(·),Xδ, Aδ (resp. y′(·),X ′
δ, A

′
δ) denote the set of weights of B, decomposition of A, and

the set of representative points before (resp. after) the execution of the REDUCEWEIGHTS procedure.

To prove property (R1), first note that for each point b ∈ K, there are no zero-weight points r ∈ RV 2δ
y

such that τδ(r, b) > 0, since otherwise, there would have been an admissible consolidating path in
the residual graph, which is in contrast with Lemma E.4 (SC3). Below, we show that for any pair of
points (a, b) ∈ A×B such that τδ(a, b) > 0, we have a ∈ RV 2δ

y′ (b), and hence (R1) holds. Let ba
(resp. b′a) denote the weighted nearest neighbor of a with respect to weights y(·) (resp. y′(·)). From
the δ-feasibility of τδ, y(·), dy(a, b) ≤ dy(a, ba) + 2δ. Let ra (resp. r′a) denote the representative
point of the region containing a. As discussed above, ȳ(ra) > 0 and ra lies inside the restricted
Voronoi cell of ba.
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• If b ∈ K,

– if b′a ∈ K, then

dy′(a, b) = dy(a, b) + δ ≤ dy(a, b
′
a) + 3δ = dy′(a, b

′
a) + 2δ.

– Otherwise, the triple (b′a, ra, b) would not be admissible (since otherwise b′a ∈ K), and
dy(ra, b) ≤ dy(ra, b

′
a). Hence, dy(a, b) ≤ dy(a, b

′
a) + δ and

dy′(a, b) = dy(a, b) + δ ≤ dy(a, b
′
a) + 2δ = dy′(a, b

′
a) + 2δ.

• Otherwise, b /∈ K. In this case,

dy′(a, b) = dy(a, b) ≤ dy(a, b
′
a) + 2δ ≤ dy′(a, b

′
a) + 2δ.

Therefore, for any pair (a, b) with τδ(a, b) > 0, we have a ∈ RV 2δ
y (b), and τδ, y′(·) would be

δ-feasible, i.e., (R1) holds.

Since the REDUCEWEIGHTS procedure initiates a partial DFS from each violating deficit point r ∈ V ,
all points of B with violating deficit regions in their restricted Voronoi cell will be added to the search
path and to the set K in step 1(b) of the procedure; hence, their weights will be reduced by δ (leading
to (R2)). Furthermore, for any surplus point b ∈ B, since there are no admissible augmenting paths
from the violating deficit regions (from Lemma E.4), the surplus point b will not be added to the
search path and hence, cannot be added to the set K, leading to (R3).

E.4 SEARCHANDAUGMENT Procedure

The SEARCHANDAUGMENT procedure initiates a partial DFS from deficit points of Aδ in the reverse
of the residual graph to find admissible augmenting paths and admissible alternating paths to inactive
points. The procedure then updates the transport plan along those paths. The SEARCHANDAUGMENT
procedure in this paper is similar to the SEARCHANDAUGMENT procedure introduced in [1], and the
only difference is that when the search path reaches an inactive point of B, i.e., a point b ∈ B with
y(b) = λ, the procedure updates the transport plan along the alternating path and restarts the search.

Let D ⊂ Aδ denote the subset of deficit points of Aδ with respect to τδ. Mark all points of B and
all backward edges as unvisited. Define U := B as the set of unvisited points of B. For any point
r ∈ D, initiate a partial DFS Q = ⟨r = r1⟩ in the reverse residual graph

←−
Gδ as the search path that

the procedure grows. Execute the following steps.

1. If Q = ⟨r = r1, b1, . . . , ri, bi⟩,
(a) If bi is surplus, then the reverse path P = ⟨bi, ri, . . . , r1⟩ is an admissible augmenting

path in Gδ. Augment τ̂δ along P . If r is still a deficit point, set Q = ⟨r = r1⟩.
Otherwise, stop the current search.

(b) Otherwise, if bi is an inactive point (i.e., y(bi) = λ), then the reverse path P =
⟨bi, ri, . . . , r1⟩ is an admissible alternating path to an inactive point in Gδ. Update τ̂δ
along P . If r is still a deficit point, set Q = ⟨r = r1⟩. Otherwise, stop the current
search.

(c) Otherwise, if there is an unvisited backward edge (bi, r
′) in
←−
Gδ , then add r′ as ri+1 to

Q. Otherwise, mark bi as visited and remove bi from U and Q.
2. If Q = ⟨r = r1, b1, . . . , bi, ri+1⟩, let b := argminb′∈U dy(ri+1, b

′).
(a) If dy(ri+1, b) < dy(ri+1, bi), i.e., (b, ri+1, bi) is admissible, add b as bi+1 to Q.
(b) Otherwise, remove ri+1 from Q and mark the backward edge (bi, ri+1) as visited.

The procedure terminates when all partial DFS executions from all points in D terminate.
Lemma E.6. Given a δ-feasible transport plan τδ, y(·) satisfying condition (F1) in Lemma 4.1, after
the execution of the SEARCHANDAUGMENT procedure,

(SA1) the transport plan τ̂δ, y(·) remains δ-feasible and (F1) remains satisfies, and

(SA2) there are no admissible cycles, admissible augmenting paths, and admissible alternating
paths from inactive points to deficit regions in the residual graph.
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Proof. Suppose τδ (resp. τ ′δ) denotes the transport plan maintained by the algorithm after (resp.
before) the execution of the SEARCHANDAUGMENT procedure.

For any edge (r, b) ∈ Aδ ×B with τ̂δ(r, b) > 0, if τ̂ ′δ(r, b) > 0, then by the δ-feasibility of τ̂ ′δ, y(·),
the point r lies inside RV 2δ

y (b). Otherwise, the edge (r, b) was a forward edge on an augmenting
path P (resp. alternating path P ′ from an inactive point) so that after updating the transport plan
along P (resp. P ′), it has become a backward edge. In this case, there is a forward edge from b to r
in the residual graph, which means that r ∈ RV 2δ

y (b), i.e., τ̂δ, y(·) is also δ-feasible. Furthermore,
since the SEARCHANDAUGMENT procedure does not change the weights, (F1) continues to be true,
and (SA1) holds.

Suppose P 1, . . . , P k denotes the sequence of admissible augmenting paths and alternating paths to
inactive points computed by the SEARCHANDAUGMENT procedure, and for any i ∈ [0, k], let τ̂ iδ and
Giδ denote the transport plan and residual graph maintained after updating the transport plan along P i,
respectively. Define V i (resp. U i) to be the set of visited (resp. unvisited) points of B with respect to
τ̂ iδ .

We use an induction on i to show that there are no admissible cycles in the residual graph. Since τ̂0δ
is obtained from the transport plan computed by the ACYCLIFY procedure, there are no admissible
cycles in the residual graph G0δ . For any i ∈ [1, k], assuming there are no admissible cycles in
G0δ , . . . ,G

i−1
δ , we show that the same holds for Gi. For any admissible triple (b, r, b′) in Gi formed

after updating τ̂ i−1
δ along P i, we show below that the triple (b, r, b′) does not form admissible cycles

and conclude that there are no admissible cycles in Giδ .

For any visited point b ∈ V i−1 \ V i−2, the search from b did not lead to the computation of an
augmenting path or an alternating path to an inactive point; therefore, any point b′ that is reachable

from b by an admissible path in the reverse of residual graph
←−−
Gi−1 (and therefore, is reachable by our

partial DFS procedure from b) would have also been marked as visited. In other words, any point
b′ ∈ B that has an admissible path to the visited point b in the residual graph Gi−1 is also visited. By
this observation, there are no admissible paths from any unvisited point in U i−1 to any visited point
in V i−1.

Below, we show that for any newly formed admissible triple (b, r, b′), b ∈ V i−1 and b′ ∈ U i−1.
Assuming this, there are no admissible triples from any visited point to any unvisited point (in the
reversed residual graph), and therefore, the newly formed admissible triples (which are from an
unvisited point to a visited point in the reversed residual graph) do not form any admissible cycles,
as claimed. Consider any triple (b, r, b′) that is admissible in Giδ but not in Gi−1

δ . Recall that the
SEARCHANDAUGMENT procedure does not change the weights of points, and therefore, since
(b, r, b′) is not admissible in Gi−1

δ , (r, b′) is not a backward edge in Gi−1
δ , i.e., (r, b′) ∈ P i as a

forward edge. From step 2 of the SEARCHANDAUGMENT procedure, b′ is the weighted nearest
unvisited neighbor of r; therefore, since dy(r, b) > dy(r, b

′) (from the admissibility of (b, r, b′)) and
the procedure added b′ to the search path (instead of b), the point b was marked as visited by the
procedure. Therefore, for any newly formed admissible triple (b, r, b′), b ∈ V i−1 and b′ ∈ U i−1.
To summarize, any newly formed admissible triple is from a visited point to an unvisited point (in
the residual graph), while there are no admissible triples from an unvisited point to a visited points;
hence, the newly formed admissible triples do not form admissible cycles, and using the inductive
hypothesis, the residual graph remains free of any admissible cycles.

To prove property (SA3), we next the following properties:

(SA4) any point b ∈ B and any backward edge that is marked as visited does not form any
admissible augmenting paths or alternating paths to inactive points in the same execution of
the SEARCHANDAUGMENT procedure.

For any visited point b ∈ V i, as discussed above, all vertices that are reachable from b by an
admissible path in the reversed residual graph are also visited. Since all inactive points bs ∈ B
(resp. points bz ∈ B with zero-weight points r ∈ Aδ in RV 2δ

y (b)) are unvisited, bs (resp. bz) is not
reachable from any visited point b ∈ B by our search algorithm and therefore, the visited points do
not participate in an admissible augmenting path or alternating path to inactive points. Furthermore,
the procedure marks a backward edge (r, b) as visited if, for each admissible triple (b′, r, b), the point
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b′ is visited. Since the point b′ cannot be included in an admissible augmenting path or alternating
path to inactive points, the visited backward edge (r, b) also does not form an admissible augmenting
path or alternating path to inactive points.

For any deficit point r ∈ D with respect to τ̂δ, y(·), the search from r has been terminated since Q
was empty (otherwise, r would have been balanced); hence, all forward edges incident on r are to
visited points of B, which from (SA4) do not form admissible augmenting paths or alternating paths
to inactive points; therefore, r will not form any admissible augmenting paths or alternating paths to
inactive points during the same execution of the SEARCHANDCONSOLIDATE procedure, leading to
(SA2).

E.5 INCREASEWEIGHTS Procedure

The INCREASEWEIGHTS procedure is also similar to the INCREASEWEIGHTS procedure introduced
in [1], with the slight difference that it inactivates the points whose weights reach λ after increasing
their weights. In particular, the INCREASEWEIGHTS procedure computes a set K of points that are
reachable from the surplus points by admissible alternating paths and increases the weights of those
points by δ. It then marks all points of B whose weights have reached λ as inactive and recomputes
Aδ , Gδ , and τ̂δ . For completeness, we include the description of the INCREASEWEIGHTS procedure
below.

For each point r ∈ Aδ, let N (r) ⊆ B denote the set of points b ∈ B with τ̂δ(r, b) > 0. Let S ⊂ B
denote the set of active surplus points of B. Mark all points b ∈ B and all forward edges (b, r) in
the residual graph as unvisited and set K = ∅. Let U = B denote the set of unvisited points of B.
Initiate a partial DFS from any point b ∈ S in the residual graph Gδ by setting Q := ⟨b = b0⟩ as the
search path that the algorithm grows. Execute the following steps.

1. If Q = ⟨b = b0, r1, . . . , bi⟩,
(a) If there exists an unvisited forward edge (bi, r) in Gδ , add r to Q as ri+1.
(b) Otherwise, mark bi as visited and remove bi from U and Q. Add bi to K.

2. If Q = ⟨b = b0, r1, . . . , bi, ri⟩, let b∗ := argmaxb′∈U∩N (ri) dy(ri, b
′).

(a) If dy(ri, b∗) > dy(ri, bi), i.e., (bi, ri, b∗) is admissible, add b∗ as bi+1 to Q.
(b) Otherwise, remove ri from Q and mark (bi, ri) as visited.

After all DFS procedures from all points in S terminate, for each point b ∈ K, set y(b)← y(b) + δ.
We next describe how to recompute the residual graph and the compressed transport plan with respect
to the updated weights.
Lemma E.7. Given a δ-feasible transport plan τδ, y(·) satisfying condition (F1) in Lemma 4.1, after
the execution of the INCREASEWEIGHTS procedure,

(IW1) the transport plan τ̂δ, y(·) remain δ-feasible and condition (F1) remains satisfies,

(IW2) the weight of each active surplus point b ∈ B increases by δ, and

(IW3) the weights of all points b ∈ B with deficit regions inside RV 2δ
y (b) and all inactive points

remain unchanged.

Proof. Let y(·),Xδ, Aδ (resp. y′(·),X ′
δ, A

′
δ) denote the set of weights of B, decomposition of A,

and the set of representative points before (resp. after) the execution of the INCREASEWEIGHTS
procedure.

To prove property (IW1), we show that for any pair of points (a, b) ∈ A×B such that τδ(a, b) > 0,
we have a ∈ RV 2δ

y′ (b). Let ba (resp. b′a) denote the weighted nearest neighbor of a with respect to
weights y(·) (resp. y′(·)). From the δ-feasibility of τδ, y(·), we have dy(a, b) ≤ dy(a, b

′
a) + 2δ. Let

ra denote the representative point of the region containing a.

• If b ∈ K, then ba also is included in K, since either b = ba or the triple (ba, ra, b) would be
admissible. Hence, ba remains the weighted nearest neighbor of a with respect to weights
b′a, and

dy′(a, b) = dy(a, b)− δ ≤ dy(a, ba) + δ = dy′(a, ba) + 2δ.
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• Otherwise, b /∈ K. In this case,

– if b′a /∈ K, then

dy′(a, b) = dy(a, b) ≤ dy(a, b
′
a) + 2δ = dy′(a, b

′
a) + 2δ.

– otherwise, we would have dy(ra, b
′
a) ≥ dy(ra, b), since otherwise (b′a, ra, b) would

be admissible and since b′a ∈ K, then b ∈ K as well. In this case, since b′a be-
came the weighted nearest neighbor of ra, we should have ra ∈ RV δy (b′a), and since
dy(ra, b

′
a) ≥ dy(ra, b), we should also have that ra ∈ RV δy (b) and consequently

a ∈ RV δy (b). Then,

dy′(a, b) = dy(a, b) ≤ dy(a, b
′
a) + δ = dy(a, b

′
a) + 2δ.

Therefore, for any pair (a, b) with τδ(a, b) > 0, we have a ∈ RV 2δ
y (b), and τδ, y′(·) would be

δ-feasible, i.e., (IW1) holds.

Note that the INCREASEWEIGHTS procedure initiates a partial DFS from each active surplus point,
which terminates when the search path becomes empty; hence, each active surplus point b ∈ B will
be added to the set K in step 1(a) of the procedure, and its weight will be increased by δ, proving
(IW2).

Finally, note that from Lemma E.7, there are no admissible augmenting paths or alternating paths from
active surplus points to inactive points in the residual graph. Hence, the partial DFS procedure from
the active surplus points cannot reach any inactive point or any point b ∈ B with deficit regions inside
RV 2δ

y (b); therefore, all such points would not be in the set K and their weights remain unchanged,
leading to (IW3).

E.6 ACYCLIFY Procedure

Given a δ-feasible transport plan τδ, y(·) obtained after the execution of REDUCEWEIGHTS or
INCREASEWEIGHTS procedure, the ACYCLIFY procedure updates the transport plan such that, for
the implicit representation τ̂δ of τδ , the transport plan is a forest, i.e., the graph containing all edges
(r, b) ∈ Aδ ×B does not contain any edges. Furthermore, the ACYCLIFY procedure makes sure that
there are no admissible alternating cycles in the residual graph. This procedure is identical to the
ACYCLIFY procedure presented in [1]. The procedure first uses a dynamic tree structure Sleator and
Tarjan [45] to make the transport plan a forest (using phase 1). The procedure then uses partial DFS
to follow the admissible triples and remove any admissible alternating cycles (using phase 2). The
procedure finally makes the transport plan a forest again (using phase 1). We summarize the two
main phases of the procedure next.

Phase 1: Acyclifying the Transport Plan. To make the transport plan a forest, the procedure
initializes an empty transport plan τ̂ and iteratively adds the edges transporting mass in τ̂δ to τ̂ . The
procedure also maintains a dynamic tree data structure and for any new edge, if the edge creates a
cycle of transportation, the ACYCLIFY procedure cancels the cycle right away. More precisely, after
adding an edge (r1, b1) to the transport plan, if a cycle (b1, r1, b2, . . . , bk, rk) is formed such that
τ̂(ri, bi) > 0 and τ̂(bi, ri−1) > 0 for all i ∈ [1, k] (assuming r0 = rk), then the procedure increases
(resp. decreases) the amount of mass transported on the even-indexed (resp. odd-indexed) edges of
this cycle until at least one of the odd-indexed edges gets removed from the transport plan. Using
the dynamic tree structure by Sleator and Tarjan [45], each of the above-mentioned operations takes
O(log n) amortized time; therefore, using Lemma E.3, since the number of edges of the residual
graph is O(nd+1), this phase takes a total of O(nd+1 log n) time.

Phase 2: Acyclifying the Admissible Triples. This step uses a partial DFS on the reverse of the
residual graph

←−
Gδ to remove any admissible cycles from the residual graph. For any admissible cycle

C = ⟨b1, r1, . . . , bi, ri, bi+1 = b1⟩ in
←−
Gδ, define the bottleneck capacity of C as minj∈[1,i] τ̂(rj , bj).

The procedure cancels C by increasing (resp. decreasing) the amount of mass transported along the
forward (resp. backward) edges of C by the bottleneck capacity. The update will remove at least one
of the transporting edges, hence removing the admissible cycle from the residual graph.
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Mark all points of B and all backward edges as unvisited. Define U := B as the set of unvisited
points. For any unvisited point b ∈ B, initiate a partial DFS in the reversed residual graph

←−
Gδ by

setting Q = ⟨b = b1⟩ and search as follows until Q becomes empty.

1. If Q = ⟨b1, r1, . . . , bi⟩,
(a) If there exists an unvisited backward edge (bi, rφ), add rφ as ri+1 to Q.
(b) Otherwise, mark bi as visited and remove bi from Q and U .

2. If Q = ⟨b1, r1, . . . , bi, ri⟩, let b := argminb′∈U dy(ri, b
′).

(a) If dy(ri, b) < dy(ri, bi), i.e., (b, ri, bi) is admissible, if b lies on the search path Q as
bj , then the cycle C = ⟨bj , rj , . . . , bi, ri, bi+1 = b = bj⟩ is admissible. Cancel the
cycle C and set Q = ⟨b1, r1, . . . , bj⟩. Otherwise, add b as bi+1 to Q.

(b) Otherwise, (b, ri, bi) is not admissible. Remove ri from Q and mark the backward
edge (bi, ri) in

←−
Gδ as visited.

Lemma E.8. Given a δ-feasible transport plan τδ, y(·) satisfying condition (F1) in Lemma 4.1, after
the execution of the ACYCLIFY procedure,

(A1) the transport plan τ̂δ, y(·) remains δ-feasible and condition (F1) remains satisfies, and

(A2) the transport plan τ̂δ is a forest and there are no admissible cycles in the residual graph.

Proof. We begin by proving (A1). The ACYCLIFY procedure first makes the transportation graph
acyclic. Since the edges carrying mass in the new transport plan is a subset of the original transporta-
tion network prior to applying ACYCLIFY , for each edge (r, b) ∈ Aδ × B that transports mass in
the new transport plan, r ∈ RV 2δ

y (b), which implies that the transport plan produced after this phase
remains δ-feasible. In the second phase of the procedure, at any time, all triples in the search path
are admissible. Thus, updating the transport plan along any one of such cycles does not violate the
δ-feasibility conditions.

Furthermore, since the amount of mass transported to each region remains the same at all steps of the
procedure, any point r ∈ Aδ that is a deficit in the new transport plan is also a deficit with respect to
the transport plan prior to this phase of ACYCLIFY procedure. Since the procedure does not change
the weights of the points, if (F1) holds prior to the execution of the ACYCLIFY procedure, any deficit
region would have a zero weight, and condition (F1) continues to be true, i.e., (A1) holds.

To argue that property (A2) also holds, we aim to demonstrate:

(A3) any point b ∈ B (and any backward edge (r, b)) that is marked as visited does not participate
in any admissible cycle in the same execution of the ACYCLIFY procedure, and

(A4) the portion of the residual graph consisting of visited points and their adjacent regions does
not include any admissible cycles. Moreover, there are no admissible paths from an unvisited
point to any visited point.

Assuming (A3) is true, we conclude that no visited point b ∈ B becomes part of an admissible cycle.
Since the ACYCLIFY algorithm terminates only when all elements of B have been marked as visited,
this implies that no admissible cycles exist in the residual graph at termination. Additionally, since
the procedure runs phase 1 once more after the execution of phase 2, the transportation network
becomes acyclic, leading to (A2).

Furthermore, as discussed next, property (A3) naturally follows from (A4): For any visited point
b ∈ B, all points b′ ∈ B from which there is an admissible path to b must also have already been
visited (since the algorithm performs the search in the reversed residual graph). If (A4) holds, then
no admissible cycle can be formed solely from visited nodes. Similarly, a backward edge (r, b) is
marked as visited only if, for every admissible triple (b′, r, b), the point b′ has already been marked
as visited. If b′ does not participate in any admissible cycles, then neither can the triple (b′, r, b).
Accordingly, we prove (A4) below, which proves (A3) and consequently, proves (A2).

We use induction to show that (A4) holds throughout the second phase. Let Ci, i ∈ [1, k] denote the
sequence of admissible cycles computed by the procedure, and let τ̂0δ , . . . , τ̂

k
δ denote the sequence
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of transport plans, where τ̂0δ is the transport plan maintained at the beginning of phase 2, and τ̂ iδ is
derived by updating τ̂ i−1

δ along Ci. Initially, at the start of the second phase, property (A4) clearly
holds.

A point b ∈ B is marked as visited when a search from b does not lead to the formation of an
admissible cycle. This means that for all admissible triples (b′, r, b), the point b′ and backward edge
(r, b) must already be marked as visited. Consequently, all points that can reach b via an admissible
path (all points that are reachable from b by our backward DFS) are also visited, and b has no
admissible paths to any visited points in the residual graph. Therefore, if (A4) holds prior to marking
b as visited, it will remain valid afterward. We next consider the case where a cycle Ci is eliminated.

Any admissible cycle computed by the procedure is made up only of unvisited points of B. After
canceling such a cycle, any newly created admissible triple (b, r, b′) will consist of a visited point
b and an unvisited point b′. This means that cycle cancellation can only produce new admissible
paths from visited to unvisited points. Provided that (A4) is held before canceling Ci, canceling
Ci does not introduce any admissible cycles among visited points. Additionally, since cancellation
does not generate any admissible triples directed from unvisited to visited points, there will be no
admissible paths from any unvisited point to any visited point. Therefore, property (A4) is preserved
after canceling any cycle Ci.

E.7 Missing Proofs of Efficiency

Number of iterations of step 1. We begin by showing that the number of iterations of step 1 of our
algorithm is O(n).
Lemma 4.3. For any subset S ⊂ B, suppose in an iteration i of step 1 of our algorithm, the reduction
in the weight of any point in S is more than 6δ greater than the reduction in the weight of any point
in B \ S, i.e., minb∈S γ

i(b) > maxb′∈B\S γ
i(b′) + 6δ. Then, there are no deficit regions inside the

restricted Voronoi cells of the points in S.

Proof. Let τ2δ, y2δ(·) denote the 2δ-feasible transport plan computed by our algorithm at the end of
scale 2δ. Recall that τ i, yi(·) denotes the δ-feasible transport plan maintained after iteration i of the
initialization step and γi(b) = y2δ(b)− yi(b) for each point b ∈ B. Define RδS :=

⋃
b∈S RV

2δ
yi (b)

as the union of all 2δ-expanded restricted Voronoi cells of the points in S.

To prove this lemma, we show that all the continuous mass inside the set RδS is transported to the
points in S in the transport plan τ2δ. Given that there are no deficit points with respect to τ2δ, the
total continuous mass inside the set RδS would be no more than the discrete mass at the points in
S. Due to the δ-feasibility conditions, τ i transports the mass of the point in S only to the regions
in RδS , i.e., the total mass transported from S in τ i is no more than ν(S) =

∑
b∈S ν(b). Since the

REDUCEWEIGHTS procedure does not reduce the weight of any surplus points, no points in S can be
surplus; hence, no points in S can be deficit, and all points in S are balanced. In the following, we
show that the total continuous mass insideRδS is at most ν(S).

Consider any point a ∈ RδS , and let ba ∈ B be any 4δ-weighted nearest neighbor of a with respect
to weights y2δ(·). Below, we show that ba ∈ S. For the sake of contradiction, suppose ba /∈ S, and
let b′ ∈ S denote any point in the set S. Note that dy2δ(a, ba) ≤ dy2δ(a, b

′) + 4δ. By the lemma’s
assumption, γi(b′) < γi(ba) + 6δ, since ba /∈ S. Therefore,

dyi(a, b
′) = dy2δ(a, b

′) + y2δ(b
′)− yi(b′) ≥ dy2δ(a, ba) + γi(b′)− 4δ

= dyi(a, ba)− γi(ba) + γi(b′)− 4δ > dyi(a, ba) + 2δ.

In words, since ba /∈ S, with respect to weights yi(·), the weighted distance of ba to a would be
more than 2δ less than the weighted distance of a to any point b′ ∈ S; consequently, the point a
cannot lie inside the union of the 2δ expanded restricted Voronoi cells of S (i.e., a /∈ RδS), which is a
contradiction. Hence, any 4δ-weighted nearest neighbor of a with respect to weights y2δ(·) has to be
in the set S.

Next, note that any point a ∈ RδS lies inside the 2δ-expanded Voronoi cell of at least one point in S
with respect to weights yi(·). Since all points in S have their weights reduced by at least 6δ (from the
lemma’s assumption), the derived weight ȳ2δ(a) with respect to weights y2δ(·) would be positive,
and from the 2δ-feasibility of τ2δ, y2δ(·), the point a cannot be a free point.
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Consequently, all continuous mass insideRδS is transported to the points in S in τ2δ , as claimed.

For any iteration i of step 1, let AiF ⊂ Aδ (resp. BiS ⊂ B) denote the subset of violating deficit
points (resp. surplus points) with respect to τ i. Note that step 1 terminates as soon as AiF becomes
empty. Since the total amount of continuous mass transported by τ i is no more than the total discrete
mass at the points in B, if AiF ̸= ∅, then there exists at least one surplus point bs ∈ BiS . Since step 1
does not create new surplus points (from Lemma E.4, balanced points remain balanced), the point bs
was surplus in all previous iterations as well, and γi(bs) = 0. Furthermore, from Lemma 4.2, the
weight of the point br ∈ B containing any deficit point r ∈ AiF reduces by δ in each iteration of step
1, and therefore, γi(br) = δi. Consequently, if i > 6n, then γi(br)− γi(bs) > 6nδ, and there will
be a subset S ⊂ B such that br ∈ S for all points br ∈ B containing a violating deficit point r ∈ AiF ,
bs /∈ S for all surplus points bs ∈ BiS , and that satisfies the conditions of Lemma 4.3. In this case,
from Lemma 4.3, there are no deficit regions inside the restricted Voronoi cells of the points in S,
which is a contradiction. Hence, there will be no violating deficit points in Aδ after 6n iterations of
step 1, i.e., step 1 will terminate after at most 6n iterations.

Number of iterations of step 2. Next, we show that step 2 of our algorithm in each scale runs O(n)
iterations. For any iteration i, support τ istep2, y

i
step2(·) denote the δ-feasible transport plan maintained

after after iteration i of step 2. Define γistep2(b) := yistep2(b)− y2δ(b).
Lemma E.9. For any subset S ⊂ B, suppose in an iteration i > 12n of step 2, the increase in
the weight of any point b ∈ S is more than 6δ greater than the increase in the weight of any point
b′ ∈ B \ S, i.e., minb∈S γ

i
step2(b) > maxb′∈B\S γ

i
step2(b

′) + 6δ. Then, all points in S are balanced in
τ istep2.

Proof. First, recall that step 2 terminates when there are no active surplus points. Hence, we assume
that there exists an active surplus point bs ∈ B in iteration i. Since in each iteration, the weight of
bs increases by δ, γistep2(bs) = iδ. Also, bs has the highest increase in weight and therefore, bs ∈ S.
Note that any point b ∈ B that is surplus with respect to the transport plan τ istep2 was also a surplus
point in all previous iterations of steps 1 and 2. Hence, the weight of b has not been reduced in step 1.
Recall that if b was a surplus point in τ2δ , then b has been deactivated by our algorithm, which means
y2δ(b) = λ. However, step 1 has not reduced the weight of b, and therefore, the point b would have
been deactivated in step 2, i.e., the surplus point bs is not balanced in τ2δ as is balanced.

Second, note that any surplus point b ∈ B with respect to τ2δ, y2δ(·) has a weight y2δ(b) = λ, and
since the number of iterations of step 1 is at most 6n, γistep2(bs) ≥ γistep2(b) + 6nδ, and b cannot be in
S. Therefore, all points b ∈ S are balanced in τ2δ .

DefineRδS :=
⋃
b∈S RV

−2δ
yistep2

(b) as the union of all 2δ-shrunken restricted Voronoi cells of the points

in S. From the δ-feasibility of τ istep2, y
i
step2(·), the continuous mass insideRδS is transported only to

the point in S. To prove this lemma, we show that the amount of continuous mass inside the setRδS
is no less than the discrete mass at the points in S. Assuming this, since there are no deficit points in
B in step 2, no points in S can be surplus, and all points in S are balanced. In the following, we show
that the total continuous mass insideRδS is equal to ν(S).

Consider any point b ∈ S and any point a ∈ A such that τ2δ(a, b) > 0. Below, we show that
a ∈ RδS . Let b′ /∈ S be any other point. Since τ2δ(a, b) > 0, then b is a 4δ-weighted nearest neighbor
of a with weights y2δ(·) and therefore, dy2δ(a, b) ≤ dy2δ(a, b

′) + 4δ. Furthermore, since b′ /∈ S,
γstep2(b) > γstep2(b

′) + 6δ. Therefore,

dyistep2
(a, b) = dy2δ(a, b) + y2δ(b)− yistep2(b) ≤ dy2δ(a, b

′) + 4δ − γistep2(b)

= dyistep2
(a, b′) + γistep2(b

′) + 4δ − γistep2(b) < dyistep2
(a, b′)− 2δ.

In words, with respect to weights yistep2(·), the weighted distance of b to a would be more than 2δ less
than the weighted distance of a to any point b′ /∈ S, i.e., a ∈ RδS .

Consequently, all continuous mass inside RδS is transported to the points in S in τ2δ, as claimed.
Since all points in S are balanced in τ2δ, the total discrete mass at the points of S are no more than
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the continuous mass insideRδS , and since there are no deficit points in B, there are also no surplus
points in S and all points in S are balanced.

From Lemma E.7, the weight of each active surplus point b ∈ B increases by δ in each iteration of
step 2. Furthermore, note that for any point b ∈ B that had a weight of λ in the previous scale (e.g.,
the surplus points of B in τ2δ), the weight of b has been reduced in step 1 by at most 6nδ, and in step
2, it can increase by at most 6nδ. Assume, for the sake of contradiction, that the number of iterations
of step 2 has exceeded 12n, and consider any iteration i > 12n. In this case, for any surplus point
bs ∈ B, since bs was a surplus point in all previous iterations, including the iterations of step 1, we
have

γistep2(bs) = yistep2(bs)− y2δ(bs) = (yistep2(bs)− yi(bs))− (y2δ(bs)− yi(bs)) = 12nδ − 0 = 12nδ.

Furthermore, for any inactive point b′ ∈ B with respect to τ2δ, y2δ(·), after increasing the weight of
b′ by at most 6nδ, it becomes inactive; hence, the difference in the increases in the weights of bs and
b′ is more than 6nδ, and there exists a subset S of B where all active surplus points are in S and all
inactive points are in B \ S. However, from Lemma E.9, all points in S have to be balanced, which is
a contradiction. Therefore, the step 2 of our algorithm terminates in at most 12n iterations.

Efficiency of the SEARCHANDCONSOLIDATE and SEARCHANDAUGMENT Procedures. Each
execution of the SEARCHANDCONSOLIDATE (resp. SEARCHANDAUGMENT ) procedure runs partial
DFS procedures on the residual graph to find a set of admissible augmenting and consolidating (resp.
alternating and augmenting) paths. The partial DFS procedure, upon backtracking from a point b ∈ B
(resp. r ∈ Aδ), marks the point b (resp. the backward edge (b′, r) used to reach r) as visited and does
not add it to the search path again in the same execution. Upon finding an admissible path P , the
procedure updates the transport plan along P in O(|P |) time. Let {P1, . . . , Pk} denote the set of all
paths found by the SEARCHANDCONSOLIDATE (resp. SEARCHANDAUGMENT ) procedure. Since
the residual graph has O(nd+1 edges (from Lemma E.3), the running time of the procedure would be
O(nd+1 +

∑k
i=1 |Pi|). Next, we bound the total length of all paths found by the procedures.

Lemma E.10. The total length of augmenting and consolidating paths computed during the execution
of the SEARCHANDCONSOLIDATE procedure is O(nd+1) in d dimensions.

Proof. Let τ̂0δ denote the transport plan maintained by the algorithm at the beginning of the execution
of the SEARCHANDCONSOLIDATE procedure. To prove this lemma, we categorize the augmenting
and consolidating paths found by the procedure based on the source of their bottleneck capacity,
namely (1) set Pv consisting of augmenting and consolidating paths whose bottleneck capacity is
determined based on the residual capacity of its endpoints, and (2) set Pe consisting of paths whose
bottleneck capacity is determined based on mass transportation over its backward edges. We begin by
showing that |Pv| = O(nd) and then show |Pe| = O(nd). Since each path has a length of at most 2n
(since the number of points in B is n), we then conclude that the total length of all paths computed
by the procedure is O(n3).

Let P be a consolidating path in Pv . If the bottleneck capacity of P is determined by its free endpoint
r ∈ Aδ, then the mass of r will be fully transported after updating the transport plan along P ;
similarly, for any augmenting path P ∈ Pv , if the bottleneck capacity of P is determined by its free
endpoint b ∈ B (resp. r ∈ Aδ), then b (resp. r) will be balanced after augmentation. Therefore,
|Pv| = O(n2) since |Aδ ∪ B| = O(n2). Next, let P be a path in Pe; in this case, the backward
edge (r, b) determining the bottleneck capacity of P will be removed from the transport plan after
augmentation.

Consider any triple (b, r, b′) that is admissible in G′ but not in G. Recall that by the definition
of the admissible triples, (r, b′) is a backward edge in G′ and dy(r, b) > dy(r, b

′). Since the
SEARCHANDCONSOLIDATE procedure does not change the weights y(·), the only case where
(b, r, b′) is not admissible in G is when (r, b′) is not a backward edge in G, i.e., the pair (b′, r) is
in P as a forward edge, and updating τ̂δ along P results in transporting mass from b′ to r. On the
other hand, by step 2(b) of the SEARCHANDCONSOLIDATE procedure, a forward edge (b′, r) will be
added to the search path only if b′ is the weighted nearest unvisited neighbor of r; in other words,
since dy(r, b) > dy(r, b

′) and the procedure added b′ to the search path (instead of b), the point b was
marked as visited by the procedure. Therefore, for any newly formed admissible triple (b, r, b′), point
b (resp. b′) is marked as visited (resp. unvisited).
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By property (SC2) in Lemma E.4, the point b′ cannot form an admissible augmenting path during the
same execution of the SEARCHANDCONSOLIDATE procedure. Hence, the edge (r, b) determining
the bottleneck capacity of P was a backward edge of the initial transport plan τ̂0δ and updating the
transport plan along each path P ∈ Pe removes one of the transporting edges of the transport plan τ̂0δ .
Since the transport τ̂0δ is obtained from the ACYCLIFY procedure, using property (AC2) in Lemma E.8,
the transport plan is a forest and the number of backward edges is O(nd); hence, |Pe| = O(nd), as
claimed. The total number of augmenting paths found by the procedure, therefore, is O(nd), and
since each augmenting path has a length of at most 2n, their total length is O(nd+1).

Using an identical argument, one can show that the total length of all alternating and augmenting
paths found by the SEARCHANDAUGMENT procedure is O(nd+1). Therefore, each execution of the
SEARCHANDCONSOLIDATE and SEARCHANDAUGMENT procedures takes O(nd+1) time.

Efficiency of the REDUCEWEIGHTS and INCREASEWEIGHTS Procedures. The RE-
DUCEWEIGHTS and INCREASEWEIGHTS procedures run a DFS that visits each edge of the residual
graph at most once and has a total running time of O(nd+1) d dimensions. Furthermore, in the
arrangement used to construct partitioning Y , each point b ∈ B has at most 6 restricted Voronoi cells
(three cells that are used in the construction of Xδ and three that are used in the construction of X ′

δ).
Similar to our proof for the size of the graph, one can show that the total number of vertices in the
arrangement used to construct Y is O(nd), and the number of regions in Y is at most O(nd). The
construction of the transport plan τ̂ , therefore, can be done in O(nd(Φ + n)) time since

(1) the mass of all regions in Y can be determined using the oracle in O(ndΦ) time, and
(2) the mass transported on each pair (ϱ, b) ∈ Y ×B can be determined in O(1) time.

Converting τ̂ to τ̂δ, as is done in the merge step, also takes O(nd+1) time, since there are O(nd+1)
pairs of points in Aδ × B, and therefore, the total complexity of τ̂ is O(nd+1). Finally, storing
a sorted list of neighbors for each region r ∈ Aδ takes O(nd+1) log n time in total. Hence, the
executions of the REDUCEWEIGHTS and INCREASEWEIGHTS procedures take O(nd(Φ + n log n))
time.

Efficiency of the ACYCLIFY Procedure. In the first step, the ACYCLIFY procedure uses a dynamic
tree structure to remove all cycles of transportation from the transport plan τ̂δ. Using the dynamic
tree structure by Sleator and Tarjan [45], since the total number of edges of the graph is O(nd+1) in d
dimensions, the running time of this step would be O(nd+1 log n). In the second step, the procedure
runs a partial DFS procedure on the residual graph and cancels the admissible cycles. The partial
DFS procedure, upon backtracking from a point b ∈ B (resp. r ∈ Aδ), marks the point b (resp. the
backward edge (b′, r) used to reach r) as visited and does not add it again to the search path in the
same execution. Furthermore, upon finding an admissible cycle C, it cancels the cycle in O(|C|) time.
Let {C1, . . . , Ck} denote the set of all cycles found in the execution of the ACYCLIFY procedure.
Given that the size of the residual graph is at most O(nd+1), the second step of the ACYCLIFY

procedure takes a total of O(nd+1 +
∑k
i=1 |Ci|) time. The following lemma bounds the total length

of all cycles found by the ACYCLIFY procedure.
Lemma E.11. The total length of admissible cycles computed during the execution of the second
step of the ACYCLIFY procedure is O(n3) in 2 dimensions and O(nd+1) time in d dimensions.

Proof. Let τ̂0δ denote the transport plan maintained by the algorithm after the first step of the
ACYCLIFY procedure, i.e., τ̂0δ is a forest. To prove this lemma, we show that the ACYCLIFY

procedure finds O(nd) admissible cycles, where each cycle has a length of at most 2n; hence, the
total length of all cycles found by the procedure would be O(nd+1).

Let C be an admissible cycle found by the procedure; in this case, the backward edge determining
the bottleneck capacity of C will be removed from the transport plan after cancellation. For any
admissible triple (b, r, b′) formed after canceling C, using an identical argument as in Lemma E.10,
one can show that the edge (r, b′) is a backward edge that was on the cycle C as a forward edge, and
the point b is marked as visited; hence, by Lemma E.8, the point b does not form an admissible cycle
in the same execution of the ACYCLIFY procedure and therefore, the newly formed backward edge
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(r, b′) cannot be included in any admissible cycles. Therefore, each cycle cancellation removes one
of the backward edges of τ̂0δ , where τ̂0δ is a forest and the number of its transporting edges is O(nd).
Therefore, the total number of cycles found by the ACYCLIFY procedure is O(nd), and their total
length is O(nd+1), as claimed.

From Lemma E.11, the total execution time of the ACYCLIFY procedure is O(nd+1) in d dimensions.

F Full Algorithm Details from Section A

We first make some necessary definitions and useful notations for the remainder of the section.

Let B (c, r) denote the Euclidean ball of radius r centered at c, and let Gδ =
{
[0, δ]d + z⃗ : z⃗ ∈ δZd

}
be the set of axis-aligned grid cells of side length δ. For any hypercube □, let B□ := B ∩ □
denote the set of points of B in □, c□ denote the center of □, and ℓ□ denote the sidelength of □.
Given a hypercube grid cell □ =

∏d
i=1[ai, ai + δ] from Gδ, we define the set of its child cells

as C[□] :=
{∏d

i=1[ai, ai +
δ
2 ] + v⃗ : v⃗ ∈ {0, δ2}

d
}

. Additionally, given a tree T = (V,E), we use
pa(v) and C[v] to denote the parent of v and the set of children of v for each v ∈ V .

We define any pair of sets P,Q ⊆ Rd as ε-well separated if

max

{
max

p1,p2∈P
||p1 − p2||, max

q1,q2∈Q
||q1 − q2||

}
≤ ε · min

p,q∈P×Q
||p− q||.

Then given a set S ⊆ Rd, a ε-well separated pair decomposition of S is a set of pairs of subsets
W = {(P1, Q1), . . . , (Pk, Qk)} of S such that (1.) the pair (Pi, Qi) is ε-well separated for all
1 ≤ i ≤ k, and (2.) for every p, q ∈ S, there exists a unique j such that p ∈ Pj and q ∈ Qj . It is
known that an ε-well separated pair decomposition of a set of n points in Rd of size O(nε−d) can be
constructed in O(n(ε−d + log n)) time, e.g. [13].

We divide the remainder of this section to describe each of the components of the algorithm in
Section A.

F.1 Construction of discrete distribution

We first describe the construction of the collection of hypercubes. Compute an ε-well separated
pair decomposition W of the discrete point set B. For each pair (B1, B2) ∈ W , choose arbitrary
representative points b1 ∈ B1 and b2 ∈ B2. Define δi = 2iε||b1 − b2|| for all i ∈ Z. Then let
Pi(B1, B2) be the set of axis-aligned grid cells □ from Gεδi where c□ ∈ B (b1, δi) ∪ B (b2, δi), and

initially set P =
⋃

(B1,B2)∈W
⋃2 log 1

ε
i=0 Pi(B1, B2). For every □ ∈ P such that there exists some

□′ ⊂ □ also in P , we replace □ with its 2d child cells in P . For convenience, we will denote
P =

⋃
□∈P □ as the set of points covered by P . We conclude with a set of hypercubes P with the

following desired properties.
Lemma F.1. |P| = O(nε−2d log ε−1) and can be constructed in O(n(ε−2d log ε−1 + log n)) time.
Moreover, every □ in P satisfies one of the following two properties: (1.) ℓ□ < 2εminb∈B ||b− c□||,
or (2.) ||b− c□|| < εminb′ ̸=b ||b− b′|| and ℓ□ ≤ ε2

1−ε minb′ ̸=b ||b′ − c□|| for some b ∈ B.

Proof. We first prove the bound |P| = O(nε−2d log ε−1). Note that |W | = O(nε−d)
and can be constructed in O(n(ε−d + log n)) time. Then by initial construction of P =⋃

(B1,B2)∈W
⋃2 log 1

ε
i=0 Pi(B1, B2) and potential replacement of each hypercube □ in P with at most

its 2d child cells, we observe that

|P| ≤ 2d(nε−d log ε−1) · max
B1,B2,i

|Pi(B1, B2)|.

Then one can argue that |Pi(B1, B2)| = O(ε−d) for all i and all (B1, B2) ∈ W since at most
O(ε−d) interior-disjoint hypercubes of sidelength ε · r can fit inside the ball of radius r. We require
O(|Pi(B1, B2)|) time to find the grid cells in each set Pi(B1, B2).
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We now prove that one of the two properties holds for each hypercube □ in P . Let □ ∈ P be
arbitrarily chosen. Suppose ||b− c□|| < εminb′ ̸=b ||b′ − b|| for some b ∈ B. Let b∗ be an arbitrary
element of argminb′ ̸=b ||b′ − b||, and let (P,Q) be the pair in well-separated pair decomposition
W such that b ∈ P and b∗ ∈ Q. Then it must be the case that □ is an element of P0(P,Q), which
implies ℓ□ ≤ ε2||b∗−b||. Let b′ ̸= b be an arbitrary element ofB. Then observe ||b∗−b|| ≤ ||b′−b||
by definition of b∗. But by triangle inequality, ||b′ − c□|| ≥ ||b′ − b|| − ||b− c□|| ≥ (1− ε)||b′ − b||.
Combining gives

ℓ□ ≤ ε2||b′ − b|| ≤
ε2

1− ε
· ||b′ − c□||.

We note b′ ̸= b was arbitrarily chosen.

Now suppose there does not exist any b ∈ B such that ||b − c□|| < εminb′ ̸=b ||b′ − b||. Then for
every b1, b2 ∈ B, there exists an i ∈ Z such that i > 0 and c□ ∈ B (b1, δi) \B (b1, δi−1) where again
δi = 2iε||b1 − b2||. If there exists a b2 ∈ B such that i ≤ 2 log ε−1, then by construction of P we
have that ℓ□ ≤ εδi < 2ε||b1 − c□||.

If instead i > 2 log ε−1 for all b2 then c□ ̸∈ B
(
b1,

1
ε maxb2 ̸=b2 ||b2 − b1||

)
. This implies ||b1 −

c□|| > ∆
2ε since by triangle inequality one can argue that for every b1 ∈ B there exists a b2 ∈ B

with ||b1 − b2|| ≥ ∆
2 . But since □ ∈ P , we note that there must exist a b3 ∈ B such that

c□ ∈ B
(
b3,

1
ε maxb4 ̸=b3 ||b4 − b3||

)
and ℓ□ ≤ maxb4 ̸=b3 ||b4 − b3|| ≤ ∆. Conclude that ℓ□ ≤ ∆ <

2ε||b1 − c□||.

Once we have constructed the set of hypercubes P , we create a discrete distribution in the following
way. For each b ∈ B, define the ε-neighborhood of b as the set

Nε(b) = {□ ∈ P : ||b− c□|| ≤ εmin
b′ ̸=b
||b− b′||}

of hypercubes in P that are much closer to b than any other point in B. We will use the notation
Nε(b) =

⋃
□∈Nε(b)

□ to denote the set of points covered by Nε(b) for convenience. Then define
µ̂(b) =

∫
Nε(b)

µ(a)da for each b ∈ B and µ̂(c□) =
∫
□ µ(a)da for each hypercube □ ∈ P \⋃

b∈B Nε(b). Finally choose an arbitrary point r from Rd \ P and define µ̂(r) := 1 −
∫
P
µ(a)da

as the leftover mass from µ not covered by P . This completes the construction of the discrete
distribution µ̂.

F.2 Reduction to λ-capped OT

Mukherjee et al. [34] showed that for the discrete optimal transport problem, computing a λ-robust
OT plan is equivalent to computing a complete transport plan under a capped distance function. We
extend the same result to the semi-discrete OT problem.

Given a value λ ≥ 0, define the λ-capped distance function d̂λ(·, ·) as d̂λ(a, b) := min{d(a, b), λ}.
For any complete semi-discrete transport plan τλ between µ and ν with respect to the distance function
d̂λ(·, ·), we derive a partial semi-discrete transport plan τ , referred to as a λ-capped transport plan,
by removing all mass that is transported on edges with a distance at least λ. Formally, we define τ for
each pair of points (a, b) ∈ A × B as τ(a, b) = τλ(a, b) if d(a, b) ≤ λ and τ(a, b) = 0 otherwise.
We refer to the transport plan derived from a complete OT plan under the λ-capped distances by a
λ-derived OT plan. The following lemma relates the λ-derived OT plans and λ-robust OT plans.

Lemma F.2. Given a parameter λ > 0, let τλ be an (ε, 0)-approximate λ-capped transport plan,
and let τ be a partial transport plan derived from τλ. Then, τ is a (ε, 0)-approximate λ-robust OT
plan between µ and ν.

Proof. Let dλ(a, b) := min{d(a, b), λ} denote the λ-capped distance between a and b. Since τλ is
an (ε, 0)-approximate λ-capped transport plan, we note that for any arbitrary transport plan τ∗λ where
M(τ∗λ) = 1, ∑

b∈B

∫
A

τλ(a, b)dλ(a, b)da ≤ (1 + ε)
∑
b∈B

∫
A

τ∗λ(a, b)dλ(a, b)da.
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Now let τ∗ denote the λ-derived transport plan from τ∗λ , i.e.

τ∗(a, b) =

{
τ∗λ(a, b), d(a, b) ≤ λ,
0, otherwise.

Then it follows from the definition of λ-capped distances and derived transport plans that∑
b∈B

∫
A

τλ(a, b)dλ(a, b)da =
∑
b∈B

∫
A

τ(a, b)d(a, b)da+ λ

(
1−

∑
b∈B

∫
A

τ(a, b)da

)
= wλ(τ),

and∑
b∈B

∫
A

τ∗λ(a, b)dλ(a, b)da =
∑
b∈B

∫
A

τ∗(a, b)d(a, b)da+ λ

(
1−

∑
b∈B

∫
A

τ∗(a, b)da

)
= wλ(τ

∗).

Therefore, substituting into the first inequality at the beginning of the proof, we conclude

wλ(τ) ≤ (1 + ε)wλ(τ
∗).

The result follows from the fact that the transport plan τ∗λ was chosen arbitrarily among transport
plans where M(τ∗λ) = 1.

F.3 Algorithm for λ-Capped p-Wasserstein distance

To compute approximate discrete λ-capped p-Wasserstein distances (we equivalently consider
d(a, b) = ||a− b||p and do not take the pth root of the plan cost), we use a compressed directed graph
construction of [2], cap distances at λ, run directed min-cost flow in near-linear time using [16], and
shortcut flows to produce a transport plan. We describe the construction of the instance of minimum
cost flow for completeness, and defer procedures for minimum cost flow [16] and shortcutting the
flow to construct a transport plan [2].

Sparse directed graph. Suppose we are given two discrete point sets Â, B ⊂ Rd of at most m
points, with respective distributions µ̂ and ν. We construct an ε-well separated pair decomposition
W of pairs of quadtree cells from quadtree T on Â ∪ B as in e.g. [25]. The well-separated pair
decomposition W guarantees that for every pair of cells (□1,□2) ∈ W , 1

2ℓ□2
≤ ℓ□1

≤ 2ℓ□2
. We

replace each pair (□1,□2) in W where ℓ□1
= 2ℓ□2

with the set
⋃
□′∈C[□1]

(□′,□2) of pairs of □2

with each child □′ of □1. This guarantees that each pair of cells in W is at the same level of the
quadtree T while only increasing the number of pairs in W by a factor of 2d.

We now use the ε-well separated pair decomposition W to construct a sparse graph. Make two
copies of the quadtree T = (VT , ET ), called T1 = (V1, E1) and T2 = (V2, E2), where E1 consists
of only directed edges going up the tree and E2 consists of only directed edges going down the tree.
We note that W consists of pairs of quadtree cells (□1,□2) where |Â□1

| > 0 and |B□2
| > 0 by

construction. For each (□1,□2) ∈W , let v1 =

{
c□1

, |Â□1
| > 1,

a, Â□1
= {a}

and v2 =

{
c□2

, |B□2
| > 1,

b, B□2
= {b}

be representative points from □1 and □2, respectively. Let E3 = {v1 → v2 : (□1,□2) ∈W} be the
set of directed edges from v1 to v2. Then the sparse graph we construct is G = (VG, EG), where
VG = V1 ∪ V2 and EG = E1 ∪ E2 ∪ E3.
Lemma F.3. The graph G constructed satisfies |VG| = O(nε−2d log∆ log ε−1) and |EG| =
O(nε−3d log∆ log ε−1). Additionally, G can be constructed in O(nε−3d log∆ log ε−1) time.

Proof. The vertex set VG of our graph G consists of two copies of centers of all quadtree cells in the
quadtree T . We note that the quadtree T on m points with spread (or diameter if minimum pairwise
distance is assumed to be 1) ∆ has size at most O(m log∆). Then the quadtree built on the support
of µ̂ (contains B) has size O(nε2d log∆ log ε−1) since the size of the support of µ̂ is bounded above
by |P|+ |B| = O(nε−2d log ε−1) by Lemma F.1.

The edge set consists of two copies of each tree edge (one up and one down) plus one cross edge
for each pair in the well-separated pair decomposition of the support of µ̂. Note that the size of
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the support of µ̂ is O(nε−2d log ε−1), and therefore its ε-WSPD has size O(nε−3d log ε−1). By
e.g. [26], the ε-WSPD can certainly be constructed in O(nε−2d(ε−d + log∆) log ε−1) time. Finally,
the number of tree edges is bounded by the number of vertices, O(nε−2d log ε−1). Combining
bounds on the number of edges of each type gives the desired result.

Construction of minimum-cost flow instance. As input, the minimum-cost flow problem is given
a directed graph G = (V,E) with edge costs dG : E → R and demands η : V → R satisfying∑
v∈V η(v) = 0. The solution to the minimum-cost flow problem is a flow, i.e. a function f : E →

R≥0 satisfying
∑
v:u→v∈E f(u→ v)−

∑
w:w→u∈E f(w → u) = η(u) for all u ∈ V , minimizing

the weighted cost
∑
u→v∈E f(u→ v) · dG(u→ v). We have constructed our desired sparse graph

G. to complete the instance of minimum-cost flow for which we call [16], we require edge costs dG
and demands η.

Now given this sparse graph G, we define edge costs so that the cost of the path from a to b is
bounded by (1 +O(ε)) ·min{||a− b||p, λ}. Note that there does not necessarily exist a path in G
between every u and v in V . However, by construction of the well-separated pair decomposition W
and edge set EG, we guarantee that there exists a unique path from every a ∈ Â to every b ∈ B. We
define a height parameter hλ in a bottom-up manner. For each point p ∈ Â ∪B, we set the cost of
the edge p→ pa(p) in E1 and the edge pa(p)→ p in E2 as

dG(p→ pa(p)) = dG(pa(p)→ p) := 0,

and additionally define hλ(pa(p)) = hλ(p) := 0. Then for each other vertex v ∈ VT in a bottom-up
order, we define hλ(pa(v)) = min{λ2 , hλ(v) + ||v − pa(v)||p}. Set the cost of the edge v → pa(v)
in E1 and pa(v)→ v in E2 as

dG(v → pa(v)) = dG(pa(v)→ v) := hλ(pa(v))− hλ(v).
Note this edge cost dG is always nonnegative since hλ(pa(v)) ≥ hλ(v) for all v ∈ VT . Then for
each edge u→ v ∈ E3, we define the cost of the edge as

dG(u→ v) := min{λ− hλ(u)− hλ(v), ||u− v||p}.
For each w, z ∈ VG such that w → z is not an edge in EG, we let dG(w, z) denote the shortest path
distance between w and z in G.
Lemma F.4. The graph G and shortest path distance dG satisfy(

1− 22pε
)
min{λ, ||a− b||p} ≤ dG(a, b) ≤

(
1 +

(
22p + 4d

p
2

)
ε
)
min{λ, ||a− b||p}

for any constant p ≥ 1 and all a ∈ Â ∩ V1 and b ∈ B ∩ V2.

Proof. The structure of the proof will be as follows. We first prove the upper bound on E [dG(a, b)],
then prove the lower bound on E [dG(a, b)].

1. Upper bound. Define the canonical path from a to b as the path Γcan(a⇝ b) := a⇝T1 c□1
→

c□2
⇝T2 b, where u⇝T v denotes the unique shortest path from u to v using only edges from

tree T and (c□1
, c□2

) is the edge added to E for the WSPD pair (P,Q) where a ∈ P and b ∈ Q.
By construction of the set of cross edges, there exists a unique such edge (□1,□2) for each
(P,Q) ∈W . Moreover, let ¢(Γ) :=

∑
u→v∈Γ dG(u, v) denote the cost of the path Γ in G.

We note hλ(□) ≤ λ
2 for all □ in the quadtree T by construction of hλ. Moreover, if ¢(Γcan(a⇝

b)) <
∑
u→v∈Γcan(a⇝b)

||u − v||, then ¢(Γcan(a ⇝ b)) = λ by construction of dG on any path
between two leaves with exactly one cross edge. Then

dG(a, b) ≤ ¢(Γcan(a⇝ b)) ≤ min

λ, ∑
u→v∈Γcan(a⇝b)

||u− v||p
 .

To conclude the upper bound on dG(a, b), we prove
∑
u→v∈Γcan(a⇝b)

||u− v|| ≤ (1 + ε)||a− b||.

Consider the one cross edge (□1,□2) of path Γcan(a⇝ b). We note (□1,□2) ∈W by construc-
tion of the cross edges, and by construction of W , one has

||c□1
− c□2

||p ≤ (1 + 2ε)p · ||a− b||p ≤ (1 + 22pε) · ||a− b||p.
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Furthermore, ∑
u→v∈a⇝T c□1

||u− v||p ≤ 2d
p
2 ℓp□1

≤ 2d
p
2 εp · ||a− b||p

since the length of each vertical edge is exponentially increasing and W is a well-separated pair
decomposition. Analogously,

∑
w→z∈c□2

⇝T b
||w − z||p ≤ 2d

p
2 εp · ||a − b||p. One can then

conclude ∑
u→v∈Γcan(a⇝b)

||u− v|| ≤
(
1 +

(
22p + 4d

p
2

)
ε
)
· ||a− b||.

2. Lower bound. We prove the canonical path from a to b is the unique path from a to b for any
a ∈ Â∩ V1 and b ∈ B ∩ V2. Note to get from a to b, at least one cross edge is required. Moreover,
in T1, the point a can only reach vertices c□ for cells □ in the quadtree T where a ∈ □. This is
true since T1 only has edges going up the tree. Similarly, in T2, the point b can only be reached
by vertices c□ for cells □ in the quadtree T where b ∈ □. But by assumption, each cross edge
corresponds to a pair of cells in the WSPD W . Since there exists a unique pair of cells (□1,□2)
in W where a ∈ □1 and b ∈ □2, there must exist a unique path in G from a to b (going through
the WSPD pair (□1,□2)).

With similar application as above of the fact that □1,□2 is a well-separated pair, we argue that
the cost dG(a, b) is comparable to ||a− b||p. Note dG(a, b) = ¢(Γcan(a⇝ b)) by the proof above
that the path from a to b is unique. Then by definition of dG on the cross edges, observe

dG(a, b) = ¢(Γcan(a⇝ b)) = min

λ, ∑
u→v∈Γcan(a⇝b)

||u− v||p
 .

Consider the one cross edge (□1,□2) of path Γcan(a⇝ b). We note (□1,□2) ∈W by construc-
tion of the cross edges, and by construction of W , one has

||c□1
− c□2

||p ≥ (1− 2ε)p · ||a− b||p ≥ (1− 22pε) · ||a− b||p.

Then the result follows after
∑
u→v∈Γcan(a⇝b)

||u− v||p ≥ ||c□1
− c□2

||p since the cross edge
(□1,□2) is an edge of the path Γcan(a⇝ b).

We now describe the demands for the min-cost flow instance. For each a ∈ Â, we take its copy in
V1 and assign it a demand of η(a) = µ̂(a). For each b ∈ B, we take its copy in V2 and assign it a
demand of η(b) = −ν(b). Then we finally assign a demand of η(v) = 0 for all other v ∈ VG. This
concludes the construction of the minimum-cost flow instance.

Shortcutting flows. Once a minimum cost flow is computed on G using the algorithm of [16], we
employ the procedure described in [2] to shortcut the minimum cost flow on G and obtain a feasible
transport plan.

F.4 Algorithm for λ-Capped 1-Wasserstein distance

The algorithm we use to compute approximate discrete λ-capped optimal transport under Euclidean
metrics follows a similar high-level approach as in Section F.3. We first construct a near-linear sized
graph whose shortest path distance approximates Euclidean costs in expectation. We then capped the
edge lengths so that shortest path distances between points in Â and B approximate the λ-capped
Euclidean metric. We solve the minimum-cost flow problem on this graph by designing an efficient
approximate primal-dual oracle and running the multiplicative weight method using this oracle as
in [47]. Once an approximate solution to minimum-cost flow is computed via multiplicative weights,
we shortcut paths to obtain a transport plan.
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Sparse undirected graph and minimum-cost flow instance. We now construct an undirected
sparse graph whose shortest path distance is well-approximated by a tree metric. Our construction is
slightly modified from the standard (e.g. [3, 22]) to allow for approximate λ-capped distances at the
expense of a logarithmic increase in the number of edges.

Suppose without loss of generality, mina,b∈Â∪B ||a− b|| = 1 and Â, B ⊆ [−∆′,∆′]d. If not, again
one can rescale and translate Â and B so that this condition is satisfied. Let □∗ = [−2∆′, 2∆′]d + v⃗

be a randomly shifted grid cell containing Â, B, where v⃗ is chosen uniformly at random from
[−∆,∆]d. We construct a quadtree T recursively with root cell □∗. For a cell □ ∈ T , if ℓ□ = ε

log∆′ ,

then denote □ as a leaf cell. Otherwise, we add the child cells □′ ∈ C[□] where □′ ∩ (Â ∪B) ̸= ∅
to the quadtree T and recurse on each □′. This completes the construction of the tree embedding.

Let V be the set of cells in quadtree T union with Â ∪ B. For each point p ∈ Â ∪ B, we add an
undirected edge (p, c□) to E, where □ is the unique leaf cell containing p. We call such edges leaf
edges. For every non-leaf cell □ and every child cell □′ ∈ C[□] of □, we add an undirected edge
(c□, c□′) between the centers of the parent-child pair to E. We call these edges tree edges or vertical
edges.

Now construct an ε-well separated pair decompositionW with quadtree cells from T as in Section F.3.
For each pair of cells (□1,□2) in the WSPDW , let□ denote their least common ancestor in T . Define
□′

1 as the minimum sidelength cell of T containing □1 that satisfies ℓ□′
1
≥ ε

log∆ℓ□. Analogously
define □′

2 as the minimum sidelength cell of T containing □2 that satisfies ℓ□′
2
≥ ε

log∆ℓ□. We add a
single edge (c□′

1
, c□′

2
) between the centers of these ancestors for each (□1,□2) ∈W , and call these

edges cross edges or horizontal edges. Then define the sparse graph as G = (V,E). The following
properties on G hold.

Lemma F.5. The sparse graph G = (V,E) satisfies |V | = O(nε−2d log∆ log ε−1) and |E| =
O(nε−3d log∆ log ε−1).

Proof. The vertex set V of our graph G consists of centers of all quadtree cells in the quadtree T .
We note that the quadtree T on m points with spread (or diameter if minimum pairwise distance
is assumed to be 1) ∆ has size at most O(m log∆). Then the quadtree built on the support of µ̂
(contains B) has size O(nε2d log∆ log ε−1) since the size of the support of µ̂ is bounded above by
|P|+ |B| = O(nε−2d log ε−1) by Lemma F.1.

The edge set consists of each tree edge plus one cross edge for each pair in the well-separated
pair decomposition of the support of µ̂. Note that the size of the support of µ̂ is O(nε−2d log ε−1),
and therefore its ε-WSPD has size O(nε−3d log ε−1). By e.g. [26], the ε-WSPD can certainly be
constructed in O(nε−2d(ε−d + log∆) log ε−1) time. Finally, the number of tree edges is bounded
by the number of vertices, O(nε−2d log ε−1). Combining bounds on the number of edges of each
type gives the desired result.

We define the cost dG of each edge as follows. For each leaf edge (u, v), let dG(u, v) = ||u− v||.
We will assume λ ≥ 1; otherwise every transport plan has a cost of λ since no pair a, b ∈ Â×B has
cost less than λ. We then construct a height function, as in Section F.3. For each leaf cell □ in the
quadtree T , define its height as hλ(□) = 0. Then for each vertical edge (c□, c□′) where □′ ∈ C[□],
define the height of □ as hλ(□) = min

{
λ
2 , hλ(□

′) + ||c□ − c□′ ||
}

and the length of edge (c□, c□′)
as dG(c□, c□′) = hλ(□)− hλ(□′). Finally, for each horizontal edge (c□1

, c□2
), define its cost as

dG(c□1
, c□2

) = min{λ− hλ(□1)− hλ(□2), ||c□1
− c□2

||}. For any pair of vertices u, v ∈ V , we
denote dG(u, v) as the shortest path distance between u and v. We additionally define dT (u, v) as
the shortest path distance in G between u and v using only leaf edges and vertical edges. That is,
dT (u, v) is the shortest path distance on the subgraph T of G with respect to edge costs dG. Then
the following properties of dG and dT hold.

Lemma F.6. For every a, b ∈ Â ∪B,

min {||a− b||, λ} ≤ E [dG(a, b)] ≤ (1 + 8dε) ·min {||a− b||, λ} ,

where expectation is over random choice of v⃗ used to define □∗.

48



Proof. The structure of the proof will be as follows. We first prove the upper bound on E [dG(a, b)],
then prove the lower bound on E [dG(a, b)].

1. Upper bound. Define the canonical path from a to b as the path Γcan(a ⇝ b) := a ⇝T

c□1
→ c□2

⇝T b, where u ⇝T v denotes the unique shortest path from u to v using only tree
edges and (□1,□2) is the edge added to E for the WSPD pair (P,Q) where a ∈ P and b ∈ Q.
By construction of the set of cross edges, there exists a unique such edge (□1,□2) for each
(P,Q) ∈W . Moreover, let ¢(Γ) :=

∑
u→v∈Γ dG(u, v) denote the cost of the path Γ in G.

We note hλ(□) ≤ λ
2 for all □ in the quadtree T by construction of hλ. Moreover, if ¢(Γcan(a⇝

b)) <
∑
u→v∈Γcan(a⇝b)

||u − v||, then ¢(Γcan(a ⇝ b)) = λ + 2
√
dε

log∆ ≤ (1 + 2
√
dε

log∆ ) · λ by
construction of dG on any path between two leaves with exactly one cross edge (leaf edges have
cost at most

√
dε

log∆ and it is assumed λ ≥ 1). Then

E [dG(a, b)] ≤ E [¢(Γcan(a⇝ b))]

≤ E

min


(
1 +

2
√
dε

log∆

)
· λ,

∑
u→v∈Γcan(a⇝b)

||u− v||




≤ min


(
1 +

2
√
dε

log∆

)
· λ, E

 ∑
u→v∈Γcan(a⇝b)

||u− v||


by Jensen’s Inequality, where expectation is over the random shift v⃗ in the root of the quadtree
T . To conclude the upper bound on E [dG(a, b)], we prove E

[∑
u→v∈Γcan(a⇝b)

||u− v||
]
≤

(1 + ε)||a− b||.
Consider the one cross edge (□1,□2) of path Γcan(a⇝ b). If (□1,□2) ∈W , then by construction
of W we note ||c□1

− c□2
|| ≤ (1 + 2ε) · ||a− b||. Furthermore,∑

u→v∈a⇝T c□1

||u− v|| ≤ 2
√
dℓ□1

≤ 2
√
dε · ||a− b||,

and analogously
∑
w→z∈c□2

⇝T b
||w − z|| ≤ 2

√
dε · ||a− b||. One can then conclude∑

u→v∈Γcan(a⇝b)

||u− v|| ≤
(
1 +

(
2 + 4

√
d
)
ε
)
· ||a− b||.

Now suppose (□1,□2) ̸∈W . Then by construction of the cross edges, ℓ□1
= ℓ□2

≤ ε
log∆ · ℓ□ab

,
where □ab is the smallest cell in the quadtree T containing both a and b. In this case, it then
follows that

E

 ∑
u→v∈Γcan(a⇝b)

||u− v||

 = E

 ∑
u→v∈a⇝T c□1

||u− v||

+ E [||c□1
− c□2

||]

+ E

 ∑
w→z∈c□2

⇝T b

||w − z||


≤ 2
√
d

ε

log∆
· E [ℓ□ab

] + E [||c□1
− c□2

||] + 2
√
d

ε

log∆
· E [ℓ□ab

]

=
4
√
dε

log∆
· E [ℓ□ab

] + E [||c□1
− c□2

||] .

We additionally note that by triangle inequality,

||c□1
− c□2

|| ≤

 ∑
u→v∈c□1

⇝T a

||u− v||

+ ||a− b||+

 ∑
w→z∈b⇝T c□2

||w − z||

 .
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Therefore, E [||c□1
− c□2

||] ≤ ||a− b||+ 4
√
dε

log∆ · E [ℓ□ab
]. Substituting this inequality gives the

bound

E

 ∑
u→v∈Γcan(a⇝b)

||u− v||

 ≤ ||a− b||+ 8
√
dε

log∆
· E [ℓ□ab

] . (21)

Now to bound E [ℓ□ab
], we observe that if □ab is the smallest cell containing both a and b, then

the child cell □a of □ab containing a must not contain b. Therefore, there must be a face on the
boundary of □a which intersects the line segment from a to b. Furthermore, since □ab is convex
and contains both a and b, we observe that the entire line segment from a to b must be contained
in □ab. We use these two properties to claim Pr

[
ℓ□ab

= 2j
]
≤

√
d||a−b||
2j+1 . Then summing over

all possible lengths of the cell □ab in the quadtree T gives the bound on the expectation

E [ℓ□ab
] =

log∆∑
j=log ε

log ∆

Pr
[
ℓ□ab

= 2j
]
· 2j

≤
log∆∑

j=log ε
log ∆

√
d||a− b||
2j+1

· 2j

=

log∆∑
j=log ε

log ∆

√
d

2
· ||a− b||

≤
(√

d log∆
)
· ||a− b||,

where the last inequality assumes log ε
log∆ ≤ log∆. Substituting this bound above into Equa-

tion 21 gives

E

 ∑
u→v∈Γcan(a⇝b)

||u− v||

 ≤ (1 + 8dε) · ||a− b||.

This concludes the proof of the upper bound.

2. Lower bound. Given a path Γ, define Vert(Γ) and Hor(Γ) as the set of vertical and cross edges
in Γ, respectively. Again define ¢(Γ) :=

∑
u→v∈Γ dG(u, v) to be the cost of the path Γ in G. For

each vertex v of the graph G, let □v denote the cell of the quadtree corresponding to vertex v and
let lev(v) := log ℓ□v

denote the level of the vertex v in the quadtree.

Let Γ be an arbitrary path from a to b in G. If ¢(Γ) ≥
∑
u→v∈Γ ||u− v||, then since Γ is a path

from a to b we can use the triangle inequality to conclude

¢(Γ) ≥
∑

u→v∈Γ

||u− v||

≥ ||a− b||
≥ min{||a− b||, λ}.

Now suppose ¢(Γ) <
∑
u→v∈Γ ||u− v||. Then there must be at least one edge w → z in the path

Γ with dG(w, z) < ||w − z||.
Suppose (w, z) is a vertical edge. Then since dG(w, z) < ||w − z|| and (w, z) is a vertical edge,
hλ(□w) = λ

2 or hλ(□z) = λ
2 . Suppose, without loss of generality, hλ(□w) = λ

2 . Let Γ1 be the
subpath of Γ starting from a and ending at w. Additionally let Γ2 be the subpath of Γ starting
from w and ending at b. Then the composition of Γ1 and Γ2 is equal to Γ. Therefore,

¢(Γ) = ¢(Γ1) + ¢(Γ2).

Additionally, note each subpath can be decomposed into vertical and horizontal edges:

¢(Γi) =
∑

u→v∈Vert(Γi)

dG(u, v) +
∑

u→v∈Hor(Γi)

dG(u, v) for i ∈ {1, 2}.
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By construction of W and the set of cross edges from W , lev(u) = lev(v) for every cross edge
(u, v) ∈ E. Therefore, to reach w from a in Γ1, there must be at least one vertical edge ui → vi
in Vert(Γ1) for each i < lev(□w) such that lev(□vi) > lev(□ui) = i. Likewise, to reach b
from w in Γ1, there must be at least one vertical edge u′i → v′i in Vert(Γ2) for each i < lev(□w)
such that lev(□u′

i
) < lev(□v′i) = i. Then by the fixed depth and definition of child cells of the

quadtree T , hλ(□) = hλ(□′) for all pairs of cells where lev(□) = lev(□′). Using the definition
of dG(u, v) for vertical edges (u, v), we deduce that∑

u→v∈Vert(Γ1)

dG(u, v) ≥
∑
ui→vi

hλ(□vi)− hλ(□ui) ≥ hλ(□w)− 0 =
λ

2
.

Note that hλ(□a) = 0 by definition, where □a is the leaf cell in T containing a. We similarly
observe

∑
u→v∈Vert(Γ2)

dG(u, v) ≥ λ
2 . Hence, ¢(Γ) ≥ λ.

Now suppose (w, z) is a cross edge. Then by definition of dG(w, z) = min{||w − z||, λ −
hλ(□w)− hλ(□z)}, it must be the case that dG(w, z) = λ− hλ(□w)− hλ(□z). Let Γ1 denote
the subpath of Γ from a to w and let Γ2 denote the subpath of Γ from z to b. Then the plan
Γ is equal to the composition Γ1 ◦ (w → z) ◦ Γ2. Then in the same manner as the previous
case, we argue

∑
u→v∈Vert(Γ1)

dG(u, v) ≥ hλ(□w) and
∑
u→v∈Vert(Γ2)

dG(u, v) ≥ hλ(□z). It
immediately follows that

¢(Γ) ≥ ¢(Γ1) + dG(w, z) + ¢(Γ2)

≥ hλ(□w) + [λ− hλ(□w)− hλ(□z)] + hλ(□z)

= λ.

To conclude the lower bound, we observe that the path Γ from a to b was chosen arbitrarily among
all possible paths in G.

Lemma F.7. For every u, v ∈ V , dT (u, v) ≤ O
(

log∆
ε

)
· dG(u, v).

Proof. We use the definitions of Vert(Γ),Hor(Γ), ¢(Γ) and lev as in the proof of Lemma F.6. With
some slight abuse of notation, we will use lev(□v) and lev(v) interchangeably, as well as hλ(□v)
and hλ(v) for each vertex v of the quadtree T and corresponding cell □v. We first claim for every
edge (u, v) ∈ E, the shortest path from u to v in G is through the edge (u, v) with cost dG(u, v).

Suppose (u, v) is a vertical edge. Then lev(u) ̸= lev(v). Suppose Γ is the shortest path from u to v in
G. Then there exists some edge w → z in the path Γ such that lev(w) = lev(u) and lev(z) = lev(v).
We note, by the definition of the cost dG on vertical edges and equal distance between all parent and
child cell centers at a fixed level, that ¢(Γ) ≥ dG(w, z) = dG(u, v). Therefore, the edge u→ v is
also a shortest path from u to v.

Suppose (u, v) is a horizontal edge. Then dG(u, v) = min{λ−hλ(u)−hλ(v), ||u−v||} by definition.
If there exists a path Γ from u to v in G such that ¢(Γ) =

∑
p→q∈Γ dG(p, q) < ||u − v||, then by

triangle inequality there must exist an edge w → z on this path Γ such that dG(w, z) < ||w − z||.
Suppose this edge (w, z) is a vertical edge. Then without loss of generality assume w = pa(z). We
note that by definition of dG, if dG(w, z) < ||w − z|| then hλ(w) = λ

2 . Consider the subpaths Γ1

and Γ2 of Γ from u to w and from w to v, respectively. Then as in the proof of Lemma F.6, note∑
p→q∈Vert(Γ1)

dG(p, q) +
∑

p→q∈Vert(Γ2)

dG(p, q) ≥
(
λ

2
− hλ(u)

)
+

(
λ

2
− hλ(v)

)
= dG(u, v).

If instead (w, z) is a cross edge, then dG(w, z) = λ− hλ(w)− hλ(z). Since (w, z) and (u, v) are
both cross edges, lev(w) = lev(z) and lev(u) = lev(v). If lev(w) ≤ lev(u), then

dG(w, z) = λ− hλ(w)− hλ(z) ≥ λ− hλ(u)− hλ(v) ≥ dG(u, v).
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Else suppose lev(w) > lev(u). Let Γ1 be the subpath of Γ from u to w and Γ2 be the subpath of
Γ from z to v. Then for every j ∈ [lev(u), lev(w)), there exist vertical edges uj → vj ∈ Γ1 and
v′j → u′j ∈ Γ2 where lev(uj) = lev(u′j) = j < lev(vj) = lev(v′j). Then

¢(Γ) = ¢(Γ1) + dG(w, z) + ¢(Γ2)

≥
∑

p→q∈Vert(Γ1)

dG(p, q) + [λ− hλ(w)− hλ(z)] +
∑

p→q∈Vert(Γ2)

dG(p, q)

≥
lev(w)∑
j=lev(u)

dG(uj , vj) + [λ− hλ(w)− hλ(z)] +
lev(w)∑
j=lev(u)

dG(u
′
j , v

′
j)

=

lev(w)∑
j=lev(u)

(hλ(vj)− hλ(uj)) + [λ− hλ(w)− hλ(z)] +
lev(w)∑
j=lev(u)

(
hλ(v

′
j)− hλ(u′j)

)
= (hλ(w)− hλ(u)) + [λ− hλ(w)− hλ(z)] + (hλ(z)− hλ(v))
= [λ− hλ(u)− hλ(v)] ≥ dG(u, v).

This concludes the claim that for every edge (u, v) ∈ E, the shortest path from u to v in G is through
the edge (u, v) with cost dG(u, v).

After the above claim, it suffices to prove dG(u, v) ≤ O( log∆
ε ) · dG(u, v) for every cross edge (u, v).

Let (u, v) be an arbitrary cross edge. Suppose dG(u, v) = λ− hλ(u)− hλ(v). Then observe

dT (u, v) =
∑

w→z∈u⇝T lca(u,v)

(hλ(z)− hλ(w)) +
∑

w→z∈u⇝T lca(u,v)

(hλ(w)− hλ(z))

= (hλ(lca(u, v))− hλ(u)) + (hλ(lca(u, v))− hλ(v))

≤ 2 · λ
2
− hλ(u)− hλ(v) = dG(u, v).

If instead dG(u, v) = ||u− v||, then observe

dT (u, v) ≤
∑

w→z∈u⇝T lca(u,v)

||w − z||+
∑

w→z∈u⇝T lca(u,v)

||w − z||

≤ 2
√
d log∆

ε
· ||u− v|| = 2

√
d log∆

ε
· dG(u, v)

by construction that for each cross edge u, v, with corresponding cells □u and □v in the quadtree,
ℓ□u

= ℓ□v
≥ ε

log∆ · ℓ□lca(u,v)
. This concludes the desired statement of the Lemma.

We then define the demands η on V by η(a) = µ̂(a) for all a ∈ Â, η(b) = ν(b) for all b ∈ B, and
η(v) = 0 for all v ∈ V \ (Â∪B). This completes the construction of the minimum-cost flow instance
we solve.

Approximate minimum-cost flow oracle. We describe a simple O( log∆
ε )-approximate primal-

dual oracle for minimum-cost flow on G. The oracle, given an arbitrary demand function η, will
compute a primal-dual pair (f, y) satisfying the following properties:

1. f is a feasible primal solution to the min-cost flow problem, i.e. f ≥ 0 and∑
v:(u,v)∈E f(u→ v)− f(v → u) = η(u) for all u ∈ V ,

2. y is O
(

log∆
ε

)
-approximately feasible, i.e. y(u) − y(v) ≤ O

(
log∆
ε

)
· dG(u, v) for all

u, v ∈ E, and
3. the dual objective value dominates the primal objective, i.e.

∑
v∈V y(v)η(v) ≥∑

(u,v)∈E f(u→ v)dG(u, v).

Then it is known from existing works, e.g. [7, 44, 47], that given an oracle satisfying the properties
above, one can apply the multiplicative weight update method to obtain a (1 + ε)-approximate
minimum-cost flow f routing the demand η.
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Lemma F.8. [[47] Lemma 11] Given an oracle which returns a primal-dual pair satisfying conditions
(1-3) above upon receiving a demand function η : V → R, there exists an algorithm which computes
a (1 + ε)-approximate minimum-cost flow after O(ε−4 log n log2 ∆) calls to the oracle plus O(|E|)
operations per oracle call.

The oracle builds a primal-dual solution on the quadtree T in a greedy manner. For a vertex
v ∈ V , let T (v) denote the subtree of T rooted at v and define η(T (v)) =

∑
u∈T (v) η(u). Then for

every vertical edge (u, v) ∈ E where v = pa(u), set f(u → v) = η(T (u)) if η(T (u)) ≥ 0 and
f(v → u) = −η(T (u)) if η(T (u)) < 0.

To construct a dual solution, let r denote the root vertex of the tree T and set y(r) = 0. Then
in a top-down manner, for every vertical edge (u, v) ∈ E where v = pa(u), we set y(u) =
y(v) + dG(u, v) · sgn(η(T (u))) where sgn(x) denotes the sign function.
Lemma F.9. Given an arbitrary demand function η, the oracle described above computes a primal-
dual pair (f, y) in O(nε−3d log∆ log ε−1) time satisfying

1.
∑
v:(u,v)∈E f(u→ v)− f(v → u) = η(u) for all u ∈ V ,

2. y(u)− y(v) ≤ O
(

log∆
ε

)
· dG(u, v), and

3.
∑
v∈V y(v)η(v) ≥

∑
(u,v)∈E (f(u→ v) + f(v → u)) dG(u, v).

Proof. 1. By definition of f , we have that for every leaf vertex u of the tree T , f(u → pa(u)) −
f(pa(u)→ u) = η(T (u)) = η(u).

Now suppose v is a non-leaf vertex of T (vertices of T andG are the same), and
∑
v:(u,v)∈E f(u→

v)− f(v → u) = η(u) for all u ∈ T (w) and all w ∈ C[v]. Then, note that f(w → v)− f(v →
w) = η(T (w)) for all w ∈ C[v] by construction of f . Therefore, to guarantee the desired
property, we must have f(v → pa(v))− f(pa(v) → v) = η(v) +

∑
w∈C[v] η(T (w)). Observe

that η(v) +
∑
w∈C[v] η(T (w)) = η(T (v)) by definition of η(T (v)). Then by definition of f , it is

indeed true that f(v → pa(v))− f(pa(v)→ v) = η(T (v)).

2. By construction of y, we observe that |y(u) − y(v)| ≤ dG(u, v) = dT (u, v) for every vertical
edge (u, v) ∈ E in the graph G. Then for every cross edge (w, z) ∈ E, it follows that

y(w)− y(z) =
∑

u→v∈w⇝T z

y(u)− y(v) ≤
∑

u→v∈w⇝T z

dT (u, v) = dT (w, z),

where w ⇝T z is the path in the tree T from w to z. The result follows from Lemma F.7, where it
is shown that dT (w, z) ≤ O

(
log∆
ε

)
· dG(w, z).

3. We use complementary slackness and strong duality to prove the solution is an optimal primal-
dual pair on the tree T . By definition of f and y, we note that for every vertical edge (u, v)
where u is the child of v, y(u) − y(v) = dG(u, v) if f(u → v) > 0 (i.e. if η(T (u)) > 0) and
y(v)− y(u) = dG(u, v) if f(v → u) > 0 (i.e. if η(T (u)) < 0). Additionally if f(u → v) > 0
then f(v → u) = 0. Moreover, f(u→ v) is only strictly positive on vertical edges by construction
of f . Therefore,∑

(u,v)∈E

(f(u→ v) + f(v → u)) dG(u, v) =
∑

(u,v)∈E:f(u→v)>0

f(u→ v)dG(u, v)

=
∑

(u,v)∈E:f(u→v)>0

f(u→ v) · (y(u)− y(v))

=
∑
u∈V

∑
v:(u,v)∈E

(f(u→ v)− f(v → u)) · y(u)

=
∑
u∈V

y(u)η(u).

The third equality above follows from rearranging terms and the last equality above follows from
the first condition of the Lemma.
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Shortcutting flows. Once a minimum cost flow is computed on the geometric graph G, shortcutting
the resulting flow on G to obtain an approximate transport plan in roughly linear time in |E| is
standard. See e.g. [22, 28].

F.5 Semi-discrete plan from discrete plan.

Now suppose one has computed an (εr, 0)-approximate λ-capped discrete transport plan τ̂λ between
µ̂ and ν. We show how to transform τ̂λ into an (εr, 0)-approximate λ-capped semi-discrete transport
plan τλ between µ and ν. For all □ ∈ P \

⋃
b∈B Nε(b), define τλ(a, b) = µ(a) · τ̂λ(c□,b)µ̂(c□) over all

a ∈ □ and b ∈ B. Likewise, let τλ(a, b) = µ(a) · τ̂λ(r,b)µ̂(r) for all a ∈ Rd \ P and b ∈ B. What
remains is a procedure to route the mass within each cell □ of the neighborhoods Nε(b).
We repeat the following local routing scheme for each b ∈ B. If τ̂λ(b, b) < 1

2 µ̂(b), then let

τλ(a, b
′) = µ(a) · τ̂λ(b,b

′)
µ̂(b) for all a ∈ Nε(b) and b′ ∈ B. Otherwise, define

Pi(b) = {□ ∈ Gεδi : ||c□ − b|| < δi}
and Pi(b) =

⋃
□∈Pi(b)

□ for all i ∈ Z. Let i∗ be such that
∫
Pi∗ (b)

µ(a)da ≤ τ̂λ(b, b) <∫
Pi∗+1(b)

µ(a)da. Since τ̂λ(b, b) ≤ µ̂(b), we note Pi∗(b) ⊆ Nε(b). Let τλ(a, b) = µ(a) for
all a ∈ Pi∗(b). Then for each □ ∈ Pi∗+1(b) such that there exists a □′ ∈ Pi∗(b) where
□′ ⊂ □, we replace □ with its 2d child cells in Pi∗+1(b). Initialize an undispersed mass
counter τ̂ res

λ (b, b) = τ̂λ(b, b) −
∫
Pi∗ (b)

µ(a)da. For each □ ∈ Pi∗+1(b) \ Pi∗(b) in increas-

ing order of ||c□ − b||, set τλ(a, b) = µ(a) · min{τ̂ res
λ (b,b),

∫
□ µ(a)da}∫

□ µ(a)da
on all a ∈ □ and subtract

min
{
τ̂ res
λ (b, b),

∫
□ µ(a)da

}
from τ̂ res

λ (b, b). After assigning τλ(a, b) for all b ∈ B and a ∈ Nε(b),
we then set τλ(a, b′) = (µ(a)− τλ(a, b)) · τ̂λ(b,b

′)
µ̂(b)−τ̂λ(b,b) for all remaining a ∈ Nε(b) and b′ ̸= b.

Lemma F.10. Suppose µ is a continuous distribution with compact support A ⊂ Rd and ν is a
discrete distribution with support B ⊂ Rd for some constant d ≥ 1. Let µ̂ be the discrete distribution
formed from µ as in Section F.1, and let d(a, b) = ||a−b||p for fixed constant p ≥ 1. If τ̂λ is an (ε, 0)-
approximate discrete λ-capped transport plan between µ̂ and ν, then τλ is an (O(ε), 0)-approximate
semi-discrete λ-capped transport plan between µ and ν.

Proof. Let τ∗ be an arbitrary transport plan between µ and ν, where M(τ∗) = 1, and let τ̂∗ be the
transport plan from µ̂ to ν defined by τ̂∗(c□, b) =

∫
□ τ

∗(a, b)da for all b ∈ B and □ ∈ P \ Nε(b)
and τ̂∗(b, b) =

∫
Nε(b)

τ∗(a, b)da for all b ∈ B. By Lemma F.1, we have that all cells □ ∈ P which
are not contained in the neighborhood Nε(b) of a point b are 2ε-well separated from b. We use this
property to find∑
b∈B

∫
A

τλ(a, b)d(a, b)da ≤ (1 + 2
√
dε)p

∑
b∈B

∑
a∈Â

τ̂λ(a, b)d(a, b) +
∑
b∈B

∫
Nε(b)

τλ(a, b)d(a, b)da.

Now since τ̂λ is a (εr, 0)-approximate discrete λ-capped OT plan between µ̂ and ν, we find∑
b∈B

∑
a∈Â

τ̂λ(a, b)d(a, b) ≤ (1 + ε)
∑
b∈B

∑
a∈Â

τ̂∗λ(a, b)d(a, b).

Finally, we again use the property that all cells □ ∈ P which are not contained in the neighborhood
Nε(b) of a point b are ε-well separated from b to compare τ̂∗ with τ∗. This property along with the
fact that d(b, b) = 0 implies∑

b∈B

∑
a∈Â

τ̂∗(a, b)d(a, b) ≤ (1 + 2
√
dε)p

∑
b∈B

∫
A

τ∗(a, b)d(a, b)da

− (1 + 2
√
dε)p

∑
b∈B

∫
Nε(b)

τ∗(a, b)d(a, b)da.
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We combine the three above inequalities to deduce∑
b∈B

∫
A

τλ(a, b)da ≤
(
1 + 2

√
dε
)2p

(1 + ε)
∑
b∈B

∫
A

τ∗(a, b)d(a, b)da

+
∑
b∈B

∫
Nε(b)

τλ(a, b)d(a, b)da

−
(
1 + 2

√
dε
)2p∑

b∈B

∫
Nε(b)

τ∗(a, b)d(a, b)da

≤
(
1 +

(
24p+1dp + 1

)
ε
)
·
∑
b∈B

∫
A

τ∗(a, b)d(a, b)da

+
∑
b∈B

∫
Nε(b)

τλ(a, b)d(a, b)da

−
(
1 + 24pdpε

)
·
∑
b∈B

∫
Nε(b)

τ∗(a, b)d(a, b)da.

It now suffices to show that∑
b∈B

∫
Nε(b)

τλ(a, b)d(a, b)da ≤
(
1 + 22pdpε

)
·
∑
b∈B

∫
Nε(b)

τ∗(a, b)d(a, b)da.

If this is true, then we substitute into the above inequality and conclude with the desired result.

By construction of τλ within Nε(b) for each b ∈ B, we observe that if τλ(a, b) > 0, then the cell
□ ∈ Pi∗+1(b) where a ∈ □ satisfies ||c□− b|| ≤ ||c□′ − b|| for all □′ ∈ Pi∗+1(b) where there exists
some a′ ∈ □′ such that τλ(a′, b) < µ(a′). Therefore, for any a, a′ ∈ Nε(b) where τλ(a, b) > 0 and
τλ(a

′, b) < µ(a),

||a− b|| ≤
1 +

√
dε
2

1−
√
dε
2

· ||a′ − b|| ≤
(
1 + 2

√
dε
)
· ||a′ − b||

if ε ≤ 1√
d

. For d(a, b) = ||a− b||p, it then immediately follows that

d(a, b) ≤
(
1 + 2

√
dε
)p
· d(a′, b) ≤

(
1 + 22pd

p
2 ε
)
· d(a′, b)

for all such a and a′, and therefore one can argue∑
b∈B

∫
Nε(b)

τλ(a, b)d(a, b)da ≤
(
1 + 22pd

p
2 ε
)
·
∑
b∈B

∫
Nε(b)

τ∗(a, b)d(a, b)da.

This concludes the statement of the Lemma, since we assume d and p are constants.

F.6 Putting Everything Together

We finally prove Theorem A.1 by simply combining all above lemmas in Appendix F.
Theorem A.1. Let µ be a continuous distribution with compact support A ⊂ Rd, ν be a discrete
distribution with support B ⊆ Rd, λ > 0 be a parameter and d, p ≥ 1 be constants. Suppose Q1 is
the time complexity to compute

∫
□ µ(a)da for any hypercube □ ⊆ A and Q2 is the time complexity

to compute, given a point b ∈ Rd and constant c ≥ 0, the radius r ≥ 0 for which the Euclidean
ball B (b, r) of radius r centered at b satisfies

∫
B(b,r)

µ(a)da = c. Then a (ε, 0)-approximate λ-

robust semi-discrete transport plan can be computed in nε−2d log ε−1
(
no(1)ε−2d log∆ +Q1 +Q2

)
time if d(a, b) = ||a − b||p and in O

(
nε−2d log ε−1

(
ε−2d−4 log3 ∆ log n+Q1 +Q2

))
time with

probability at least 1
2 if d(a, b) = ||a− b||.

Proof. By Lemma F.1, we have that the set of hypercubes P satisfies |P| = O(nε−2d log ε−1) and
can be constructed inO(n(ε−2d log ε−1+log n)) time. UsingP , we construct the discrete distribution
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µ̂ inO(|P|·Q1) time as in Appendix F.1. Then by Lemmas F.2 and F.10, we know that if one computes
an (O(ε), 0)-approximate λ-capped transport plan τ̂λ between µ̂ and ν, an (O(ε), 0)-approximate
transport plan τλ between µ and ν can then be computed in O

(
|P|+ n

(
ε−d log∆ +Q2

))
time (we

assume i∗ can be computed in Q2 time for each b ∈ B). It therefore suffices to bound the time to
construct the (O(ε), 0)-approximate λ-capped transport plan τ̂λ.

For p = 1, we note that the graph G in Appendix F.4 can be computed in O(|E|) =
O(nε−3d log∆ log ε−1) time by Lemma F.5. Moreover, by Lemma F.6, we note that the min-
imum cost flow on G has expected cost within a (1 + O(ε)) factor of the cost of an opti-
mal λ-capped transport plan between µ̂ and ν. Then the tree oracle described in Section F.4
takes O(|V |) = O(nε−2d log∆ log ε−1) time. By Lemmas F.8 and F.9, the tree oracle can be
boosted into an (O(ε), 0)-approximate λ-capped transport plan in O((|V |+ |E|)ε−4 log n log2 ∆) =
O(nε−3d−4 log3 ∆ log n log ε−1) time.

For p ≥ 1, we note that the graph G in Appendix F.3 can be computed in O(|E|) =
O(nε−3d log∆ log ε−1) time by Lemma F.3. Then the minimum-cost flow on G can be computed in
O(|E|1+o(1)) = O(n1+o(1)ε−3d−o(1) log∆) time by the algorithm of [16]. One can then shortcut
the minimum-cost flow on G to form an (O(ε), 0)-approximate λ-capped transport plan between µ̂
and ν as in [2]. The resulting transport plan is an (O(ε), 0)-approximate λ-capped transport plan
between µ̂ and ν by Lemma F.4.

We conclude that an (O(ε), 0)-approximate λ-robust transport plan between µ and ν can be computed
in O(n1+o(1)ε−3d−o(1) log∆) time for p ≥ 1 and in O(nε−3d−4 log3 ∆ log n log ε−1) time for
p = 1 with probability at least 1/2. To get an (ε, 0)-approximate λ-robust transport plan, one can
simply choose an appropriately smaller value of ε.
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