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Abstract
At the core of understanding the knowledge
grounding of Multimodal Large Language Mod-
els (MLLMs) are two key challenges: (1) en-
suring fair comparability across concepts and
(2) scaling multimodal datasets to reflect real-
world complexity. This paper presents a solu-
tion through the Omni-Perspective benchmark,
which scales the construction of a 5-level question-
context-answers (QCAs) from 1 real-world im-
age. This benchmark pertains to 3 concepts along
the Theory-of-Mind (ToM) ability hierarchy in
humans and is further divided into 10 fine-grained
subdifficulties. Through inference tasks, complex-
ity, and ablation analysis, we evaluate over 2,200
consolidated QCAs on 61 MLLMs. Our findings
reveal a key observation: MLLMs mostly follow
the human ToM grounding pathway with excep-
tion of level-2 perspective taking. Furthermore,
this dataset enables nuanced analysis of how such
observations change across varying difficulty lev-
els, modalities, distractor logic, and prompt types.

1. Introduction and Related Works
The rapid development of Multi-modal Large Language
Models (MLLMs) necessitates robust benchmarks to evalu-
ate their reasoning capabilities. Early evaluations targeted
specific tasks such as VQA (Antol et al., 2015), OK-VQA
(Marino et al., 2019), MSCOCO (Lin et al., 2015), and GQA
(Hudson & Manning, 2019), but these are insufficient for
assessing the broader cognitive and perceptual abilities of
modern MLLMs. Recent benchmarks like LAMM (Yin
et al., 2024), MM-Vet (Yu et al., 2023), SEED-Bench (Li
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et al., 2024), and MMBench (Liu et al., 2024) offer wider
task coverage, yet they often lack hierarchical design or cog-
nitively grounded task structures. Synthetic datasets such
as CLEVR and CATER enable controlled investigations
of compositional reasoning (Johnson et al., 2017; Girdhar
& Ramanan, 2020), but their idealized environments limit
generalizability to real-world scenes, where ambiguity, oc-
clusion, and social cues are critical (Mitchell & Krakauer,
2023). Datasets like ALPRO and VQA-X expand to real im-
ages or videos, but typically do not isolate Theory-of-Mind
(ToM)-related reasoning or scaffold tasks across cognitive
levels (Dongxu Li, 2022; Park et al., 2018).

A central application of cognitively structured benchmarks
is evaluating visual perspective-taking (VPT) and its con-
nection to ToM—the capacity to attribute beliefs, inten-
tions, and knowledge to others (Premack & Woodruff, 1978;
Barnes-Holmes et al., 2004). VPT-1 refers to knowing what
another agent can see; VPT-2 requires inferring how things
appear from that agent’s viewpoint, often involving mental
spatial transformations (Kessler & Rutherford, 2010; Hamil-
ton et al., 2009). These capacities support social cognition
and form the foundation for more abstract ToM reasoning
(Gallese & Goldman, 1998; Barlassina & Gordon, 2017).

Developmental models describe a gradual trajectory from
simple visual access recognition to belief attribution, in-
cluding true and false beliefs (Barnes-Holmes et al., 2004;
Schurz et al., 2021; Piaget & Inhelder, 1969). Grounded
cognition theories argue that high-level social reason-
ing emerges from perceptual and sensorimotor processes
evolved for real-world interaction (Barsalou, 2008; Gallese,
2007). This supports the idea that perspective taking serves
as a scaffold for inferring mental states in ecologically com-
plex situations.

We introduce Omni-Perspective 1, a cognitively grounded
benchmark instantiated via a scalable, hierarchical QCA
(Question-Context-Answer) generation framework. Built
from the multimodal Ego-Exo4D dataset, it includes 2,200+
curated QCAs across six reasoning levels—from spatial vis-
ibility to belief-based inference. Each question is tied to
a shared image-intention pair and a specific cognitive con-
struct, enabling both within- and across-task comparability.
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LLM Distractor 
Generation
Q: Given an image of [Cooking] 
and a narration sentence [C takes 
the soy…], generate 5 phrases 
each for 3 types…
A: {‘type_1’: […], ‘type_2’: 
[…], ‘type_3’: […]}

3 Types of Distractor
- T1: Wrong intention
- T2: Wrong action desc.
- T3: Correct action desc.

- Q: Given the image of a 
human in action, what do you 
think is their intention?

- GT: Add flavor to dish
- T1: Prepare ingredients
- T2: Arrange sauce bottle
- T3: Grab soy sauce

Perspective
Qtype 1

Q: What does 
the human see 
from their 
perspective?

Egocentric Images 

Take_uid
id_1

Ego-Exo Image Pair 

Probing the ability to gauge another’s full point of view in real - world settings 
(VPT Level 1)

3 Difficulty Levels
- L1: confonding images 
from a different scene
- L2: confonding images 
from different person in 
the same scene
- L3: confonding choices 
from the same take

LLM Object Detection
Q: Given a red gaze 
line…and several clearly 
identifiable objects…write 
perspective-based 
MCQs…following the 
specified workflow…

A: [one JSON-Lines per 
question]

Calculated Eye Gaze

A. Orange sauce 
bottle

B. Paper towel near 
sink

C. Tripod near sink
D. Poster on wall

From the perspective of 
the human, …
Q1: which item is visible?

Q2: in which direction is 
the tripod?

Q3: which item appears  
leftmost?

Probing the ability to gauge the visibility of a specific object in other’s POV (VPT 
Level 1) and construct world model (the 3-mountain task) (VPT Level 2)

VPT Level 1
(Qtype 3)

VPT Level 2
(Qtype 3.5)

LLM Validation
Q: Given an image of [Cooking] 
and a phrase [Add flavor to 
dish], does the phrase describe 
the person’s intention?
A: great/good/wrong
+ [alternative phrase from given 
list] 

Narration -> Intention
Predefined intention list

+
Narration keywords - Intention 

mapping
�

Cosine similarity

refine

Exocentric Images 

Action-level Narrations
“C takes the dark soy sauce 
with his right hand”

Image – Intention Pair

“Add flavor to dish”

Ground Truth 
Generation

Probing the ability to articulate intentions in words 
versus pure actions or false intentions

Qtype 3 & 3.5

Q: Which 
image 
shows the 
same 
intention?

Probing the ability to generalize observed intentions to 3 
levels of transferable cases

3 Difficulty Levels

- L1: confonding images 
from a different task
- L2: confonding images 
showing different 
intention in a different 
take of the same task
- L3: confonding choices 
showing different 
intention in the same take

Qtype 2

Qtype 4

Intention

Exocentric Images

Figure 1: The scalable curation of Omni-perspective dataset

Using a pipeline that combines metadata with LLM-assisted
refinement into QCAs, we generate high-quality annota-
tions with minimal manual overhead. Evaluation across 61
MLLMs shows strong spatial reasoning but limited ToM-
related inference, revealing a divergence from human de-
velopmental patterns and underscoring the need for more
grounded, cognitively structured training approaches.

2. Omni-Perspective: A Scalable Benchmark
From Perspective-taking to Intentionality

We define four distinct MCQ question types. Each is de-
signed to target specific subskills aligned with the Theory-
of-Mind hierarchy.

Qtype 1 (Multi-image, Egocentric - Exocentric Matching) -
The model is given an exocentric image of a person in action
and must identify the corresponding egocentric view from
four options. This probes Level-1 visual perspective-taking,
requiring reasoning about spatial alignment and visual cues.
Example: “You are given an exocentric view of a person...
Which of the following images best depicts what the person
sees from their perspective?”

Qtype 2 (Multi-image, Intention Similarity) - The model
is shown an exocentric image of a person and must select
the image depicting the most similar intention from four
exocentric options. This tests the ability to generalize in-

tention inference across scene. Example: “Given the image
of a person performing an action... Which of the following
images shows someone with a similar intention?”

Qtype 3 & 3.5 (Single-image, Spatial Perspective Inference)
– The model is shown an exocentric image of a person
and must determine the spatial relationship or visibility of
objects from that person’s perspective. While visibility ques-
tion (Qtype 3) test Level-1 perspective-taking, Qtype 3.5
requires the model to construct a Level-2 perspective-taking
world model—that is, to represent not only what another
agent sees, but how the scene is spatially organized from
that agent’s viewpoint. Example: “From the perspective of
the woman in the black shirt in the picture, which of the
following items appears leftmost compared to the others?”

Qtype 4 (Single-image, Intention Inference) - The model is
given an exocentric image of a person and must choose the
most likely intention from four textual options. Distractor
options are generated using a large language model (GPT-
4o), conditioned on the image and atomic action annotation
(See Section A.3). This format targets intention inference,
requiring the model to go beyond object recognition and
to discriminate between actions and intentions within one
context. Example: “Given an image of a human performing
an action... What do you think is their intention?”
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2.1. Dataset Overview

Our base dataset—Ego-Exo4D—is a large-scale, multi-
modal, multi-view video corpus capturing skilled human ac-
tivities like cooking, bike repair, and COVID-19 self-testing
(Grauman et al., 2024). Each session includes synchro-
nized egocentric video from a head-mounted camera and
up to four fixed exocentric views, providing comprehensive
multi-view coverage of the same activity. The dataset is hi-
erarchically organized by scenarios (e.g., cooking), physical
settings (e.g., kitchen), sessions, cameras, and annotations.
Rich annotations, including narrated action descriptions,
procedural keysteps, and expert commentary, make it ideal
for evaluating Theory-of-Mind (ToM) reasoning in multi-
modal language models. Our benchmark pipeline, leverag-
ing this dataset, is designed to generalize to any multi-view,
action-annotated dataset such as LEMMA (Jia et al., 2020),
enabling extensible evaluation of ToM reasoning across di-
verse environments and tasks.

2.2. Benchmark Overview

We construct a scalable set of image-intention pairs as the
foundation for all question types in our benchmark. Four sce-
narios are selected based on the number of annotated takes
and coverage of non-repetitive actions. High-level intentions
are defined, and representative image frames are identified
using a narration-keywords-to-intentions mapping, refined
with GPT-4o to correct misalignments. Confounding dis-
tractors, such as visually similar intentions (e.g., install a
wheel vs. remove a wheel) or sequentially entailed actions
(e.g., set up test vs. perform test), are excluded to minimize
ambiguity. This ensures scalable, high-quality ground-truth
image-intention pairs (see Section A.1 for details).

• Reusing images across question types: Each image-
intention pair links to both time-synchronized egocen-
tric and exocentric views, allowing consistent visual
context across perspective and intention questions.

• Consistent question phrasing: Prompts are standard-
ized to avoid linguistic shortcuts and ensure fair assess-
ment of reasoning capabilities.

• Uniform image abstraction level: Images are sam-
pled from real-world video footage with consistent
resolution, camera specifications, and background com-
plexity, avoiding confounding effects from mixing syn-
thetic or staged images with natural scenes.

• First- and third-person language queries: Questions
are presented in both first-person (e.g., “If you were the
person in the image, what is in your line of sight?”) and
third-person (e.g., “Given the image, what is the per-
son’s intention?”) perspectives to distinguish between

mental simulation (Theory-of-Mind reasoning) and
Level-1 perspective-taking (Barresi & Moore, 1996).

• Distractors with multiple difficulty levels: Qtype 1
and 2 include three difficulty levels, with harder distrac-
tors being visually similar (e.g., comparable objects or
spatial arrangements) and easier ones differing clearly
in object type or environment. Qtype 4 uses three
semantically distinct distractor types, ranging from
low-level action descriptions to high-level intentions,
to probe reasoning under varying cognitive demands.

3. Experiment
3.1. Setup

Inference: We evaluated 61 multimodal large language
models (MLLMs) spanning diverse architectures, parameter
scales (1B–110B), and training methodologies, including
proprietary models (e.g., ChatGPT, Claude) and state-of-the-
art open-source models (e.g., InternVL, Qwen, DeepSeek).
Proprietary models were assessed via API calls, while open-
source models were run locally using an 8×NVIDIA A100
80GB GPU cluster, with GPU allocation varying by model
size. Official inference codebases were used to ensure repro-
ducibility, and a unified evaluation toolkit was developed to
handle multimodal inputs consistently (details in Appendix).

Evaluation: Model responses were compared to ground
truth using template matching, with semantic matching by
Llama-3.1-70B-Instruct applied when template matching
failed. To mitigate answer-position bias, circular evaluation
was employed, requiring correct answers across all permu-
tations of multiple-choice options (details in Appendix).

3.2. Main Results

Multi-image Diff 3

Multi-image Diff 2

Multi-image Diff 1

Single-image Level 1 VPT

Single-image Level 2 VPT

Question Type

0

10

20

30

40

50

A
cc

ur
ac

y 
(%

)

23.4 25.4 25.3 26.0

37.1
31.7

56.9
53.9

28.8

Perspective
Intention

Figure 2: Comparative result between perspective taking
and intention understanding across different difficulty levels
and input types.

Visual Perspective Grounding in Multi-Modal Large
Language Models

We present comparative results (perspective vs. intention)
across different difficulty levels (difficulty 1, 2 and 3) and
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input settings (single v.s. multi-image) in Figure 2. Several
expected observations validate our benchmark design: 1.
As difficulty increases from left to right (in the left section
of the dashed line), both perspective and intention perfor-
mance improve. 2. Performance on single-image tasks is
consistently higher than on the three levels of multi-image
tasks (to the right vs. left of the dashed line), largely due to
the limited ability of MLLMs to process multi-image inputs.

Surprisingly, except for difficulty-3, where perspective is
on par with intention, all other comparisons (difficulty-2,
difficulty-1, and single-image) show better performance in
perspective taking than in intention understanding. This con-
trasts with prior work (Gao et al., 2025; Li et al., 2025). To
further explore this distinction, we evaluate performance on
level-2 perspective taking, specifically the three-mountain
task (rightmost bar in Figure 2). In a fair comparison (both
single-image), the three-mountain task performs lower than
intention understanding, which aligns with previous find-
ings (Gao et al., 2025; Li et al., 2025). This suggests that
the discrepancy between intention and level-2 perspective
taking is not due to a lack of visual perspective-taking abil-
ity, but rather factors such as limited spatial reasoning in the
current MLLMs.

Does prompting for Mental Simulation help?

Encouraging mental simulation (putting oneself in another’s
shoes) is discussed to potentially benefit both visual per-
spective taking and intention understanding ability, raising
an intriguing question: Does explicitly prompting MLLMs
to perform mental simulation improve performance on these
tasks (Barlassina & Gordon, 2017)? A drill down into single
image-prompt pairs (less confounded by distractor selection
methods) shows that prompting MLLMs with first-person
phrasing significantly improves performance on perspective-
taking tasks (p = 0.0321) on spatial reasoning, while remain-
ing inconclusive for intention understanding.Qtype 1

Egocentric - Exocentric Matching

Difficulty 1: 

1 image in question
text choices

Modality

1 image in question
text choices

1 image in question
4 images as choices

1 image in question
4 images as choices

Figure 3: Left: Distribution of accuracy partitioned by prob-
ing concept and point-of-view of prompt; Right: Paired-T
test results of single-image question for 2 types of prompts

3.3. Distractor Ablation Tests

For Qtype 4 - where distractors differ semantically (e.g.
action descriptions versus high-level intentions) - we ran-
domly select and mix choices from all three types for 200
questions. We then construct an additional ablation set of 95
randomly selected questions, each replicated into three ver-
sions containing distractors exclusively from one type. All
other variables, including the image, prompt wording, and
correct answer, remain constant for controlled comparison.

Figure 4: Accuracy by distractor type in Qtype 4 Ablation
Test where the distractor type is controlled

Figure 4 reveals that average model accuracy varies across
distractor types. Compared to the original Qtype 4 setup
with an average accuracy of 53.9% (Figure 2), the ablation
set yields consistently higher performance. This improve-
ment likely stems from the reduced semantic variability, al-
lowing models to exploit language-based shortcuts. Among
the distractor types, wrong action results in the highest
accuracy, which may be attributed to its double-layered de-
viation from the correct answer: it involves low-level action
or object recognition rather than high-level intention infer-
ence, and the action described is itself incorrect, limiting
the model’s ability to rely on object-centric heuristics.

3.4. Benchmark Results

Benchmark results of representative models across Qtype
subtasks are documented in Table 1 in Section 3.5

3.5. Benchmark Results

Differentiation effect is stronger on easier tasks. Top per-
formers like llava-video-72b-qwen2 (Zhang et al.,
2024) achieve near-perfect accuracy (98% on Qtype 1 Diffi-
culty 1), while weaker models remain below 30%. As task
difficulty increases, accuracy variance decreases. Stronger
models converge to similar low performance and weaker
models consistently underperform across all levels.

Certain model series consistently excel, such as
qwen2 5 vl series and llava-video series, of-
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Table 1: Accuracy of selected models on each Qtype subtask. Best cells are bold and both best and second-best are shaded.

Qtype 1 Qtype 2 Qtype 3 Qtype 4
Ego-Exo Match Intention Match Perspective Inference Intention Inference

Model Diff1 Diff2 Diff3 Diff1 Diff2 Diff3

GPT-4o 97.24% 46.09% 28.09% 75.87% 36.28% 30.60% 31.37% 59.35%
deepseek-vl2-small 40.57% 41.98% 41.36% 71.81% 73.47% 75.93% 57.08% 43.45%
Qwen2.5-VL-72B-Instruct 95.99% 45.05% 35.75% 79.26% 34.95% 32.41% 41.27% 61.38%
LLaVA-Video-72B-Qwen2 multi frame 98.35% 42.69% 29.91% 68.62% 35.20% 37.96% 46.93% 59.23%
LLaVA-Video-7B-Qwen2 multi frame 95.28% 38.44% 17.99% 67.55% 35.46% 41.67% 48.11% 51.73%
VILA1.5-40b 96.46% 32.78% 31.78% 56.91% 29.34% 23.15% 35.38% 75.68%
Mantis-8B-Idefics2 75.88% 39.25% 28.39% 66.57% 37.18% 32.33% 32.08% 59.85%
Llama-3-LongVILA-8B-256Frames 26.18% 29.72% 26.87% 59.04% 58.67% 58.33% 35.14% 73.88%
llava next interleave 7b 67.25% 26.55% 21.73% 49.71% 27.56% 26.72% 34.20% 64.38%
Llama-3-VILA1.5-8B 72.17% 28.30% 21.96% 40.43% 23.72% 23.15% 35.38% 60.93%
Ovis1.6-Gemma2-9B 69.50% 30.44% 25.88% 31.10% 25.64% 28.45% 44.34% 46.15%
Janus-Pro-1B 24.76% 26.18% 25.23% 43.09% 52.55% 56.48% 23.82% 32.50%
Vintern-3B-beta 44.88% 24.48% 25.88% 30.23% 25.51% 26.29% 35.38% 57.45%
InternVL2-4B 28.38% 24.09% 26.63% 37.79% 24.36% 23.71% 41.75% 51.00%

ten scoring above 50% at larger scales (Team, 2025;
Zhang et al., 2024). In contrast, the eagle series x4
and x5 models broadly underperform, with even the
13B variant averaging below 20%, indicating a deficit in
VPT knowledge from their architecture, pretraining, or
fine-tuning (Shi et al., 2024).

Larger models generally perform better, as seen in the vila
series (vila1.5-40b at 48% versus vila1.5-3b at
33%) (Lin et al., 2023). However, diminishing returns
are evident in some cases, such as llava-video-72b
-qwen2, which only slightly outperforms its 7B counterpart
(52% vs. 50%), suggesting that scaling beyond a certain
point yields limited benefits in the hierarchy of perspective-
taking abilities (Zhang et al., 2024).

4. Discussion
This study introduces the Omni-Perspective benchmark, a
cognitively grounded and scalable framework for probing
MLLMs along the developmental hierarchy of ToM reason-
ing. We find that while models perform reliably on Level-1
perspective-taking tasks and some in and intention inference,
they consistently struggle with Level-2 visual perspective-
taking. This pattern generally aligns with developmental
theories suggesting that higher-order social reasoning builds
upon more basic perceptual capacities, and is thus inher-
ently more demanding. This suggests that MLLMs may
be situated within a human-like developmental trajectory
for social cognition, albeit currently limited to lower levels
of the hierarchy. The observed performance gap reveals a
key limitation in current MLLMs: their limited capacity for
mental simulation nor world model—a mechanism believed
to support flexible, context-sensitive social inference. Fur-
thermore, our ablation studies show that model behavior
is highly sensitive to distractor configurations and prompt

phrasing, indicating a reliance on superficial cues rather
than robust mental state representations.
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Appendix

A. Dataset Details
A.1. Ground-Truth Image-Intention Pair Generation

The section contains the essential information used to scale the ground-truth image-intention pair generation process. Below,
we detail key design choices and procedures.

Scenario and Task Selection - Scenarios and tasks with repetitive behaviors (e.g., dancing, instruments playing) are
excluded. Table 2 lists all scenarios and tasks considered.

Table 2: Scenario and Applicable Tasks

Scenario Applicable task name
Bike Repair Install a Wheel, Remove a Wheel, Fix a Flat Tire - Replace a Bike Tube,

Clean and Lubricate the Chain
CPR First Aid - CPR
Covid Test Covid-19 Rapid Antigen Test
Cooking Making Cucumber & Tomato Salad, Making Greek Salad, Making Sesame-

Ginger Asian Salad, Making Chai Tea, Making a Milk Tea, Cooking
Noodles, Cooking an Omelet, Cooking Scrambled Eggs, Cooking Tomato
& Eggs, Cooking Dumplings, Cooking Pasta, Cooking Sushi Rolls, Cook-
ing Samosas, Making Greek Salad, Making White Radish & Lettuce &
Tomato & Cucumber Salad

Intention Definition and Keywords Mapping - For each selected scenario, we define a set of high-level intentions (Table
3). We apply a two-stage matching process:

1. For each take, we extract all action-level narrations and compute cosine similarity between narration sentences and the
keyword list associated with each intention (Table 4).

2. From each take, we select up to three frames (from the annotated best exo camera) with the highest similarity scores
for each intention, ensuring a minimum 10-second separation to avoid look-alike images. These are used as first-pass
image-intention candidates.

Table 3: Scenarios and Associated Intentions

Scenario Intention

Bike Repair

Install a wheel
Replace the tire tube on the wheel
Clean and lubricate the chain
Remove a wheel

CPR
Confirm patient consciousness
Call for help
Press for heart rate

Covid Test
Set up for test
Understand instruction
Perform test

Cooking

Prepare ingredient
Preheat pan for cooking
Add flavor to dish
Clean up work station
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Table 4: Intention to Keywords Mapping

Intention Keywords
Install a wheel install, attach, bike fork
Replace the tire tube on the wheel tire level, tire valve, inflate/deflate, tire tube, bike

inner tube, fit the bike tire
Clean and lubricate the chain chain lube, degreaser spray, lubricant bottle, hold

the towel, clean the chain, pick up a brush, spray
water

Remove a wheel removes the bicycle wheel, removes the wheel,
take off wheel

Confirm patient consciousness pat, check for breathing, observe, tap
Call for help wave her hands, extend right hand, extend left

hand, call for help
Press for heart rate interlace the fingers of this hands, compress, inter-

lock, press
Set up for test put on desk, place on desk, pick out from box, set

up, open the box
Understand instruction test manual, test instruction, read, understand, flip
Perform test insert test swab, pick up the collection swab, dip

the swab, nostril, nose
Prepare ingredient chopping board, tomato, onion, scallion, knife, cut,

carrot, potato, banana
Heat pan for cooking press a switch, take the skillet, turn on heat, adjust

the heat, turn on gas stove, picks the frying pan
Add flavor to dish pick up black pepper, pick up the salt, soy sauce,

sauce, sugar
Clean up work station wash, turns on the tap, opens the tap, waste bins,

push dirt into sink hole, picks the dirt, trash can

Confounding Distractors - As shown in Table 5, for some intentions, we define the confounding distractors that are either
visually similar with or sequentially entailed to each other, and avoid presenting them within the same question.

Table 5: Intention and Confounding Distractor Pairs

Intention Confounding Distractor
Install a wheel Remove a wheel
Remove a wheel Install a wheel
Confirm patient consciousness Press for heart rate
Press for heart rate Confirm patient consciousness
Set up for test Perform test
Understand instruction Set up for test
Perform test Set up for test
Prepare ingredient Clean up work station
Clean up work station Prepare ingredient

LLM Validation - We then use GPT-4o to validate each image-intention pair.

Sample Prompt:

9



Submission and Formatting Instructions for ICML 2025 Workshop on Assessing World Models

Figure 5: Sample Image Input for LLM Qtype4 Distractor Generation - Cooking

- I will provide an image of a person performing an action related to Cooking (note: Scenario), and a phrase that
tries to describe the intention of the person: ”Add flavor to dish” (note: Intention). Return only the required
strings in a list format based on the following instructions, without additional explanations.

- Return ’great’ if you are confident that the phrase accurately describes the intention of the person in the image.

- Return ’good’ if you think the phrase describes the intention, but not as confidently.

- Return ’wrong’ if the phrase is unrelated to the image, is not the intention that a normal non-technical human
viewer could infer from the image, or has a better alternative from the following list: [Prepare ingredients, Clean
up work station, Add flavor to dish, Preheat pan for cooking] (note: All intentions in the scenario).

- If you choose ’wrong’, also return the best alternative option from the list. If none of the alternatives work, return
’None’.

A.2. Qtype 3 Question Generation

We utilize GPT-3o to scale the question generation process for Qtype3. Below documents the detailed prompt we provide to
the LLM.

Context

You will receive one or more third-person photos of everyday scenes. Each image contains:

1. a red gaze line that starts at the eyes of the primary person (the “subject”), and

2. several clearly identifiable objects.

Your task is to write perspective-based multiple-choice questions (MCQs) that test spatial reasoning from the subject’s
viewpoint (not the camera’s).

MCQ Templates

• Type: Visibility - From the perspective of SUBJECT, which of the following items in the image are visible?

• Type: Direction - From the perspective of SUBJECT, in which direction is TARGET-OBJECT?

• Type: Leftmost/Rightmost - From the perspective of SUBJECT, which of the following items appears leftmost /
rightmost?

10



Submission and Formatting Instructions for ICML 2025 Workshop on Assessing World Models

Note on choices: All options must be generic and unambiguous (e.g., “a red box on the counter” rather than “a toolbox”).
Label the correct answer A–D.

Workflow

1. Load the image

(a) Note the general setting (kitchen, bike workshop, etc.).
(b) Locate the subject (person with the red line).
(c) Determine subject orientation — choose exactly one:

• facing-camera
• back-to-camera
• profile-left (subject looking toward camera-left)
• profile-right (subject looking toward camera-right)

If the body is roughly 45°, combine them, such as facing-camera & profile-right
(d) Build a subject-centric frame

• Forward = the red gaze line.
• Left / Right = rotate the frame ± 90° around the subject.

Subject Orientation Subject-Left Subject-Right Quick Visual Cue

facing-camera camera-right camera-left (mirror rule)
back-to-camera camera-left camera-right (mirror rule)
profile-left down in photo up in photo
profile-right up in photo down in photo

• Behind = opposite of forward.
• If subject orientation is combined (e.g., facing-camera & profile-right), the projection should also be combined.

2. Parse objects

List every salient object as minimal-adjective + generic noun (e.g., “blue mug,” “metal faucet”). Re-use these exact
names in the MCQs.

3. Generate three MCQs (one of each type) per image

• Describe the subject succinctly (e.g., “the woman in a blue apron”).
• Direction: pick a clear {TARGET-OBJECT}; options = front / behind / left / right.
• Visibility & Leftmost/Rightmost: provide four distinct objects.
• Mark the correct answer.

4. Manual Quality check

• Verify every spatial relation in the subject-centric frame.
• Ensure wording is concise, bias-free, and each referenced object is clearly visible.

5. Output — one JSON record per question. {
”image id”: ”¡image filename or UID¿”,
”subject direction”: ”facing-camera — back-to-camera — profile-left — profile-right — ¡combined¿”,
”question type”: ”visibility — direction — leftmost — rightmost”,
”question”: ”¡full question text¿”,
”options”: ”A”: ”...”, ”B”: ”...”, ”C”: ”...”, ”D”: ”...” ,
”answer key”: ”A/B/C/D”
}
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A.3. Qtype 4 Distractor Generation

The distractor generation process for Qtype 4 requires special attention due to its textual nature.

For Wrong Intention distractor type, we randomly sample other intentions from the same scenario, while explicitly avoiding
confounding distractors (Table 5). When the number of suitable alternatives is insufficient, we supplement the set with
manually created pseudo-intentions that are plausible yet not part of our dataset (e.g. Taste the food, Throw away food
waste).

For Wrong Action and Correct Action distractor types, we leverage a LLM (GPT-4o) to scale generation and validation.

Sample Prompt:

Figure 6: Sample Image Input for LLM Ground-Truth Validation - Cooking

You are an expert in linguistics and are good at coming up natural alternative expression if given a sentence in
English.

Give the sentence ’C takes the dark soy sauce with his right hand.’, please come up with the following, without
including any explanations.

1. Type 3: 5 concise phrases that describe the action (atomic description) in the sentence. If the sentence
doesn’t have ’C’ (a human) as the subject, make sure to phrase the action such that it sounds reasonable if the
subject is a human.

2. Type 2: 5 concise phrases that describe different but similar actions. For example, these alternate phrases
can EITHER a) describe the same action on a different object, OR b) describe different action on the same object.
Do not replace both action and object at the same time. It is preferred that if a human is to perform these phrases,
their body gestures and/or scenario will look like the original sentence.

General requests:
1. return phrases without explicit subject. For example, ’C does something’ should be shortened to ’do something’.
2. the phrases should use verbs and nouns that are natural and colloquial.
3. the phrases should make sense with human as the subject, even if the subject in original sentence may not be a
human. Rephrase the original sentence to human-subject first, then generate alternatives.

The output format should follow: {’type 3’: [phrases1, phrases2, ...], ’type 2’: [phrases1, phrases2, ...]}

Sample Output:

{’type 3’: [’grab soy sauce’, ’hold dark soy’, ’pick up sauce’, ’lift dark soy’, ’take soy bottle’], ’type 2’: [’grab
light soy sauce’, ’hold ketchup bottle’, ’pick up olive oil’, ’lift sesame oil’, ’take vinegar bottle’]}
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B. Experiment Details
B.1. Inference

We evaluated 61 models spanning both commercial closed-source systems and publicly available open-source models.
Closed-source models were accessed via API and tested on local machines, whereas open-source models were downloaded
from Hugging Face or GitHub and deployed on GPU servers for inference.

These models varied widely in architecture and size, ranging from 1B to 110B parameters (with the upper bound applying
only to open-source models). Inference was conducted on computing clusters equipped with 8×NVIDIA A100 80 GB GPUs.
Typically, models up to 13B could be run on a single GPU. Those between 13B and 32B used two GPUs, models between
32B and 70B used four GPUs, and the largest models required the full 8-GPU setup.

Models were categorized into three types based on supported input: single-image, multi-image, and video models. Each
type was evaluated under corresponding experimental conditions. Video models underwent the most comprehensive tests,
covering both video and single-image tasks. For multi-image settings, videos were decomposed into frame sequences fed
as inputs. In the single-image condition, we restricted evaluation to tasks involving only a single image, excluding any
requiring multi-frame or video data.

B.2. Evaluation

To assess model performance, we developed a robust answer-matching methodology that could accommodate diverse prompt
formats and generative output variations. We tested several matching strategies and ultimately devised a hybrid method that
balances template-based precision with semantic flexibility.

We examined four matching techniques:

1. Exact Match: This method cleans the output by removing special characters and performs a case-insensitive exact
string match between model output and answer choices.

2. “In” Match: After cleaning, this method splits the model output into tokens and verifies if it contains exactly one valid
answer choice.

3. Template Match: This approach matches outputs to specific answer patterns (e.g., “Answer: [choice]” or “[choice].
[explanation]”), requiring iterative adjustments to template coverage.

4. LLM Match: Using Llama3.1-70B and DeepSeek in an LLM-as-a-judge setup, this method provides the model with
the full question prompt, choices, and visual/textual summaries, asking it to infer which choice the MLLM output
aligns with.

We validated these approaches through 1) randomly sampling data points and examining their matching accuracy using each
method, and 2) calculating the overall rate of each method.

Exact and “In” matchers suffered high fail rates, especially for complex outputs or models trained with explanation-oriented
reasoning. Template matching, though more accurate for formatted responses, struggled with coverage and exceptions even
after exhaustive template tuning. LLM match demonstrated strong performance in semantically mapping explanation-heavy
outputs to choices, especially when the model used concessions or nuanced language—but it also risked hallucinating
decisions, especially in short-output or noisy contexts.

To mitigate the weaknesses of each approach, we introduced a Merge Match mechanism. This strategy first attempts
template matching and falls back to LLM match when no template match is found, thus combining the strengths of rule-based
and semantic evaluation.

For all experiments, we adopted a zero-shot prompting strategy of the form Q(M)T → A, where question text (Q), task
description (T), and multiple-choice options (M) are provided as input, and the model generates the answer (A). Notably, to
account for potential bias in multi-choice ordering, we applied circular evaluation, where the correct answer is systematically
rotated through each choice slot. Only when the model consistently identifies the correct answer across all rotations is it
marked correct, following the method proposed in Liu et al. (2023).
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