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Abstract

Learning representations from sets has become increasingly important with many
applications in point cloud processing, graph learning, image/video recognition, and
object detection. We introduce a geometrically-interpretable and generic pooling
mechanism for aggregating a set of features into a fixed-dimensional representation.
In particular, we treat elements of a set as samples from a probability distribution
and propose an end-to-end trainable Euclidean embedding for sliced-Wasserstein
distance to learn from set-structured data effectively. We evaluate our proposed
pooling method on a wide variety of set-structured data, including point-cloud,
graph, and image classification tasks, and demonstrate that our proposed method
provides superior performance over existing set representation learning approaches.
Our code is available at https://github.com/navid-naderi/PSWE.

1 Introduction

Many modern machine learning (ML) tasks deal with learning from set-structured data. In some
cases, the input object itself is a set, as in point cloud classification/regression, and in other cases, the
complex input object is described as a set of features after being processed through a backbone, i.e., a
feature extractor. For instance, in graph mining, a graph is represented as a set of node embeddings,
and in computer vision, an image is represented as a set of local features extracted from its different
regions (i.e., fields of view). There are unique challenges in dealing with such set-structured data,
namely: i) the set cardinalities could differ from one instance to another, and ii) the elements of the
set do not necessarily have an inherent ordering. These challenges call for ML models that can both
handle varied input sizes and are invariant to permutations, i.e., the model output does not change
under any permutation of the input set elements.

Prior work on learning from set-structured data can be broadly categorized as methods based on
either implicit or explicit embedding of sets into a Hilbert space. Implicit embedding approaches
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(i.e., kernel methods) rely on defining a distance/similarity measure (i.e., a kernel) between two
sets [1, 2, 3, 4, 5, 6, 7, 8, 9]. These methods involve one of the two strategies of 1) solving a
correspondence problem between elements of the input sets and measuring the similarity between
corresponding elements, or 2) comparing all pairs of elements between the two sets based on a
similarity measure (e.g., approaches based on Maximum Mean Discrepancy). On the other hand,
explicit embedding methods learn a permutation-invariant mapping into a Hilbert space and provide
a fixed-dimensional representation for a given input set that classic ML approaches could further
process [10, 11, 12]. More recently, algorithms based on a composition of permutation-equivariant
neural network backbones and permutation-invariant pooling mechanisms have been proposed to
define a parametric permutation-invariant mapping [11, 13, 14, 15, 12, 16]. Notably, Zaheer et al.
[11] proved that such a composition provides a universal approximator for any set function. Lee
et al. [14] further showed that utilizing permutation-equivariant backbones that do not process set
elements independently but model the interactions between the set elements (e.g., using self-attention)
is theoretically and numerically advantageous. Similar observations have been made in the field of
graph learning using various graph neural network (GNN) architectures [17, 18, 19]. In parallel,
several works have studied the importance of permutation-invariant pooling mechanisms to go beyond
the commonly used mean, sum, max, or similar operators [12, 13, 15, 16].

A convenient interpretation in dealing with sets is considering their elements as samples from an
unknown underlying probability distribution and comparing/embedding these probability distributions
to perform set learning. Due to this interpretation, optimal transport has played a prominent role in
learning from sets. For instance, Kusner et al. [20] and later Huang et al. [21] represented a document
as a set of words. They leveraged the 1-Wasserstein distance (i.e., the earth mover’s distance) to
compare these sets with one another and define a measure of document similarity. Various researchers
have devised similarly flavored approaches in computer vision by comparing images via calculating
the Wasserstein distance between their sets of local features. For instance, Zhou et al. [22] use this
distance to learn prototypes for image classes and perform few-shot inference, while Lin et al. [23]
leverage it for designing diverse adversarial examples. More recently, similar ideas were used for
image enhancement [24]. Finally, comparing sets via Wasserstein distances has also been proven to
be useful in other applications including graph learning [9, 12, 16], domain adaptation [25, 26], and
transfer learning [27].

In this work, we propose a novel theoretically-grounded and simple to compute permutation-invariant
pooling mechanism for embedding sets of various sizes into a fixed-size representation. Our proposed
method, which we refer to as Pooling by Sliced-Wasserstein Embedding (PSWE), provides an
exact Euclidean embedding for the (generalized) sliced-Wasserstein (SW) distance. We start by
defining a similarity measure between sets of samples based on the SW distance. We then propose
an explicit set embedding for which the Euclidean distance between embedded sets equals the SW
distance between them. In our experiments, we follow the recent work on set learning [11, 14]
and use a permutation-equivariant backbone followed by our permutation-invariant pooling method
to perform end-to-end learning on different data modalities. We demonstrate the scalability and
effectiveness of our approach on various learning tasks, including point cloud classification, graph
classification, and image recognition. Aside from introducing a novel pooling mechanism, one of the
key numerical insights of our work is that basic pooling mechanisms, such as mean-pooling, provide
competitive performance when the permutation-equivariant backbone is complex. However, for plain
backbones (e.g., a shared multi-layer perceptron (MLP) among the set elements), more sophisticated
pooling mechanisms, including our proposed PSWE method as well other recently-proposed pooling
mechanisms in the literature (e.g., Pooling by Multi-Head Attention (PMA) [14] and Featurewise
Sort Pool (FSPool) [15]) significantly boost the performance compared to basic pooling mechanisms.

2 Related Work

Permutation-invariant functions are crucial components in learning from sets and are often used as
pooling layers to aggregate features from a set and provide a constant-size representation regardless
of the set cardinality. Max, sum, and mean pooling are simple, yet very widely used, examples of
such functions. Recently, various works have shown the effectiveness of more sophisticated and
often learnable pooling operators in improving the performance of learning from set-structured data
[13, 14, 28, 15, 10, 12]. Murphy et al. [13] introduced a pooling mechanism based on the average of
a permutation equivariant-function applied to all re-orderings of the set elements. Summing over all
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re-orderings of an input set is, of course, computationally prohibitive. Hence, one can use a canonical
ordering of set elements (e.g., via sorting [15]), or learn to predict the optimal permutation for an
input set [29, 30, 28].

Another prevalent idea is to perform pooling based on comparing an input set with trainable and
fixed-size reference sets. For instance, Skianis et al. [10] proposed a pooling that consists of the
distances between an input set and trainable reference sets, where the distance was calculated by
solving the correspondence problems between the input and each reference set. More interestingly,
this idea is analogous to pooling by multi-head attention (PMA), an important building block in the
Set Transformer and Perceiver architectures [14, 31], where the cross-attention between trainable
reference sets and an input set is used as a permutation-invariant function. Attention-based pooling
[14, 32] has been shown to perform really well in practice on a wide range of applications.

We introduce a novel pooling mechanism by treating sets as empirical probability measures and
calculating an embedding for these probability measures in which the Euclidean distance between two
embedded sets is equal to the sliced-Wasserstein distance between their empirical distributions. Our
work is closely related to the work by Mialon et al. [12] and Kolouri et al. [16]. In short, [12] proposes
an approximate Euclidean embedding for the Wasserstein distance, similar to [16], in a reproducing
kernel Hilbert space (RKHS), while our proposed framework is based on devising an exact Euclidean
embedding for the (generalized) sliced-Wasserstein distance. Interestingly, our proposed pooling by
sliced-Wasserstein embedding (PSWE) can also be viewed as a theoretically-grounded generalization
of the sorting-based FSPool mechanism proposed in [15], where we show that the introduction of
trainable slicers, as well as trainable reference sets, further boost the end-to-end performance in a
wide spectrum of classification tasks.

3 Background

Let Xi = {xin ∈ Rd}Nin=1 denote an input set with Ni elements living in Rd. We assume that the
set elements are samples from an unknown underlying probability measure, µi, defined in X ⊆ Rd
with probability density dµi(x) = pi(x)dx, and what we have observed is the empirical distribution
p̂i(x) = 1

Ni

∑Ni
n=1 δ(x− xin), where δ(·) is the Dirac delta function.

3.1 2-Wasserstein Distance

Let µi and µj denote two Borel probability measures with finite 2nd moment defined on Xi,Xj ⊆ Rd,
with corresponding probability density functions pi and pj , respectively. The 2-Wasserstein distance
between µi and µj is the solution to the optimal mass transportation problem with `2 transport cost
[33]:

W2(µi, µj) =

(
inf

γ∈Γ(µi,µj)

∫
Xi×Xj

‖xi − xj‖2dγ(xi, xj)

) 1
2

, (1)

where Γ(µi, µj) is the set of all transportation plans γ ∈ Γ(µi, µj) such that γ(A × Xj) = µi(A)
and γ(Xi ×B) = µj(B) for any Borel subsets A ⊆ Xi and B ⊆ Xj . Due to Brenier’s theorem [34],
for absolutely continuous probability measures µi and µj (with respect to the Lebesgue measure), the
2-Wasserstein distance can be equivalently obtained from the Monge formulation [33],

W2(µi, µj) =

(
inf

f∈MP (µi,µj)

∫
X
‖x− f(x)‖2dµi(x)

) 1
2

, (2)

where MP (µi, µj) = {f : Xi → Xj | f#µi = µj} and f#µi represents the pushforward of measure
µi, characterized as f#µi(B) = µi(f

−1(B)) for any Borel subset B ⊆ Xj . The mapping f is
referred to as a transport map [35], and the optimal transport map is called the Monge map. For
discrete probability measures, when the transport plan γ is a deterministic optimal coupling, such a
transport plan is referred to as a Monge coupling [33]. In case of a non-deterministic transport plan γ,
one can obtain an approximation of the Monge coupling via barycenteric projection, e.g., see [16, 12].
In this paper, we mainly use the 2-Wasserstein distance and hereafter, for brevity, we refer to it as the
Wasserstein distance.
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For one-dimensional probability measures, the Wasserstein distance has a closed-form solution and
can be calculated as

W2(µi, µj) =

(∫ 1

0

|F−1
µi (τ)− F−1

µj (τ)|2dτ
) 1

2

, (3)

where F−1
µi is the quantile function of µi. The simplicity of calculating Wasserstein distances between

one-dimensional probability measures has led to the idea of sliced-Wasserstein [36, 37, 38, 39] and
generalized sliced-Wasserstein [40] distances, which we will review next.

3.2 (Generalized) Sliced-Wasserstein Distances

Let gθ : Rd → R be a parametric function with parameters θ ∈ Ωθ ⊆ Rdθ , satisfying the regularity
conditions in both inputs and parameters as presented in [40]. For sliced-Wasserstein distance,
gθ(x) = θTx where θ ∈ Sd−1 is a unit vector in Rd, and Sd−1 denotes the unit d-dimensional
hypersphere. The generalized slice of probability measure µi with respect to gθ is the one-dimensional
probability measure gθ#µi, which has the following density for all t ∈ R,

pθi (t) :=

∫
X
δ(t− gθ(x))dµi(x). (4)

The generalized sliced-Wasserstein distance is then defined as

GSW2(µi, µj) =

(∫
Ωθ

W2
2 (gθ#µi, gθ#µj)dθ

) 1
2

. (5)

Note that for gθ(x) = θTx and Ωθ = Sd−1, the generalized sliced-Wasserstein distance is equivalent
to the sliced-Wasserstein distance. Equation (5) is the expected value of the Wasserstein distances
between slices of distributions µi and µj .

Extensions of the (generalized) sliced-Wasserstein distance include max (generalized) sliced-
Wasserstein distance [38, 40], in which the expected value in (5) is substituted with a maximum over
Ωθ, i.e.,

max-GSW2(µi, µj) = max
θ∈Ωθ

W2(gθ#µi, gθ#µj), (6)

subspace-robust Wasserstein distance [41], which generalizes the notion of slicing to a projection
onto subspaces, and the distributional sliced-Wasserstein distance [42] that proposes to replace
the expectation with respect to the uniform distribution on Ωθ with a non-uniform and learnable
distribution.

From an algorithmic point of view, the expectation in (5) is approximated using Monte-Carlo
integration, which results in an average of a set of Wasserstein distances between random slices
of d-dimensional measures. In practice, however, GSW distances only output a good Monte-Carlo
approximation using a large number of slices, while max-GSW distances achieve similar results with
only a single slice, although at the cost of an optimization over θ.

4 PSWE: Pooling by Sliced-Wasserstein Embedding

4.1 (Generalized) Sliced-Wasserstein Embedding

We propose a Euclidean embedding for probability measures, such that the weighted Euclidean
distance between two embedded measures is equivalent to the GSW distance between them. Consider
a set of probability measures {µi}Mi=1 with densities {pi}Mi=1. For simplicity of notation, let µθi :=
gθ#µi denote the slice of measure µi with respect to gθ. Also, let µ0 denote a reference measure,
with µθ0 representing its corresponding slice. Then, it is straightforward to show that the optimal
transport map (i.e., Monge map) between µθi and µθ0 can be written as

fθi = F−1
µθi
◦ Fµθ0 , (7)
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where as mentioned before, F−1
µθi

and F−1
µθ0

respectively denote the quantile functions of µθi and

µθ0. Now, letting id denote the identity function, we can write the so-called cumulative distribution
transform (CDT) [43] of µθi as

νθi := fθi − id. (8)

For a fixed θ, νθi satisfies the following conditions, the proof of which can be found in the Supple-
mentary Material:

C1: The weighted 2-norm of νθi equals the Wasserstein distance between µθi and µθ0, i.e.,

‖νθi ‖µθ0,2 =

(∫
R
‖νθi (t)‖22dµθ0(t)

) 1
2

=W2(µθi , µ
θ
0),

hence implying that ‖νθ0‖µθ0,2 = 0.

C2: the weighted `2 distance between νθi and νθj equals the Wasserstein distance between µθi
and µθj , i.e.,

‖νθi − νθj ‖µθ0,2 =W2(µθi , µ
θ
j ).

Finally, the GSW distance between two measures, µi and µj , can be obtained as

GSW2(µi, µj) =

(∫
Ωθ

‖νθi − νθj ‖2µθ0,2dθ
) 1

2

=

(∫
Ωθ

∫
R
‖νθi (t)− νθj (t)‖22dµθ0(t)dθ

) 1
2

. (9)

Based on (9), for probability measure µi, the mapping to the embedding space is obtained via
φ(µi) := {νθi | θ ∈ Ωθ}.

4.2 Algorithmic Considerations

In this section, we introduce our novel pooling algorithm, termed pooling by sliced-Wasserstein
embedding (PSWE). Let Xi = {xin ∼ pi}Nin=1 denote an input set with Ni elements, and X0 =
{x0

n ∼ p0}Nn=1 denote the set of N samples from a trainable reference set. Let ΘL = {θl ∼ UΩθ}Ll=1

denote a set of L parameters sampled uniformly from Ωθ. Then, the empirical distribution of the lth

slice of pi can be written as p̂θli = 1
Ni

∑Ni
n=1 δ(t− gθl(xin)). To obtain νθli , we need to calculate the

Monge coupling between p̂θli and p̂θl0 . In what follows, we consider two scenarios:

1. When the input set and the reference set have the same cardinalities, i.e., Ni = N , the
Monge coupling (i.e., the discrete counterpart of the Monge map shown in (7)) is obtained
by sorting Xθl

i := {gθl(xin)}Nin=1 and Xθl
0 . Let πi[·] denote the permutation indices (i.e.,

argsort) obtained by sorting Xθl
i . Then, letting π−1

0 denote the ordering that permutes
the sorted set back to the original ordering based on sorting of elements in Xθl

0 , the Monge
coupling is obtained via πi[π−1

0 [·]] and the per-slice embedding is calculated as

[νθli ]n = gθl

(
xi
πi[π

−1
0 [n]]

)
− gθl(x0

n). (10)

2. When the set cardinalities vary, the Monge coupling can be obtained via interpolation using
(7). In our experiments, we use the PyTorch implementation of linear interpolation2 to
evaluate F−1

µ
θl
i

. The per-slice embedding is calculated as

[νθli ]n = F−1

µ
θl
i

(
π−1

0 [n] + 1

N

)
− gθl(x0

n), (11)

where F
µ
θl
0

(x0
n) =

π−1
0 [n]+1
N , assuming that the indices start from 0.

Note that, regardless of the cardinality of the input set, the per-slice embedding is N -dimensional, i.e.,
νθli ∈ RN . The final embedding is then defined as φ(µi) = [νθ1i , ..., ν

θL
i ] ∈ RN×L, which satisfies

GSW2(µi, µj) ≈ ‖φ(µi)− φ(µj)‖F , (12)
where ‖ · ‖F denotes the Frobenius norm, and the approximation is due to the Monte-Carlo integral
approximation with the L slices.

2https://github.com/aliutkus/torchinterp1d
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Pooling by Sliced-Wasserstein Embedding (PSWE) is characterized by

Figure 1: An overview of the proposed PSWE method. Each d-dimensional element in a given input
set Xi, as well as each element in the trainable reference set X0 is passed through multiple trainable
slicers {gθl}Ll=1. For each slicer, we then perform interpolation on the slicer outputs and derive the
optimal transport maps that push the slicer output distributions of the reference set to the slicer output
distributions of a given set via (7), (10), and (11). The resultant transport maps are then concatenated
across all slices to derive the final set embedding.

4.3 On Projection Complexity of Sliced Distances

Given the high-dimensional nature of the problems of interest in machine learning, and the fact that
samples often live on a low-dimensional manifold, one requires a large number of random projections,
L, to obtain a good approximation of the GSW distance. This issue is related to the projection
complexity of the sliced distances [38, 40]. Given the dependence of our pooling dimensionality on
the number of slices, L, we would like to avoid using very large numbers of slices. Here, we devise
a unique approach that ties our proposed embedding to metric learning. First, we note that ideas
like max-GSW [40, 38] or subspace-robust Wasserstein distance [41] would not be practical in this
setting, as the slicing parameters, ΘL, are fixed for all probability measures and not chosen separately
for each pairs of probability measures (µi, µj).

Given the training input sets, i.e., {Xi}Mi=1, and a reference set, X0, we seek an optimal set of L
slices Θ∗L that could be learned from the data alongside the other parameters in an end-to-end manner.
This idea is related to [42] as it is similar to learning a distribution over the unit hypersphere from
which we are sampling our L slices. The optimization on Θ∗L ties the PSWE framework to the field of
metric learning, allowing us to find slices or, in other words, an embedding with a specific statistical
characterization.

To put it all together, our pooling requires identifying: 1) the type of slicer gθ : Rd → R (e.g.,
gθ(x) = θTx), 2) the number of slices, L, and 3) the number of elements in the reference set, N .
Then, for an input set Xi with Ni elements, PSWE first slices the elements of the input and reference
sets with respect to slicers gθl for l ∈ {1, ..., L}. Then, it sorts the sliced values {gθl(xin)}Nin=1

and {gθl(x0
n)}Nn=1 and calculates or approximates the corresponding Monge couplings according

to (10) or (11), respectively. Finally, PSWE calculates the per-slice embedding νθli and returns
φ(Xi) = [ν1

i , ..., ν
L
i ] ∈ RN×L. This procedure is depicted in Figure 1, as well as Algorithm 1. Note

that in our proposed framework, the slicer parameters and the reference set elements are all trainable
parameters that are updated using backpropagation of gradients due to the objective function of
interest.

5 Experimental Evaluation

We evaluate the proposed PSWE method on a variety of point cloud, graph, and image datasets as
depicted in Figure 2. For comparison, we consider four different pooling methods: Global average
pooling (GAP), global max pooling (MAX–evaluated on image classification only), Pooling by
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Algorithm 1 Pooling by Sliced Wasserstein Embedding

procedure PSWE(Xi = {xin ∈ Rd}Nin=1)
Trainable parameters: Slicer parameters ΘL ∈ Rdθ×L, Reference elements X0 ∈ RN×d
for l = 1 to L do

Calculate gθl(Xi) := {gθl(xin)}Nin=1 and gθl(X0) = {gθl(x0
n)}Nn=1

Calculate πi = argsort(gθl(Xi)), π0 = argsort(gθl(X0)), and π−1
0

if Ni = N then
Calculate νθli according to (10)

else
Calculate νθli according to (11)

return φ(Xi) = [νθ1i , ..., ν
θL
i ] ∈ RN×L

(a) (b)
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Figure 2: We evaluate the performance of PSWE and other baseline pooling methods on (a) 3D point
cloud classification from ModelNet40 dataset [44], (b) TUD graph classification datasets [45], and
(c) image recognition on NWPU-RESISC45 [46] and Places-Extra69 [47] datasets.

Multi-head Attention (PMA) [14], and Featurewise Sort Pooling (FSPool) [15]. In all the PSWE
experiments, to ease the optimization process of reference elements, we optimize the reference
elements at the output of the slicers rather than in the input space of the slicers. Moreover, for both
PMA and PSWE, to reduce the embedding size, we use a similar weighting approach to that of
FSPool, where the output embedding (which is of size N × L and N × d for PSWE and PMA,
respectively) is multiplied elementwise by a learnable weight matrix W of the same size, and the
result is summed over the rows to derive a final L-dim and d-dim embedding for PSWE and PMA,
respectively. Further details on the experiments can be found in the Supplementary Material.

5.1 Point Cloud Processing

We consider the ModelNet40 dataset [44], consisting of 3-dimensional point clouds derived from
triangular meshes of 12,311 CAD models belonging to 40 object categories. We sample 1024 points
uniformly at random from each object as in [48, 49] and use the official split, with 9,843 training
samples and 2,468 test samples. We consider two different backbones, namely multi-layer perceptron
(MLP) and induced set attention block (ISAB) from the Set Transformer architecture [14].

Table 1 shows the test accuracy achieved by the proposed PSWE method using different numbers of
slices (L ∈ {1, 4, 16, 64, 256, 1024}) and the baseline pooling methods of GAP, PMA, and FSPool.
As the table shows, for both backbone types, PSWE is able to outperform other pooling methods
for high-enough numbers of slices. Furthermore, it is noteworthy that while mean-pooling does not
perform well when using an MLP backbone, performing message passing among the set elements
using the ISAB backbone significantly boosts GAP’s performance, suggesting that simple averaging
of the per-element embeddings suffices to achieve a high performance level. This implies that there is
an inherent trade-off between the backbone and pooling complexity, and to maintain a high accuracy
level, at least one of the two components should be complex enough. A comparison of the wall-clock
training and testing times of PSWE and the baseline pooling methods on the ModelNet40 dataset,
as well as experimental results on visualizing the closest and farthest samples to/from the trained
reference for PSWE, can be found in the Supplementary Material.
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Backbone GAP PMA FSPool
PSWE

L = 1 L = 4 L = 16 L = 64 L = 256 L = 1024

MLP 57.8 ± 0.5 86.6 ± 0.6 85.8 ± 0.5 14.9 ± 1.0 52.9 ± 2.1 77.4 ± 0.4 83.9 ± 0.6 86.5 ± 0.5 86.9 ± 0.3

ISAB 86.6 ± 0.5 87.6 ± 0.6 87.3 ± 0.5 32.4 ± 3.6 83.9 ± 0.6 86.2 ± 0.5 86.9 ± 0.3 87.3 ± 0.4 87.6 ± 0.4

Table 1: Test classification accuracy (%) of the proposed PSWE method and the baseline pooling
mechanisms on the ModelNet40 point cloud dataset using multi-layer perceptron (MLP) and induced
set attention block (ISAB) [14] backbones.

Backbone GAP PMA FSPool
PSWE

L = 1 L = 4 L = 16 L = 64 L = 256 L = 1024

IM
D

B
−

B GCN 69.6 ± 3.9 74.1 ± 5.3 75.5 ± 3.7 72.6 ± 7.6 74.6 ± 5.8 77.3 ± 5.1 73.0 ± 7.5 72.7 ± 5.1 73.5 ± 6.1

GAT 73.4 ± 3.5 70.5 ± 7.6 72.4 ± 6.9 71.3 ± 7.2 74.4 ± 5.8 74.0 ± 5.7 70.9 ± 7.6 73.0 ± 3.6 73.4 ± 6.0

GIN 73.0 ± 5.8 70.0 ± 8.0 73.4 ± 6.1 73.8 ± 6.5 72.5 ± 6.0 72.0 ± 4.3 72.3 ± 8.1 74.6 ± 7.0 68.8 ± 5.1

IM
D

B
−

M GCN 51.8 ± 4.2 50.1 ± 2.8 51.1 ± 5.4 44.2 ± 4.9 50.7 ± 4.6 50.8 ± 3.8 49.6 ± 3.6 51.4 ± 4.2 50.2 ± 4.7

GAT 49.7 ± 3.4 49.6 ± 4.9 50.2 ± 3.9 44.3 ± 4.2 49.2 ± 4.1 50.2 ± 4.5 48.2 ± 4.6 47.9 ± 4.3 49.4 ± 4.5

GIN 49.7 ± 2.9 50.2 ± 3.0 50.8 ± 5.3 44.6 ± 4.4 49.1 ± 2.7 48.0 ± 6.4 50.6 ± 2.6 50.2 ± 3.4 49.5 ± 4.0

R
D

T
−

B GCN 81.9 ± 2.6 82.2 ± 2.5 84.0 ± 2.8 77.5 ± 4.5 80.4 ± 3.3 81.5 ± 2.1 82.1 ± 3.2 81.9 ± 3.2 81.7 ± 3.0

GAT 75.8 ± 3.3 76.0 ± 3.5 84.7 ± 3.3 78.7 ± 2.5 82.0 ± 3.2 82.1 ± 3.1 81.7 ± 3.2 83.0 ± 3.3 81.7 ± 3.7

GIN 81.2 ± 3.1 77.6 ± 7.9 84.4 ± 2.9 83.2 ± 3.3 83.1 ± 2.8 83.8 ± 2.8 84.6 ± 2.3 83.9 ± 2.8 83.7 ± 1.7

PR
O

T
E

IN
S GCN 69.1 ± 5.2 72.4 ± 5.9 74.9 ± 5.4 72.5 ± 3.9 73.3 ± 5.3 73.3 ± 5.6 73.2 ± 6.1 72.8 ± 6.0 73.9 ± 4.6

GAT 69.7 ± 4.4 72.4 ± 6.1 73.0 ± 5.1 72.9 ± 4.6 73.1 ± 4.5 72.8 ± 4.4 73.9 ± 4.6 74.4 ± 4.4 73.7 ± 5.5

GIN 69.8 ± 6.5 72.3 ± 4.7 72.6 ± 4.5 71.3 ± 4.9 72.4 ± 6.0 73.4 ± 4.8 73.5 ± 4.4 73.0 ± 5.0 74.9 ± 3.9

E
N

Z
Y

M
E

S GCN 25.0 ± 5.1 32.1 ± 4.5 33.5 ± 4.2 20.0 ± 3.9 24.9 ± 6.5 31.8 ± 5.1 32.5 ± 3.0 37.8 ± 4.9 33.7 ± 3.9

GAT 24.2 ± 5.3 28.8 ± 3.9 34.2 ± 6.7 22.3 ± 4.0 26.3 ± 5.6 30.6 ± 4.7 34.6 ± 3.2 38.1 ± 5.5 34.9 ± 3.9

GIN 29.6 ± 6.3 30.1 ± 4.8 43.6 ± 6.1 19.1 ± 5.5 25.9 ± 4.6 36.5 ± 3.1 37.2 ± 5.7 45.4 ± 7.0 40.0 ± 6.0

Table 2: Cross-validation accuracy (%) of PSWE with different numbers of slices, as well as baseline
pooling methods on different TUD graph classification tasks [45] using three backbones of GCN [17],
GAT [18], and GIN [19]. The best performing pooling method in each row (i.e., (dataset, backbone)
pair) is highlighted in bold.

5.2 Graph Classification

Next, we consider the prominent TUD benchmark [45] and evaluate the performance of the proposed
method on five graph classification datasets, consisting of social network (IMDB-B, IMDB-M,
REDDIT-B) and bio-informatics (ENZYMES, PROTEINS) datasets. For the former group of
datasets, we use one-hot encoded degrees as initial node features, while for the latter group, we use
the provided node labels as initial node features. We then pass the features, alongside the adjacency
matrices, to three popular graph neural network (GNN) backbones, namely Graph Convolutional
Network (GCN) [17], Graph Attention Network (GAT) [18], and Graph Isomorphism Network
(GIN) [19]. Upon deriving the final node embeddings of a given graph from a GNN backbone,
we treat them as elements of a set and apply PSWE and the baseline pooling methods to derive a
fixed-size graph-level representation that is fed to a linear classifier.

Table 2 shows the resulting 10-fold cross-validation accuracies on different datasets, and using
different backbone/pooling pairings, following the evaluation methodology used in the literature [19,
50, 51]. As the table demonstrates, PSWE is able to perform similarly to or better than other pooling
methods on all datasets. Furthermore, the results show that the commonly used mean-pooling for
GNNs might not be the best choice, and more complex backbones might be needed to enhance the
classification performance. It is important to note that in some scenarios, especially with smaller
datasets (e.g., IMDB-B / ENZYMES) and more complex backbones (e.g., GIN), the performance
of PSWE does not monotonically improve with the number of slices, L, which is due to the model
becoming more complex and overfitting the training data.
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Dataset Backbone MAX GAP FSPool PSWE

NWPU-RESISC45
16× 16 Patches + MLP 71.0 ± 0.3 65.0 ± 0.7 77.2 ± 0.6 75.0 ± 0.9

ResNet18 89.3 ± 0.5 91.4 ± 0.4 90.7 ± 0.3 90.6 ± 0.5

Places-Extra69
16× 16 Patches + MLP 18.5 ± 2.2 29.1 ± 0.1 35.4 ± 1.8 35.2 ± 0.2

ResNet18 57.3 ± 0.1 58.6 ± 0.0 57.3 ± 1.8 58.3 ± 0.0

Table 3: Image classification results (% test accuracy) on the NWPU-RESISC45 and Places-Extra69
datasets using two backbone types coupled with MAX, GAP, FSPool, and PSWE pooling methods.

5.3 Image Recognition

Finally, we evaluate PSWE in the context of image recognition on two large-scale image datasets:
NWPU-RESISC45 [46], which is a remote sensing image scene classification dataset comprising
a total of 31,500 images belonging to 45 different aerial scene classes, and Places-Extra69 [47],
which contains 98,721 training and 6,600 test images, belonging to 69 different scene categories. For
processing the images, we consider two different backbone types:

• 16× 16 Patches + MLP: Inspired by the architecture used in the Vision Transformer (ViT)
framework [52], we break the image into 256 patches, each flattened into a 16×16×3 = 768-
dimensional vector, pass each patch through a shared multi-layer perceptron (MLP), add
positional encoding to the MLP outputs, and treat the outputs as a set of 256 elements, each
with 256 features.

• ResNet18 [53]: As an alternative, we pass the image through ResNet18, which is a convolu-
tional neural network backbone, mapping the input image into a 7× 7× 512-dimensional
tensor. We treat this tensor as a set of 49 elements, each containing 512 features.

Table 3 shows the test classification accuracy of PSWE, as compared to GAP, MAX, and FSPool on
the two datasets using the two aforementioned backbones. For PSWE, we set the number of slices
to L = 1024 for the 16× 16 Patches + MLP backbone, and L = 1000 for the ResNet18 backbone.
We did not include PMA results here as it performed significantly worse than other pooling types.
As the table shows, PSWE performs on par with FSPool using both backbones, and significantly
better than GAP with the simpler MLP-based backbone. This is consistent with our observation that
more sophisticated pooling mechanisms can compensate the performance drop caused by simpler
backbone architectures.

6 Conclusion

We introduced a novel method for permutation-invariant feature aggregation from set-structured data,
called pooling by sliced-Wasserstein embedding (PSWE). Our method treats the elements of each
input set as samples from a distribution, and derives a constant-size representation for the entire set
based on the (generalized) sliced-Wasserstein distance between the set elements and a reference set,
whose elements are learned in an end-to-end fashion, alongside with the slicer parameters. We showed
that our method derives an exact Euclidean embedding which is geometrically-interpretable for set-
structured data. Moreover, we demonstrated, through experimental results, that our set embedding
approach outperforms baseline pooling mechanisms on a variety of supervised classification tasks
on point cloud, graph, and image datasets. While our focus in this work was on deriving global
representations for input samples (such as point clouds, graphs, and images), our method is not
necessarily limited to global pooling. Indeed, our approach is a generic mechanism for embedding
an input set into a fixed-dimensional representation and, therefore, it may also be used it for local
pooling, which is an interesting direction for future work.
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