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Abstract

Regular mammography screening is key for early breast cancer detection, and1

deep learning enables personalized screening strategies. However, misalignment2

across time points can obscure subtle tissue changes and degrade risk prediction3

performance. This study provides insights into the impact of different alignment4

strategies, namely image-based registration, feature-level alignment, and implicit5

methods, on risk prediction using two large-scale mammography datasets, offering6

guidance for future research and methodological development. Results show that7

our newly proposed image-based registration model outperforms others, improv-8

ing accuracy and yielding anatomically plausible deformations, underscoring the9

importance of precise alignment in longitudinal risk modeling.10

1 Introduction11

Mammography remains the gold standard for breast cancer screening [1], and widespread screening12

has been shown to reduce mortality [17]. However, challenges persist, particularly for individuals at13

high risk [13]. Recent deep learning studies suggest that incorporating longitudinal mammography,14

using imaging from multiple timepoints, can enhance risk prediction beyond models based on single-15

timepoint data [2, 7, 9, 15, 14]. To fully leverage these benefits, accurate alignment of images16

across time is essential, a task complicated by variations in breast tissue and differences in patient17

positioning [4]. Alignment strategies are typically categorized as either explicit, where images18

or features are directly registered, or implicit, where alignment is learned jointly during feature19

extraction. We perform the first systematic study of alignment strategies for longitudinal breast20

cancer risk prediction, providing insights into both explicit and implicit approaches. Building on21

these insights, we propose a new image-based alignment model that achieves improved predictive22

performance. Our main contributions are:23

• A unified framework for evaluating explicit (image-/feature-level) and implicit alignment strate-24

gies for longitudinal breast cancer risk prediction.25

• A novel risk prediction model that leverages image-based alignment to generate anatomically26

meaningful deformations, achieving state-of-the-art performance on two large-scale datasets.27

2 Methods28

We address the challenge of five-year breast cancer risk prediction by evaluating six temporal align-29

ment strategies within a unified framework (Figure 1).30

No Alignment: Our baseline builds on prior work [16, 15], combining Multilevel Joint Learning [15],31

Temporal Self-Attention [10], and a Cumulative Probability Layer [16, 12, 9]. Current and prior32

images are encoded with a shared backbone, processed via temporal self-attention, and used for risk33

prediction. Additional prediction heads estimate risk from each timepoint independently (Figure 1a).34

Implicit Alignment: In this strategy, current and prior images are encoded, and their feature maps35
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(a) NoAlign (b) Implicit Alignment

(c) FeatAlign (d) ImgAlign (e) ImgFeatAlign (f) Risk

Figure 1: Overview of longitudinal risk prediction methods: (a) Direct feature extraction without
alignment, (b) Implicit Alignment, (c) Feature-level alignment, (d) Image-level alignment with
MammoRegNet, (e) Applying MammoRegNet’s deformation field in feature space, and (f) Risk
prediction using alignment methods (c), (d), and (e).

are concatenated before being processed through convolutional and attention layers. Temporal depen-36

dencies are learned implicitly, without explicit spatial alignment (Figure 1b).37

Explicit Alignment: This approach enhances the risk prediction baseline by incorporating spatial38

alignment via deformation fields, enabling better temporal feature fusion. It leverages four key39

feature maps, as in [15]: current f cur ∈ RC×h×w, prior f pri, aligned prior f pri-aligned ∈ RC×h×w, and40

temporal difference features f diff = f cur − f pri-aligned ∈ RC×h×w, which capture temporal changes.41

Predictions are generated from three representations: Current, Prior, and Fused, where the fused42

input is formed by concatenating f cur, f diff, and f pri-aligned. The overall risk prediction architecture is43

illustrated in Figure 1f. We investigate alignment strategies at both the image and feature levels:44

Feature-Level Alignment (FeatAlign / FeatAlignReg): This method learns a deformation field to45

align prior feature maps, f pri, to current feature maps, f cur. FeatAlignReg introduces smoothness46

regularization to ensure anatomically plausible deformation fields (Figure 1c).47

Image-Level Alignment (ImgAlign): As an alternative to feature-level alignment, we propose Mam-48

moRegNet, a deep learning-based registration network inspired by the Non-Iterative Coarse-to-Fine49

Transformer (NICE-Trans) architecture [11]. MammoRegNet is used to align prior mammograms,50

Ipri ∈ RH×W , to the current ones, Icur ∈ RH×W . In this setup (Figure 1d), current, prior, and51

aligned prior images are encoded to extract features, from which temporal difference features f diff are52

computed. These features are then passed to the risk prediction module (see Figure 1f).53

Image-Based Feature Alignment (ImgFeatAlign): Rather than applying MammoRegNet’s defor-54

mation field at the image level, this variant applies it directly in feature space (Figure 1e). This setup55

allows us to explore whether image-driven deformation fields can still improve temporal feature56

fusion when used post-encoding, potentially benefiting from both anatomically grounded registration57

and deeper feature representations.58

3 Experimental Setup59

Datasets: We evaluate on two large, publicly available mammography datasets. EMBED1 [6] and60

CSAW-CC2 [3]. Following [15], we include patients with ≥ 5 years of follow-up. Images are resized61

to 1664× 2048 while preserving aspect ratio and split into training, validation, and test sets (5:2:3).62

Evaluation metrics: Alignment quality is quantified by the percentage of Negative Jacobian Deter-63

minants (NJD) [5], while risk prediction performance is assessed via C-index and AUC for 1–5 year64

horizons [9, 15, 16], with 95% confidence intervals from 1,000 bootstraps.65

1https://aws.amazon.com/marketplace/pp/prodview-unw4li5rkivs2#overview
2https://snd.se/en/catalogue/dataset/2021-204-1
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Table 1: 1–5 year breast cancer risk prediction using different alignment methods. C-index and
selected AUC values (1, 3, 5 years) with 95% confidence intervals for both datasets.

Method EMBED CSAW-CC

C-index ↑ 1-yr ↑ 3-yr ↑ 5-yr ↑ C-index ↑ 1-yr ↑ 3-yr ↑ 5-yr ↑

NoAlign 64.0
(61.7–66.7)

64.9
(62.1–67.9)

63.7
(61.2–66.3)

55.7
(51.4–60.0)

65.9
(64.0–67.8)

66.1
(63.8–68.3)

65.7
(63.8–67.6)

66.8
(64.5–68.9)

Implicit 70.9
(68.6–73.3)

72.5
(69.3–75.5)

69.3
(66.6–71.8)

65.7
(62.0–69.7)

67.6
(65.8–69.7)

68.2
(65.7–70.6)

68.3
(66.3–70.2)

68.7
(66.3–71.1)

FeatAlign 72.2
(69.5–75.5)

72.4
(69.5–75.6)

72.0
(69.7–74.6)

68.5
(64.8–72.0)

69.1
(67.0–71.1)

70.1
(67.9–72.4)

70.0
(68.1–71.9)

71.6
(69.4–73.8)

FeatAlignReg 70.6
(67.8–73.2)

71.2
(68.3–74.3)

70.7
(68.2–73.5)

65.7
(61.7–69.6)

68.4
(66.4–70.4)

68.9
(66.7–71.2)

69.8
(68.0–71.6)

72.0
(69.9–74.2)

ImgAlign 72.3
(69.6–74.8)

73.6
(70.6–76.5)

72.3
(69.8–74.5)

69.7
(66.2–73.4)

70.2
(68.1–72.1)

71.2
(68.9–73.4)

71.7
(69.9–73.4)

73.9
(71.7–76.0)

ImgFeatAlign 74.7
(72.3–77.0)

75.0
(72.1–77.7)

75.3
(73.1–77.4)

72.5
(68.9–75.7)

70.4
(68.2–72.3)

72.0
(69.6–74.2)

72.6
(70.8–74.5)

75.2
(73.1–77.5)

(a) FeatAlign (b) FeatAlignReg (c) ImgFeatAlign/ImgAlign

Figure 2: Comparison of deformation field quality. Each method shows displacement vectors (left),
and Jacobian determinant maps (right) (white/blue: valid; orange/red: invalid non-invertible regions).

Implementation Details: We use the pre-trained Mirai encoder [16], as a frozen backbone. For66

feature-level alignment, risk prediction and alignment are jointly optimized using L2 feature-matching67

and binary cross-entropy losses. For image-level alignment, MammoRegNet is frozen, and only the68

prediction loss is optimized. Models are trained with Adam [8] (LR 1×10−5, weight decay 1×10−6,69

batch size 20) for 40 epochs. Learning rate is halved after 5 stagnant epochs and training stops after70

15. Augmentations include affine transforms, color jitter, gamma adjustment, and cropping.71

4 Results72

Table 1 summarizes 1- to 5-year breast cancer risk prediction performance (C-index and AUC with73

95% CI) for each alignment strategy. ImgFeatAlign consistently achieves the highest C-index and74

stable AUC, demonstrating superior predictive strength and robustness over time. FeatAlign performs75

reasonably well but is consistently outperformed by image-level alignment. The Implicit method76

shows moderate results, while NoAlign yields the lowest scores, with the steepest AUC decline,77

underscoring the importance of alignment in longitudinal models. These findings highlight the value78

of advanced alignment strategies for improving the accuracy and reliability of breast cancer risk79

prediction.80

Figure 2 shows displacement vectors and Jacobian determinant maps for the three registration81

methods. FeatAlign yields noisy, irregular deformations with invalid (negative Jacobian) regions.82

FeatAlignReg improves smoothness and invertibility but remains locally constrained. In contrast,83

ImgAlign and ImgFeatAlign produce smooth, coherent, and anatomically plausible fields with84

consistent displacements and no invalid regions, indicating higher alignment quality.85

5 Conclusion and Outlook86

In summary, accurate spatial alignment is crucial for longitudinal breast cancer risk prediction. Image-87

based approaches, especially ImgFeatAlign, achieve superior performance by balancing anatomical88

precision with high-level feature representation. These findings highlight the potential of robust89

longitudinal modeling to enhance personalized screening and early intervention. Future work will90

extend these alignment strategies to broader longitudinal imaging tasks and integrate multimodal data91

to improve interpretability and risk stratification.92
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Potential Negative Societal Impacts93

Our method aims to improve personalized breast cancer screening by leveraging longitudinal imaging94

data to better predict individual risk. This approach has the potential to support earlier detection,95

reduce unnecessary procedures, and improve patient outcomes. While we do not anticipate any direct96

negative societal impacts specific to our method, we acknowledge the broader dual-use risks associated97

with machine learning in healthcare. In particular, the rich information derived from longitudinal98

imaging data could, in theory, be misused—such as for unauthorized profiling or predicting unrelated99

health conditions without patient consent.100

Additionally, if such models are deployed prematurely or without adequate clinical oversight, they101

may underperform in underrepresented populations or lead to over-reliance on automated risk scores.102

This could result in misdiagnoses, over-screening, or under-screening. To mitigate these risks, it is103

critical to ensure fairness, transparency, and responsible integration into clinical practice.104
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