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Abstract

Regular mammography screening is key for early breast cancer detection, and
deep learning enables personalized screening strategies. However, misalignment
across time points can obscure subtle tissue changes and degrade risk prediction
performance. This study provides insights into the impact of different alignment
strategies, namely image-based registration, feature-level alignment, and implicit
methods, on risk prediction using two large-scale mammography datasets, offering
guidance for future research and methodological development. Results show that
our newly proposed image-based registration model outperforms others, improv-
ing accuracy and yielding anatomically plausible deformations, underscoring the
importance of precise alignment in longitudinal risk modeling.

1 Introduction

Mammography remains the gold standard for breast cancer screening [1l], and widespread screening
has been shown to reduce mortality [17]. However, challenges persist, particularly for individuals at
high risk [[13]. Recent deep learning studies suggest that incorporating longitudinal mammography,
using imaging from multiple timepoints, can enhance risk prediction beyond models based on single-
timepoint data [2 (7, 9 [15| [14]]. To fully leverage these benefits, accurate alignment of images
across time is essential, a task complicated by variations in breast tissue and differences in patient
positioning [4]. Alignment strategies are typically categorized as either explicit, where images
or features are directly registered, or implicit, where alignment is learned jointly during feature
extraction. We perform the first systematic study of alignment strategies for longitudinal breast
cancer risk prediction, providing insights into both explicit and implicit approaches. Building on
these insights, we propose a new image-based alignment model that achieves improved predictive
performance. Our main contributions are:
* A unified framework for evaluating explicit (image-/feature-level) and implicit alignment strate-
gies for longitudinal breast cancer risk prediction.
* A novel risk prediction model that leverages image-based alignment to generate anatomically
meaningful deformations, achieving state-of-the-art performance on two large-scale datasets.

2 Methods

We address the challenge of five-year breast cancer risk prediction by evaluating six temporal align-
ment strategies within a unified framework (Figure [I)).

No Alignment: Our baseline builds on prior work [16}[15]], combining Multilevel Joint Learning [15]],
Temporal Self-Attention [[10], and a Cumulative Probability Layer 16} [12, 9]]. Current and prior
images are encoded with a shared backbone, processed via temporal self-attention, and used for risk
prediction. Additional prediction heads estimate risk from each timepoint independently (Figure [Tal).
Implicit Alignment: In this strategy, current and prior images are encoded, and their feature maps
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Figure 1: Overview of longitudinal risk prediction methods: (a) Direct feature extraction without
alignment, (b) Implicit Alignment, (c) Feature-level alignment, (d) Image-level alignment with
MammoRegNet, (e) Applying MammoRegNet’s deformation field in feature space, and (f) Risk
prediction using alignment methods (c), (d), and (e).

are concatenated before being processed through convolutional and attention layers. Temporal depen-
dencies are learned implicitly, without explicit spatial alignment (Figure [Tb).

Explicit Alignment: This approach enhances the risk prediction baseline by incorporating spatial
alignment via deformation fields, enabling better temporal feature fusion. It leverages four key
feature maps, as in [15]]: current ' € RE*hxw prior fpri aligned prior fpri-aligned & ROXhXw ap4
temporal difference features £ = feur  fpri-aligned & ROXAXw “\which capture temporal changes.
Predictions are generated from three representations: Current, Prior, and Fused, where the fused
input is formed by concatenating fUr, f4f and fPri-aliened The overall risk prediction architecture is
illustrated in Figure[Tf] We investigate alignment strategies at both the image and feature levels:
Feature-Level Alignment (FeatAlign / FeatAlignReg): This method learns a deformation field to
align prior feature maps, P, to current feature maps, f°*. FeatAlignReg introduces smoothness
regularization to ensure anatomically plausible deformation fields (Figure [Ic).

Image-Level Alignment (ImgAlign): As an alternative to feature-level alignment, we propose Mam-
moRegNet, a deep learning-based registration network inspired by the Non-Iterative Coarse-to-Fine
Transformer (NICE-Trans) architecture [11]. MammoRegNet is used to align prior mammograms,
i ¢ REXW {0 the current ones, I € REXW  In this setup (Figure , current, prior, and
aligned prior images are encoded to extract features, from which temporal difference features f4iff are
computed. These features are then passed to the risk prediction module (see Figure [Tf).
Image-Based Feature Alignment (ImgFeatAlign): Rather than applying MammoRegNet’s defor-
mation field at the image level, this variant applies it directly in feature space (Figure[T¢). This setup
allows us to explore whether image-driven deformation fields can still improve temporal feature
fusion when used post-encoding, potentially benefiting from both anatomically grounded registration
and deeper feature representations.

3 Experimental Setup

Datasets: We evaluate on two large, publicly available mammography datasets. EMBEle [6] and
CSAW—Cqﬂ [3l]. Following [13]], we include patients with > 5 years of follow-up. Images are resized
to 1664 x 2048 while preserving aspect ratio and split into training, validation, and test sets (5:2:3).
Evaluation metrics: Alignment quality is quantified by the percentage of Negative Jacobian Deter-
minants (NJD) [5], while risk prediction performance is assessed via C-index and AUC for 1-5 year
horizons [9} (15} 16], with 95% confidence intervals from 1,000 bootstraps.

"https://aws.amazon.com/marketplace/pp/prodview-unw4librkivs2#overview
https://snd.se/en/catalogue/dataset/2021-204-1
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Table 1: 1-5 year breast cancer risk prediction using different alignment methods. C-index and
selected AUC values (1, 3, 5 years) with 95% confidence intervals for both datasets.

Method EMBED CSAW-CC
C-index 1 1-yr 3-yr 1 S-yr 1 C-index 1 1-yr T 3-yr 1 S-yr 1
NoAlign 64.0 64.9 63.7 55.7 65.9 66.1 65.7 66.8
(61.7-66.7)  (62.1-67.9)  (61.2-66.3)  (51.4-60.0)  (64.0-67.8)  (63.8-68.3)  (63.8-67.6)  (64.5-68.9)
Implicit 70.9 72.5 69.3 65.7 67.6 68.2 68.3 68.7
(68.6-73.3)  (69.3-75.5)  (66.6-71.8)  (62.0-69.7)  (65.8-69.7)  (65.7-70.6)  (66.3-70.2)  (66.3-71.1)
FeatAlign 72.2 72.4 72.0 68.5 69.1 70.1 70.0 71.6
(69.5-75.5)  (69.5-75.6)  (69.7-74.6)  (64.8-72.0)  (67.0-71.1)  (67.9-72.4) (68.1-71.9)  (69.4-73.8)
FeatAlignReg 70.6 71.2 70.7 65.7 68.4 68.9 69.8 72.0
(67.8-73.2)  (68.3-74.3)  (68.2-73.5)  (61.7-69.6)  (66.4-70.4)  (66.7-71.2)  (68.0-71.6)  (69.9-74.2)
ImgAlign 723 73.6 72.3 69.7 70.2 712 71.7 73.9
(69.6-74.8)  (70.6-76.5)  (69.8-74.5)  (66.2-73.4)  (68.1-72.1)  (68.9-73.4)  (69.9-73.4)  (71.7-76.0)
. 74.7 75.0 75.3 72.5 70.4 72.0 72.6 75.2
ImgFeatAlign

(72.3-77.0)  (72.1-77.7)  (73.1-77.4)  (68.9-75.7)  (68.2-72.3)  (69.6-74.2)  (70.8-74.5)  (73.1-71.5)
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Figure 2: Comparison of deformation field quality. Each method shows displacement vectors (left),
and Jacobian determinant maps (right) (white/blue: valid; orange/red: invalid non-invertible regions).

Implementation Details: We use the pre-trained Mirai encoder [16], as a frozen backbone. For
feature-level alignment, risk prediction and alignment are jointly optimized using L2 feature-matching
and binary cross-entropy losses. For image-level alignment, MammoRegNet is frozen, and only the
prediction loss is optimized. Models are trained with Adam [8] (LR 1 x 10~°, weight decay 1 x 1076,
batch size 20) for 40 epochs. Learning rate is halved after 5 stagnant epochs and training stops after
15. Augmentations include affine transforms, color jitter, gamma adjustment, and cropping.

4 Results

Table [T summarizes 1- to 5-year breast cancer risk prediction performance (C-index and AUC with
95% CI) for each alignment strategy. ImgFeatAlign consistently achieves the highest C-index and
stable AUC, demonstrating superior predictive strength and robustness over time. FeatAlign performs
reasonably well but is consistently outperformed by image-level alignment. The Implicit method
shows moderate results, while NoAlign yields the lowest scores, with the steepest AUC decline,
underscoring the importance of alignment in longitudinal models. These findings highlight the value
of advanced alignment strategies for improving the accuracy and reliability of breast cancer risk
prediction.

Figure 2] shows displacement vectors and Jacobian determinant maps for the three registration
methods. FeatAlign yields noisy, irregular deformations with invalid (negative Jacobian) regions.
FeatAlignReg improves smoothness and invertibility but remains locally constrained. In contrast,
ImgAlign and ImgFeatAlign produce smooth, coherent, and anatomically plausible fields with
consistent displacements and no invalid regions, indicating higher alignment quality.

5 Conclusion and Outlook

In summary, accurate spatial alignment is crucial for longitudinal breast cancer risk prediction. Image-
based approaches, especially ImgFeatAlign, achieve superior performance by balancing anatomical
precision with high-level feature representation. These findings highlight the potential of robust
longitudinal modeling to enhance personalized screening and early intervention. Future work will
extend these alignment strategies to broader longitudinal imaging tasks and integrate multimodal data
to improve interpretability and risk stratification.
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Potential Negative Societal Impacts

Our method aims to improve personalized breast cancer screening by leveraging longitudinal imaging
data to better predict individual risk. This approach has the potential to support earlier detection,
reduce unnecessary procedures, and improve patient outcomes. While we do not anticipate any direct
negative societal impacts specific to our method, we acknowledge the broader dual-use risks associated
with machine learning in healthcare. In particular, the rich information derived from longitudinal
imaging data could, in theory, be misused—such as for unauthorized profiling or predicting unrelated
health conditions without patient consent.

Additionally, if such models are deployed prematurely or without adequate clinical oversight, they
may underperform in underrepresented populations or lead to over-reliance on automated risk scores.
This could result in misdiagnoses, over-screening, or under-screening. To mitigate these risks, it is
critical to ensure fairness, transparency, and responsible integration into clinical practice.

References

[1] Arya Bhushan, Andrea Gonsalves, and Jyothi U. Menon. Current state of breast cancer diagnosis,
treatment, and theranostics. Pharmaceutics, 13(5), 2021.

[2] Saba Dadsetan, Dooman Arefan, Wendie A Berg, Margarita L Zuley, Jules H Sumkin, and
Shandong Wu. Deep learning of longitudinal mammogram examinations for breast cancer risk
prediction. Pattern Recognition, 132, 2022.

[3] Karin Dembrower, Peter Lindholm, and Fredrik Strand. A multi-million mammography image
dataset and population-based screening cohort for the training and evaluation of deep neural
networks—the cohort of screen-aged women (CSAW). Journal of Digital Imaging, 33(2), 2020.

[4] Yujun Guo, Radhika Sivaramakrishna, Cheng-Chang Lu, Jasjit S Suri, and Swamy Laxmi-
narayan. Breast image registration techniques: a survey. Medical and Biological Engineering
and Computing, 44, 2006.

[5] In Young Ha, Matthias Wilms, and Mattias Heinrich. Semantically guided large deformation
estimation with deep networks. Sensors, 20(5), 2020.

[6] Jiwoong J. Jeong, Brianna L. Vey, Ananth Bhimireddy, Thomas Kim, Thiago Santos, Ramon
Correa, Raman Dutt, Marina Mosunjac, Gabriela Oprea-Ilies, Geoffrey Smith, Minjae Woo,
Christopher R. McAdams, Mary S. Newell, Imon Banerjee, Judy Gichoya, and Hari Trivedi.
The EMory BrEast imaging Dataset (EMBED): A racially diverse, granular dataset of 3.4
million screening and diagnostic mammographic images. Radiology: Artificial Intelligence, 5
(1), 2023.

[7] Batuhan K. Karaman, Katerina Dodelzon, Gozde B. Akar, and Mert R. Sabuncu. Longitudinal
mammogram risk prediction. In Medical Image Computing and Computer Assisted Intervention
— MICCAI 2024. Springer-Verlag, 2024.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2017.

[9] Hyeonsoo Lee, Junha Kim, Eunkyung Park, Minjeong Kim, Taesoo Kim, and Thijs Kooi.
Enhancing breast cancer risk prediction by incorporating prior images. In Medical Image
Computing and Computer Assisted Intervention — MICCAI 2023. Springer-Verlag, 2023.

[10] Thomas Z. Li, Kaiwen Xu, Rigiang Gao, Yucheng Tang, Thomas A. Lasko, Fabien Maldonado,
Kim L. Sandler, and Bennett A. Landman. Time-distance vision transformers in lung cancer
diagnosis from longitudinal computed tomography. In Olivier Colliot and Ivana ISgum, editors,
Medical Imaging 2023: Image Processing, volume 12464. SPIE, 2023. doi: 10.1117/12.
2653911.

[11] Mingyuan Meng, Lei Bi, Michael Fulham, Dagan Feng, and Jinman Kim. Non-iterative coarse-
to-fine transformer networks for joint affine and deformable image registration. In Medical
Image Computing and Computer Assisted Intervention — MICCAI 2023. Springer-Verlag, 2023.



141
142
143
144
145
146

147
148

149
150
151
152

153
154
155
156
157

158
159
160

161
162
163
164
165
166
167
168
169

[12]

[13]

[14]

[15]

[16]

[17]

Peter G. Mikhael, Jeremy Wohlwend, Adam Yala, Ludvig Karstens, Justin Xiang, Angelo K.
Takigami, Patrick P. Bourgouin, PuiYee Chan, Sofiane Mrah, Wael Amayri, Yu-Hsiang Juan,
Cheng-Ta Yang, Yung-Liang Wan, Gigin Lin, Lecia V. Sequist, Florian J. Fintelmann, and
Regina Barzilay. Sybil: A validated deep learning model to predict future lung cancer risk
from a single low-dose chest computed tomography. Journal of Clinical Oncology, 41(12):
2191-2200, 2023. doi: 10.1200/JC0O.22.01345.

Isabel T. Rubio, Caroline A. Drukker, and Antonio Esgueva. Risk-based breast cancer screening:
What are the challenges? Tumori Journal, 2024. doi: 10.1177/03008916241306971.

Xin Wang, Tao Tan, Yuan Gao, Ruisheng Su, Tianyu Zhang, Luyi Han, Jonas Teuwen, Anna
D’ Angelo, Caroline A. Drukker, Marjanka K. Schmidt, Regina Beets-Tan, Nico Karssemeijer,
and Ritse Mann. Predicting up to 10 year breast cancer risk using longitudinal mammographic
screening history. medRxiv, 2023.

Xin Wang, Tao Tan, Yuan Gao, Eric Marcus, Luyi Han, Antonio Portaluri, Tianyu Zhang,
Chunyao Lu, Xinglong Liang, Regina Beets-Tan, Jonas Teuwen, and Ritse Mann. Ordinal
Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer
Events from Mammograms . In Medical Image Computing and Computer Assisted Intervention
— MICCAI 2024. Springer-Verlag, 2024.

Adam Yala, Peter G. Mikhael, Fredrik Strand, Gigin Lin, Kevin Smith, Yung-Liang Wan, Leslie
Lamb, Kevin Hughes, Constance Lehman, and Regina Barzilay. Toward robust mammography-
based models for breast cancer risk. Science Translational Medicine, 13(578), 2021.

Nadine Zielonke, Andrea Gini, Erik E.L. Jansen, Ahti Anttila, Nereo Segnan, Antonio Ponti,
Piret Veerus, Harry J. de Koning, Nicolien T. van Ravesteyn, Eveline A.M. Heijnsdijk, Piret
Veerus, Ahti Anttila, Sirpa Heindvaara, Tytti Sarkeala, Marcell Cafiada, Janos Pitter, Gyorgy
Széles, Zoltan Voko, Silvia Minozzi, Nereo Segnan, Carlo Senore, Marjolein van Ballegooijen,
Inge Driesprong de Kok, Andrea Gini, Eveline Heijnsdijk, Erik Jansen, Harry de Koning, Iris
Lansdorp — Vogelaar, Nicolien van Ravesteyn, Nadine Zielonke, Urska Ivanus, Katja Jarm,
Dominika Novak Mlakar, Maja Primic-Zakelj, Martin McKee, and Jennifer Priaulx. Evidence
for reducing cancer-specific mortality due to screening for breast cancer in europe: A systematic
review. European Journal of Cancer, 127, 2020. doi: 10.1016/j.ejca.2019.12.010.



	Introduction
	Methods
	Experimental Setup
	Results
	Conclusion and Outlook

