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ReForm-Eval: Evaluating Large Vision Language Models via
Unified Re-Formulation of Task-Oriented Benchmarks

Anonymous Authors
ABSTRACT
Recent years have witnessed remarkable progress in the develop-
ment of large vision-language models (LVLMs). Benefiting from
the strong language backbones and efficient cross-modal alignment
strategies, LVLMs exhibit surprising capabilities to perceive visual
signals and perform visually grounded reasoning. However, the
capabilities of LVLMs have not been comprehensively and quanti-
tatively evaluated. Most existing multi-modal benchmarks require
task-oriented input-output formats, posing great challenges to au-
tomatically assess the free-form text output of LVLMs. To effec-
tively leverage the annotations available and reduce the manual
efforts required for constructing new benchmarks, we propose to
re-formulate existing benchmarks into unified LVLM-compatible
formats.Through systematic data collection and reformulation, we
present ReForm-Eval benchmark, offering substantial data for eval-
uating various capabilities of LVLMs. Through extensive experi-
ments and analysis in ReForm-Eval, we demonstrate the compre-
hensiveness and reliability of ReForm-Eval in assessing various
LVLMs. Our benchmark and evaluation framework will be open-
sourced as a cornerstone for advancing the development of LVLMs.

CCS CONCEPTS
• Computing methodologies → Computer vision tasks; Nat-
ural language generation.

KEYWORDS
large vision language model, multi-modal benchmark, evaluation

1 INTRODUCTION
With the trend led by ChatGPT [62], LLMs (Large Language Mod-
els) [13, 63, 78] have ushered in revolutionary advancements of
Natural Language Processing (NLP). Inspired by these efforts, many
researchers attempt to extend the success of LLMs to the realm
of vision and language. By equipping LLMs with visual encoders
and aligning multi-modal representations through generative pre-
training, large vision-language models (LVLMs) [5, 10, 41, 46, 50,
52, 55, 76, 91, 101] possess the capability to comprehend visual in-
formation and engage in multi-modal conversations with users.

Despite the potential shown by LVLMs to become the general-
purpose foundation models for multimedia information process-
ing, the reliability of LVLMs in various scenarios still hangs in
doubt. On the one hand, LVLMs demonstrate surprising abilities
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Unified        Re-Formulation

Dataset: VQA v2
Q: Where is he looking?
Label: down (word)
Dataset: SNLI-VE
Claim: He is well-skilled.
Label: entailment (class)
Dataset: Object Counting
Q: How many persons?
Label: 17 (number)

Large Vision Language M
odels

Formulation: Open-Ended QA
Output:  He is looking down.
Judge: F [EM] / T [Human]
Formulation: Classification
Output: The claim is correct. 
Judge: F [EM] / T [Human] 
Formulation: Numerical QA
Output: More than 17 persons.
Judge: T [Contain] / F [Human]

Unified Benchmark: ReForm-Eval
Q1: In the image, where is he looking at?
Options: (A) Down; (B) Up; (C) Right.
Q2: Validate whether the player is well-skilled.                              
Options: (A) No; (B) Yes; (C) Maybe.
Q3: How many persons are in the image? 
Options: (A) 17; (B) 7; (C) 16; (D) 18.

Unified Formulation: MCQ
Output:  (A) Down.
Judge: T [Option Matching] 
Output: (B) is my answer. 
Judge: T [Option Matching]
Output:  I will choose (B) 7.
Judge: F [Option Matching]

Unified       Evaluation

Figure 1: Illustration of the unified framework of re-
formulating existing benchmarks into multiple-choice
questions (MCQ). The text within square brackets indicates
the evaluation methods, with red and green denoting incor-
rect and correct judgment, respectively. Q, T, F, EM stand for
Question, True, False, and Exact Match, respectively.

like OCR [26, 55], meme understanding [1, 101], and visual com-
monsense reasoning [41, 51]. On the other hand, LVLMs suffer
from serious hallucination issues [45, 49, 84]. To comprehensively
evaluate LVLMs, endeavors have beenmade to construct new bench-
marks [18, 40, 53, 95, 96]. However, the additional costs associ-
ated with manual data collection and annotation limit these bench-
marks in terms of quantity and scope, making further extension
challenging. Meanwhile, there exist affluent task-oriented datasets
covering various scenarios, but these datasets cannot be directly
applied to assess LVLMs, leading to a waste of data resources.

The main reason behind this situation is the structural gap be-
tween existing task-oriented multi-modal benchmarks and LVLMs.
Most existing benchmarks are designed for specific tasks and de-
mand highly structured input-output formats [29, 34, 47, 86]. For
instance, VQA v2 [22] requires concise answers, typically in the
form of single words or short phrases. Previously evaluated vision-
language pre-trained models [12, 99] need to be fine-tuned and
learn task-specific parameters to fit the structures of such bench-
marks. On the contrary, LVLMs are flexible and tend to provide
detailed responses [50]. As depicted in the upper flowchart of Fig-
ure 1, such a structural gap makes the automated evaluation cri-
teria unstable and varied. For example, regarding the model’s re-
sponse to the VQA v2 example, “he is looking down” is rejected
by the EM method but actually accepted by humans. This poses
the greatest obstacle to accurate automated evaluation, particu-
larly when assessing the desired zero-shot capabilities of LVLMs.

In this paper, we aim to fully utilize existing resources to eval-
uate LVLMs. To bridge the structural gap, we explore ways of re-
formulating existing benchmarks into unified formats that
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Benchmark Size
Annotation Evaluation Instability Instability

Human ChatGPT ChatGPT Unified Form Instruction Option Mark Option Order Measure
LAMM [92] 186,000 ! ! None
MME [18] 2,374 ! ! None

LVLM-eHub [88] 1,242,830 ! ! None
MMBench [53] 2,974 ! ! ! ! Δ𝑎𝑐𝑐
MMMU[96] 11,550 ! ! None
MMVet [95] 218 ! ! ! None
ReForm-Eval 521,712 ! ! ! ! ! entropy

Table 1: Comparison with existing evaluation benchmarks.The term “unified form” denotes a standardized evaluation format.
In MMBench [53], the option order instability is measured by the difference between the accuracy Δ𝑎𝑐𝑐 from CircularEval and
VanillaEval. While in Reform-Eval, we measure the instability by the entropy of the prediction distribution (see Section 4.2).

are compatible with LVLMs. Referring to Figure 1, we adapt the
data and evaluation process to the unified form shown in the lower
part. Firstly, we propose an automatic framework to re-formulate
existing datasets into either multiple-choice questions or text gen-
eration problems. These two forms of re-formulation conform to
the flexible textual output of LVLMs [25]. For each dataset, the
choice of re-formulation format is determined by considering its
corresponding tasks. For taskswith specific text generation require-
ments, like OCR and image captioning, datasets are re-formulated
as specialized text generation problems, while other datasets are
restructured into multiple-choice problems.

The unified formulation further enables consistent evaluation.
We design a reliable evaluation method that considers both the in-
put sensitivity and the output control of LVLMs, alleviating the re-
quirement for assistance from ChatGPT or human. As mentioned
in [18], current LVLMs struggle to follow multiple-choice instruc-
tions. We propose two approaches to mitigate this issue: (1) Black-
box approach: Guiding LVLMs to output in desired formats through
in-context-learning; (2)White-box approach: Directly calculating
the generation probability for options and selecting the one with
the highest value. With regard to the sensitivity of LVLMs to the
input prompts [98], we design an instability-aware evaluation
strategy and introduce a metric to characterize such instability.

Based on the re-formulation framework, we present our uni-
fied multi-modal benchmark, ReForm-Eval. For a comprehensive
evaluation, we re-formulate 61 benchmark datasets based on ex-
isting data resources, the evaluation dimensions range from basic
visual perception to high-level visual reasoning and dialog. Com-
pared with recent LVLM benchmarks that require manual annota-
tion [18, 53, 95], ReForm-Eval fully utilizes publicly open resources
and provides significantly more data, almost 100 times the size
of MMBench [53]. Meanwhile, unlike LVLM-ehub [88], which re-
quires designing complex and dataset-specific evaluation strate-
gies, ReForm-Eval offers greater scalability. Generally speaking,
ReForm-Eval is large-scale, easy to use, and provides a universally
applicable and efficient evaluation approach, as shown in Table 34.

Based on ReForm-Eval, we conduct a comprehensive evaluation
of existing LVLMs. Experiments demonstrate that ReForm-Eval
and the proposed evaluation methods provide reliable evaluation
results for a wide range of models. We hope ReForm-Eval consti-
tutes a valuable augmentation to the ongoing efforts in LVLM re-
search and could facilitate better development of LVLMs.

2 RELATED WORKS
2.1 Large Vision Language Models
Inspired by the advancements of LLMs and the multi-modal under-
standing abilities demonstrated by GPT-4 [63], developing open-
source LVLMs currently dominates the multi-modal research. Vi-
sual signals encoded by visual encoders [66] are incorporated in
LLMs through linear projection [80], Q-former [41], or cross-attention
layers [4]. Most LVLMs are trained in two phases, pre-training
and instruct tuning. Pre-training data involves image-text pairs [47,
68, 70] and multi-modal interleaved documents [102], multi-modal
representations are aligned by training LVLMs to generate texts
based on visual contents. To enable multi-modal instruct tuning,
MiniGPT4 [101] bootstraps high-quality data by refining the pre-
vious output, LLaVA [52] proposes to employ GPT-4 to generate
image-involved dialogs while other works construct instruct tun-
ing data from existing vision-language benchmarks [15, 44, 89].

To seamlessly adapt LLMs for multi-modal scenarios, many ef-
forts are paid including designing strategies for parameter freez-
ing [91], introducing light-weight trainable modules into the back-
bone [19, 21], incorporating continuous output [9, 65], and enhanc-
ing the visual representations [26, 43, 46, 51, 98]. Benefiting from
the aligned representations from ImageBind [20], LVLMs can be
further extended to more modalities [24, 75].

2.2 Multi-Modal Benchmarks
Task-Oriented Benchmarks. Most existing benchmarks are de-

signed for specific multi-modal tasks. They can not be directly uti-
lized to evaluate LVLMs since they rely on structured input-output
formats for evaluation. VQA v2 [22] requires concise answers, re-
trieval benchmarks [47, 93] demand dense scores for all image-text
pairs, VCR [97] provides coordinates to refer visual object in the
question, and bounding box output is necessary for RefCOCO [34].
This characteristic renders the application of such benchmarks on
evaluating the free-form text outputs of LVLMs, unless task-specific
post-processing and evaluation methods are implemented [88, 92].

Benchmarks for LVLMs. To facilitate reliable and efficient auto-
mated evaluation of LVLMs, efforts are paid to construct LVLM-
compatible benchmarks, such as yes-or-no problems in MME [18]
and multiple-choice problems in MMBench [40, 53]. A portion of
the benchmarks are designed to assess specific capabilities [54, 83]

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ReForm-Eval: Evaluating Large Vision Language Models via Unified Re-Formulation of Task-Oriented Benchmarks ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Multiple-
Choice

Questions

Text
Generation

Unified
Formulation

Re-Formulation Framework

Question-Answer
Pair Construction

Hard Negative Mining

HN From ChatGPT

Task-specific strategy

HN From Other Classes

Scenario-Tailored
Instruction Formulation

Task-Oriented
Datasets

Open-Ended QA

Classification

Image Caption

OCR Tasks

Other Tasks

Figure 2: The construction pipeline of ReForm-Eval.

or diagnose particular issues [45, 100], while others aim for com-
prehensive evaluation [18, 53, 95, 96]. However, limited manual
annotation (around 100 samples per dimension in MME and MM-
Bench) could potentially introduce evaluation bias into the results.

3 REFORM-EVAL BENCHMARK
In this section, we describe the construction pipeline of ReForm-
Eval (as shown in Figure 2). We start by introducing the general
framework of our re-formulation process in Section 3.1. Then, Sec-
tion 3.2 summarizes the capability dimensions assessed in ReForm-
Eval and the corresponding datasets.The basic statistics of ReForm-
Eval are detailed in Section 3.3.

3.1 Unified Re-Formulation Framework
Existing LVLMs primarily adopt LLMs as backbones and use free-
form text to interact with users. This paradigm makes the output
more flexible and aligned with human needs. However, the gap
between these models and existing highly structured benchmarks
poses challenges for evaluation. In order to effectively reuse the
annotations in existing benchmarks, these benchmarks need to
be re-formulated into appropriate formats. Motivated by bench-
marks for LLMs [25, 27, 74], ReForm-Eval considers two formats
that are compatible with LVLMs, namelymultiple-choice problems
and text generation problems.

Multiple-choice problem is the primary format in ReForm-Eval.
By providing options for the questions, models are guided to pro-
duce responses in a constrained format.The key in multiple-choice
problem construction is how to prepare meaningful negative op-
tions. Generally, for close-vocabulary classification tasks, we build
relationships between categories based on which hard negative op-
tions are selected. For open-ended tasks, based on the question and
the correct answer, negative options can be obtained with the help
of task-specific strategies or LLMs like ChatGPT [62].

For OCR and image captioning that involves text generation,
corresponding benchmarks are formulated as text generation prob-
lems tailored to various scenarios. We curate the input prompts
to describe the tasks and requirements. For OCR tasks, responses
should contain the target tokens in the image. For description tasks,
models should provide concise depictions of the visual content.

3.2 Capability Dimensions
To address the wide range of questions posed by users, LVLMs
need to possess diverse capabilities. For a comprehensive evalu-
ation, we curate 61 benchmark datasets from existing resources,
summarizing the assessed capabilities into 2 major categories and

Perception

Cognition

Image
Classif.

Figure 3: Assessed capability dimensions and tasks in
ReForm-Eval. “Desc” and “Classif” are short for visual de-
scription and classification, respectively.
8 sub-categories which are illustrated in Figure 3. To avoid infor-
mation overload, details about the re-formulation procedures and
statistics of individual datasets are provided in Appendix A.
3.2.1 Visual Perception Tasks.

Coarse-Grained Perception (CG). Coarse-grained perception
is the ability to recognize the overall layout andmain objects at the
image level. We evaluate this capability through image classifica-
tion (IC) using Flowers102 [61], CIFAR10 [37], ImageNet-1K [17],
Pets37 [64], and MEDIC [3] benchmarks, and scene recognition
(SR) using TDIUC [32] and VizWiz [23] benchmarks. The samples
are re-formulated as multiple-choice questions.

Fine-Grained Perception (FG). Fine-grained perception requires
detailed sensing at the object level. We set up the object percep-
tion (OP) task (using TDIUC [32] and MSCOCO [47] benchmarks)
and the object grounding (OG) task (using MSCOCO [47] and Re-
fCOCO [94] benchmarks) for evaluation. Object perception mea-
sures how well an LVLM can identify local semantics, while object
grounding assesses the ability to localize fine-grained objects. All
tasks are formulated as multiple-choice questions.

Scene Text Perception (STP). Scene text perception enablesmod-
els to identify, understand, and perform inference based on text in
images. This evaluation is conducted through optical character
recognition (OCR) using 6 benchmarks (including CUTE80 [67],
IC15 [33], IIIT5K [59], COCO-Text [59], WordArt [87] and Tex-
tOCR [73]),key information extraction (KIE) using 3 benchmarks
(including SROIE [28], POIE [38] and FUNSD [30]) andOCR-based
VQA using 3 benchmarks (including TextVQA [72], DocVQA [58]
and OCR-VQA [60]). We consider STP as a specialized text gener-
ation problem that requires the output from LVLMs to perfectly
match the text in the image.
3.2.2 Visual Cognition Tasks.

VisuallyGroundedReasoning (VGR). A reliable LVLM is sup-
posed to perform reasoning based onmulti-modal contextual infor-
mation. In order to assess such capability, we adopt the commonly
applied visual question answering (VQA) task and its variant,

3
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Statistics Number
Total Questions 521712
Total Dimensions / Tasks / Datasets 8/15/61
Multiple-Choice Questions 415283 (79.6%)
Text Generation Questions 106429 (20.4%)
Average question length / # words 171.42 / 35.98
Average # words in
- references of Description tasks 12.11
- references in OCR-related tasks 2.78
Average option length / # words 10.79 / 2.0
Avg. / Max. / Min. # option 3.8 / 2 / 7
Total Images 333388
- Average image width 616.27
- Average image height 554.23
- Average image ratio 1.26

Table 2: Key statistics in ReForm-Eval.

knowledge-based visual question answer (K-VQA), which fur-
ther requires models to utilize internally stored knowledge. For
vanilla VQA, we adopt VQA v2 [22], GQA [29], andWhoops [6]. As
for KVQA, we consider 6 benchamrks including OK-VQA [57], Sci-
enceQA [56], VizWiz [23], ViQuAE [39], A-OKVQA [69] and Ima-
geNetVC [85]. The aforementioned benchmarks are re-formulated
into multiple-choice questions.

Spatial Understanding (Spatial). Spatial understanding is the
key to the real-life application of LVLMs on robots. This task re-
quires a comprehensive understanding of both the object-object
and object-observer relationship so as to make reasonable behav-
iors. We access such capability through spatial relation judg-
ment (SRJ) using VSR [48] and MP3D-Spatial, a benchmark de-
signed for embodied tasks in real-world environments, constructed
fromMatterport3D [7]. Additionally, we employ Space-BasedRea-
soning (SBR) through the CLEVR [31] benchmark. The SRJ task
aims to accurately identify spatial relationships, forming a concept
of where the ego is in space. The SBP task entails complex reason-
ing ability based on the understanding of spatial relationships. All
samples are re-formulated as multiple-choice questions.

Cross-Modal Inference (CMI). A thorough comprehension of
both visual and textual modalities is required to perform cross-
modal inference on the relationship between images and texts. We
consider two tasks, image-text matching (ITM) and visual en-
tailment (VE). ITM requires models to measure the cross-modal
similarities, including MSCOCO [47], WikiHow [35] andWinogro-
und [77]. VE demands models to check whether the information is
entailed across modalities, using SNLI-VE [86] and MOCHEG [90].
Both tasks are re-formulated as multiple-choice questions.

Visual Description (Desc). Visual description is an inherent
capability of LVLMs as generative models. We adopt the image
captioning task onMSCOCO [47], TextCaps [71], NoCaps [2], and
Flickr30K [93] for evaluation.These datasets are formulated as text
generation problems with the requirement of concise outputs.

Multi-Turn Dialogue (Dialog). Existing benchmarks primar-
ily focus on single-turn conversation. ReForm-Eval evaluates the
performance of LVLMs in multi-turn dialogues. We consider the

1st t-SNE Dimension

2nd t-SNE Dimension

Figure 4: Distribution of image embeddings encoded by
CLIP-ViT-B/32 [66] from various benchmarks.
multi-turn VQA task using VisDial [16] and VQA-MT, the latter
is constructed by reorganizing questions in VQA v2. Both bench-
marks are formulated as multiple-choice questions.

3.3 Dataset Statistics
The basic statistics of Reform-Eval are shown in Table 2. In gen-
eral, there are 521,712 questions in our Reform-Eval benchmark
with 79.6% as multiple-choice questions and 20.4% as text genera-
tion questions.The average lengths of questions and options are 36
words and 2 words, respectively. The average number of options
is close to 4, with a minimum number of 2 for yes-or-no questions
and a maximum number of 7 for disaster classification. To perform
quality control, we manually sample and confirm the false nega-
tive rate of negative options generated by ChatGPT is below 0.01,
while under other reformulation methods, it is 0. Please refer to
Section 6.1 for the analysis of distractor construction methods.

The total number of images is ∼333K, with an average ratio of
1.26. Figure 4 displays the distribution of images visualized with
t-SNE [81]. Compared to previous benchmarks, the image distribu-
tion of ReForm-Eval is more extensive, allowing for a more com-
prehensive evaluation of LVLM across diverse visual scenarios.

4 EVALUATION STRATEGY
4.1 Evaluation Methods and Metrics
With the unified problem formulation, the performance of LVLMs
can be universally assessed. For specialized generation problems,
the evaluation method depends on the scenario. For visual descrip-
tion, we follow [41] to use CIDEr [82] as themainmetric (moremet-
rics are discussed in Appendix C). Since datasets mainly provide
concise references, we craft prompts to require concise responses
and limit the maximum number of tokens a model can generate.
As for STP, input prompts are well-designed to instruct models to
identify the scene texts. The metric is word-level accuracy: the pro-
portion of ground-truth words that appear complete in the output.

Considering multiple-choice problems, the model performance
is assessed using accuracy. We label the answer options with mark-
ers like “(A)” and then determine correctness by checking themark-
ers in the output of models. The challenge with this approach is
that current LVLMsmay not always adhere well to multiple-choice
instructions, i.e. the output may not include the required marker.

4
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What color is the wall? 
Options: (A) yellow; (B) 
red; (C) green; (D) pink.

D: pink

(D) pink
+ in-context 

sample

Are these planes 
parked? Options: 
(A) yes; (B) no.

No. The planes are 
not parked. They …

(B) no. The plane are 
flying in …

+ in-context 
sample

Is it daytime? 
Options: (A) no; 
(B) yes

no

(A)

(a) mPLUG-Owl (b) LA-V2 (c) Shikra

+ in-context 
sample

Instruction: Take a close look at the image and question, and then choose the correct option.

Figure 5: Case study of the effect of in-context samples.

To assist the evaluation of multiple-choice problems, ReForm-
Eval provides both a black-box approach and a white-box ap-
proach. The black-box approach provides in-context samples to
guide responses in the desired formats. Here is an example:
𝑋system-message
Human: Can you see the image? Options: (A) Yes; (B) No; (C)
Not Sure; (D) Maybe.
Assistant: The answer is (A) Yes.
Human: 𝑋question Options: 𝑋options
Assistant: The answer is

where𝑋SystemMessage is the systemmessage required bymost LVLMs,
𝑋question and𝑋options are respectively the question and the answer
options described in the text, the text in red is the in-context sam-
ple provided to the model. Notice that the in-context sample pro-
vides no information about the image. Figure 15 illustrates the ef-
fect of in-context samples with several cases. Quantitatively, with
the help of the black-box strategy, the average format compliance
rate of outputs from various models increases from 85% to 100%.
Detailed results and analysis are provided in Table 3 and Section 6.2.

The white-box approach is based on the inherent attribute of
current LVLMs as generative models. Given the visual context 𝑣 ,
the question 𝑞, and 𝑁 answer options 𝐶 = {𝑐𝑖 }𝑁𝑖=1, the answer is
determined as the option with the largest generation likelihood
predicted by the evaluated model:

𝑐 = argmax
𝑐𝑖 ∈𝐶

𝑃𝜃 (𝑐𝑖 |𝑣,𝑞) = argmax
𝑐𝑖 ∈𝐶

𝑡𝑐∑
𝑡=1

log 𝑃𝜃 (𝑐𝑖𝑡 |𝑣,𝑞, 𝑐𝑖<𝑡 ) (1)

where 𝑃𝜃 (𝑐𝑖𝑡 |𝑣,𝑞, 𝑐𝑖<𝑡 ) is parameterized by the causal-LLM-based
LVLMs and {𝑐𝑖1, ..., 𝑐𝑖𝑡𝑐 } is the tokenized sequence of 𝑐𝑖 . Formultiple-
choice problems, we provide both the black-box generation evalu-
ation results and the white-box likelihood evaluation results.

4.2 Instability-Aware Evaluation
As demonstrated in previousworks [89, 98], LLM-basedmodels are
sensitive to different but equivalent instructions. In ReForm-Eval,
instability-aware evaluation is thus introduced. For each task, mul-
tiple (more than five) instruction templates are manually designed.
Each sample is tested multiple times with different templates and
shuffled options if it is a multiple-choice question. The final result
is based on the average of the multiple tests.

To directly characterize the instability of models, we further in-
troduce a metric. For a multiple-choice problem with answer op-
tions 𝐶 = {𝑐𝑖 }𝑁𝑖=1, the empirical prediction distribution of a model
can be calculated from the 𝑀 tests as 𝑝𝑖 = 1

𝑀
∑𝑀

𝑗=1 1(𝑐 𝑗 = 𝑐𝑖 )

Language Backbone Format Hit Rate
Model LLM Base FT w/o ICS w/ ICS

BLIP-2𝐹 [41] Flant5xl No 100 100
mmGPT [21] OpenFlamingo LoRA 95 100
LA-V2 [19] LLaMA-7B Delta 85 100

mPLUG-Owl [91] LLaMA-7B LoRA 63 100
ImageBindLLM [24] LLaMA-7B No 99 100
InstructBLIP𝑉 [15] Vicuna-7B No 100 100
LLaVA-1.0-7B𝑉 [52] Vicuna-7B Full 85 100

Shikra [9] Vicuna-7B Full 65 98
LLaVA-1.5-7B𝑉 [50] Vicuna-7B Full 96 100
LLaVA-1.6-7B𝑉 [51] Vicuna-7B Full 96 100
ShareGPT4V-7B [10] Vicuna-7B Full 94 100

MiniGPT4 [101] Vicuna-7B No 100 100
BLIVA [26] Vicuna-7B No 99 100

PandaGPT [75] Vicuna-7B LoRA 99 100
Cheetor𝐿2 [43] LLaMA-2-7B Delta 99 100
MiniGPT-v2 [8] LLaMA-2-7B LoRA 100 100

Qwen-VL-Chat [5] Qwen-7B Full 95 100
Monkey [46] Qwen-7B Full 92 100

Deepseek-VL [55] Deepseek Full 88 100
ShareGPT4V-13B [10] Vicuna-13B Full 29 100
LLaVA-1.5-13B [50] Vicuna-13B Full 68 100
LLaVA-1.6-13B [51] Vicuna-13B Full 90 100
OmniLMM-12B [1] Zephyr-7B-β Unk 100 100
Qwen-VL-Max [5] Qwen Unk 100 100

Gemini-1.0-ProV [76] Gemini Unk 95 100
GPT-4V [63] GPT-4 Unk 99 100

Table 3: The impact of in-context samples (ICS) on the for-
mat compliance rate of model outputs. Values below 95%
are considered substandard. “FT” indicates whether the LLM
backbone is fine-tuned. If fine-tuned, the corresponding tun-
ing method is listed. “Unk” represents unknown.

where 𝑐 𝑗 is the prediction of the 𝑗-th test. Then the instability is
measured by 𝑒 = −∑𝑁

𝑖=1 𝑝𝑖 log(𝑝𝑖 ), the entropy of the prediction
distribution: Larger 𝑒 indicates higher uncertainty in the predic-
tions for that sample. For text generation tasks, instability is not
accessible as the prediction distribution is not directly measurable.

4.3 Adaptive Sub-Benchmark Construction
Many existing LVLMs utilize instruction-tuning data from task-
oriented datasets, whichmay overlapwith the data used in ReForm-
Eval. To ensure fairness, we introduce two adaptive sub-benchmark
construction methods: (1)Model-oriented: Selecting the held-out
datasets common to all compared models for zero-shot evaluation;
(2)User-oriented: Allowing users to choose and combine the bench-
marks based on their own requirements. In this paper, we consider
using the model-oriented method. Given several LVLMs for eval-
uation, we take the union of the datasets they utilize, then the
sub-benchmark is ReForm-Eval excluding this union, which is the
desired held-out sub-benchmark, namely ReForm-Eval-Sub. Bene-
fiting from the broad coverage of ReForm-Eval, there still exists
abundant and comprehensive evaluation data for a fair zero-shot
evaluation. Unless otherwise specified, all experiments in this pa-
per are conducted on this held-out ReForm-Eval-Sub.
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Generation Evaluation Likelihood Evaluation
Perception Cognition Perception CognitionModel

CG FG STP Spatial VGR Dialog CMI Desc 𝑅 CG FG Spatial VGR Dialog CMI 𝑅

BLIP-2𝐹 [41] 69.4 77.4 36.0 43.2 73.8 55.5 51.9 83.6 11 60.7 78.4 51.1 69.3 53.6 48.8 13
InstructBLIP𝑉 [15] 69.0 72.2 37.2 44.4 66.2 40.7 40.6 30.2 15 58.5 82.4 52.2 71.8 59.3 45.9 11
LLaVA-1.0-7B𝑉 [52] 28.7 33.5 15.5 28.7 47.2 31.2 38.7 42.4 22 61.0 73.4 42.4 60.7 43.2 41.8 15
MiniGPT4 [101] 46.2 54.5 32.6 34.6 49.8 35.1 39.6 58.7 16 54.9 74.1 49.2 56.7 44.1 41.8 16
mPLUG-Owl [91] 41.9 37.8 36.3 26.8 40.6 31.9 37.2 48.4 19 57.9 69.1 48.6 57.8 38.6 44.1 17
PandaGPT [75] 28.2 35.4 1.6 33.3 49.0 33.4 37.0 1.1 25 42.3 49.9 39.4 47.0 39.2 36.6 23

ImageBindLLM [24] 29.2 33.2 5.3 35.6 36.9 33.3 34.6 32.8 24 49.6 56.5 46.1 52.0 35.9 39.9 22
LA-V2 [19] 33.2 30.8 20.5 23.8 36.4 32.0 38.0 41.1 23 42.7 64.2 48.6 58.5 39.5 43.6 20
mmGPT [21] 30.4 30.9 13.4 26.8 36.8 28.8 36.3 33.2 26 52.6 65.7 47.2 58.0 38.6 40.2 21
Shikra [9] 47.2 47.1 5.4 33.3 41.6 27.1 38.9 37.4 20 60.9 68.7 45.5 57.3 49.8 46.7 14

Cheetor𝐿2 [43] 46.5 52.9 17.1 34.5 59.3 39.8 39.8 44.4 17 52.7 65.0 48.7 60.7 41.8 41.0 18
BLIVA [26] 41.7 45.2 36.9 33.3 42.8 30.8 38.4 64.2 18 64.9 82.9 51.1 72.1 58.4 45.0 8

LLaVA-1.5-7B𝑉 [50] 68.7 78.5 19.2 42.3 73.6 56.9 48.3 79.3 14 60.0 83.8 53.3 63.5 59.4 47.4 7
MiniGPT-v2 [8] 45.8 50.7 2.7 30.7 52.1 37.5 35.2 6.7 21 48.0 66.3 55.8 49.3 38.9 36.7 19

Qwen-VL-Chat [5] 73.0 78.5 38.2 44.6 73.6 55.6 49.5 54.6 10 69.8 83.5 50.4 73.1 61.0 50.7 4
LLaVA-1.6-7B𝑉 [51] 69.7 77.0 21.9 48.3 75.2 59.8 48.1 52.6 13 61.4 81.9 53.6 63.8 58.5 47.5 11

Monkey [46] 69.0 75.6 42.0 45.3 73.2 48.8 50.4 54.6 12 60.8 81.0 51.3 74.2 50.2 50.7 9
Deepseek-VL [55] 68.6 81.4 43.5 50.0 75.3 71.2 49.2 66.3 6 56.6 82.4 54.4 67.1 63.5 45.1 10

ShareGPT4V-7B [10] 68.5 78.7 25.3 48.3 74.3 60.8 49.1 84.2 9 62.1 84.5 57.0 65.2 60.2 50.3 2
ShareGPT4V-13B [10] 64.3 81.1 25.7 55.7 77.5 67.5 57.0 91.4 5 64.0 83.5 55.9 71.2 61.3 50.6 2
OmniLMM-12B [1] 78.8 84.8 47.1 66.0 81.1 77.8 58.6 58.4 2 67.3 86.3 66.3 70.8 65.2 45.0 1
LLaVA-1.5-13B𝑉 [50] 70.0 75.6 22.0 52.8 79.6 66.7 52.1 84.8 7 61.6 83.8 55.5 69.6 58.48 45.9 6
LLaVA-1.6-13B𝑉 [51] 73.2 79.7 23.5 53.6 79.0 69.3 52.2 50.5 8 67.6 83.3 56.1 68.4 59.66 49.8 5

GPT-4V [63] 79.2 84.8 64.9 47.1 82.8 76.6 69.9 24.8 4 - - - - - - -
Gemini-1.0-ProV [76] 77.7 84.6 59.3 53.6 86.4 71.5 68.1 52.8 3 - - - - - - -
Qwen-VL-Max [5] 79.8 86.8 69.9 58.5 86.5 81.5 64.0 76.8 1 - - - - - - -

Table 4: General evaluation results of LVLMs across different capability dimensions. “CG”, “FG”, “CMI”, and “Desc” are short for
coarse-grained perception, fine-grained perception, cross-modal inference, and visual description, respectively. “𝑅” represents
the rank of average rank across capability dimensions.

5 EXPERIMENTS
5.1 Implementation Details
To demonstrate the universality of ReForm-Eval, we collect and
evaluate 26 diverse LVLMs, which can be divided into open-source
and proprietary API-based groups. Following LLaVA-1.6 [51], mod-
els are further divided into 3 groups: the∼7B group, the ∼13B group
and the proprietary group . Please refer to Appendix B.2 for a de-
tailed introduction to these models. All experiments are conducted
in the same software and hardware environment to ensure fairness.
We follow the hyperparameters settings used in the original liter-
ature. Specific parameter settings are in Appendix B.1.

Notations. For models with multiple variants based on differ-
ent backbones, we select the one with the best performance and
use subscripts to denote the backbone used: 𝐹 , 𝑉 , 𝐿, and 𝐿2 repre-
sent FlanT5 [14], Vicuna [13], LLaMA [78], and LLaMA2 [79], re-
spectively. For multiple-choice problems, “Generation Evaluation”
and “Likelihood Evaluation” are respectively based on the black-
box and white-box strategies. Please note that likelihood evalua-
tion is not applicable to API-based methods and text generation
tasks. For each task under different strategies, the best result among
each group is highlighted in boldwhile the runner-up is underlined.

5.2 Evaluating LVLMs with ReForm-Eval
General Performance. Table 4 presents the thorough perfor-

mance of each model across dimensions. API-based proprietary
models exhibit notable advantages, within which Qwen-VL-Max
leads the pack. The overall performance of the ∼13B models sur-
passes that of the ∼7B group, implying the effectiveness of enlarg-
ing model size in multi-modal tasks. OmniLLM is the only model
with comparable performance to proprietarymodels, but theremight
be concerns about potential data leakage since the training details
of OmniLMM are not disclosed. Appendix C provides the complete
results of performance and instability in each dimension.

Comparison among∼7Bmodels. With generation-based eval-
uation, Deepseek-VL exhibits superior performance across mul-
tiple dimensions. Subsequently, ShareGPT4V-7B, Monkey, Qwen-
VL-Chat, and LLaVA-1.6 demonstrate outstanding performance in
various scenarios, with each having its strengths and weaknesses
across different dimensions. In terms of likelihood evaluation, simi-
larmodels stand out. Besides, the effectiveness of BLIVA, ShareGPT4V-
7B, and Qwen-VL-Chat becomes apparent with likelihood evalua-
tion, while the advantage of Deepseek-VL diminishes. We ascribe
this phenomenon to the instruction-following capabilities of mod-
els. For a detailed analysis, please refer to Section 6.3.
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Figure 6: Comparison between two evaluation strategies. The vertical axis indicates how much the likelihood evaluation sur-
passes the generation evaluation. Results are grouped and averaged based on the language backbone.

Figure 7: Comparison of generation performance between
different number of options in Flowers102 and Pets37.

Comparison among ∼13B models. OmniLMM is overwhelm-
ingly better than the other three models, while each of those three
models has its own good-performed dimensions. When evaluated
under the likelihood strategy, ShareGPT-4V is slightly ahead. This
phenomenon is consistent with the 7B version. Comparing the two
versions of LLaVA, except for CG, the 1.6 version with expanded
visual input is not significantly superior to the 1.5 version.

Comparison among proprietary models. Qwen-VL-Max per-
forms the best. GPT-4V outperforms Gemini-1.0-ProV in percep-
tion tasks, yet this trend reverses in cognition tasks except for CMI.

6 FURTHER ANALYSIS
6.1 Effect of Negative Options
In this section, we illustrate the rationality of the reformulation
framework ofmultiple-choice questions by exploring the impact of
negative options. For close-vocabulary classification datasets with
excessive categories, we conduct hard-negative sampling to reduce
the output space. We delve into an investigation of the number of
options 𝑁 on Flowers102 [61] and Pets37 [64]. As shown in Fig-
ure 7, with the increase of𝑁 , all themodels’ performance decreases
on both datasets. 𝑁 = 4 is a turning point, where the impact of
increasing 𝑁 diminishes. Considering the computational cost, to-
gether with the fact that four-option multiple-choice questions are
quite common, we finally set 𝑁 = 4 for most tasks in ReForm-Eval.

In open-ended QA tasks, we explore two sources for distrac-
tors: answers from other questions in the dataset and ChatGPT. For
the former source, random and text similarity-based hard-negative
sampling methods are adopted. Table 5 reveals that selecting dis-
tractors from the answer pool within the dataset leads to a high
false-negative rate, making them unreliable for model evaluation.
Conversely, ChatGPT-generated distractors are proved more
reasonable and less prone to false negatives, offering greater
challenges compared to randomoptions.Therefore, for open-ended
QA tasks, ChatGPT emerges as the preferred source for distractors.

Negative Options From Dataset From
ChatGPTRandom HN

FN Rate in Options 0.09 0.37 <0.01
Avg. Score of All Models 45.3 N/A 36.9

Table 5: Comparison between different sources of distrac-
tors in VisDial. FN and HN are respectively short for false
and hard negatives. “N/A” indicates that the corresponding
experiment is omitted due to the false-negative issues.

6.2 Effect of In-Context Sample
To demonstrate the effectiveness of the black-box evaluation strat-
egy introduced in Section 4.1. We assess LVLMs’ ability to follow
multiple-choice instructions under different strategies. The exper-
iments are conducted in the re-formulated VQA v2, a response is
considered as hitting the format if it includes the option mark like
“(A)”. Some results are listed in Table 3. It is obvious that the abil-
ity is tightly related to the backbone. LVLMs based on raw LLaMA
inherit the weak instruction-following ability of the backbone. Ad-
ditionally, fully fine-tuning the backbone entails potential risks of
catastrophic forgetting of the capability, especially for 13B-based
models, where the large model capacity may lead to biases towards
specific response patterns. However, fine-tuning a small portion of
parameters in LoRA or delta modules does not result in such issues.
Nevertheless, in-context samples effectively provide format
information and guide all LVLMs to respond in the desired
format, facilitating automated evaluation.

6.3 Generation v.s. Likelihood Evaluation
For generation evaluation, the results reflect the coupling of the
multi-modal understanding capability and the instruction-following
capability. Meanwhile, likelihood evaluation directly probes the
generative models and relaxes the requirement for instruction fol-
lowing. As shown in Figure 6, the performance gap between LVLMs
under the generation and likelihood evaluationmethods are tightly
related to the LLM backbone. We attribute this to the capability of
models to understand the multiple-choice instructions. There is a
deficiency of such ability in models based on Vicuna and LLaMA,
the effectiveness of these models must be demonstrated through
likelihood evaluation. In contrast, models based on the other back-
bones, especially Deeps-eek and FLAN-T5, adapt tomultiple-choice
questions well. By further analyzing the relationship between op-
tions, these models can conclude with more accurate predictions.
Therefore, we believe that enhancing text comprehension abil-
ity should be emphasized in developing LVLMs.
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Figure 8: The correlation between different capability di-
mensions, calculated with performance from ∼7B models.
“SPA” is the short name for “Spatial” dimension.

6.4 Behind the Instability
To investigate the source of instability, we conduct experiments
on ScienceQA by applying three types of perturbations separately
to LVLMs, including random instructions, shuffling option orders,
and random option marks (uppercase, lowercase, or numeric). As
illustrated in Table 6, shuffling the option order results in the high-
est instability, highlighting a misunderstanding of the option con-
tents. Meanwhile, we observe that most models exhibit some de-
gree of preference for specific options (see Appendix C.6). The ran-
domness of instruction has the least effect for each model group,
suggesting that LVLMs can reasonably comprehend the carefully
crafted instructions. With likelihood evaluation, the instability is
overall lower because it is a white-box method that directly probes
generative models without the need for random sampling during
generation.Comparison betweenmodel groups indicates that
larger models are more stable. Additionally, we reveal an ap-
parent negative correlation between instability and accuracy in
Appendix C.7. High instability to some extent reflects the model’s
uncertainty regarding the answer, leading to reduced accuracy.

6.5 Correlation among Capability Dimensions
We explore the relations among the human-crafted 8 capability di-
mensions by calculating their correlation coefficients. Results are
shown in Figure 8. In terms of visual perception tasks, coarse-grained
(CG) and fine-grained (FG) perceptions are highly correlated, whereas
scene text perception (STP) operates on a largely independent axis.
This suggests that the ability to comprehend text differs sig-
nificantly from the current abilities of LVLMs to process in-
formation on both local and global scales. Moreover, the high
correlations among various subtasks of STP indicate the rational-
ity of our capability dimension design. With regard to visual cogni-
tion tasks, spatial (SPA) dimension exhibits low correlations with
the other four, indicating its distinctive nature and complexity. In
the interplay between visual cognition and perception tasks, SPA

Figure 9: Performance gains from the increase of model
size for Knowledge-based and Knowledge-free tasks.“Δ Acc”
refers to the difference between the accuracy of the 13B
model and the 7B model on the corresponding task.

Instability Source Generation Likelihood
∼7B ∼13B Pro. ∼7B ∼13B

Instruction 0.13 0.05 0.12 0.06 0.06
Option Order 0.51 0.26 0.22 N/A N/A
Option Mark 0.23 0.08 0.12 N/A N/A

Table 6: Average instability by three types of random pertur-
bations across distinct groups.The calculation formula is de-
fined in Section 4.2. “Pro.” represents the proprietary group.

demonstrates a stronger connection with FG than CG. This sug-
gests that spatial abilities are tailored to fine-grained visual
details. Furthermore, the correlation between STP and SPA is rel-
atively low, and both dimensions also show little correlation with
other capability dimensions. In the future, models can improve
their ability in spatial analysis and scene text perception through
the relevant datasets provided by our ReForm-Eval benchmark.

6.6 Knowledge in Model Capacity
The richness of ReForm-Eval empowers comparative analysis from
a specific perspective. We take the exploration of the LVLMs’ inter-
nal knowledge as an example. We select two subsets: tasks requir-
ing additional knowledge and knowledge-free tasks, along with
a strictly controlled group of ViQuAE and its variant K-ViQuAE
(where the knowledge is provided in the question). Figure 9 il-
lustrates the performance gain across different tasks with the in-
crease inmodel capacity.The improvement is more pronounced for
knowledge-based tasks, verifying the effectiveness of scaling
up model sizes in expanding internal knowledge of LVLMs.

7 CONCLUSION
In this paper, we propose to re-formulate task-orientedmulti-modal
benchmarks to evaluate LVLMs. By efficiently re-formulating 61
benchmarks into unified formats, we construct a benchmark, namely
ReForm-Eval, covering 8 capability dimensions. Compared with
previous benchmarks for LVLMs, ReForm-Eval provides more data
without the need for manual annotation. We further design a de-
pendable automated evaluation framework, ensuring an impartial
assessment of different LVLMs. Leveraging ReForm-Eval, we con-
duct exhaustive evaluations of various LVLMs and delve into the
factors influencing their performance. Generally speaking, we be-
lieve ReForm-Eval serves as a reliable tool for quantitative analysis
of LVLMs, aiding in the research and development of LVLMs.
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