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Abstract

In unsupervised domain adaptation (UDA), directly adapting from the source to
the target domain usually suffers significant discrepancies and leads to insufficient
alignment. Thus, many UDA works attempt to vanish the domain gap gradually and
softly via various intermediate spaces, dubbed domain bridging (DB). However,
for dense prediction tasks such as domain adaptive semantic segmentation (DASS),
existing solutions have mostly relied on rough style transfer and how to elegantly
bridge domains is still under-explored. In this work, we resort to data mixing to
establish a deliberated domain bridging (DDB) for DASS, through which the joint
distributions of source and target domains are aligned and interacted with each in
the intermediate space. At the heart of DDB lies a dual-path domain bridging step
for generating two intermediate domains using the coarse-wise and the fine-wise
data mixing techniques, alongside a cross-path knowledge distillation step for
taking two complementary models trained on generated intermediate samples as
‘teachers’ to develop a superior ‘student’ in a multi-teacher distillation manner.
These two optimization steps work in an alternating way and reinforce each other
to give rise to DDB with strong adaptation power. Extensive experiments on
adaptive segmentation tasks with different settings demonstrate that our DDB
significantly outperforms state-of-the-art methods. Code is available at https:
//github.com/xiaoachen98/DDB.git.

1 Introduction

When training deep models on one domain but applying it to other unseen domains, its performance
typically drops seriously due to the domain shift/discrepancy issue [45, 44, 69, 55]. Since annotating
data in the new scenario to re-train model to mitigate performance degradation is too expensive and
time consuming, extensive researches have resorted to unsupervised domain adaptation (UDA) [41,
15, 34, 3], which aims to transfer knowledge from labeled source domain to unlabeled target domain.

Generally, existing UDA methods typically reduce the domain discrepancy by leveraging information
statistics metrics [10, 27, 29, 33, 35, 46, 66] or adversarial training [15, 30, 34, 49, 54, 58, 3]. Both
of these branches directly adapt the knowledge learned from the source domain to the target domain.
However, excessive/continuous domain discrepancies tend to limit the efficiency of these methods for
knowledge transfer, causing non-optimal performance, especially on dense prediction tasks such as
semantic segmentation.
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Figure 1: Different domain bridging ways for solving the domain-adaptive semantic segmentation (DASS)
task. (a) the global interpolation based mix may cause an unexpected pixel-wise ambiguity issue; (b) the local
replacement mix techniques better preserve the semantic consistency of pixels of the same object, which is
important for segmentation. The coarse region-level local replacement helps the model exploit contextual
information, while the fine class-level local replacement enables the model to exploit the inherent properties of
each object, making them distinguishable.

To address this issue, some recent approaches tend to mitigate the excessive domain discrepancies
by gradually transferring knowledge across domains by constructing intermediate domains in the
input space [41, 60, 61], feature space [11, 12], or output space (self-training based) [64, 65]. Such
mechanism of constructing intermediate domain is usually termed as domain bridging (DB). Despite
unprecedented advances achieved in UDA classification task, the most common DB approaches,
such as CycleGAN [72] and ColorTransfer [47] that based on style transfer, are inapplicable and
cannot achieve satisfactory adaptation performance for the domain adaptive semantic segmentation
(DASS). These style transfer-based DB approaches are prone to generate unexpected artifacts in
the global input space and also ignore to bridge in the label space, which makes the optimization
constraints insufficient for the dense prediction tasks such as DASS [16, 22, 67, 68, 71]. Therefore,
such dilemma drives an urgent demand to investigate a new DB method for the densely predicted
DASS area.

In this paper, to consistently construct intermediate representations in the input space as well as the
label space for domain bridging in DASS, we resort to the mix-based data augmentation techniques[63,
62, 18, 14, 43]. First, we study the existing data mix methods and group them into two categories
according to their working way: global interpolation [63] and local replacement [62, 18, 14, 43, 71].
As shown in Fig. 1, the global interpolation based data mix may cause the pixel-wise ambiguity issue,
but the local replacement based mix methods can better preserve the semantic integrity/consistency
of objects for segmentation. Next, to fully exploit the local replacement based data mix for domain
bridging, we further deeply explore it from two complementary perspectives: the coarse region-level
mix (e.g., CutMix [62], FMix [18]) and the fine class-level mix (e.g., ClassMix [43]). We can also
see from Fig. 1 that the coarse region-level domain bridging helps the model to exploit contextual
information, reducing semantics confusion (e.g., category confusion between objects such as ‘truck,
bus, and train’). Complementarily, the fine class-level domain bridging enables the model to fully
exploit the inherent properties of each category, making each object distinguishable. However, these
two groups of DB methods tend to drive the model to be overly dependent on contextual information
or inherent properties, causing class bias and confusion in the target domain separately.

In this work, we propose a powerful DASS method called Deliberated Domain Bridging (DDB) to
carefully take advantage of data mixing techniques and gradually transfer knowledge from the source
domain to the target domain. As an optimization strategy, DDB consists of two alternating steps,
i.e., Dual-Path Domain Bridging (DPDB) and Cross-path Knowledge Distillation (CKD). In the
first step, DPDB independently leverages the coarse region-level data mix and fine class-level data
mix to construct two complementary bridging paths to train two expert teacher models, achieving
dual-granularity domain bridging. In the second step, CKD uses two complementary teacher models
to guide one identical student model on the target domain, achieving adaptive segmentation. These
two optimization steps work in an alternating way, which allows the powerful teacher and student
models to reinforce each other progressively based on the joint distributions of source and target
domains. The main contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first work that provides a comprehensive analysis w.r.t the
recent domain bridging techniques when directly applied to the task of domain-adaptive semantic
segmentation (DASS).
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• Based on the analysis, we propose an effective DASS method called Deliberated Domain Bridg-
ing (DDB), which consists of two alternating steps – Dual-path Domain Bridging (DPDB) and
Cross-path Knowledge Distillation (CKD). These two optimization steps promote each other and
progressively encourage two complementary teacher models and a superior student model (used
for inference), achieving a win-win effect.

• We experimentally validate the superiority of our DDB not only in the single-source domain setting
but also in the multi-source and multi-target domain settings and conclude that DDB outperforms
previous methods tailored for each setting by a large margin.

2 Related Work

Domain Adaptive Semantic Segmentation (DASS). This task aims to improve the adaptation
performance for the semantic segmentation model to avoid laborious pixel-wise annotation in new
target scenarios. The recent DASS works can be mainly grouped into two categories: adversarial
training based methods [23, 51–53, 37] and self-training based methods [24, 73, 70, 64, 65]. For the
first branch, most works tend to learn domain-invariant representations based on a min-max adversarial
optimization game, where a feature extractor is trained to fool a domain discriminator and thus helps
to obtain aligned feature distributions [51–53, 37]. The second branch focuses on how to generate
highly reliable pseudo labels for the target domain data for further model optimization, which drives
many classic related techniques, such as confidence regularized pseudo label generation [73, 70]
and category-aware pseudo label rectification [64, 65]. These two branches of the DASS task both
directly adapt the knowledge learned from the source domain to the target domain. However, the large
continuous domain discrepancies in DASS make such direct discrepancy minimization paradigms
difficult, due to the fine-grained pixel-wise gap among different domains.

Domain Bridging (DB). Instead of directly transferring knowledge from the source domain to the
target domain, some UDA works in the tasks of classification and person re-identification tend
to gradually transfer knowledge by building a bridge between source and target domains, i.e.,
constructing an intermediate domain on the image level [57, 41], on the feature level [11, 12], or on
the output level [64, 65]. Representatively, GVB [11] designs a gradually vanishing bridge and inserts
it into the task-specific classifier and the domain discriminator to construct intermediate domain-
invariant representations, reducing the knowledge transfer difficulty. Along this road, some works [57,
60, 41, 12, 5, 50] resort to style transfer techniques [6, 22, 7, 16] and data mix techniques [63, 62, 43]
for constructing various intermediate domains. However, the existing DB approaches have not yet
been extensively investigated in DASS. In this paper, we first perform a comprehensive analysis w.r.t
the recent DB techniques and find the complementarity between the coarse region-level DB and the
fine class-level DB methods, then deliberately/carefully apply these two DB methods to help the task
of DASS.

3 Deliberated Domain Bridging

3.1 Recap of Preliminary Knowledge

For domain adaptive semantic segmentation (DASS), we denote the source domain as Ds =

{(x(i)s , y
(i)
s )}Ns

i=1 with Ns samples drawn from the source domain S, where x(i)s ∈ Xs is an im-
age, y(i)s ∈ Ys is the corresponding pixel-wise one-hot label covering K classes. Similarly, the
unlabeled target domain set is denoted as Dt = {x(i)t }N

t

i=1 with N t samples drawn from the target
domain T . Note that the source and target domains share the same label space. This work aims to
learn a segmentation model for effectively transferring knowledge from the source domain to the
target domain, finally achieving reliable pixel-wise predictions on the target data. Following previous
works [64, 65], this segmentation model M consists of a feature extractor that maps the image to the
feature space and a classifier that generates corresponding pixel-wise predictions.

3.2 Exploring Domain Bridging for DASS

Revisiting Existing DB Methods. As mentioned in Sec. 2, the previous DB methods are mainly
based on style transfer [72, 47], global interpolation based mix [63], and local replacement based
mix [62, 18, 14, 43, 71]. Formally, the image-level style transfer-based DB methods can be formulated
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Table 1: Performance (mIoU) comparison of different DB methods on GTA5→Cityscapes. S→T denotes that
we translate the image from the source domain to the target domain. Pseudo Labeling represents the constructed
self-training baseline without any DB method. + indicates that both are used, while ⊕ indicates that these
methods will be used mutually with an equal probability. The best score is indicated in underlined bold.

(a) Comparison of style transfer-based DB methods.

Method mIoU

Source only 26.3±0.9
+ CycleGAN [72] (S→T) 37.8±0.4
+ Color Transfer [47] (S→T) 38.7±1.2
+ FDA [61] (S→T) 41.3±0.6

Pseudo Labeling 30.7±0.4
+ CycleGAN (T→S) 28.9±0.5
+ Color Transfer (T→S) 31.4±0.5
+ FDA (T→S) 42.6±0.6

(b) Comparison of global blending-based and
region-based DB methods.

Method mIoU

Pseudo Labeling 30.7±0.4
+ Mixup [63] 31.6±0.6
+ CowMix [14] 50.7±0.4
+ FMix [18] 50.0±0.2
+ CutMix [62] 54.9±0.2

+ ClassMix [43] 54.3±1.4

(c) Comparison of combined DB methods of differ-
ent groups.

Method mIoU

Pseudo Labeling 30.7±0.4
+ CutMix + CycleGAN (S→T) 47.6±1.1
+ ClassMix + CycleGAN (S→T) 53.9±1.0
+ CutMix + FDA (S→T) 46.8±1.2
+ ClassMix + FDA (S→T) 50.6±1.1

+ CowMix ⊕ CutMix 51.7±0.4
+ FMix ⊕ CutMix 50.6±0.7

+ FMix ⊕ ClassMix 54.5±0.5
+ CutMix ⊕ ClassMix 55.2±1.0

as,
xs→t = h (xs) , xt→s = h′ (xt) , (1)

where h (·) and h′ (·) represent the S → T translation function and T → S translation function,
respectively. Such style transfer-based DB approaches tend to generate unexpected artifacts at the
image level and also ignore the influence of pixel-wise label correspondence.

In addition, we formalize the global interpolation mix based DB methods as,

xnew = λ · xs + (1− λ) · xt
ynew = λ · ys + (1− λ) · yt, (2)

where λ denotes the mixing ratio sampled from a beta distribution. Furthermore, the local replacement
mix based DB methods are formulated as,

xnew = M� xs + (1−M)� xt
ynew = M� ys + (1−M)� yt, (3)

where M denotes a binary mask indicating which pixel needs to be copied from the source domain
and pasted to the target domain, 1 is a mask filled with ones, and � represents the element-wise
multiplication operation. yt represents the pseudo label for target domain. In particular, this local
replacement DB contains two types of coarse region-level mix and fine class-level mix. As shown
in Fig. 1(b), the binary mask M of the former is the cut patch [62, 18, 14] while M of the latter is
obtained from the pixel-wise annotations in source domain [43].

Analyzing DB Methods with Toy Game. From the above formalization, we can see that the global
interpolation-based and local replacement-based DB methods both build bridges across the cross-
domain joint distributions of input data, which can benefit the densely predicted DASS task. To verify
this, we perform a toy game with a simple self-training based DASS pipeline following [50, 24] to
evaluate the performance w.r.t semantic segmentation of different DB methods. As illustrated in Tab. 1
(a) and (b), although style transfer based and global interpolation based DB methods both outperform
baseline (i.e., the source only scheme), they are pronouncedly inferior to their local replacement-based
counterparts. This implies that for the DASS task, (1) it not only needs to construct an intermediate
domain on the input space, but also the label space; (2) the local replacement based DB methods are
more suitable for segmentation because they can better preserve the semantic integrity/consistency
for pixels belonging to the same object.

In addition, Tab. 1 (b) shows that the performance of coarse region-level CutMix [62] and fine
class-level ClassMix [43] are comparable. Thus, we further conduct a group of tests by combining
different DB methods for a deeper study. The results are shown in Tab. 1 (c), we can observe that
(1) due to the unexpected artifacts, the segmentation performance is degraded when region-level DB
methods are combined with style transfer ones; (2) we surprisingly notice that the coarse region-level
and fine class-level domain bridging methods can mutually reinforce/promote each other.

Analyzing the Local Replacement Based DB Methods with Visualization. For the coarse region-
level data mix methods (e.g., CutMix [62]), those pixels (i.e., a patch) pasted to the target domain
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(a) Target Image/GT (b) Source Only (c) Region-level based (d) Class-level based

Figure 2: Visualization of the qualitative results on GTA5→ Cityscapes benchmark (bottom row), and feature
space on the val set utilizing UMAP [39] (top row). For a clear analysis of the feature space, we select two
pairs of categories suffering class bias and confusion, i.e., salmon for road, green for sidewalk, gray for bus, and
purple for train.

usually have a rich contextual information. For example, the pixel beneath a ‘person’ must belong to
the ‘sidewalk’. However, the area beneath a ’person’ is more likely to be ’road’ in the target domain.
Thus, such excessive hard reliance on context may introduce the issue of class bias from the source
domain to the target domain, e.g., ‘road’ and ‘sidewalk’ in Fig. 2 (c). In contrast, the fine class-level
bridging method (e.g., ClassMix [43]) only pastes a set of pixels belonging to the same class to the
target domain image, avoiding class bias issue, which also drives the model to discriminate different
objects solely based on their inherent properties, leading to a more compact feature distribution in
Fig. 2 (d). But, the scheme that only relies on the characteristics of each category may be confused by
the classes that can easily be distinguished by the context, e.g., ‘train’ and ‘bus’ in Fig. 2 (d). All in
all, both coarse-grained and fine-grained DB methods have their own advantages and drawbacks, and
thus there is an urgent need to find a appropriate way to combine them to achieve a win-win effect.

3.3 Progressively learning from Dual-grained Domain Bridging

Instead of directly combining individual DB methods as did in the bottom of Tab. 1(c), we propose an
alternating optimization strategy to progressively transfer knowledge from the source domain to the
target domain, which consists of two steps, i.e., Dual-Path Domain Bridging (DPDB) and Cross-path
Knowledge Distillation (CKD). These two steps are conducted iteratively, and the ending of each
round will serve as the beginning for the next round (see detailed algorithm in supplemental material).

Dual-Path Domain Bridging (DPDB). To better preserve and exploit the advantages of the coarse
region-level and fine class-level DB methods, we create bridging paths for them independently rather
than simply fusing them. Based on previous analysis and experiments, we utilize the cross-domain
CutMix [62] and ClassMix [43] techniques to construct the coarse region-path (CRP) and fine class-
path (FCP) domain bridging, respectively. The self-training pipeline then proceeds in the following
manner along each path (here we take the coarse region-path (CRP) as an example for illustration):

Following [2], to minimize the empirical risk on the unlabeled target domain, we simultaneously
minimize the empirical risk on the source domain and mitigate the domain discrepancy. The first
item is achieved with a pixel-wise cross-entropy (CE) loss,

LCsrc = −
H×W∑
i=1

K∑
j=1

y(i,j)s logMC(xs)
(i,j)

, (4)

where MC is the model training on the coarse region-path and H,W denote the sample height
and width, respectively. To mitigate the domain discrepancy, we minimize the CE loss on the
constructed bridging path instead of adversarial training or minimize the predefined discrepancy
metric. Considering the fact that the unlabeled target domain images are involved in the bridging
path construction, an additional teacher network M ′C is employed to generate a denoised pixel-wise
pseudo-label ŷt for xt through the exponential moving average (EMA) based on the weights of MC

after each training step t,
θt+1
M ′C
← αθtM ′C

+ (1− α) θtMC
, (5)

where α denotes the momentum and is set to 0.99. Based on Eqn. 3, we can generate the bridging
image xcrp and label ŷcrp on the coarse region-path. In line with [50, 43], a confidence-based weight
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map mcrp will be generated to regularize the target domain during the training process as follows,

mcrp = M� 1 + (1−M)�mt, (6)

where mt =
∑H×W

i=1 [maxj′M
′
C(xt)

(i,j′)>τ ]

H·W denotes the ratio of pixels that exceed a threshold τ on
the maximum softmax probability and [·] represents the Iverson bracket. Then, we minimize the CE
loss on the region-path bridging,

LCbrg = −
H×W∑
i=1

K∑
j=1

m(i,j)
crp ŷ

(i,j)
crp logMC(xcrp)

(i,j)
. (7)

Furthermore, the overall objective function of the self-training pipeline on the region-path bridging is
summarized as,

LC = LCsrc + LCbrg = Lce (MC (xs) , ys) + Lce (MC (xcrp) ,mcrp � ŷcrp) . (8)

Similarly, we can obtain the overall objective function LF on the fine class-path (FCP) bridging.
By minimizing LC and LF separately for the coarse region-path and fine class-path, we can obtain
two complementary models. The next problem that needs to be addressed is how to appropriately
integrate these two kinds of complementary knowledge in an elegant manner.

Cross-path Knowledge Distillation (CKD). Inspired by previous works [17, 21], knowledge can be
transferred from a teacher network to a student network by knowledge distillation in the output space.
Here, we reform it to extract knowledge from two complementary teachers and adaptively transfer
the integrated knowledge to a student. Note that we only integrate and transfer the complementary
knowledge in the unlabeled target domain. Specifically, the outputs of two teachers have been
adaptively weighted and ensembled as guidance to drive the student model to learn segmentation
in the unlabeled target domain. Furthermore, we experimentally choose the ‘hard’ distillation, i.e.,
ensembling the predicted softmax logits to generate a one-hot vector and utilizing the CE loss for
supervising the student model MS . The detailed distillation loss can be written as,

Ldistill = Lce (MS (xaugt ) , ȳt) , (9)

where xaugt represents the target images augmented by color jitter and gaussian blur, and ȳt is obtained
by weighted ensembling on the teachers’ softmax logits of the target image xt. Intuitively, different
samples, even different pixels in one sample, require different contributions from the two teacher
models for ensembling. We adaptively generate a pixel-wise weight map w(i,j) in the target domain
by calculating the distance pixel-by-pixel between feature response f (i) before the classification layer
and the centroid η(j) of each category. At each location, the closer the feature response is far from
one centroid of certain category, the more likely it belongs to that category and thus should contribute
more to the ensemble effect. Therefore, taking the coarse region-path (CRP) as an example, we first
utilize the trained MC to calculate the centroid η(j)C of each category in the target domain,

η
(j)
C =

∑
xt∈Xt

∑
i f

(i)
C ∗ 1(ŷ

(i,j)
t == 1)∑

xt∈Xt

∑
i 1(ŷ

(i,j)
t == 1)

. (10)

Then, we define the adaptive ensemble weights w(i,j)
C of MC as the softmax over feature distances to

the centroids

w
(i,j)
C =

exp(−‖f (i)C − η
(j)
C ‖)∑

j′ exp(−‖f (i)C − η
(j′)
C ‖)

. (11)

Similarly, we can also obtain the ensembling weight of the other path w(i,j)
F of MF . Furthermore, we

can obtain the pseudo-label ȳt, following the weighted ensembling,

ȳt = arg max(
wC · σ(MC(xt)) + wF · σ(MF (xt))

2
), (12)

where σ denotes the softmax function. In addition, the student model is also supervised by the labeled
source data to generate discriminative features

LSsrc = Lce(MS(xs), ys). (13)
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Image Ground Truth Source only Fine class-path Final studentCoarse region-path

Figure 3: Comparison of qualitative results on GTA5→ Cityscapes (top area), GTA5 +Synscapes→ Cityscapes
(middle area), and GTA5→ Cityscapes + Mapillary (bottom area) benchmarks.

Table 2: Comparison results of GTA5→Cityscapes adaptation (using ResNet-101 as the backbone and
DeepLabv2 as the head) in terms of mIoU. distill denotes applying multi-rounds self-distillation for the student
network initialized by self-supervised pre-training. The best score is indicated in underlined bold.
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mIoU

Source only 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
CyCADA [22] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7
ADVENT [52] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
BDL [31] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
FADA [53] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
CAG [65] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
IAST [40] 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5
DACS [50] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
SAC [1] 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8
CTF [38] 92.5 58.3 86.5 27.4 28.8 38.1 46.7 42.5 85.4 38.4 91.8 66.4 37.0 87.8 40.7 52.4 44.6 41.7 59.0 56.1

ProDA [64] 91.5 52.4 82.9 42.0 35.7 40.0 44.4 43.8 87.0 43.8 79.5 66.5 31.4 86.7 41.1 52.5 0.0 45.4 53.8 53.7
ProDA+distill 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
UndoDA [32] 89.1 34.3 83.6 38.3 27.5 28.9 34.7 17.6 84.2 41.0 85.1 57.8 33.7 85.1 38.5 41.3 30.7 31.1 48.0 49.0
UndoDA+ProDA 92.9 52.7 87.2 39.4 41.3 43.9 55.0 52.9 89.3 48.2 91.2 71.4 36.0 90.2 67.9 59.8 0.0 48.5 59.3 59.3
CPSL [28] 91.7 52.9 83.6 43.0 32.3 43.7 51.3 42.8 85.4 37.6 81.1 69.5 30.0 88.1 44.1 59.9 24.9 47.2 48.4 55.7
CPSL+distill 92.3 59.9 84.9 45.7 29.7 52.8 61.5 59.5 87.9 41.5 85.0 73.0 35.5 90.4 48.7 73.9 26.3 53.8 53.9 60.8

Source only 60.4 15.1 58.3 8.7 21.3 20.9 33.2 22.4 77.7 8.6 71.3 55.8 13.2 77.0 22.8 22.1 0.4 14.1 6.1 32.1
DDB(Ours) 95.3 67.4 89.3 44.4 45.7 38.7 54.7 55.7 88.1 40.7 90.7 70.7 43.1 92.2 60.8 67.6 34.2 48.7 63.7 62.7

The overall loss function of constraining the student model MS can be written as,

LS = LSsrc + Ldistill = Lce(MS(xs), ys) + Lce(MS(xaugt ), ȳt). (14)

In the end, a superior student model is well trained by adaptively integrating the knowledge from two
complementary teacher models covering different granularities.

Alternating Optimization Strategy. By integrating the complementary knowledge from two expert
teacher models, we can obtain a superior student model. In turn, this student model can be used to
initialize the teacher models in the next new round, resulting in two stronger teacher models. They
promote each other, achieving a win-win effect. Ultimately, we can obtain the most powerful student
model after the final round.
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Table 3: Comparison results of GTA5 (G) + Synscapes (S)→ Cityscapes (C) adaptation (using ResNet-101 as
the backbone and DeepLabv2 as the head) in terms of mIoU. The best score is indicated in underlined bold.
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Source only 85.1 36.9 84.1 39.0 33.3 38.7 43.1 40.2 84.8 37.1 82.4 65.2 37.8 69.4 43.4 38.8 34.6 33.2 53.1 51.6
AdaptSeg [51] 89.3 47.3 83.6 40.3 27.8 39.0 44.2 42.5 86.7 45.5 84.5 63.1 38.0 79.4 34.9 48.3 42.1 30.7 52.3 53.7
ADVENT [52] 91.8 49.0 84.6 39.4 31.5 39.9 42.9 43.5 86.3 45.1 84.6 65.3 41.0 87.1 37.9 49.2 31.0 30.3 48.8 54.2

MDAN [67] 92.4 56.1 86.8 42.7 32.9 39.3 48.0 40.3 87.2 47.2 90.5 64.1 35.9 87.8 33.8 48.6 39.0 27.6 49.2 55.2
MADAN [68] 94.1 61.0 86.4 43.3 32.1 40.6 49.0 44.4 87.3 47.7 89.4 61.7 36.3 87.5 35.5 45.8 31.0 33.5 52.1 55.7
MSCL [19] 93.6 59.6 87.1 44.9 36.7 42.1 49.9 42.5 87.7 47.6 89.9 63.5 40.3 88.2 41.0 58.3 53.1 37.9 57.7 59.0

Source only 82.5 42.4 79.0 27.2 31.7 40.8 53.0 45.6 85.3 30.9 80.6 68.7 35.7 78.3 39.0 42.7 9.6 37.3 55.9 50.9
DDB(Ours) 96.9 75.6 90.0 54.4 48.6 47.6 61.1 66.3 89.7 48.4 93.4 74.4 52.7 92.3 60.8 74.7 58.9 53.9 71.4 69.0

Table 4: Comparison results of GTA5 (G)→ Cityscapes (C) + Mapillary (M) adaptation (using ResNet-101 as
the backbone and DeepLabv2 as the head) in terms of mIoU. The best score is indicated in underlined bold.

Method Target ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
ge

.

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or

bi
ke

mIoU Avg.

Source only C 53.3 15.2 56.6 8.2 26.2 21.2 30.7 22.2 76.3 9.3 53.3 55.3 15.5 72.9 21.5 4.9 0.9 20.2 7.4 30.1 32.8M 55.7 27.1 55.3 9.9 20.6 22.7 33.3 31.6 68.4 21.1 70.6 53.5 30.9 72.7 32.3 11.6 5.6 36.3 14.9 35.5

CCL [25] C - - - - - - - - - - - - - - - - - - - 45.1 46.8M - - - - - - - - - - - - - - - - - - - 48.8

ADAS [26] C 88.3 32.2 82.2 23.8 24.2 30.5 35.0 33.3 83.3 37.9 85.1 56.7 21.9 84.6 38.6 46.2 0.5 33.5 33.3 45.8 47.5M 84.2 33.9 78.5 25.5 24.5 35.6 39.8 52.4 71.2 40.2 92.4 58.7 38.7 82.7 44.4 46.4 15.2 37.8 32.2 49.2

DDB(Ours) C 93.5 67.8 88.3 38.4 45.6 32.3 54.2 57.9 89.2 48.6 91.6 69.1 43.2 84.6 63.6 61.8 15.1 44.1 58.6 60.4 58.6M 89.3 60.8 81.4 35.9 38.4 32.9 48.5 50.5 69.9 37.9 90.1 62.6 49.6 86.0 62.7 62.9 26.1 52.0 42.8 56.9

4 Experiments

4.1 Experimental Settings

Datasets: We use four publicly available semantic segmentation benchmarks for validation, including
two synthetic scenes and two real-world scenes. Each scene has a unique structure and visual
appearance. In detail, GTA5 [48] is a synthetic dataset of 24,966 labeled images obtained from a
video game. Synscapes [56] is also a synthetic dataset of 25,000 images created by photo-realistic
rendering techniques, and its style is closer to real-world driving scenes than GTA5. Cityscapes [9] is
a real-world urban dataset collected from European cities, with 2,975 images for training and 500
images for validation. Mapillary Vista [42] is a large-scale dataset collected by various imaging
devices worldwide and includes 18,000 images for training and 2,000 images for validation.

Implementation details: We use the mmsegmentation [8] codebase and train models on RTX 3090Ti
GPUs. Following previous works [64, 65, 24, 59], we use the advanced DeepLab-v2 [4] model with
ResNet101 [20] pre-trained on ImageNet-1k [13] as backbone, and train the model with AdamW [36].
We set the learning rate as 6e-5 for the backbone and 6e-4 for the decoder head, use a weight decay of
0.01 and a linear learning rate warmup followed by 1.5k iterations linear decay. All experiments are
trained on a batch of 512x512 random cropped images for 40k iterations. We set the batch size to 2
for analysis and experiments in Tab. 1 and Tab. 6, and set batch size to 4 for other results. Following
[50], we use the same augmentation parameters and set τ = 0.968. For CutMix [62], the ratio of
the selected region for cross-domain pasting is experimentally set to 0.3. For ClassMix [43], half of
categories in the source domain are selected for cross-domain pasting.

4.2 Comparison with State-of-the-arts under Multiple Settings

GTA5 → Cityscapes (single-source). Tab. 2 reports results on the validation set of Cityscapes. Note
that the comparable ProDA [64], UndoDA [32], and CPSL [28] have been improved with a warmup
stage following existing DASS methods [51, 53]. Additionally, they also need to complete numerous
rounds of self-distillation for the student model initialized by self-supervised pre-training. Compared
to these methods that require redundant optimization processes, the proposed DDB method requires
only two alternating optimization steps of DPDB and CKD. Despite simplicity, our method achieves
a SOTA mIoU score of 62.7, outperforming existing methods significantly, which also achieves the
best IoU score in 7 out of 19 categories. Particularly, thanks to combining the complementary teacher
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Table 5: Ablation studies on the key components of our proposed method
on the GTA5 (G)→ Cityscapes (C) benchmark. It represents using the
’soft distillation’ if the ’hard distillation’ column isn’t ticked.

components mIoU gain

source only 32.1

stage 1
DPDB

region
path

class
path mIoU gain

X 56.5 +24.4
X 58.2 +26.1

stage 1
CKD

hard
distillation

adaptive
ensemble mIoU gain

59.0 +26.9
X 59.9 +27.8

X 61.1 +29.0
X X 61.2 +29.1

stage 2
DPDB

region
path

class
path mIoU gain

X 61.4 +29.3
X 62.6 +30.5

stage 2
CKD

hard
distillation

adaptive
ensemble mIoU gain

X X 62.7 +30.6

Table 6: Comparison results of ensemble from single and dis-
tinct paths in terms of mIoU on GTA5 (G)→ Cityscapes (C).
M1

C andM1
F denote the first run for the coarse region-path

and fine class-path model, separately. The best score is indi-
cated in underlined bold. And the cross-path ensemble is
indicated in italic.

M1
F M2

F M1
C M2

C

M1
F 55.5 - - -

M2
F 55.9 55.8 - -

M1
C 56.4 56.8 55.0 -

M2
C 56.2 56.6 55.7 54.7

Table 7: Performance comparison (mIoU) of the student
model obtained from CKD during various rounds in the
whole training process on three benchmarks. The best score
is indicated in underlined bold.

0 1 2 3

G→ C 32.1 61.2 62.7 62.7
G + S→ C 50.9 68.6 69.0 68.8
G→ C + M 32.8 57.4 58.6 58.2

models devoted to exploiting the context and inherent properties by the coarse region-path and fine
class-path, the student model performs surprisingly well in those categories that are susceptible to the
class bias issue, e.g., ‘sidewalk’ and ‘bike.’ Additionally, the final student model also performs well
in those categories suffering from semantic confusion, e.g., ‘person, rider’ and ‘truck, bus, train.’

GTA5 + Synscapes → Cityscapes (multi-source). We also perform experiments under the multi-
source domain setting. As shown in Tab. 3, our method obtains an impressive performance of 69.0 in
mIoU, outperforming the previous SOTA methods over 10.0, achieving the best performance in all
classes, especially those suffering class bias issue, e.g., ‘sidewalk’ and ‘bike.’ Although the proposed
DDB is not tailored for multi-source DASS, our method still benefits this task by constructing
intermediate domains between target and multiple source domains to facilitate knowledge transfer.

GTA5 → Cityscapes + Mapillary (multi-target). Tab. 4 displays the performance of the proposed
method in a multi-target domain setting. Although the multi-target DASS is more challenging due
to unknown distributions, our method can still achieve an impressive performance of 58.6 in mIoU
on average for multiple target domains, outperforming the existing SOTA methods by a significant
margin. Moreover, the proposed DDB outperforms ADAS [26] by 31.2 in averaged mIoU on the
‘sidewalk,’ by 14.1 in averaged mIoU on the ‘bus, train,’ which indicates our method avoids the
class bias and confusion issues. Such substantial performance gains comes from the DPDB-driven
complementary teacher networks and the CKD-driven knowledge integration.

4.3 Ablation Study and Detailed Discussion

Complementarity Verification. To verify the complementarity of two teacher models trained on
different bridging paths, we conduct an ablation where we train each path twice separately to obtain
four different models. After ensembling these models pair-by-pair, the segmentation results are
presented in Tab. 6. Unsurprisingly, the ensembled models across paths consistently perform better
results than those only from a single view.

Study on Dual-path Domain Bridging. In Tab. 5, the source-only model achieves 32.1 in mIoU
on the target domain. Combining the self-training pipeline with the coarse region-level and fine
class-level domain bridging, we can obtain two complementary teacher models, and they achieve
56.5 and 58.2 in mIoU, respectively. As shown in Fig. 3, the coarse region-path tends to promote the
model to utilize contextual information for prediction, whereas the fine class-path enables the model
to focus more on exploiting inherent properties. Detailed results for the two teacher models in each
category are provided in the supplemental materials.

Study on Cross-path Knowledge Distillation. Since CKD is performed on the unlabeled target
domain, as shown in Tab. 5, we use the more stable hard distillation, which performs 0.9 mIoU higher
than the soft distillation using the Kullback-Leibler divergence. Furthermore, our proposed adaptive
ensemble scheme further improves the performance by 2.1 and 1.3 in mIoU in the case of soft and
hard distillation, respectively. After applying CKD equipped with the hard distillation and adaptive

9



ensemble schemes, we can consistently obtain a superior student model. Fig. 3 illustrates how the
student model performs after integrating the knowledge from two complementary teacher models and
alleviates the class bias and confusion issues in various domain settings.

Influence of Alternating Optimization Strategy. As shown in Tab. 5, the alternation of DPDB and
CKD allows the complementary teacher and student models to promote each other and gradually
transfer knowledge across domains. We also test different alternating rounds on all three benchmarks,
and report the performance of the student models after each round in Tab. 7 (more results are provided
in the supplemental materials). The student model performs best across all three domain settings in
the second round. On the other hand, the student model shows a slight performance degradation after
the third round of alternate training in the multi-source and multi-target domain settings. We analyse
the degradation is because the non-negligible domain conflict in these two settings.

5 Conclusions

In this paper, we study how the domain bridging techniques should be applied to domain adaptive
semantic segmentation. To ensure that the segmentation model takes full advantage of domain
bridging while avoiding side effects, we propose an effective Deliberated Domain Bridging (DDB)
method. We build dual-path domain bridging (DPDB) with the coarse region-level data mix and
fine class-level data mix to construct two complementary teacher models. Then, a superior student
model can be generated from cross-path distillation (CKD) based on such two teacher models. By
alternating steps of DPDB and CKD, teacher models and student model would promote each other
and progressively transfer knowledge from the source domain to the target domain. Extensive ablation
studies demonstrate the effectiveness of our method, and the experimental results on three benchmarks
in the different settings further show its versatility and robustness.
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(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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