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ABSTRACT

Learning neural solvers for spatiotemporal partial differential equations (PDEs)
under real-world constraints remains a key challenge in scientific machine learn-
ing, especially for inverse tasks with sparse and noisy boundary observations.
We present the Aletheia dataset, the first 3D benchmark for learning data-driven
solvers in the context of nondestructive testing (NDT). The dataset simulates
eddy-current-induced heating in conductive solids and models the resulting tran-
sient heat propagation governed by the heat equation. Aletheia contains over
4,700 high-resolution samples across 10 excitation frequencies (1-100 kHz), each
providing volumetric heat source and temperature fields over time. It supports
both forward prediction of temperature evolution and inverse reconstruction of
internal heat sources or defects from surface infrared measurements. Real infrared
thermography data from cracked rail specimens are included for calibration and
generalization studies. We define three canonical tasks on both regular and irregular
grids and benchmark them using various neural operators. Aletheia establishes a
unified platform for evaluating neural PDE solvers under realistic NDT conditions,
enabling progress in reliable, data-driven inverse modeling.

1 INTRODUCTION

Neural operator methods, such as the Fourier Neural Operator (FNO) (Li et al., 2021, 2023b; Tran
et al., 2023; Xiao et al., 2024) and Transformer-based solvers (Li et al., 2023a; Wu et al., 2024; Lee
& Oh, 2024), have emerged as a transformative approach for learning solution operators of partial
differential equations (PDEs) directly from data. Unlike traditional methods, these architectures
bypass mesh-dependent discretizations, enabling robust generalization across parameterized PDE
families. However, they are typically evaluated on academic datasets (e.g., Darcy flow, Navier–Stokes)
with fully observed fields and simplified geometries, which fail to capture the complexities of real-
world inverse problems. In applications like nondestructive testing (NDT) (Gupta et al., 2022; Xiong
et al., 2023; Yuan et al., 2021; Gong et al., 2022; Tuschl et al., 2021), challenges such as sparse
or noisy boundary observations, unknown source terms, and heterogeneous domains demand more
robust benchmarks (Molinaro et al., 2023; Azizzadenesheli et al., 2024).

In NDT, reconstructing hidden defects (Lin et al., 2023; Zhao et al., 2022; Tao et al., 2022; Wu et al.,
2021) from surface temperature measurements, as in inverse heat conduction problems (Silva et al.,
2023), is inherently ill-posed: distinct subsurface defects or excitation conditions can produce nearly
identical surface temperature patterns (Woodbury et al., 2023), as illustrated in Figure 1. To address
this, we employ multi-frequency pulsed induction heating, where different excitation frequencies
probe the material at varying depths—lower frequencies penetrate deeper to capture internal defect
responses, while higher frequencies reveal surface-level thermal behavior (Liang et al., 2024). As
shown in Figure 1, while some frequencies (e.g., 25 kHz) may yield similar surface temperatures for
different defects, others (e.g., 9 kHz) reveal distinct patterns. This frequency-dependent response
diversity breaks single-frequency ambiguity, enhancing defect discriminability.

Existing PDE-learning benchmarks lack realistic thermal-boundary coupling and 3D scenarios
tailored to heat-source inversion or volumetric temperature prediction in NDT. To bridge this gap, we
introduce the Aletheia dataset (Figure 2), a comprehensive 3D benchmark that integrates high-fidelity
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Figure 1: Multi-frequency stimulation in the Aletheia dataset. Different defects may produce
similar surface temperatures under the same frequency (25 kHz), but show clear differences at another
frequency (9 kHz). Using multiple frequencies helps distinguish hidden defects by capturing varied
thermal responses at different depths.

simulations with real infrared measurements from rail specimens with internal fatigue cracks. The
dataset includes over 4,700 defect cases across 10 excitation frequencies (1–100 kHz), providing
volumetric heat-source maps (eddy-current-induced Joule heating) and time-resolved temperature
fields on both regular and irregular grids. Calibrated thermography captures transient surface
temperature sequences, while multi-frequency conditions supply depth-sensitive signals to mitigate
the ill-posedness of surface-only observations.

Using Aletheia, we address three key tasks in eddy current thermography and PDE benchmarking:
(1) forward thermal prediction of full 3D temperature evolution from known sources; (2) inverse
source reconstruction of latent heat distributions or defect geometries from sparse surface data; and
(3) out-of-distribution (OOD) generalization to unseen frequencies, defect shapes, and material
variants. Overall, our contributions are summarized as follows:

• We present the first publicly available simulation dataset Aletheia in the context of
electromagnetic-thermal coupling, enabling the datatization of eddy current thermogra-
phy.

• Aletheia provides a multi-frequency dimension: data covering a range of excitation frequen-
cies from low to high such as 1—100 kHz, capturing the effect of frequency on the depth
and effectiveness of the heat.

• Aletheia contains three-dimensional, temporally-evolving data, such as the evolution of
the entire temperature field after pulse heating, not just steady-state or two-dimensional
observations

• Aletheia combines high-fidelity simulations and experimental measurements. Simulation
data provide comprehensive information on field distributions and “true value” defects,
while experimental data introduce real noise and variability and verify the reliability of the
simulation.

• Built around the real engineering application of rail crack detection, Aletheia covers a wide
range of defect types and sizes with direct engineering relevance.

2 BACKGROUND

Neural operators have revolutionized data-driven PDE modeling by learning mapping between
function spaces (Lu et al., 2021; Li et al., 2021, 2020), but existing benchmarks remain narrowly
focused on fully observed, forward-only problems and lack realistic inverse or measurement-sparse
scenarios. Eddy-current thermography(ECT) offers a rich real-world setting in NDT, yet no public
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Figure 2: Overview of the Aletheia dataset. Top: real infrared thermography sequences from
rail specimens with fatigue cracks. Bottom: synthetic data pipeline generating multi-frequency
(1—100 kHz) volumetric heat sources and corresponding transient temperature fields for 4,700+
defect cases, on both regular and irregular grids. This combined sim-to-real benchmark supports
forward prediction, inverse reconstruction, and cross-frequency evaluation in NDT.

3D dataset exists for learning heat-field inversion under varying excitation. We therefore position our
dataset at the intersection of these gaps, enabling the study of both forward prediction and inverse
source reconstruction for transient heat conduction from surface measurements.

2.1 CHALLENGES AND APPLICATIONS OF NEURAL PDE SOLVERS

Neural operator methods (e.g., DeepONet (Lu et al., 2021), FNO (Li et al., 2021)) learn PDE
solution operators directly from data, achieving mesh- and resolution-invariance and outperforming
classical surrogates on benchmarks like Darcy flow and NavierStokes (Takamoto et al., 2022).
Despite their promise, these models struggle to capture high-frequency components due to spectral
truncation in Fourier layers, exhibit poor extrapolation to OOD parameters, and lack robustness under
noisy or incomplete boundary observations common in inverse problems. Moreover, most evaluations
assume full-field availability, whereas many applications demand reconstructing latent sources or
fields from sparse measurements.

2.2 THERMAL HOLOGRAPHY FOR NDT

ECT (Gao et al., 2024; Zou et al., 2022; Zu et al., 2023) combines electromagnetic induction heating
with infrared imaging to detect subsurface defects by capturing surface temperature anomalies. A
common implementation, pulsed ECT (ECPT) (Zhang et al., 2024; Chen et al., 2021), uses short
bursts of alternating current to induce volumetric Joule heating in conductive materials, enabling
high-sensitivity, non-contact inspection of internal structures (Yin et al., 2021; Ma et al., 2024;
Zhang et al., 2021). This process gives rise to the concept of thermal holography (Utadiya et al.,
2023), where internal heat sources perturbed by defects such as cracks are inferred from transient
surface temperature fields. Mathematically, this is governed by the heat equation with a volumetric
heat source:

∂u

∂t
= α∇2u+ q, (1)

where u(x, t) is the temperature field at position x = (x, y, z) and time t, α is the thermal diffusivity,
and q(x, t) represents the internal heat sources induced by eddy currents. The inverse problem in
thermal holography seeks to reconstruct the spatial distribution of the heat source q(x, y, z) from
sparse and noisy surface temperature measurements u(x, y, zs, t), where zs denotes the surface of
the domain ∂Ω, and the observation set is defined over coordinates (x, y, zs, t). In many practical
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settings, the primary goal is to reconstruct the volumetric distribution of these internal heat (Hong
et al., 2023; Wang et al., 2021) sources rather than directly visualize the defects themselves.
This inverse heat conduction task is inherently ill-posed and only sparse, noisy boundary data are
typically available. Despite its critical role in nondestructive testing across domains such as rail,
aerospace (Gebrehiwet et al., 2023; Gholizadeh & Gholizadeh, 2022; Jacob & Raddatz, 2022), and
pipeline inspection (Cheng et al., 2021; Wang et al., 2024), there exists no standardized benchmark
dataset for learning data-driven solvers that can tackle this class of inverse thermal problems under
realistic conditions.

2.3 LIMITATION OF EXISTING PDE BENCHMARKS

As summarized in Table 1, most existing PDE benchmark datasets exhibit limited diversity in
terms of task settings and data characteristics. Specifically, widely used datasets such as Darcy
Flow, NavierStokes, Burgers’ Equation, and Shallow Water primarily focus on forward and inverse
problems in regular 2D geometries with full observations and lack support for more complex learning
scenarios. Among commonly used benchmarks (Takamoto et al., 2022; Herde et al., 2024; Dulny
et al., 2023) we surveyed none of these datasets simultaneously offer partial observability and
multi-task evaluation capabilities. Although the FWI-F/L/FL (Zhu et al., 2023) suite introduces
inverse modeling and partial observations, it remains confined to 2D domains with relatively simple
geometries and lacks support for multitask learning. Similarly, BubbleML (Hassan et al., 2023) is an
excellent multiphase, multiphysics dataset, yet it still lacks testing capabilities for inverse problems
and OOD problems. Furthermore, mainstream and widely used benchmarks predominantly focus on
low spatial dimensions(1D or 2D), which falls short of the complexity found in real-world scientific
and engineering problems that often involve high-dimensional, irregular domains with heterogeneous
observability and spatiotemporal dynamics.

Table 1: Comparison of PDE benchmark datasets. Each checkmark (✓) indicates the presence of a
specific feature in the dataset. Spatial Dim. denotes the predominant dimensionality used in common
benchmarks, not a limitation of the PDE itself.

Benchmark Dataset Spatial Dim. Inverse Partial Obs. Irregular Geo. Multi-task OOD

Advection 1D ✓ ✗ ✗ ✗ ✓
Darcy Flow 2D ✓ ✗ ✗ ✗ ✓
NavierStokes 1D/2D/3D ✓ ✗ ✗ ✗ ✓
Burgers’ Equation 1D/2D ✓ ✗ ✗ ✗ ✓
Airfoil Flow 2D ✓ ✗ ✓ ✗ ✗
Diffusion Reaction 1D/2D ✓ ✗ ✗ ✗ ✓
Shallow Water 2D ✗ ✗ ✗ ✗ ✗
Plasticity / Elasticity 2D/3D ✗ ✗ ✓ ✗ ✗
BubbleML 2D/3D ✗ ✗ ✓ ✓ ✗
FWI-F / L / FL 2D ✓ ✓ ✗ ✗ ✓
Aletheia (Ours) 3D ✓ ✓ ✓ ✓ ✓

These limitations hinder comprehensive evaluation of model generalization, robustness, and versatility.
In contrast, our proposed dataset, Aletheia, is designed to fill this gap by incorporating inverse tasks,
partial and sparse observations, irregular 3D geometries with temporal dynamics, multi-task learning,
and OOD generalization, providing a more realistic and challenging benchmark for PDE learning.

3 DATASET CONSTRUCTION AND DETAILS

3.1 OVERVIEW OF THE DATASET

Our dataset is derived from two complementary sources. The first source consists of high-fidelity
multi-physics simulations, which generate synthetic data by numerically solving a fully coupled elec-
tric–magnetic–thermal transient process. The second source comprises experimental measurements,
where actual data are collected via frequency-swept pulsed eddy current thermography experiments
performed on steel rail samples containing artificial defects. Due to the scarcity and complexity
of real defect specimens, experimental data primarily serve to calibrate and validate the simulation
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model. Conversely, simulated data are extensively utilized for model training as they offer com-
plete three-dimensional temperature field evolutions, internal heat source distributions, and precise
defect geometries—details which real ECPT experiments cannot provide, being limited to surface
temperature time series measurements. Recognizing that the real experimental environment closely
mimics authentic engineering inspection scenarios, we meticulously calibrated our simulation models.
Specifically, we fine-tuned material properties and excitation parameters so that simulated surface
temperature curves align closely with experimental measurements, achieving an accuracy within
±1°C. This rigorous calibration ensures both the reliability and realistic nature of our simulated
dataset.

3.2 SIMULATION DATA ACQUISITION

We used COMSOL Multiphysics1 to develop a three-dimensional finite element simulation pipeline
modeling the coupled process of electromagnetic induction heating and thermal diffusion. For each
simulated sample, we first constructed a 3D rail model containing a defect and set material properties
such as electrical conductivity σ, thermal conductivity k, and relative permeability µr. We then
specified the defect geometry and input parameters, including the excitation frequency f and coil
current. After the model was built, an adaptive mesh was generated with finer elements in the defect
region due to the defect’s small size to ensure computational accuracy. The simulation employed
a 600 ms pulsed heating process. For more detailed simulation parameter settings, please refer to
Section A. When an alternating current pulse at the specified frequency was applied to an excitation
coil fixed just above the rail, it induced eddy currents in the metal specimens according to Faraday’s
law. Meanwhile, according to Ampere’s Law, the magnetic field generated by induced eddy currents
in turn affects the original field. The Maxwell equations can describe this electromagnetic process:

∇ ·D = ρ, ∇ ·B = 0, ∇×E = −∂B

∂t
, ∇×H = J+

∂D

∂t
. (2)

where D denotes the electric displacement vector, ρ is the free charge density; B = µH represents
the magnetic induction intensity; H is the magnetic field intensity; E is the electric field intensity;
J = σE indicates the eddy current density. Eddy current inside the conductor generated Joule
heat due to resistance, acting as an internal heat source: q(x, y, z) = |J|2

σ . After converting this
electromagnetic energy into thermal energy, it diffused through thermal conduction in the material.

The depth of eddy current penetration, known as the skin depth, is frequency-dependent and given by:
δ =

√
1

πfµσ , where µ = µrµ0 is the magnetic permeability (µ0 is the permeability of free space).
Higher frequencies reduce δ, concentrating eddy currents and heat near the surface, while lower
frequencies allow deeper penetration, enabling differentiation of subsurface defect responses. To
overcome the inherent ill-posedness of mapping surface temperature back to defect characteristics,
we employ multiple excitation frequencies in the pulsed heating process—while some frequencies
may yield indistinguishable temperature profiles for certain defect types, others reveal distinct thermal
distributions, enabling us to accurately distinguish different types of defects. The electromagnetic
and thermal phenomena within our simulations were fully coupled, mutually influencing one another
throughout the transient process. Upon completion of each simulation, we systematically recorded
the temporal evolution of the temperature field u(x, y, z, t) across the specimen’s surface and internal
volume, as well as the spatial distribution of the internal heat sources q(x, y, z) generated by induced
eddy currents.

3.3 EXPERIMENTAL DATA ACQUISITION

We additionally performed pulsed eddy current thermography experiments to acquire authentic
measurement data. The experimental apparatus comprised a custom-built XZ-series DSP-controlled
inverter power supply paired with a specially designed excitation coil featuring a central slot, as
depicted in Figure 3. During each experimental run, a sinusoidal pulse current with a duration of
600 ms was applied at selected frequencies within the range of 1—100 kHz. The excitation coil was
maintained at a constant lift-off distance of 5 mm above the steel rail sample. A high-resolution FLIR
SC6550A infrared thermal imager was employed to capture the evolution of surface temperatures,

1https://www.comsol.com
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Figure 3: Overview of the pulse eddy current thermal imaging experimental platform and selected
thermal imaging results.

providing imagery at a spatial resolution of 640×480 pixels, a frame rate of 50 frames per second, and
an intensity depth of 14 bits. This allowed detailed recording of the temporal temperature distribution
throughout both the heating and cooling phases. The collected experimental data served to introduce
realistic ambient noise into our dataset and was used to rigorously validate the accuracy and reliability
of our simulation model.

3.4 DATASET STRUCTURE

Leveraging our calibrated simulation framework, we systematically generated a comprehensive set of
defect samples using automated scripts and parallelized computations. After extensive simulations
and rigorous calibration processes, the final dataset comprises a total of 4,782 unique defect instances,
categorized into 2,407 open-crack and 2,375 closed-crack samples. Detailed statistics for each
defect type are summarized in Table 2. Each defect instance includes simulation data captured
across ten discrete excitation frequencies—specifically, 1 kHz, 4 kHz, 9 kHz, 16 kHz, 25 kHz,
36 kHz, 49 kHz, 64 kHz, 81 kHz, and 100 kHz—to reflect varied depth sensitivities and thermal
responses. For versatility across different modeling approaches, the thermal and temperature fields
within each defect instance were sampled using two distinct strategies: regular grid sampling and
irregular point sampling. Regular grid sampling aligns directly with the structured grid employed
by experimental infrared imagery, providing consistent surface temperature time-series data for
model input. Conversely, the irregular sampling strategy mimics the actual positioning of defects
relative to the infrared camera used in experimental setups. These irregularly sampled points follow
a multivariate Gaussian distribution concentrated around the central surface line of the specimen,
accurately reflecting defect locations encountered in practical inspections. Points near defect regions
are sampled densely to ensure higher resolution and precise reconstruction of defect contours, whereas
areas less relevant to defect detection are sampled more sparsely, thus reducing computational
overhead. This carefully designed sampling method optimally balances computational efficiency
with reconstruction accuracy.

Table 2: Number of different types of defects. There are a total of 6 types of defects, please refer to
Section C for more detailed information on each type of defect.

Single layer Type I Type II Type III Type I Type II Totaldouble-layer double-layer double-layer multi-layer multi-layer

88 1050 69 2285 90 1200 4782

4 BENCHMARK

To systematically assess the modeling capabilities of neural operators in 3D spatiotemporal heat
transfer problems, we construct a comprehensive benchmark suite based on the Aletheia dataset.
This benchmark spans six task settings, encompassing both Same-Frequency and Out-of-Distribution

6
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scenarios. Each task is evaluated on two types of spatial grids: regular and irregular to rigorously
test the generalization and robustness of neural operator models across diverse spatial discretizations.
We benchmark several representative neural operator architectures, including FNO and Transolver,
under consistent training and evaluation protocols. This unified framework offers a strong baseline
for future research and provides critical insight into the strengths and limitations of current neural
PDE solvers in realistic NDT contexts.

Training

Application

ALETHEIA  Dataset

Same Frequency

Different Frequency

Heat → Temperature (Q2T)

Temperature → Heat (T2Q)

Temperature → Temperature (T2T)

Q2T Forward Modeling OOD

T2Q Inverse Reconstruction OOD 

T2T Temporal Evolution OOD

Neural Operator

S2Q Surface-to-Source OOD

Surface Temperature → Heat (S2Q)

Heat (Q) on 

Regular Grid

Heat (Q) on 

Irregular Grid

t=0.05 t=0.1 t=0.6

t=0.05 t=0.1 t=0.6

Temperature (T) on Regular Grid

Temperature (T) on Irregular Grid

……

……

t=0.05 t=0.1 t=0.6

Surface Temperature (S) on Irregular Grid

……

Figure 4: Our benchmark covers tasks such as heat source to temperature, temperature reconstruction,
surface temperature reconstruction, and out-of-distribution detection at different frequencies.

4.1 TASK SETUP

We organize the tasks into two categories according to the alignment between training and testing
distributions:

1. Full-frequency tasks (in-distribution / closed-set) These tasks evaluate the accuracy of the
model when the training and testing data are sampled from the same excitation frequencies and
boundary conditions:

• Forward Modeling: Learn the mapping q(x, t) 7→ u(x, t), i.e., predict the transient
temperature field given the internal heat source.

• Inverse Source Reconstruction: Learn the inverse mapping u(x, t) 7→ q(x, t), recovering
the latent volumetric heat source from the transient temperature field u(x, y, z, t).

• Temporal Evolution Prediction: Learn {u(x, ti)}10i=0 7→ {u(x, tj)}12j=11, forecasting
future temperature fields based on historical states.

• Surface-to-Source Reconstruction: Learn s(x∂ , t) 7→ q(x, t), Reconstructing the implicit
volumetric heat source from the top surface temperature trace s(x, y, z, t), when the values
of z are all 0.

2. Out-of-distribution (OOD) generalization tasks These tasks introduce distributional shifts
to test generalization to unseen physical conditions, such as novel excitation frequencies or altered
initial/boundary settings:

• Forward OOD Generalization: Predict u(x, t) from q(x, t) when the excitation frequency
used at test time differs from those seen during training.

• Inverse OOD Generalization: Recover q(x, t) from u(x, t) when testing using excitation
frequencies outside the distribution of the training set.

• Temporal OOD Generalization: Predict future thermal states from earlier temperature
observations when historical or boundary conditions are shifted.

• Surface-to-Source OOD Generalization: Recover q(x, t) from s(x∂ , t) when testing using
excitation frequencies outside the distribution of the training set.

7
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To further enhance diversity and realism, each task is evaluated on both regular and irregular spatial
grids. This enables us to systematically investigate the robustness of neural operators under varying
spatial discretization schemes, mimicking real-world sensing constraints.

4.2 EXPERIMENTAL SETUP

We conducted benchmarks on both regular and irregular 3D geometric datasets generated from
two-layer defect simulations. Each sample was downsampled to 8000 unstructured points, and each
experiment involved 600 samples. Prior to training, all input data were normalized using global
statistical measures.

To handle the dataset, we developed a custom VTU parser that supports normalization and enables
two data partitioning strategies: Full-Frequency (FF) and Out-of-Distribution (OOD). In the FF
setting, the entire dataset is loaded and randomly shuffled at the sample level to maintain statistical
uniformity across training and testing sets. In the OOD setting, each sample group contains 10
simulations, each corresponding to a different frequency. Within each group, 80% of the samples (i.e.,
the first 8 frequencies) are used for training, while the remaining 20% (i.e., the last 2 frequencies) are
reserved for testing. Although the internal order of samples may vary due to file loading mechanisms,
the frequency-based grouping is consistent across all computational environments. This structured
split ensures the model is evaluated on frequencies not encountered during training, enabling a more
rigorous assessment of generalization under distribution shifts.

We compare a range of baseline and state-of-the-art neural operator models. These include Fourier-
based models such as FNO (Li et al., 2021), FFNO (Tran et al., 2023), FCNO (Li et al., 2024), and
GeoFNO (Li et al., 2023b), as well as attention-based models like LNO (Wang & Wang, 2024) and
Transolver (Wu et al., 2024). Additionally, we include DeepONet and a simple MLP as baseline
models to provide a fair and comprehensive comparison.

All models were trained under the same configurations, please refer to Section F for more detailed
configurations.

4.3 EXPERIMENTAL RESULTS

We show the performance of representative operator learning models from multiple perspectives:
in-distribution vs OOD generalization, inverse task complexity (T2Q), and metric diversity that spans
global error (MSE, RMSE), structural fidelity (SSIM), and extreme case sensitivity (Max, bRMSE)
in Figure 5. Detailed quantitative results , more experimental results and visualizations can be found
in Section H. The experiments were trained and evaluated on the Type I double-layer subset of the
Aletheia dataset.

Figure 5: Comparison of the performance of eight models under the temperature to heat (T2Q)
inversion task based on seven evaluation metrics.

Among the four T2Q tasks, FNO demonstrated the most reliable performance in recovering volumetric
sources from whole-field temperature data. This performance exhibits pronounced spectral-induced
bias characteristics: the globally fourier layer encoded smoothing of frequency-structured thermody-
namics enables effective extrapolation during excitation displacement, thereby maintaining stable
performance in the inverse mapping of observed complete three-dimensional temperature fields. Even
when task difficulty increases due to irregular grids or frequencies beyond the design range, FNO
maintains an outer envelope on core error axes. This indicates spectral operators capture large-scale
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Figure 6: Comparison of the performance of eight models under the surface temperature to heat
(S2Q) inversion task based on seven evaluation metrics.

thermal conduction with minimal aliasing effects while preserving global accuracy more effectively
than alternative methods.

Transolver demonstrates superior performance in ‘surface-to-source’ scenarios (S2Q) where only the
surface temperature is accessible and internal states remain unobservable. Across regular and irregular
layouts, as well as under out-of-distribution conditions, it consistently achieves optimal performance
across multiple metrics, reflecting its ability to more faithfully reconstruct internal heat sources from
boundary signals. Its attention-based data-dependent weights generate adaptive receptive fields that
simultaneously fuse long-range cross-surface coupling effects and highlight critical boundary features,
effectively suppressing pseudo-correlations induced by sparse or heterogeneous sampling.

It is noteworthy that, compared to T2Q with full-field observations, S2Q only accesses top sur-
face temperatures and cannot directly observe the interior, substantially reducing identifiability
and exacerbating ill posedness. Empirically, all models degrade on S2Q, with the drop most pro-
nounced on irregular meshes and under OOD excitations. It proves that limited observations and
sparse/heterogeneous sampling further weaken the inverse problem’s identifiability and promote error
accumulation across space and frequency. This mirrors the core challenge of NDT: inferring internal
heat sources/defects from boundary-only measurements is inherently information-limited.

In summary, operator choice should match the characteristics of the task. FNO is preferable when full-
field observations are available and the goal is high global accuracy or out-of-distribution extrapolation
of inverse mappings. In contrast, Transolver excels when measurements are confined to surfaces or
irregularly sampled, and the priority lies in preserving structural fidelity and controlling worst-case
risks. The two operator types are thus complementary: spectral operators reduce displacement errors,
while attention operators safeguard structural integrity and robustness under heterogeneous sensing
conditions.

5 CONCLUSION

We have developed and released the first large-scale, multi-frequency coupled 3D Pulsed Eddy Current
Thermography benchmark dataset, aimed at advancing the application of machine learning methods
in internal crack detection for NDT. This dataset is derived from high fidelity electromagnetic thermal
multiphysics simulation data and calibrated with real infrared thermal imaging experimental data,
covering various defect types and frequency response scenarios. It supports a range of forward and
inverse modeling tasks. Benchmark results show that neural operator models can effectively learn the
dynamic process of heat diffusion and reconstruct the primary internal heat source distribution from
surface temperature sequences. However, challenges remain in accurately reconstructing fine-grained
three-dimensional morphologies of complex defects.

This dataset is the first to encompass the electromagnetic-thermal coupling response of rail materials
under different excitation frequencies, providing a standardized testing platform for research into
neural network surrogate models, operator learning methods, and defect inversion. Looking ahead,
we plan to extend this framework to additional materials, such as composites and pipeline structures,
as well as to a broader range of NDT scenarios, further promoting the widespread application of
data-driven modeling in industrial inspections. We hope that the Aletheia benchmark will serve as a
foundational resource for multi-physics modeling and model generalization research.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study concerns methodological advances for
learning neural operators on thermo-electromagnetic simulations and lab measurements of inanimate
rail specimens. It involves no human subjects, personally identifiable information, or sensitive user
data. Real measurements are acquired from controlled ECPT experiments on metal rails; no living
beings are involved, and the procedures present no biological, environmental, or privacy risks. The
proposed benchmark aims to improve the reliability of inverse modeling for nondestructive testing.
While the dataset and models may inform industrial inspection workflows, they do not directly enable
harmful applications. Any future deployment in safety-critical domains must consider regulatory,
ethical, and societal constraints beyond the scope of this work (e.g., responsible use, failure modes
under distribution shift). We report all methods and results transparently and disclose no conflicts of
interest or external sponsorship. All experiments were designed and conducted in accordance with
standards of research integrity.

REPRODUCIBILITY STATEMENT

We provide the information necessary to reproduce our results. Dataset construction details (simula-
tion pipeline, experimental setup, sampling strategies, frequencies, and annotations) are described in
Section 3 and Sections A to C. Task definitions, data splits, data distribution types, and evaluation
metrics are specified in Section 4 and Section E. For each model, we list architectures, hyperparam-
eters, training schedules, and preprocessing/normalization in Section 4.2, with additional tables in
Section F. We report the exact point counts and time steps, and use standardized evaluation scripts.
The dataset and anonymized code will be made publicly available together with scripts to reproduce
all tables and figures.
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A SIMULATION EXPERIMENT DETAILS

In COMSOL Multiphysics, the simulation domain consisted of a steel rail geometry with dimensions
set to 100 ×70 × 45 which is embedded artificial defects of configurable size, orientation, and
depth, surrounded by air domain; The rail material used in the physical experiments was U71Mn
steel, and the material parameters used in the simulation were modified from U71Mn properties
based on calibration against experimental surface temperature measurements. The constant material
properties for steel, air, and excitation coil were assigned as listed in Table 3. All external surfaces
of the rail were thermally insulated except for the top surface, which had a convective cooling
boundary condition to ambient air, with a heat transfer coefficient set to 5 W/(m2·K); the excitation
coil was driven via an applied current boundary condition to simulate inductive heating. The initial
temperature of the entire model was uniformly set to 20 °C. A free tetrahedral mesh was employed,
featuring fine elements around defect regions and within the electromagnetic skin depth, while coarser
elements were used elsewhere; an adaptive refinement scheme further adjusted the mesh based on
local conductivity gradients. The simulation was run using a time-dependent solver with a backward
differentiation formula (BDF) scheme, covering a time span from 0 to 0.6 s with a fixed time step of
0.05 s.

Table 3: Material property parameters. In the ECPT experiment, due to the extremely short heating
process and relatively small temperature rise changes, the impact on the various properties of the
material can be ignored. Therefore, the material’s property parameters are set to a fixed constant. ∼
represents the physical quantity of the material that is not involved in actual calculations.

Material Conductivity Relative Relative Thermal Density Constant pressure

(S/m) permeability dielectric conductivity (kg/m3) heat capacity
constant (W/m·K) (J/kg·K)

Steel 1.3× 107 200 2 48 8000 450
Air 0 1 1 0.0257 1.205 1005

Copper 5.998× 107 1 1 ∼ ∼ ∼

B DATA GENERATION AND DETAILS

The diversity of defect samples in our dataset is achieved through systematic variations in defect
orientation, depth, and length. For single-layer defects, the angle between the defect extension
direction and the upper surface differs from sample to sample. In double-layer and multi-layer
defects, not only do the individual cracks vary in their inclination to the surface, but the angles
between multiple cracks also change. These controlled variations result in a wide range of geometric
configurations. Detailed statistical parameters of defect angles are presented in Table 4.

Table 4: Angle parameters for different types of defects. Among them, angle 1 represents the angle
formed between the defect direction and the upper surface, while angles 2 and 3 represent the angles
between multiple cracks. All units are based on angle system.

Defect type Range of different angles
angle I angle II angle III

Single layer defect 3∼90 - -
Type I double-layer defect 24.47∼75.47 5.72∼81.27 -
Type II double-layer defect 3∼71 - -
Type III double-layer defect 10.06∼80.06 0.83∼24.03 -

Type I multi-layer defect 0∼89 - -
Type II multi-layer defect 30∼90 12.09∼31.1 12.12∼31.12

The dataset contains a total of 4,782 samples, with an overall size of approximately 1.89 terabytes.
These samples are organized into six main folders, each corresponding to a specific defect type
and named accordingly. Each sample folder is labeled by its defect type followed by one or more
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angle values that indicate the orientation of the defect. For example, names may include a single
angle for single-layer defects or two to three angles for more complex configurations. Within each
sample folder, there are three subfolders storing different types of data. The first subfolder contains
surface temperature data sampled on a structured grid. The second provides full three-dimensional
temperature and heat field data, also on a structured grid with a uniform spacing of one unit. The third
subfolder includes similar 3D data, but sampled on an unstructured grid. The unstructured sampling
strategy, which distributes 50,000 points per sample, is detailed in the main text. Table 5 summarizes
the number of sampling points for each data type.

Table 5: Sampling point statistics for different types of data. Here, Tsurf denotes surface temperature
measurements, {q(x, t), u(x, t)}structured represents paired heat source and temperature field data
sampled on regular grids, and {q(x, t), u(x, t)}unstructured denotes the same sampled irregularly.

Data type x y z Sampling points

Tsurf 150 105 - 10750
{q, u}structured 50 30 30 45000
{q, u}unstructured - - - 50000

Each sample is simulated under ten excitation frequencies ranging from 1 to 100 kHz, with each
frequency corresponding to one VTU format file. Both surface and volumetric temperature data are
time-resolved from 0 to 0.6 seconds, with a time step of 0.05 seconds, resulting in 13 time-series
data stored in each VTU file. This structure ensures that the dataset supports diverse tasks involving
spatial, temporal, and multi-frequency analysis.

C DEFECT DETAILS

Our dataset encompasses six distinct internal crack defect types, spanning single-layer, double-layer,
and multi-layer configurations and including both open and closed crack cases. Six types of defects
are shown in Figure 7 and the detailed parameters of each defect are shown in Table 6.

（a） （f）（e）（d）（c）（b）

Figure 7: 6 types of defects: (a)Single layer defect (b)Type I double-layer defect (c)Type II double-
layer defect (d)Type III double-layer defect (e)Type I multi-layer defect (f)Type II multi-layer defect

Table 6: Detailed parameters of 6 types of defects. The units of depth, width, and length are all in
millimeters. In double-layer and multi-layer defects, the length of the defect refers to the length of
the longest crack.

Defect type Sample size Depth Width Length Open/Closed

Single layer defect 88 0.2∼3.82 0.1∼0.2 3.82 Open
Type I double-layer defect 1050 1.17∼4.1 0.2 4.53 Open
Type II double-layer defect 69 0.24∼4.02 0.1∼0.2 4.22 Open
Type III double-layer defect 2285 1.40∼3.75 0.2 3.29 Closed

Type I multi-layer defect 90 0.81∼2.41 0.2 2.4 Closed
Type II multi-layer defect 1200 1.89∼3.12 0.15 3.12 Open

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D DEFECT RECONSTRUCTION FROM HEAT FIELD

We conducted a simple test using a basic 3D CNN to reconstruct the heat source field Q(x, y, z). The
results demonstrate that Q can effectively capture defect morphology: high-Q-value dense zones align
with defect surfaces, Q-value decay indicates defect propagation direction, and low-Q-value regions
correspond to internal cavities. Leveraging a 3D CNN with a large receptive field, we extract global
spatial features from the reconstructed Q-field and use a regression network to predict key defect
parameters such as angle, length, and depth. Experimental results (Table 7) show reliable predictions
for these parameters, with length exhibiting the highest accuracy due to its distinct extension feature in
the Q-field. The width parameter shows low variance in the dataset, resulting in negligible predictive
signal rather than a model limitation. Therefore, as long as our neural operator can reconstruct Q
accurately, it can serve as a reliable basis for predicting multidimensional defect characteristics.

Table 7: Regression evaluation indicators for crack parameters

Attributes Model MSE RMSE MAE

Crack angle
MLP 0.23 0.48 0.38
FNO 0.17 0.41 0.35

Transolver 0.20 0.44 0.30

Crack length
MLP 0.0020 0.044 0.034
FNO 0.0012 0.035 0.028

Transolver 0.0011 0.033 0.020

Crack depth
MLP 1.24 1.11 0.91
FNO 0.85 0.92 0.80

Transolver 1.02 1.01 0.70

Crack width
MLP 1.00× 10−14 1.00× 10−7 7.86× 10−8

FNO 1.26× 10−14 1.12× 10−7 1.10× 10−7

Transolver 1.43× 10−14 1.19× 10−7 1.16× 10−7

E METRICS

Standard methods for calculating the root mean square error (RMSE) of test data fail to capture
important optimization criteria in scientific machine learning. It is not enough to fit (usually sparse)
data well if the physical laws of the underlying problem are seriously violated. Therefore, they must
be evaluated using appropriate metrics. Furthermore, a single evaluation metric is not sufficient to
compare differences in the ability of different methods to infer unseen time steps and parameters,
which are important but not yet fully explored evaluation criteria for machine learning alternative
models. We used the PDEBench evaluation metrics and the SSIM evaluation metrics, as shown in
Table 8

The normalized RMSE is a variant of the RMSE to provide scale-independent information defined as:

nRMSE ≡ ∥upred − utrue∥2
∥utrue∥2

, (3)

where ∥u∥2 is the L2-norm of a (vector-valued) variable u, and utrue, upred are true and predicted
values, respectively. The maximum error measures the model’s worst prediction, which quantifies
both local performance and models’ stability of their prediction.

cRMSE is defined as

cRMSE ≡
∥
∑

upred −
∑

utrue∥2
N

, (4)

which measures the deviation of the prediction from some physically conserved value.

bRMSE measures the error at the boundary, indicating if the model understands the boundary
condition properly.
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Table 8: Evaluation indicators provided by PDEBench

Scope Acronym Metric

Data view

RMSE root-mean-squared-error

nRMSE normalized RMSE (ensuring scale independence)

max error
maximum error
(local worst case; also proxy for stability of time-stepping)

Physics view

cRMSE
RMSE of conserved value
(deviation from conserved physical quantity)

bRMSE
RMSE on boundary
(whether boundary condition can be learned)

fRMSE low
RMSE in Fourier space, low frequency regime
(wavelength dependence)

fRMSE mid RMSE in Fourier space, medium frequency regime

fRMSE high RMSE in Fourier space, high frequency regime

Finally, fRMSE measures the error in low/middle/high-frequency ranges defined as:√√√√√kmax∑
kmin

|F(upred)−F(utrue)|2

kmax − kmin + 1
, (5)

where F is a discrete Fourier transformation, and kmin, kmax are the minimum and maximum indices
in Fourier coordinates.

In PDEBench paper, the low/middle/high-frequency regions are defined as:

• Low: kmin = 0, kmax = 4

• Middle: kmin = 5, kmax = 12

• High: kmin = 13, kmax = ∞

This allows a quantitative discussion of the model performance’s dependence on the wavelength. In
the multidimensional cases, the |F(upred − utrue)(k)|2 in the angular coordinate direction is first
integrated and summed along the k coordinate.

F EXPERIMENTAL SETUP DETAILS

To ensure a fair comparison, this section details all hyperparameters and training configurations
employed across the models. For the FNO family of models, given their similar parameter sets, these
hyperparameters are presented in Table 9.

Table 9: Shared architectural settings for the FNO family baselines. All models use the same spectral
bandwidth and channel widths to ensure fairness. (mx,my,mz) denotes spectral modes, Width
denotes the linear transformation applied on the spatial domain, Grid/scale denotes the resolution
of the gird.

Model (mx,my,mz) Width Grid/scale Model Variant

FNO (12, 12, 8) 32 (20, 20, 20) Original Fourier Neural Operator
GeoFNO (12, 12, 8) 32 (20, 20, 20) Geometry-Aware FNO
FFNO (12, 12, 8) 32 (20, 20, 20) Factorized FNO
FCNO (12, 12, 8) 32 (20, 20, 20) Factorized Cosine Neural Operator
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Transolver. We instantiate Transolver with hidden size nhidden = 256, depth nlayers = 8, and
spatial dimension spacedim = 3. Multi-head attention uses nhead = 8 with an MLP expansion ratio
of 2. We further use slicenum = 32 and disable positional unification. The same configuration is
used for all tasks.

LNO. The LNO is consisting of nblock = 4 operator blocks with spectral resolution nmode = 256
and hidden width ndim = 128. Attention uses nhead = 8 and nlayer = 2 transformer layers with
GELU activations and the vanilla attention kernel; temporal modeling is disabled.

MLP. We employ a point-wise multilayer perceptron with hidden width 32, and 4 layers in total,
serving as a lightweight regression baseline.

DeepONet. The DeepONet baseline adopts a branch–trunk decomposition with width 32 in both sub-
networks. The branch network has depth 2; the trunk network has depth 3, receiving the functional
input of dimension 13 and producing a scalar output of dimension 1. All other settings follow the
original implementation.

All models were trained under the same configuration: batch size of 1, learning rate of 0.0001, and
200 training epochs. Training employed the Adam optimizer alongside the OneCycleLR learning
rate scheduler. All experiments were conducted on a single NVIDIA RTX 4090 GPU with 24GB of
memory. The models were trained using mean squared error (MSE) loss, and evaluated using SSIM
along with several PDEBench metrics. Regarding the part of evaluation indicators, lease refer to
Section E for detailed definitions.

Detailed configurations reference Table 10. Apart from DeepONet, each model permits customisation
of input and output channels. Due to DeepONet’s constraint that its output channel must be limited
to 1, DeepONet participated solely in the T2Q and S2Q tasks.

Table 10: Training configuration across tasks. Points denote the number of samples. In → Out
ch. denotes input and output channels, Sample Points denotes the number of downsampling points
for each data, Epochs denotes total training epochs, LR denotes initial learning rate, Sample Data
denotes the number of simulated data used for training, Optimizer denotes the optimiser employed
for training, Batch denotes the batch size used for training, Training Times denotes the number of
repeated training sessions for each task

Task In → Out ch. Sample Points Epochs LR Sample Data Optimizer Batch Training Times

T2Q 13 → 1 8 000 (vol.)

200 1 × 10−4 600 Adam 1 5S2Q 13 → 1 8 000 (vol.) + 8 000 (surf.)
T2T 11 → 2 8 000 (vol.)
Q2T 1 → 13 8 000 (vol.)

G LLM USE DISCLOSURE

We used large language models (LLMs) only for paper grammar and wording edits, minor LaTeX
formatting for tables and figures, lightweight source code checks and plotting assistance.LLMs were
not used to generate scientific claims, design or run experiments, analyze results, create data or alter
data, nor to draft substantive technical content. All scientific content, analyses, and conclusions
were authored and verified by the authors, no confidential submission materials were provided to
third-party LLM services. We take full responsibility for the submission.

H MORE EXPERIMENTAL RESULTS

Here we show the performance comparison of various neural operator models in related tasks,
including Forward Modeling, Inverse Source Reconstruction, Temporal Evolution Prediction and
Surface-to-Source Reconstruction tasks, involving regular/irregular grids and full-frequency/OOD
environments. Multiple tables quantify the seven metrics of each model in different scenarios (The
smaller the value of the indicator with a downward arrow, the better; the larger the value of the
indicator with an upward arrow, the better), which cover a variety of models such as MLP, Transolver,
FNO, and so on.
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Table 11: Quantitative results for the temperature-to-heat (T2Q) inversion task on irregular grids
under full-frequency setting, trained and evaluated on the Type I double-layer subset of the Aletheia
dataset. Each entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.311 ± 0.004 0.578 ± 0.009 0.550 ± 0.004 0.550 ± 0.004 0.014 ± 0.002 20.658 ± 0.153 0.156 ± 0.009

DeepONet 0.281 ± 0.004 0.586 ± 0.009 0.525 ± 0.004 0.525 ± 0.004 0.010 ± 0.001 19.215 ± 0.212 0.127 ± 0.005

FNO 0.069 ± 0.001 0.759 ± 0.005 0.244 ± 0.002 0.244 ± 0.002 0.005 ± 0.001 9.518 ± 0.185 0.037 ± 0.002

GeoFNO 0.349 ± 0.012 0.559 ± 0.021 0.586 ± 0.010 0.586 ± 0.010 0.007 ± 0.001 19.161 ± 0.055 0.117 ± 0.022

FFNO 0.139 ± 0.002 0.678 ± 0.003 0.354 ± 0.002 0.354 ± 0.002 0.019 ± 0.001 14.350 ± 0.210 0.056 ± 0.003

FCNO 0.142 ± 0.001 0.655 ± 0.005 0.369 ± 0.001 0.369 ± 0.001 0.012 ± 0.001 15.668 ± 0.076 0.072 ± 0.015

LNO 0.319 ± 0.030 0.641 ± 0.008 0.556 ± 0.027 0.556 ± 0.027 0.005 ± 0.001 23.952 ± 1.956 0.061 ± 0.021

Transolver 0.091 ± 0.003 0.751 ± 0.003 0.289 ± 0.004 0.289 ± 0.004 0.003 ± 0.000 12.127 ± 0.355 0.040 ± 0.001

Table 12: Quantitative results of the temperature-to-heat (T2Q) inversion task on irregular grids under
OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset. Each
entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.301 ± 0.003 0.577 ± 0.008 0.544 ± 0.003 0.544 ± 0.003 0.014 ± 0.003 19.268 ± 0.118 0.157 ± 0.012

DeepONet 0.294 ± 0.005 0.580 ± 0.010 0.535 ± 0.004 0.535 ± 0.004 0.014 ± 0.001 19.859 ± 0.217 0.129 ± 0.008

FNO 0.070 ± 0.001 0.759 ± 0.007 0.246 ± 0.002 0.246 ± 0.002 0.005 ± 0.000 9.036 ± 0.200 0.041 ± 0.002

GeoFNO 0.343 ± 0.017 0.575 ± 0.018 0.580 ± 0.015 0.580 ± 0.015 0.008 ± 0.003 19.019 ± 0.098 0.116 ± 0.018

FFNO 0.120 ± 0.003 0.683 ± 0.002 0.339 ± 0.004 0.339 ± 0.004 0.018 ± 0.001 13.563 ± 0.513 0.056 ± 0.014

FCNO 0.145 ± 0.001 0.648 ± 0.005 0.373 ± 0.001 0.373 ± 0.001 0.014 ± 0.001 15.112 ± 0.056 0.068 ± 0.008

LNO 0.322 ± 0.019 0.632 ± 0.006 0.559 ± 0.017 0.559 ± 0.017 0.006 ± 0.001 24.755 ± 0.815 0.060 ± 0.007

Transolver 0.088 ± 0.003 0.751 ± 0.001 0.283 ± 0.002 0.283 ± 0.002 0.003 ± 0.000 11.235 ± 0.288 0.040 ± 0.002

Table 13: Quantitative results of the temperature-to-heat (T2Q) inversion task on regular grids under
full-frequency setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset.
Each entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.127 ± 0.001 0.863 ± 0.011 0.337 ± 0.002 0.337 ± 0.002 0.004 ± 0.001 15.904 ± 0.127 0.022 ± 0.010

DeepONet 0.110 ± 0.002 0.875 ± 0.013 0.311 ± 0.004 0.311 ± 0.004 0.005 ± 0.001 14.769 ± 0.092 0.010 ± 0.002

FNO 0.040 ± 0.001 0.917 ± 0.009 0.186 ± 0.001 0.186 ± 0.001 0.003 ± 0.000 7.836 ± 0.067 0.018 ± 0.003

GeoFNO 0.222 ± 0.017 0.821 ± 0.013 0.446 ± 0.018 0.446 ± 0.018 0.007 ± 0.003 23.442 ± 1.164 0.012 ± 0.003

FFNO 0.052 ± 0.001 0.894 ± 0.002 0.219 ± 0.001 0.219 ± 0.001 0.010 ± 0.000 9.523 ± 0.113 0.031 ± 0.008

FCNO 0.072 ± 0.004 0.898 ± 0.005 0.253 ± 0.005 0.253 ± 0.005 0.009 ± 0.000 12.022 ± 0.549 0.042 ± 0.014

LNO 0.164 ± 0.105 0.864 ± 0.083 0.374 ± 0.121 0.374 ± 0.121 0.003 ± 0.001 16.451 ± 5.906 0.014 ± 0.006

Transolver 0.053 ± 0.003 0.929 ± 0.002 0.219 ± 0.002 0.219 ± 0.002 0.002 ± 0.000 9.473 ± 0.248 0.008 ± 0.001

Table 14: Quantitative results of the temperature-to-heat (T2Q) inversion task on regular grids under
OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset. Each
entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.126 ± 0.001 0.861 ± 0.011 0.341 ± 0.002 0.341 ± 0.002 0.005 ± 0.001 16.300 ± 0.068 0.024 ± 0.012

DeepONet 0.120 ± 0.003 0.875 ± 0.013 0.327 ± 0.004 0.327 ± 0.004 0.006 ± 0.000 15.936 ± 0.186 0.011 ± 0.001

FNO 0.044 ± 0.001 0.919 ± 0.008 0.187 ± 0.001 0.187 ± 0.001 0.003 ± 0.000 8.167 ± 0.094 0.018 ± 0.004

GeoFNO 0.168 ± 0.012 0.810 ± 0.037 0.391 ± 0.016 0.391 ± 0.016 0.007 ± 0.005 18.423 ± 0.833 0.012 ± 0.007

FFNO 0.058 ± 0.001 0.899 ± 0.001 0.225 ± 0.003 0.225 ± 0.003 0.009 ± 0.000 10.014 ± 0.227 0.032 ± 0.006

FCNO 0.072 ± 0.002 0.898 ± 0.004 0.249 ± 0.004 0.249 ± 0.004 0.009 ± 0.000 11.540 ± 0.332 0.030 ± 0.006

LNO 0.133 ± 0.003 0.902 ± 0.006 0.333 ± 0.002 0.333 ± 0.002 0.003 ± 0.000 15.662 ± 0.277 0.015 ± 0.006

Transolver 0.062 ± 0.002 0.927 ± 0.002 0.237 ± 0.002 0.237 ± 0.002 0.002 ± 0.000 10.781 ± 0.363 0.008 ± 0.002
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Table 15: Quantitative results for the surface temperature to heat (S2Q) inversion task on irregular
grids under full-frequency setting, trained and evaluated on the Type I double-layer subset of the
Aletheia dataset. Each entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.667 ± 0.017 0.366 ± 0.008 0.813 ± 0.011 0.813 ± 0.011 0.004 ± 0.002 34.211 ± 0.159 0.237 ± 0.070

DeepONet 0.653 ± 0.023 0.183 ± 0.006 0.805 ± 0.014 0.805 ± 0.014 0.001 ± 0.001 32.556 ± 0.519 0.189 ± 0.044

FNO 0.443 ± 0.004 0.630 ± 0.009 0.656 ± 0.003 0.656 ± 0.003 0.008 ± 0.001 28.445 ± 0.201 0.053 ± 0.002

GeoFNO 1.022 ± 0.017 0.017 ± 0.002 1.011 ± 0.008 1.011 ± 0.008 0.010 ± 0.004 33.338 ± 0.012 0.184 ± 0.019

FFNO 0.547 ± 0.011 0.588 ± 0.004 0.731 ± 0.007 0.731 ± 0.007 0.004 ± 0.000 31.579 ± 0.444 0.061 ± 0.004

FCNO 0.464 ± 0.004 0.517 ± 0.015 0.673 ± 0.003 0.673 ± 0.003 0.003 ± 0.000 29.157 ± 0.303 0.062 ± 0.005

LNO 0.442 ± 0.066 0.604 ± 0.004 0.654 ± 0.048 0.654 ± 0.048 0.010 ± 0.003 28.170 ± 3.192 0.122 ± 0.027

Transolver 0.365 ± 0.008 0.687 ± 0.003 0.584 ± 0.006 0.584 ± 0.006 0.003 ± 0.001 26.922 ± 0.241 0.039 ± 0.002

Table 16: Quantitative results for the surface temperature to heat (S2Q) inversion task on irregular
grids under OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia
dataset. Each entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.695 ± 0.019 0.365 ± 0.005 0.830 ± 0.012 0.830 ± 0.012 0.004 ± 0.002 37.203 ± 0.201 0.209 ± 0.082

DeepONet 0.663 ± 0.021 0.180 ± 0.009 0.810 ± 0.013 0.810 ± 0.013 0.001 ± 0.001 34.130 ± 0.483 0.190 ± 0.051

FNO 0.437 ± 0.005 0.629 ± 0.009 0.654 ± 0.004 0.654 ± 0.004 0.008 ± 0.001 28.072 ± 0.205 0.058 ± 0.005

GeoFNO 1.029 ± 0.018 0.025 ± 0.004 1.011 ± 0.004 1.011 ± 0.004 0.008 ± 0.003 35.187 ± 0.059 0.181 ± 0.016

FFNO 0.516 ± 0.002 0.598 ± 0.003 0.710 ± 0.002 0.710 ± 0.002 0.004 ± 0.000 29.409 ± 0.366 0.062 ± 0.007

FCNO 0.452 ± 0.008 0.518 ± 0.009 0.665 ± 0.006 0.665 ± 0.006 0.002 ± 0.000 28.992 ± 0.635 0.071 ± 0.012

LNO 0.485 ± 0.113 0.588 ± 0.091 0.682 ± 0.074 0.682 ± 0.074 0.010 ± 0.003 31.849 ± 3.624 0.121 ± 0.064

Transolver 0.344 ± 0.006 0.687 ± 0.004 0.570 ± 0.004 0.570 ± 0.004 0.003 ± 0.001 26.512 ± 0.206 0.043 ± 0.001

Table 17: Quantitative results for the surface temperature to heat (S2Q) inversion task on regular
grids under full-frequency setting, trained and evaluated on the Type I double-layer subset of the
Aletheia dataset. Each entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.473 ± 0.066 0.603 ± 0.067 0.680 ± 0.049 0.680 ± 0.049 0.003 ± 0.001 34.790 ± 3.014 0.061 ± 0.027

DeepONet 0.672 ± 0.035 0.134 ± 0.047 0.816 ± 0.023 0.816 ± 0.023 0.002 ± 0.001 39.705 ± 1.240 0.509 ± 0.366

FNO 0.330 ± 0.002 0.903 ± 0.002 0.537 ± 0.002 0.537 ± 0.002 0.004 ± 0.000 29.897 ± 0.145 0.013 ± 0.001

GeoFNO 1.004 ± 0.003 0.071 ± 0.011 1.002 ± 0.001 1.002 ± 0.001 0.006 ± 0.002 42.126 ± 0.006 0.085 ± 0.005

FFNO 0.421 ± 0.009 0.849 ± 0.003 0.620 ± 0.006 0.620 ± 0.006 0.003 ± 0.000 32.368 ± 0.776 0.018 ± 0.003

FCNO 0.356 ± 0.017 0.850 ± 0.003 0.563 ± 0.011 0.563 ± 0.011 0.003 ± 0.000 31.456 ± 1.195 0.025 ± 0.007

LNO 0.388 ± 0.069 0.863 ± 0.025 0.598 ± 0.070 0.598 ± 0.070 0.004 ± 0.001 33.665 ± 5.873 0.016 ± 0.002

Transolver 0.247 ± 0.013 0.902 ± 0.004 0.452 ± 0.007 0.452 ± 0.007 0.004 ± 0.001 24.779 ± 0.559 0.015 ± 0.002

Table 18: Quantitative results for the surface temperature to heat (S2Q) inversion task on regular
grids under OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia
dataset. Each entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.473 ± 0.066 0.603 ± 0.067 0.680 ± 0.049 0.680 ± 0.049 0.003 ± 0.001 34.790 ± 3.014 0.061 ± 0.027

DeepONet 0.672 ± 0.035 0.134 ± 0.047 0.816 ± 0.023 0.816 ± 0.023 0.002 ± 0.001 39.705 ± 1.240 0.509 ± 0.366

FNO 0.330 ± 0.002 0.903 ± 0.002 0.537 ± 0.002 0.537 ± 0.002 0.004 ± 0.000 29.897 ± 0.145 0.013 ± 0.001

GeoFNO 1.004 ± 0.003 0.071 ± 0.011 1.002 ± 0.001 1.002 ± 0.001 0.006 ± 0.002 42.126 ± 0.006 0.085 ± 0.005

FFNO 0.421 ± 0.009 0.849 ± 0.003 0.620 ± 0.006 0.620 ± 0.006 0.003 ± 0.000 32.368 ± 0.776 0.018 ± 0.003

FCNO 0.356 ± 0.017 0.850 ± 0.003 0.563 ± 0.011 0.563 ± 0.011 0.003 ± 0.000 31.456 ± 1.195 0.025 ± 0.007

LNO 0.388 ± 0.069 0.863 ± 0.025 0.598 ± 0.070 0.598 ± 0.070 0.004 ± 0.001 33.665 ± 5.873 0.016 ± 0.002

Transolver 0.247 ± 0.013 0.902 ± 0.004 0.452 ± 0.007 0.452 ± 0.007 0.004 ± 0.001 24.779 ± 0.559 0.015 ± 0.002
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Table 19: Quantitative results of the heat-to-temperature (Q2T) forward task on irregular grids under
full-frequency setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset.
Each entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.979 ± 0.001 0.011 ± 0.001 0.989 ± 0.001 0.989 ± 0.001 0.001 ± 0.000 16.445 ± 0.011 0.421 ± 0.017

FNO 0.019 ± 0.001 0.939 ± 0.001 0.108 ± 0.009 0.110 ± 0.013 0.005 ± 0.003 2.276 ± 0.468 0.055 ± 0.010

GeoFNO 0.450 ± 0.002 0.573 ± 0.003 0.667 ± 0.002 0.667 ± 0.002 0.008 ± 0.002 13.095 ± 0.336 0.325 ± 0.006

FFNO 0.046 ± 0.001 0.854 ± 0.001 0.193 ± 0.001 0.193 ± 0.001 0.016 ± 0.001 4.268 ± 0.057 0.106 ± 0.006

FCNO 0.065 ± 0.002 0.783 ± 0.004 0.235 ± 0.005 0.235 ± 0.005 0.011 ± 0.000 5.176 ± 0.074 0.139 ± 0.015

LNO 0.037 ± 0.002 0.917 ± 0.002 0.158 ± 0.004 0.158 ± 0.004 0.006 ± 0.001 3.882 ± 0.265 0.060 ± 0.004

Transolver 0.017 ± 0.002 0.952 ± 0.004 0.108 ± 0.004 0.109 ± 0.001 0.003 ± 0.002 2.183 ± 0.318 0.054 ± 0.005

Table 20: Quantitative results of the heat-to-temperature (Q2T) forward task on irregular grids under
OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset. Each
entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.979 ± 0.001 0.011 ± 0.001 0.990 ± 0.000 0.990 ± 0.000 0.001 ± 0.000 16.789 ± 0.012 0.401 ± 0.019

FNO 0.018 ± 0.001 0.938 ± 0.001 0.103 ± 0.002 0.103 ± 0.002 0.004 ± 0.000 1.913 ± 0.070 0.058 ± 0.002

GeoFNO 0.463 ± 0.003 0.577 ± 0.011 0.667 ± 0.021 0.663 ± 0.030 0.014 ± 0.012 13.857 ± 0.783 0.309 ± 0.004

FFNO 0.048 ± 0.001 0.853 ± 0.001 0.194 ± 0.002 0.194 ± 0.002 0.015 ± 0.001 4.578 ± 0.133 0.100 ± 0.007

FCNO 0.064 ± 0.002 0.785 ± 0.005 0.232 ± 0.004 0.232 ± 0.004 0.010 ± 0.000 5.098 ± 0.197 0.134 ± 0.010

LNO 0.038 ± 0.003 0.918 ± 0.002 0.161 ± 0.008 0.161 ± 0.008 0.006 ± 0.000 4.090 ± 0.376 0.064 ± 0.003

Transolver 0.018 ± 0.001 0.950 ± 0.001 0.110 ± 0.003 0.110 ± 0.003 0.002 ± 0.000 2.049 ± 0.291 0.057 ± 0.003

Table 21: Quantitative results of the heat-to-temperature (Q2T) forward task on regular grids under
full-frequency setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset.
Each entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.751 ± 0.008 0.250 ± 0.013 0.865 ± 0.005 0.865 ± 0.005 0.001 ± 0.000 23.476 ± 0.794 0.162 ± 0.068

FNO 0.018 ± 0.000 0.964 ± 0.002 0.103 ± 0.001 0.103 ± 0.001 0.004 ± 0.000 3.786 ± 0.100 0.017 ± 0.001

GeoFNO 0.419 ± 0.001 0.831 ± 0.003 0.631 ± 0.001 0.632 ± 0.001 0.003 ± 0.000 25.503 ± 0.007 0.167 ± 0.003

FFNO 0.035 ± 0.002 0.948 ± 0.002 0.157 ± 0.004 0.157 ± 0.004 0.012 ± 0.002 6.295 ± 0.224 0.023 ± 0.003

FCNO 0.036 ± 0.000 0.933 ± 0.001 0.165 ± 0.001 0.165 ± 0.001 0.015 ± 0.001 5.818 ± 0.057 0.033 ± 0.003

LNO 0.038 ± 0.003 0.962 ± 0.005 0.164 ± 0.009 0.164 ± 0.009 0.003 ± 0.001 6.544 ± 0.415 0.013 ± 0.002

Transolver 0.018 ± 0.001 0.977 ± 0.001 0.111 ± 0.002 0.111 ± 0.002 0.002 ± 0.000 3.971 ± 0.157 0.012 ± 0.002

Table 22: Quantitative results of the heat-to-temperature (Q2T) forward task on regular grids under
OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset. Each
entry reports mean ± standard deviation over repeated runs.

Model MSE ↓ SSIM ↑ RMSE ↓ nRMSE ↓ cRMSE ↓ Max ↓ bRMSE ↓

MLP 0.755 ± 0.011 0.245 ± 0.012 0.867 ± 0.007 0.867 ± 0.007 0.001 ± 0.000 23.717 ± 1.066 0.179 ± 0.054

FNO 0.019 ± 0.000 0.965 ± 0.003 0.107 ± 0.002 0.107 ± 0.002 0.003 ± 0.000 4.023 ± 0.124 0.017 ± 0.002

GeoFNO 0.440 ± 0.000 0.835 ± 0.002 0.648 ± 0.000 0.648 ± 0.000 0.003 ± 0.001 27.766 ± 0.023 0.149 ± 0.003

FFNO 0.030 ± 0.001 0.945 ± 0.002 0.149 ± 0.003 0.149 ± 0.003 0.013 ± 0.002 5.616 ± 0.116 0.026 ± 0.004

FCNO 0.044 ± 0.001 0.928 ± 0.001 0.179 ± 0.001 0.179 ± 0.001 0.015 ± 0.001 6.607 ± 0.097 0.039 ± 0.005

LNO 0.040 ± 0.003 0.957 ± 0.006 0.173 ± 0.007 0.173 ± 0.007 0.004 ± 0.000 6.728 ± 0.296 0.015 ± 0.003

Transolver 0.021 ± 0.001 0.978 ± 0.001 0.117 ± 0.002 0.117 ± 0.002 0.002 ± 0.000 4.580 ± 0.128 0.012 ± 0.001
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Table 23: Quantitative results of the temperature-to-temperature (T2T) prediction task on irregular
grids under full-frequency setting, trained and evaluated on the Type I double-layer subset of the
Aletheia dataset. Each entry reports mean ± standard deviation over repeated runs.

Model MSE (×10−3) ↓ SSIM ↑ RMSE (×10−2) ↓ nRMSE (×10−2) ↓ cRMSE (×10−3) ↓ Max ↓ bRMSE (×10−3) ↓

MLP 954.897 ± 2.459 0.010356 ± 0.000623 97.718 ± 0.126 97.718 ± 0.126 2.340 ± 0.946 6.464 ± 0.623 41.718 ± 9.210

FNO 0.004 ± 0.001 0.999915 ± 0.000018 0.188 ± 0.022 0.188 ± 0.022 0.070 ± 0.022 0.235 ± 0.064 0.706 ± 0.208

GeoFNO 0.223 ± 0.223 0.996296 ± 0.003234 1.300 ± 0.775 1.300 ± 0.775 0.761 ± 0.705 1.290 ± 0.116 1.688 ± 1.573

FFNO 0.030 ± 0.003 0.999097 ± 0.000090 0.544 ± 0.027 0.544 ± 0.027 0.700 ± 0.094 1.013 ± 0.051 1.595 ± 0.212

FCNO 0.630 ± 0.020 0.984715 ± 0.000547 2.476 ± 0.194 2.476 ± 0.194 5.106 ± 0.162 1.857 ± 0.160 5.345 ± 0.445

LNO 5.735 ± 0.414 0.947556 ± 0.001475 7.532 ± 0.396 7.532 ± 0.396 23.904 ± 3.602 4.022 ± 0.615 8.755 ± 1.087

Transolver 0.002 ± 0.0001 0.999996 ± 0.000004 0.116 ± 0.012 0.116 ± 0.012 0.020 ± 0.007 0.185 ± 0.044 0.296 ± 0.059

Table 24: Quantitative results of the temperature-to-temperature (T2T) prediction task on irregular
grids under OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia
dataset. Each entry reports mean ± standard deviation over repeated runs.

Model MSE (×10−3) ↓ SSIM ↑ RMSE (×10−2) ↓ nRMSE (×10−2) ↓ cRMSE (×10−3) ↓ Max ↓ bRMSE (×10−3) ↓

MLP 951.890 ± 2.649 0.010708 ± 0.000649 97.560 ± 0.142 97.560 ± 0.142 3.009 ± 1.940 6.236 ± 0.821 45.946 ± 5.980

FNO 0.005 ± 0.001 0.999879 ± 0.000021 0.212 ± 0.025 0.212 ± 0.025 0.068 ± 0.022 0.241 ± 0.055 0.737 ± 0.199

GeoFNO 0.227 ± 0.221 0.996368 ± 0.003169 1.276 ± 0.123 1.276 ± 0.123 2.576 ± 2.553 1.266 ± 0.115 1.720 ± 0.982

FFNO 0.031 ± 0.003 0.999113 ± 0.000092 0.542 ± 0.016 0.542 ± 0.016 0.698 ± 0.175 1.008 ± 0.071 1.642 ± 0.206

FCNO 0.638 ± 0.021 0.984639 ± 0.000550 2.494 ± 0.196 2.494 ± 0.196 5.194 ± 0.168 1.879 ± 0.112 5.458 ± 0.545

LNO 5.786 ± 0.419 0.955559 ± 0.001581 7.544 ± 0.358 7.544 ± 0.358 23.763 ± 3.616 4.117 ± 0.576 9.661 ± 0.857

Transolver 0.002 ± 0.000 0.999994 ± 0.000005 0.119 ± 0.013 0.119 ± 0.013 0.019 ± 0.007 0.196 ± 0.051 0.308 ± 0.043

Table 25: Quantitative results of the temperature-to-temperature (T2T) prediction task on regular
grids under full-frequency setting, trained and evaluated on the Type I double-layer subset of the
Aletheia dataset. Each entry reports mean ± standard deviation over repeated runs.

Model MSE (×10−3) ↓ SSIM ↑ RMSE (×10−2) ↓ nRMSE (×10−2) ↓ cRMSE (×10−3) ↓ Max ↓ bRMSE (×10−3) ↓

MLP 955.422 ± 3.412 0.010155 ± 0.000517 97.760 ± 0.170 97.760 ± 0.170 2.540 ± 1.643 6.329 ± 0.634 42.009 ± 7.311

FNO 0.005 ± 0.001 0.999886 ± 0.000019 0.199 ± 0.023 0.199 ± 0.023 0.070 ± 0.027 0.243 ± 0.062 0.685 ± 0.248

GeoFNO 0.207 ± 0.190 0.996455 ± 0.003413 1.223 ± 0.149 1.223 ± 0.149 2.306 ± 2.158 1.273 ± 0.115 1.669 ± 0.955

FFNO 0.031 ± 0.003 0.999106 ± 0.000085 0.547 ± 0.019 0.547 ± 0.019 0.706 ± 0.183 1.017 ± 0.061 1.607 ± 0.255

FCNO 0.662 ± 0.023 0.984206 ± 0.000535 2.550 ± 0.200 2.550 ± 0.200 5.116 ± 0.161 1.869 ± 0.146 5.360 ± 0.407

LNO 5.607 ± 0.449 0.955190 ± 0.001672 7.489 ± 0.433 7.489 ± 0.433 23.578 ± 3.794 4.116 ± 0.638 9.949 ± 1.256

Transolver 0.002 ± 0.000 0.999995 ± 0.000004 0.117 ± 0.013 0.117 ± 0.013 0.019 ± 0.007 0.197 ± 0.050 0.287 ± 0.055

Table 26: Quantitative results of the temperature-to-temperature (T2T) prediction task on regular
grids under OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia
dataset. Each entry reports mean ± standard deviation over repeated runs.

Model MSE (×10−3) ↓ SSIM ↑ RMSE (×10−2) ↓ nRMSE (×10−2) ↓ cRMSE (×10−3) ↓ Max ↓ bRMSE (×10−3) ↓

MLP 955.924 ± 3.168 0.010191 ± 0.000537 97.788 ± 0.163 97.788 ± 0.163 2.573 ± 1.603 6.335 ± 0.650 42.184 ± 6.998

FNO 0.004 ± 0.001 0.999888 ± 0.000018 0.200 ± 0.023 0.200 ± 0.023 0.068 ± 0.018 0.241 ± 0.060 0.702 ± 0.215

GeoFNO 0.204 ± 0.193 0.996451 ± 0.003315 1.215 ± 0.148 1.215 ± 0.148 2.313 ± 2.150 1.273 ± 0.117 1.628 ± 0.848

FFNO 0.030 ± 0.003 0.999097 ± 0.000083 0.546 ± 0.020 0.546 ± 0.020 0.703 ± 0.195 1.017 ± 0.053 1.642 ± 0.212

FCNO 0.661 ± 0.021 0.984198 ± 0.000534 2.547 ± 0.199 2.547 ± 0.199 5.119 ± 0.161 1.871 ± 0.142 5.341 ± 0.374

LNO 5.576 ± 0.416 0.955002 ± 0.001634 7.488 ± 0.421 7.488 ± 0.421 23.548 ± 3.665 4.120 ± 0.646 9.966 ± 1.093

Transolver 0.002 ± 0.000 0.999995 ± 0.000004 0.117 ± 0.013 0.117 ± 0.013 0.019 ± 0.007 0.199 ± 0.048 0.280 ± 0.125
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I MORE VISUALIZATIONS

The following presents visualisations of all experimental results across all tasks, including Forward
Modeling, Inverse Source Reconstruction, Temporal Evolution Prediction and Surface-to-Source
Reconstruction, involving regular/irregular grids and full-frequency/OOD environments. We have
selected experimental results from FNO, Transolver, GeoFNO, and LNO models for display, with
visualisations provided for inputs and outputs under each configuration.
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Figure 8: Visualization of experimental results under the temperature to heat (T2Q) inverse task on
irregular grids, the experiment was trained and evaluated on the Type I double-layer subset of the
Aletheia dataset.
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Figure 9: Visualization of experimental results under the temperature to heat (T2Q) inverse task on
regular grids, the experiment was trained and evaluated on the Type I double-layer subset of the
Aletheia dataset.
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Figure 10: Visualization of experimental results under the surface temperature to heat (S2Q) inverse
task on irregular grids, the experiment was trained and evaluated on the Type I double-layer subset of
the Aletheia dataset.
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Figure 11: Visualization of experimental results under the surface temperature to heat (S2Q) inverse
task on regular grids, the experiment was trained and evaluated on the Type I double-layer subset of
the Aletheia dataset.
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Figure 12: Visualization of experimental results under the heat-to-temperature (Q2T) forward task on
irregular grids under full-frequency setting, the experiment was trained and evaluated on the Type I
double-layer subset of the Aletheia dataset.
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Figure 13: Visualization of experimental results under the heat-to-temperature (Q2T) forward task on
irregular grids under OOD setting, the experiment was trained and evaluated on the Type I double-
layer subset of the Aletheia dataset.
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Figure 14: Visualization of experimental results under the heat-to-temperature (Q2T) forward task on
regular grids under full-frequency setting, the experiment was trained and evaluated on the Type I
double-layer subset of the Aletheia dataset.
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Figure 15: Visualization of experimental results under the heat-to-temperature (Q2T) forward task on
regular grids under OOD setting, the experiment was trained and evaluated on the Type I double-layer
subset of the Aletheia dataset.
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Figure 16: Visualization of experimental results under the temperature-to-temperature (T2T) predic-
tion task on irregular grids under full-frequency setting, the experiment was trained and evaluated on
the Type I double-layer subset of the Aletheia dataset.
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Figure 17: Visualization of experimental results under the temperature-to-temperature (T2T) pre-
diction task on irregular grids under OOD setting, the experiment was trained and evaluated on the
Type I double-layer subset of the Aletheia dataset.
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Figure 18: Visualization of experimental results under the temperature-to-temperature (T2T) predic-
tion task on regular grids under full-frequency setting, the experiment was trained and evaluated on
the Type I double-layer subset of the Aletheia dataset.
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Figure 19: Visualization of experimental results under the temperature-to-temperature (T2T) predic-
tion task on regular grids under OOD setting, the experiment was trained and evaluated on the Type I
double-layer subset of the Aletheia dataset.
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