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ABSTRACT

Learning neural solvers for spatiotemporal partial differential equations (PDEs)
under real-world constraints remains a key challenge in scientific machine learn-
ing, especially for inverse tasks with sparse and noisy boundary observations.
We present the Aletheia dataset, the first 3D benchmark for learning data-driven
solvers in the context of nondestructive testing (NDT). The dataset simulates
eddy-current-induced heating in conductive solids and models the resulting tran-
sient heat propagation governed by the heat equation. Aletheia contains over
4,700 high-resolution samples across 10 excitation frequencies (1-100 kHz), each
providing volumetric heat source and temperature fields over time. It supports
both forward prediction of temperature evolution and inverse reconstruction of
internal heat sources or defects from surface infrared measurements. Real infrared
thermography data from cracked rail specimens are included for calibration and
generalization studies. We define three canonical tasks on both regular and irregular
grids and benchmark them using various neural operators. Aletheia establishes a
unified platform for evaluating neural PDE solvers under realistic NDT conditions,
enabling progress in reliable, data-driven inverse modeling.

1 INTRODUCTION

Neural operator methods, such as the Fourier Neural Operator (FNO) (L1 et al., 2021} 2023b; |Tran
et al.l [2023;Xiao et al., |2024) and Transformer-based solvers (Li et al.l [2023a;Wu et al., 2024} [Lee
& Ohl [2024), have emerged as a transformative approach for learning solution operators of partial
differential equations (PDEs) directly from data. Unlike traditional methods, these architectures
bypass mesh-dependent discretizations, enabling robust generalization across parameterized PDE
families. However, they are typically evaluated on academic datasets (e.g., Darcy flow, Navier—Stokes)
with fully observed fields and simplified geometries, which fail to capture the complexities of real-
world inverse problems. In applications like nondestructive testing (NDT) (Gupta et al., [2022; |Xiong
et al., [2023; Yuan et al., [2021;|Gong et al., |2022;|Tuschl et al., 2021}, challenges such as sparse
or noisy boundary observations, unknown source terms, and heterogeneous domains demand more
robust benchmarks (Molinaro et al.l 2023;|Azizzadenesheli et al., 2024).

In NDT, reconstructing hidden defects (Lin et al., 2023 |Zhao et al., 2022} Tao et al., 2022;|Wu et al.,
2021) from surface temperature measurements, as in inverse heat conduction problems (Silva et al.,
2023)), is inherently ill-posed: distinct subsurface defects or excitation conditions can produce nearly
identical surface temperature patterns (Woodbury et al., [2023), as illustrated in Figure|l| To address
this, we employ multi-frequency pulsed induction heating, where different excitation frequencies
probe the material at varying depths—lower frequencies penetrate deeper to capture internal defect
responses, while higher frequencies reveal surface-level thermal behavior (Liang et al., 2024). As
shown in Figure[T] while some frequencies (e.g., 25 kHz) may yield similar surface temperatures for
different defects, others (e.g., 9 kHz) reveal distinct patterns. This frequency-dependent response
diversity breaks single-frequency ambiguity, enhancing defect discriminability.

Existing PDE-learning benchmarks lack realistic thermal-boundary coupling and 3D scenarios
tailored to heat-source inversion or volumetric temperature prediction in NDT. To bridge this gap, we
introduce the Aletheia dataset (Figure[2), a comprehensive 3D benchmark that integrates high-fidelity
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Figure 1: Multi-frequency stimulation in the Aletheia dataset. Different defects may produce
similar surface temperatures under the same frequency (25 kHz), but show clear differences at another
frequency (9 kHz). Using multiple frequencies helps distinguish hidden defects by capturing varied
thermal responses at different depths.

simulations with real infrared measurements from rail specimens with internal fatigue cracks. The
dataset includes over 4,700 defect cases across 10 excitation frequencies (1-100 kHz), providing
volumetric heat-source maps (eddy-current-induced Joule heating) and time-resolved temperature
fields on both regular and irregular grids. Calibrated thermography captures transient surface
temperature sequences, while multi-frequency conditions supply depth-sensitive signals to mitigate
the ill-posedness of surface-only observations.

Using Aletheia, we address three key tasks in eddy current thermography and PDE benchmarking:
(1) forward thermal prediction of full 3D temperature evolution from known sources; (2) inverse
source reconstruction of latent heat distributions or defect geometries from sparse surface data; and
(3) out-of-distribution (OOD) generalization to unseen frequencies, defect shapes, and material
variants. Overall, our contributions are summarized as follows:

* We present the first publicly available simulation dataset Aletheia in the context of
electromagnetic-thermal coupling, enabling the datatization of eddy current thermogra-
phy.

* Aletheia provides a multi-frequency dimension: data covering a range of excitation frequen-
cies from low to high such as 1-—100 kHz, capturing the effect of frequency on the depth
and effectiveness of the heat.

* Aletheia contains three-dimensional, temporally-evolving data, such as the evolution of
the entire temperature field after pulse heating, not just steady-state or two-dimensional
observations

* Aletheia combines high-fidelity simulations and experimental measurements. Simulation
data provide comprehensive information on field distributions and “true value” defects,
while experimental data introduce real noise and variability and verify the reliability of the
simulation.

* Built around the real engineering application of rail crack detection, Aletheia covers a wide
range of defect types and sizes with direct engineering relevance.

2 BACKGROUND

Neural operators have revolutionized data-driven PDE modeling by learning mapping between
function spaces (Lu et al.l [2021;[Li et al., 2021}, |2020), but existing benchmarks remain narrowly
focused on fully observed, forward-only problems and lack realistic inverse or measurement-sparse
scenarios. Eddy-current thermography(ECT) offers a rich real-world setting in NDT, yet no public
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Figure 2: Overview of the Aletheia dataset. Top: real infrared thermography sequences from
rail specimens with fatigue cracks. Bottom: synthetic data pipeline generating multi-frequency
(1—100kHz) volumetric heat sources and corresponding transient temperature fields for 4,700+
defect cases, on both regular and irregular grids. This combined sim-to-real benchmark supports
forward prediction, inverse reconstruction, and cross-frequency evaluation in NDT.

3D dataset exists for learning heat-field inversion under varying excitation. We therefore position our
dataset at the intersection of these gaps, enabling the study of both forward prediction and inverse
source reconstruction for transient heat conduction from surface measurements.

2.1 CHALLENGES AND APPLICATIONS OF NEURAL PDE SOLVERS

Neural operator methods (e.g., DeepONet (Lu et al [2021), FNO (Li et al., [2021))) learn PDE

solution operators directly from data, achieving mesh- and resolution-invariance and outperforming
classical surrogates on benchmarks like Darcy flow and NavierStokes (Takamoto et al., [2022).
Despite their promise, these models struggle to capture high-frequency components due to spectral
truncation in Fourier layers, exhibit poor extrapolation to OOD parameters, and lack robustness under
noisy or incomplete boundary observations common in inverse problems. Moreover, most evaluations
assume full-field availability, whereas many applications demand reconstructing latent sources or
fields from sparse measurements.

2.2 THERMAL HOLOGRAPHY FOR NDT

ECT (Gao et all, 2024;[Zou et all, [2022};Zu et al.} [2023) combines electromagnetic induction heating

with infrared imaging to detect subsurface defects by capturing surface temperature anomalies. A
common implementation, pulsed ECT (ECPT) (Zhang et al, 2024} [Chen et al, 2021)), uses short
bursts of alternating current to induce volumetric Joule heating in conductive materials, enabling
high-sensitivity, non-contact inspection of internal structures (Yin et al, 2021} [Ma et al, 2024}
Zhang et al), 2021)). This process gives rise to the concept of thermal holography (Utadiya et al.,
2023), where internal heat sources perturbed by defects such as cracks are inferred from transient
surface temperature fields. Mathematically, this is governed by the heat equation with a volumetric
heat source:

% = aVu +q, €))]
where u(x, t) is the temperature field at position x = (x,y, z) and time ¢, « is the thermal diffusivity,
and ¢(x, t) represents the internal heat sources induced by eddy currents. The inverse problem in
thermal holography seeks to reconstruct the spatial distribution of the heat source ¢(z, y, z) from
sparse and noisy surface temperature measurements u(z, y, zs, t), where z; denotes the surface of
the domain OS2, and the observation set is defined over coordinates (x, y, 25, t). In many practical



Under review as a conference paper at ICLR 2026

settings, the primary goal is to reconstruct the volumetric distribution of these internal heat (Hong
et al., 2023} Wang et al.l [2021) sources rather than directly visualize the defects themselves.
This inverse heat conduction task is inherently ill-posed and only sparse, noisy boundary data are
typically available. Despite its critical role in nondestructive testing across domains such as rail,
aerospace (Gebrehiwet et al., [2023;|Gholizadeh & Gholizadehl 2022} |Jacob & Raddatz, [2022), and
pipeline inspection (Cheng et al., 2021; Wang et al.l [2024), there exists no standardized benchmark
dataset for learning data-driven solvers that can tackle this class of inverse thermal problems under
realistic conditions.

2.3 LIMITATION OF EXISTING PDE BENCHMARKS

As summarized in Table [I] most existing PDE benchmark datasets exhibit limited diversity in
terms of task settings and data characteristics. Specifically, widely used datasets such as Darcy
Flow, NavierStokes, Burgers’ Equation, and Shallow Water primarily focus on forward and inverse
problems in regular 2D geometries with full observations and lack support for more complex learning
scenarios. Among commonly used benchmarks (Takamoto et al., 2022; Herde et al., 2024; |Dulny
et al., |2023) we surveyed none of these datasets simultaneously offer partial observability and
multi-task evaluation capabilities. Although the FWI-F/L/FL (Zhu et al., 2023) suite introduces
inverse modeling and partial observations, it remains confined to 2D domains with relatively simple
geometries and lacks support for multitask learning. Similarly, BubbleML (Hassan et al., |2023)) is an
excellent multiphase, multiphysics dataset, yet it still lacks testing capabilities for inverse problems
and OOD problems. Furthermore, mainstream and widely used benchmarks predominantly focus on
low spatial dimensions(1D or 2D), which falls short of the complexity found in real-world scientific
and engineering problems that often involve high-dimensional, irregular domains with heterogeneous
observability and spatiotemporal dynamics.

Table 1: Comparison of PDE benchmark datasets. Each checkmark (v") indicates the presence of a
specific feature in the dataset. Spatial Dim. denotes the predominant dimensionality used in common
benchmarks, not a limitation of the PDE itself.

Benchmark Dataset Spatial Dim. Inverse Partial Obs. Irregular Geo. Multi-task OOD

Advection 1D v X X X v
Darcy Flow 2D v X X X v
NavierStokes 1D/2D/3D v X X X v
Burgers’ Equation 1D/2D v X X X v
Airfoil Flow 2D v X v X X
Diffusion Reaction 1D/2D v X X X v
Shallow Water 2D X X X X X
Plasticity / Elasticity 2D/3D X X v X X
BubbleML 2D/3D X X v v X
FWI-F/L/FL 2D v v X X v
Aletheia (Ours) 3D v v v v v

These limitations hinder comprehensive evaluation of model generalization, robustness, and versatility.
In contrast, our proposed dataset, Aletheia, is designed to fill this gap by incorporating inverse tasks,
partial and sparse observations, irregular 3D geometries with temporal dynamics, multi-task learning,
and OOD generalization, providing a more realistic and challenging benchmark for PDE learning.

3 DATASET CONSTRUCTION AND DETAILS

3.1 OVERVIEW OF THE DATASET

Our dataset is derived from two complementary sources. The first source consists of high-fidelity
multi-physics simulations, which generate synthetic data by numerically solving a fully coupled elec-
tric-magnetic—thermal transient process. The second source comprises experimental measurements,
where actual data are collected via frequency-swept pulsed eddy current thermography experiments
performed on steel rail samples containing artificial defects. Due to the scarcity and complexity
of real defect specimens, experimental data primarily serve to calibrate and validate the simulation
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model. Conversely, simulated data are extensively utilized for model training as they offer com-
plete three-dimensional temperature field evolutions, internal heat source distributions, and precise
defect geometries—details which real ECPT experiments cannot provide, being limited to surface
temperature time series measurements. Recognizing that the real experimental environment closely
mimics authentic engineering inspection scenarios, we meticulously calibrated our simulation models.
Specifically, we fine-tuned material properties and excitation parameters so that simulated surface
temperature curves align closely with experimental measurements, achieving an accuracy within
+1°C. This rigorous calibration ensures both the reliability and realistic nature of our simulated
dataset.

3.2 SIMULATION DATA ACQUISITION

We used COMSOL Multiphysic to develop a three-dimensional finite element simulation pipeline
modeling the coupled process of electromagnetic induction heating and thermal diffusion. For each
simulated sample, we first constructed a 3D rail model containing a defect and set material properties
such as electrical conductivity o, thermal conductivity k, and relative permeability p,.. We then
specified the defect geometry and input parameters, including the excitation frequency f and coil
current. After the model was built, an adaptive mesh was generated with finer elements in the defect
region due to the defect’s small size to ensure computational accuracy. The simulation employed
a 600 ms pulsed heating process. For more detailed simulation parameter settings, please refer to
Section|A| When an alternating current pulse at the specified frequency was applied to an excitation
coil fixed just above the rail, it induced eddy currents in the metal specimens according to Faraday’s
law. Meanwhile, according to Ampere’s Law, the magnetic field generated by induced eddy currents
in turn affects the original field. The Maxwell equations can describe this electromagnetic process:

0B oD
V-D=p, V-B=0, VXxE=——, VxH=J+ —. 2
P ot * o @
where D denotes the electric displacement vector, p is the free charge density; B = pH represents
the magnetic induction intensity; H is the magnetic field intensity; E is the electric field intensity;
J = oE indicates the eddy current density. Eddy current inside the conductor generated Joule

2
heat due to resistance, acting as an internal heat source: ¢(z,y,2) = % After converting this
electromagnetic energy into thermal energy, it diffused through thermal conduction in the material.

The depth of eddy current penetration, known as the skin depth, is frequency-dependent and given by:

0=/ ﬁ, where © = .o is the magnetic permeability (ug is the permeability of free space).

Higher frequencies reduce §, concentrating eddy currents and heat near the surface, while lower
frequencies allow deeper penetration, enabling differentiation of subsurface defect responses. To
overcome the inherent ill-posedness of mapping surface temperature back to defect characteristics,
we employ multiple excitation frequencies in the pulsed heating process—while some frequencies
may yield indistinguishable temperature profiles for certain defect types, others reveal distinct thermal
distributions, enabling us to accurately distinguish different types of defects. The electromagnetic
and thermal phenomena within our simulations were fully coupled, mutually influencing one another
throughout the transient process. Upon completion of each simulation, we systematically recorded
the temporal evolution of the temperature field u(z, y, z, t) across the specimen’s surface and internal
volume, as well as the spatial distribution of the internal heat sources g(x, y, z) generated by induced
eddy currents.

3.3 EXPERIMENTAL DATA ACQUISITION

We additionally performed pulsed eddy current thermography experiments to acquire authentic
measurement data. The experimental apparatus comprised a custom-built XZ-series DSP-controlled
inverter power supply paired with a specially designed excitation coil featuring a central slot, as
depicted in Figure [3] During each experimental run, a sinusoidal pulse current with a duration of
600 ms was applied at selected frequencies within the range of 1—100 kHz. The excitation coil was
maintained at a constant lift-off distance of 5 mm above the steel rail sample. A high-resolution FLIR
SC6550A infrared thermal imager was employed to capture the evolution of surface temperatures,

'"https://www.comsol.com
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Figure 3: Overview of the pulse eddy current thermal imaging experimental platform and selected
thermal imaging results.

providing imagery at a spatial resolution of 640x480 pixels, a frame rate of 50 frames per second, and
an intensity depth of 14 bits. This allowed detailed recording of the temporal temperature distribution
throughout both the heating and cooling phases. The collected experimental data served to introduce
realistic ambient noise into our dataset and was used to rigorously validate the accuracy and reliability
of our simulation model.

3.4 DATASET STRUCTURE

Leveraging our calibrated simulation framework, we systematically generated a comprehensive set of
defect samples using automated scripts and parallelized computations. After extensive simulations
and rigorous calibration processes, the final dataset comprises a total of 4,782 unique defect instances,
categorized into 2,407 open-crack and 2,375 closed-crack samples. Detailed statistics for each
defect type are summarized in Table 2] Each defect instance includes simulation data captured
across ten discrete excitation frequencies—specifically, 1 kHz, 4 kHz, 9 kHz, 16 kHz, 25 kHz,
36 kHz, 49 kHz, 64 kHz, 81 kHz, and 100 kHz—to reflect varied depth sensitivities and thermal
responses. For versatility across different modeling approaches, the thermal and temperature fields
within each defect instance were sampled using two distinct strategies: regular grid sampling and
irregular point sampling. Regular grid sampling aligns directly with the structured grid employed
by experimental infrared imagery, providing consistent surface temperature time-series data for
model input. Conversely, the irregular sampling strategy mimics the actual positioning of defects
relative to the infrared camera used in experimental setups. These irregularly sampled points follow
a multivariate Gaussian distribution concentrated around the central surface line of the specimen,
accurately reflecting defect locations encountered in practical inspections. Points near defect regions
are sampled densely to ensure higher resolution and precise reconstruction of defect contours, whereas
areas less relevant to defect detection are sampled more sparsely, thus reducing computational
overhead. This carefully designed sampling method optimally balances computational efficiency
with reconstruction accuracy.

Table 2: Number of different types of defects. There are a total of 6 types of defects, please refer to
Sectiong for more detailed information on each type of defect.

Type I Type II Type III Type I Type II

double-layer double-layer double-layer multi-layer multi-layer Total

Single layer

88 1050 69 2285 90 1200 4782

4 BENCHMARK

To systematically assess the modeling capabilities of neural operators in 3D spatiotemporal heat
transfer problems, we construct a comprehensive benchmark suite based on the Aletheia dataset.
This benchmark spans six task settings, encompassing both Same-Frequency and Out-of-Distribution
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scenarios. Each task is evaluated on two types of spatial grids: regular and irregular to rigorously
test the generalization and robustness of neural operator models across diverse spatial discretizations.
We benchmark several representative neural operator architectures, including FNO and Transolver,
under consistent training and evaluation protocols. This unified framework offers a strong baseline
for future research and provides critical insight into the strengths and limitations of current neural
PDE solvers in realistic NDT contexts.
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Figure 4: Our benchmark covers tasks such as heat source to temperature, temperature reconstruction,
surface temperature reconstruction, and out-of-distribution detection at different frequencies.

4.1 TASK SETUP

We organize the tasks into two categories according to the alignment between training and testing
distributions:

1. Full-frequency tasks (in-distribution / closed-set) These tasks evaluate the accuracy of the
model when the training and testing data are sampled from the same excitation frequencies and
boundary conditions:

* Forward Modeling: Learn the mapping ¢(x,t) — u(x,t), i.e., predict the transient
temperature field given the internal heat source.

* Inverse Source Reconstruction: Learn the inverse mapping u(x,t) — ¢(x,t), recovering
the latent volumetric heat source from the transient temperature field u(z, y, 2, t).

« Temporal Evolution Prediction: Learn {u(x,;)};2, — {u(x,t;)}}2,,, forecasting
future temperature fields based on historical states.

* Surface-to-Source Reconstruction: Learn s(xy,t) — ¢(x,t), Reconstructing the implicit
volumetric heat source from the top surface temperature trace s(z,y, 2, t), when the values
of z are all 0.

2. Out-of-distribution (OOD) generalization tasks These tasks introduce distributional shifts
to test generalization to unseen physical conditions, such as novel excitation frequencies or altered
initial/boundary settings:

* Forward OOD Generalization: Predict u(x, t) from ¢(x, ¢) when the excitation frequency
used at test time differs from those seen during training.

* Inverse OOD Generalization: Recover ¢(x,t) from u(x, t) when testing using excitation
frequencies outside the distribution of the training set.

* Temporal OOD Generalization: Predict future thermal states from earlier temperature
observations when historical or boundary conditions are shifted.

* Surface-to-Source OOD Generalization: Recover ¢(x, t) from s(xg, t) when testing using
excitation frequencies outside the distribution of the training set.
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To further enhance diversity and realism, each task is evaluated on both regular and irregular spatial
grids. This enables us to systematically investigate the robustness of neural operators under varying
spatial discretization schemes, mimicking real-world sensing constraints.

4.2 EXPERIMENTAL SETUP

We conducted benchmarks on both regular and irregular 3D geometric datasets generated from
two-layer defect simulations. Each sample was downsampled to 8000 unstructured points, and each
experiment involved 600 samples. Prior to training, all input data were normalized using global
statistical measures.

To handle the dataset, we developed a custom VTU parser that supports normalization and enables
two data partitioning strategies: Full-Frequency (FF) and Out-of-Distribution (OOD). In the FF
setting, the entire dataset is loaded and randomly shuffled at the sample level to maintain statistical
uniformity across training and testing sets. In the OOD setting, each sample group contains 10
simulations, each corresponding to a different frequency. Within each group, 80% of the samples (i.e.,
the first 8 frequencies) are used for training, while the remaining 20% (i.e., the last 2 frequencies) are
reserved for testing. Although the internal order of samples may vary due to file loading mechanisms,
the frequency-based grouping is consistent across all computational environments. This structured
split ensures the model is evaluated on frequencies not encountered during training, enabling a more
rigorous assessment of generalization under distribution shifts.

We compare a range of baseline and state-of-the-art neural operator models. These include Fourier-
based models such as FNO (Li et al.l [2021), FENO (Tran et al., [2023), FCNO (Li et al.l 2024), and
GeoFNO (Li et al., 2023b)), as well as attention-based models like LNO (Wang & Wang, 2024) and
Transolver (Wu et al.l 2024). Additionally, we include DeepONet and a simple MLP as baseline
models to provide a fair and comprehensive comparison.

All models were trained under the same configurations, please refer to Section[F for more detailed
configurations.

4.3 EXPERIMENTAL RESULTS

We show the performance of representative operator learning models from multiple perspectives:
in-distribution vs OOD generalization, inverse task complexity (T2Q), and metric diversity that spans
global error (MSE, RMSE), structural fidelity (SSIM), and extreme case sensitivity (Max, bRMSE)
in Figure[5] Detailed quantitative results , more experimental results and visualizations can be found
in Section|H| The experiments were trained and evaluated on the Type I double-layer subset of the
Aletheia dataset.
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Figure 5: Comparison of the performance of eight models under the temperature to heat (T2Q)
inversion task based on seven evaluation metrics.

Among the four T2Q tasks, FNO demonstrated the most reliable performance in recovering volumetric
sources from whole-field temperature data. This performance exhibits pronounced spectral-induced
bias characteristics: the globally fourier layer encoded smoothing of frequency-structured thermody-
namics enables effective extrapolation during excitation displacement, thereby maintaining stable
performance in the inverse mapping of observed complete three-dimensional temperature fields. Even
when task difficulty increases due to irregular grids or frequencies beyond the design range, FNO
maintains an outer envelope on core error axes. This indicates spectral operators capture large-scale
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Figure 6: Comparison of the performance of eight models under the surface temperature to heat
(82Q) inversion task based on seven evaluation metrics.

thermal conduction with minimal aliasing effects while preserving global accuracy more effectively
than alternative methods.

Transolver demonstrates superior performance in ‘surface-to-source’ scenarios (S2Q) where only the
surface temperature is accessible and internal states remain unobservable. Across regular and irregular
layouts, as well as under out-of-distribution conditions, it consistently achieves optimal performance
across multiple metrics, reflecting its ability to more faithfully reconstruct internal heat sources from
boundary signals. Its attention-based data-dependent weights generate adaptive receptive fields that
simultaneously fuse long-range cross-surface coupling effects and highlight critical boundary features,
effectively suppressing pseudo-correlations induced by sparse or heterogeneous sampling.

It is noteworthy that, compared to T2Q with full-field observations, S2Q only accesses top sur-
face temperatures and cannot directly observe the interior, substantially reducing identifiability
and exacerbating ill posedness. Empirically, all models degrade on S2Q, with the drop most pro-
nounced on irregular meshes and under OOD excitations. It proves that limited observations and
sparse/heterogeneous sampling further weaken the inverse problem’s identifiability and promote error
accumulation across space and frequency. This mirrors the core challenge of NDT: inferring internal
heat sources/defects from boundary-only measurements is inherently information-limited.

In summary, operator choice should match the characteristics of the task. FNO is preferable when full-
field observations are available and the goal is high global accuracy or out-of-distribution extrapolation
of inverse mappings. In contrast, Transolver excels when measurements are confined to surfaces or
irregularly sampled, and the priority lies in preserving structural fidelity and controlling worst-case
risks. The two operator types are thus complementary: spectral operators reduce displacement errors,
while attention operators safeguard structural integrity and robustness under heterogeneous sensing
conditions.

5 CONCLUSION

We have developed and released the first large-scale, multi-frequency coupled 3D Pulsed Eddy Current
Thermography benchmark dataset, aimed at advancing the application of machine learning methods
in internal crack detection for NDT. This dataset is derived from high fidelity electromagnetic thermal
multiphysics simulation data and calibrated with real infrared thermal imaging experimental data,
covering various defect types and frequency response scenarios. It supports a range of forward and
inverse modeling tasks. Benchmark results show that neural operator models can effectively learn the
dynamic process of heat diffusion and reconstruct the primary internal heat source distribution from
surface temperature sequences. However, challenges remain in accurately reconstructing fine-grained
three-dimensional morphologies of complex defects.

This dataset is the first to encompass the electromagnetic-thermal coupling response of rail materials
under different excitation frequencies, providing a standardized testing platform for research into
neural network surrogate models, operator learning methods, and defect inversion. Looking ahead,
we plan to extend this framework to additional materials, such as composites and pipeline structures,
as well as to a broader range of NDT scenarios, further promoting the widespread application of
data-driven modeling in industrial inspections. We hope that the Aletheia benchmark will serve as a
foundational resource for multi-physics modeling and model generalization research.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study concerns methodological advances for
learning neural operators on thermo-electromagnetic simulations and lab measurements of inanimate
rail specimens. It involves no human subjects, personally identifiable information, or sensitive user
data. Real measurements are acquired from controlled ECPT experiments on metal rails; no living
beings are involved, and the procedures present no biological, environmental, or privacy risks. The
proposed benchmark aims to improve the reliability of inverse modeling for nondestructive testing.
While the dataset and models may inform industrial inspection workflows, they do not directly enable
harmful applications. Any future deployment in safety-critical domains must consider regulatory,
ethical, and societal constraints beyond the scope of this work (e.g., responsible use, failure modes
under distribution shift). We report all methods and results transparently and disclose no conflicts of
interest or external sponsorship. All experiments were designed and conducted in accordance with
standards of research integrity.

REPRODUCIBILITY STATEMENT

We provide the information necessary to reproduce our results. Dataset construction details (simula-
tion pipeline, experimental setup, sampling strategies, frequencies, and annotations) are described in
Section [3]and Sections[A]to[C] Task definitions, data splits, data distribution types, and evaluation
metrics are specified in Section[d]and Section[E] For each model, we list architectures, hyperparam-
eters, training schedules, and preprocessing/normalization in Section[4.2] with additional tables in
Section[F] We report the exact point counts and time steps, and use standardized evaluation scripts.
The dataset and anonymized code will be made publicly available together with scripts to reproduce
all tables and figures.
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A SIMULATION EXPERIMENT DETAILS

In COMSOL Multiphysics, the simulation domain consisted of a steel rail geometry with dimensions
set to 100 x70 x 45 which is embedded artificial defects of configurable size, orientation, and
depth, surrounded by air domain; The rail material used in the physical experiments was U71Mn
steel, and the material parameters used in the simulation were modified from U71Mn properties
based on calibration against experimental surface temperature measurements. The constant material
properties for steel, air, and excitation coil were assigned as listed in Table[3] All external surfaces
of the rail were thermally insulated except for the top surface, which had a convective cooling
boundary condition to ambient air, with a heat transfer coefficient set to 5 W/(m?-K); the excitation
coil was driven via an applied current boundary condition to simulate inductive heating. The initial
temperature of the entire model was uniformly set to 20 °C. A free tetrahedral mesh was employed,
featuring fine elements around defect regions and within the electromagnetic skin depth, while coarser
elements were used elsewhere; an adaptive refinement scheme further adjusted the mesh based on
local conductivity gradients. The simulation was run using a time-dependent solver with a backward
differentiation formula (BDF) scheme, covering a time span from 0 to 0.6 s with a fixed time step of
0.05 s.

Table 3: Material property parameters. In the ECPT experiment, due to the extremely short heating
process and relatively small temperature rise changes, the impact on the various properties of the
material can be ignored. Therefore, the material’s property parameters are set to a fixed constant. ~
represents the physical quantity of the material that is not involved in actual calculations.

Conductivity Relative Relative Thermal Density Constant pressure
Material (S/m) permeabilit dielectric conductivity (keg/m?) heat capacity
Y constant (W/m-K) g J/kg-K)
Steel 1.3 x 107 200 2 48 8000 450
Air 0 1 1 0.0257 1.205 1005
Copper  5.998 x 107 1 1 ~ ~ ~

B DATA GENERATION AND DETAILS

The diversity of defect samples in our dataset is achieved through systematic variations in defect
orientation, depth, and length. For single-layer defects, the angle between the defect extension
direction and the upper surface differs from sample to sample. In double-layer and multi-layer
defects, not only do the individual cracks vary in their inclination to the surface, but the angles
between multiple cracks also change. These controlled variations result in a wide range of geometric
configurations. Detailed statistical parameters of defect angles are presented in Table ]

Table 4: Angle parameters for different types of defects. Among them, angle 1 represents the angle
formed between the defect direction and the upper surface, while angles 2 and 3 represent the angles
between multiple cracks. All units are based on angle system.

Range of different angles

Defect type
angle I angle II angle IIT

Single layer defect 3~90 - -
Type I double-layer defect — 24.47~75.47 5.72~81.27 -
Type II double-layer defect 3~71 - -
Type III double-layer defect 10.06~80.06 0.83~24.03 -
Type I multi-layer defect 0~89 - -

Type II multi-layer defect 30~90 12.09~31.1 12.12~31.12

The dataset contains a total of 4,782 samples, with an overall size of approximately 1.89 terabytes.
These samples are organized into six main folders, each corresponding to a specific defect type
and named accordingly. Each sample folder is labeled by its defect type followed by one or more
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angle values that indicate the orientation of the defect. For example, names may include a single
angle for single-layer defects or two to three angles for more complex configurations. Within each
sample folder, there are three subfolders storing different types of data. The first subfolder contains
surface temperature data sampled on a structured grid. The second provides full three-dimensional
temperature and heat field data, also on a structured grid with a uniform spacing of one unit. The third
subfolder includes similar 3D data, but sampled on an unstructured grid. The unstructured sampling
strategy, which distributes 50,000 points per sample, is detailed in the main text. Table [5| summarizes
the number of sampling points for each data type.

Table 5: Sampling point statistics for different types of data. Here, T+ denotes surface temperature
measurements, {q(x,t), u(X, t) }suctured Tepresents paired heat source and temperature field data
sampled on regular grids, and {q(x, t), u(X, t) }unstructurea denotes the same sampled irregularly.

Data type X y z  Sampling points
Tourt 150 105 - 10750
{Qa U}structured 50 30 30 45000
{q: U}unstructured - - - 50000

Each sample is simulated under ten excitation frequencies ranging from 1 to 100 kHz, with each
frequency corresponding to one VTU format file. Both surface and volumetric temperature data are
time-resolved from O to 0.6 seconds, with a time step of 0.05 seconds, resulting in 13 time-series
data stored in each VTU file. This structure ensures that the dataset supports diverse tasks involving
spatial, temporal, and multi-frequency analysis.

C DEFECT DETAILS

Our dataset encompasses six distinct internal crack defect types, spanning single-layer, double-layer,
and multi-layer configurations and including both open and closed crack cases. Six types of defects
are shown in Figure[7]and the detailed parameters of each defect are shown in Table[6]

(b)

Figure 7: 6 types of defects: (a)Single layer defect (b)Type I double-layer defect (c)Type II double-
layer defect (d)Type III double-layer defect (e)Type I multi-layer defect (f)Type II multi-layer defect

Table 6: Detailed parameters of 6 types of defects. The units of depth, width, and length are all in
millimeters. In double-layer and multi-layer defects, the length of the defect refers to the length of
the longest crack.

Defect type Sample size Depth Width  Length Open/Closed
Single layer defect 88 0.2~3.82 0.1~02  3.82 Open
Type I double-layer defect 1050 1.17~4.1 0.2 4.53 Open
Type II double-layer defect 69 0.24~4.02 0.1~0.2 422 Open
Type III double-layer defect 2285 1.40~3.75 0.2 3.29 Closed
Type I multi-layer defect 90 0.81~2.41 0.2 24 Closed
Type II multi-layer defect 1200 1.89~3.12 0.15 3.12 Open
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D DEFECT RECONSTRUCTION FROM HEAT FIELD

We conducted a simple test using a basic 3D CNN to reconstruct the heat source field Q(x, y, z). The
results demonstrate that ) can effectively capture defect morphology: high-Q-value dense zones align
with defect surfaces, Q-value decay indicates defect propagation direction, and low-Q-value regions
correspond to internal cavities. Leveraging a 3D CNN with a large receptive field, we extract global
spatial features from the reconstructed Q-field and use a regression network to predict key defect
parameters such as angle, length, and depth. Experimental results (Table[/)) show reliable predictions
for these parameters, with length exhibiting the highest accuracy due to its distinct extension feature in
the Q-field. The width parameter shows low variance in the dataset, resulting in negligible predictive
signal rather than a model limitation. Therefore, as long as our neural operator can reconstruct )
accurately, it can serve as a reliable basis for predicting multidimensional defect characteristics.

Table 7: Regression evaluation indicators for crack parameters

Attributes \ Model MSE RMSE MAE
MLP 0.23 0.48 0.38
Crack angle FNO 0.17 0.41 0.35
Transolver 0.20 0.44 0.30
MLP 0.0020 0.044 0.034
Crack length FNO 0.0012 0.035 0.028
Transolver 0.0011 0.033 0.020
MLP 1.24 1.11 091
Crack depth FNO 0.85 0.92 0.80
Transolver 1.02 1.01 0.70
MLP 1.00 x 10~*  1.00 x 10~7  7.86 x 1078
Crack width FNO 1.26 x 107 1.12x 1077 1.10 x 1077
Transolver 1.43 x 107'% 1.19x 107 1.16 x 10~7

E METRICS

Standard methods for calculating the root mean square error (RMSE) of test data fail to capture
important optimization criteria in scientific machine learning. It is not enough to fit (usually sparse)
data well if the physical laws of the underlying problem are seriously violated. Therefore, they must
be evaluated using appropriate metrics. Furthermore, a single evaluation metric is not sufficient to
compare differences in the ability of different methods to infer unseen time steps and parameters,
which are important but not yet fully explored evaluation criteria for machine learning alternative
models. We used the PDEBench evaluation metrics and the SSIM evaluation metrics, as shown in
Table

The normalized RMSE is a variant of the RMSE to provide scale-independent information defined as:
HRMSE = ||upred - utrue”2 7 (3)
||utrue ||2

where ||u||2 is the Lo-norm of a (vector-valued) variable u, and Usyye, Upred are true and predicted
values, respectively. The maximum error measures the model’s worst prediction, which quantifies
both local performance and models’ stability of their prediction.

cRMSE is defined as
cRMSE =

||Z Upred — Z utrue”g
N b

which measures the deviation of the prediction from some physically conserved value.

“

bRMSE measures the error at the boundary, indicating if the model understands the boundary
condition properly.
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Table 8: Evaluation indicators provided by PDEBench

Scope Acronym Metric
RMSE root-mean-squared-error
Data view nRMSE normalized RMSE (ensuring scale independence)
maximum error
max error o . .
(local worst case; also proxy for stability of time-stepping)
“RMSE RMS.E.of conserved value ' .
(deviation from conserved physical quantity)
bRMSE RMSE on boundary N
Physics view (whether boundary condition can be learned)
fRMSE low RMSE in Fourier space, low frequency regime
(wavelength dependence)
fRMSE mid RMSE in Fourier space, medium frequency regime

fRMSE high RMSE in Fourier space, high frequency regime

Finally, fRMSE measures the error in low/middle/high-frequency ranges defined as:

kI[laX

Z |-7:(upred) _]:(utrue)|2

Koo
= 5
kmax - kmin + 1 ’ ( )

where F is a discrete Fourier transformation, and &,y , kmax are the minimum and maximum indices
in Fourier coordinates.

In PDEBench paper, the low/middle/high-frequency regions are defined as:

e Low: kpin = 0, knax = 4
e Middle: kmin = 5, kmax = 12
* High: kpin = 13, kpax = o0

This allows a quantitative discussion of the model performance’s dependence on the wavelength. In
the multidimensional cases, the | F (tpred — Utrue) (k) |2 in the angular coordinate direction is first
integrated and summed along the k coordinate.

F EXPERIMENTAL SETUP DETAILS

To ensure a fair comparison, this section details all hyperparameters and training configurations
employed across the models. For the FNO family of models, given their similar parameter sets, these
hyperparameters are presented in Table[9]

Table 9: Shared architectural settings for the FNO family baselines. All models use the same spectral
bandwidth and channel widths to ensure fairness. (mg, m,,m,) denotes spectral modes, Width
denotes the linear transformation applied on the spatial domain, Grid/scale denotes the resolution
of the gird.

Model (mg, my,my) Width Grid/scale Model Variant

FNO (12,12,8) 32 (20,20,20)  Original Fourier Neural Operator
GeoFNO  (12,12,8) 32 (20,20, 20) Geometry-Aware FNO
FFNO (12,12,8) 32 (20,20, 20) Factorized FNO

FCNO (12,12,8) 32 (20,20,20) Factorized Cosine Neural Operator
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Transolver. We instantiate Transolver with hidden size npigden. = 256, depth nj4yers = 8, and
spatial dimension spaceg;,, = 3. Multi-head attention uses npeqq = 8 with an MLP expansion ratio
of 2. We further use slice,q,,, = 32 and disable positional unification. The same configuration is
used for all tasks.

LNO. The LNO is consisting of ny;,cx = 4 operator blocks with spectral resolution 7,4 = 256
and hidden width ngim = 128. Attention uses npead = 8 and nyqyer = 2 transformer layers with
GELU activations and the vanilla attention kernel; temporal modeling is disabled.

MLP. We employ a point-wise multilayer perceptron with hidden width 32, and 4 layers in total,
serving as a lightweight regression baseline.

DeepONet. The DeepONet baseline adopts a branch—trunk decomposition with width 32 in both sub-
networks. The branch network has depth 2; the trunk network has depth 3, receiving the functional
input of dimension 13 and producing a scalar output of dimension 1. All other settings follow the
original implementation.

All models were trained under the same configuration: batch size of 1, learning rate of 0.0001, and
200 training epochs. Training employed the Adam optimizer alongside the OneCycleLR learning
rate scheduler. All experiments were conducted on a single NVIDIA RTX 4090 GPU with 24GB of
memory. The models were trained using mean squared error (MSE) loss, and evaluated using SSIM
along with several PDEBench metrics. Regarding the part of evaluation indicators, lease refer to
Section [E] for detailed definitions.

Detailed configurations reference Table[I0] Apart from DeepONet, each model permits customisation
of input and output channels. Due to DeepONet’s constraint that its output channel must be limited
to 1, DeepONet participated solely in the T2Q and S2Q tasks.

Table 10: Training configuration across tasks. Points denote the number of samples. In — Out
ch. denotes input and output channels, Sample Points denotes the number of downsampling points
for each data, Epochs denotes total training epochs, LR denotes initial learning rate, Sample Data
denotes the number of simulated data used for training, Optimizer denotes the optimiser employed
for training, Batch denotes the batch size used for training, Training Times denotes the number of
repeated training sessions for each task

Task \ In — Out ch. Sample Points Epochs LR Sample Data  Optimizer Batch  Training Times
T2Q 13 —>1 8000 (vol.)

S2Q 13 —>1 8000 (vol.) + 8 000 (surf.) 4

2T 11— 2 8000 (vol.) 200 1x10 600 Adam 1 5

Q2T 1—13 8000 (vol.)

G LLM USE DISCLOSURE

We used large language models (LLMs) only for paper grammar and wording edits, minor LaTeX
formatting for tables and figures, lightweight source code checks and plotting assistance.LLMs were
not used to generate scientific claims, design or run experiments, analyze results, create data or alter
data, nor to draft substantive technical content. All scientific content, analyses, and conclusions
were authored and verified by the authors, no confidential submission materials were provided to
third-party LLM services. We take full responsibility for the submission.

H MORE EXPERIMENTAL RESULTS

Here we show the performance comparison of various neural operator models in related tasks,
including Forward Modeling, Inverse Source Reconstruction, Temporal Evolution Prediction and
Surface-to-Source Reconstruction tasks, involving regular/irregular grids and full-frequency/OOD
environments. Multiple tables quantify the seven metrics of each model in different scenarios (The
smaller the value of the indicator with a downward arrow, the better; the larger the value of the
indicator with an upward arrow, the better), which cover a variety of models such as MLP, Transolver,
FNO, and so on.
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Table 11: Quantitative results for the temperature-to-heat (T2Q) inversion task on irregular grids
under full-frequency setting, trained and evaluated on the Type I double-layer subset of the Aletheia
dataset. Each entry reports mean + standard deviation over repeated runs.

Model \ MSE | SSIM RMSE | nRMSE | cRMSE | Max | bRMSE |,

MLP 0.311 £0.004 0.578 £0.009 0.550 & 0.004 0.550 & 0.004 0.014 +0.002 20.658 & 0.153  0.156 = 0.009
DeepONet | 0.281 £0.004 0.586 £ 0.009 0.525 & 0.004 0525 £0.004 0.010 £ 0.001 19.215£0.212  0.127 £ 0.005
FNO 0.069 £ 0.001 0.759 £ 0.005 0244 +£0.002 0244 £0.002 0.0054+0.001 95184 0.185  0.037 = 0.002
GeoFNO | 0349 £ 0.012  0.559 & 0.021  0.586 = 0.010  0.586 = 0.010  0.007 £ 0.001  19.161 £ 0.055 0.117 & 0.022
FENO 0.139 £0.002 0.678 £0.003 0.354+0.002 035440002 0.01940.001 14350 & 0.210 0.056 = 0.003
FCNO 0.142 £0.001  0.655+0.005 0369 +0.001 036940001 001240001 15668 %0076 0.072 = 0.015
LNO 0319 £0.030 0.641 £0.008 0.556 +0.027 0.556 & 0.027 0.005 & 0.001 23.952 & 1.956  0.061 == 0.021
Transolver | 0.091 +0.003 0.751 £ 0.003 0.289 & 0.004 0.289 & 0.004  0.003 & 0.000  12.127 £ 0.355  0.040 == 0.001

Table 12: Quantitative results of the temperature-to-heat (T2Q) inversion task on irregular grids under
OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset. Each
entry reports mean =+ standard deviation over repeated runs.

Model \ MSE | SSIM 1 RMSE | nRMSE | cRMSE | Max | bRMSE |

MLP 0.301 4+ 0.003 0.577 +0.008 0.544 +0.003 0.544 £ 0.003 0.014 & 0.003 19.268 + 0.118  0.157 + 0.012
DeepONet | 0.294 & 0.005 0.580 & 0.010  0.535 +0.004 0.535 +0.004 0.014 £ 0.001  19.859 & 0.217  0.129 & 0.008
FNO 0.070 4 0.001  0.759 + 0.007 0.246 £ 0.002 0.246 £ 0.002  0.005 & 0.000  9.036 = 0.200  0.041 = 0.002
GeoFNO | 0343 £0.017 0.575+0.018 0.580 & 0.015 0.580 +0.015 0.008 £ 0.003 19.019 & 0.098 0.116 & 0.018
FFNO 0.120 + 0.003  0.683 +0.002 0339 +0.004 0.339 £ 0.004 0.018 & 0.001  13.563 +0.513  0.056 + 0.014
FCNO 0.145 +0.001  0.648 +0.005 0373 £0.001 0.373 £0.001 0.014 & 0.001 15.112 4+ 0.056 0.068 =+ 0.008
LNO 03224+ 0.019 0.632+0.006 0559 +0.017 0.559 £0.017 0.006 & 0.001 24.755 + 0.815  0.060 = 0.007
Transolver | 0.088 & 0.003 0.751 & 0.001  0.283 +0.002 0.283 +0.002 0.003 £ 0.000 11.235 & 0.288  0.040 = 0.002

Table 13: Quantitative results of the temperature-to-heat (T2Q) inversion task on regular grids under
full-frequency setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset.
Each entry reports mean + standard deviation over repeated runs.

Model \ MSE | SSIM 1 RMSE | nRMSE | cRMSE J Max | bRMSE |

MLP 0.127 £ 0.001 0.863 +0.011 0337 £0.002 0.337 £0.002 0.004 & 0.001 15904 +0.127  0.022 =+ 0.010
DeepONet | 0.110 & 0.002  0.875 & 0.013 0311 +0.004 0311 £0.004 0.005 £ 0.001  14.769 & 0.092  0.010 % 0.002
FNO 0.040 & 0.001  0.917 +0.009 0.186 £ 0.001  0.186 £ 0.001  0.003 & 0.000  7.836 & 0.067  0.018 + 0.003
GeoFNO | 0222 £0.017 0.821 £ 0.013  0.446 & 0.018 0.446 + 0.018 0.007 £ 0.003 23.442 + 1.164 0.012 & 0.003
FFNO 0.052 4 0.001  0.894 +0.002 0219 £0.001 0219 £0.001 0.010 & 0.000 9.523 +0.113  0.031 = 0.008
FCNO 0.072 4+ 0.004 0.898 +0.005 0.253 £0.005 0.253 & 0.005 0.009 & 0.000 12.022 +0.549  0.042 + 0.014
LNO 0.164 & 0.105 0.864 +0.083 0374 +£0.121 0.374 £0.121  0.003 & 0.001  16.451 +5.906 0.014 =+ 0.006
Transolver | 0.053 & 0.003  0.929 4 0.002 0.219 +0.002 0.219 £ 0.002 0.002 £ 0.000  9.473 & 0.248  0.008 + 0.001

Table 14: Quantitative results of the temperature-to-heat (T2Q) inversion task on regular grids under
OQOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset. Each
entry reports mean =+ standard deviation over repeated runs.

Model \ MSE | SSIM 1 RMSE | nRMSE | cRMSE | Max | bRMSE |

MLP 0.126 £ 0.001 0861 £0.011 0341 +0.002 0341 +0.002 0.005+0.001 16300 & 0.068 0.024 =+ 0.012
DeepONet | 0.120 +0.003  0.875 4+ 0.013 0327 +0.004 0327 & 0.004  0.006 & 0.000  15.936 & 0.186  0.011 = 0.001
FNO 0.044 £0.001 0919 +0.008 0.187 +0.001 0.187 +0.001 0.003 & 0.000 8.167 & 0.094  0.018 = 0.004
GeoFNO | 0.168 4 0.012  0.810 4 0.037 0.391 £0.016 0.391 £0.016 0.007 £0.005 18.423 +0.833 0.012 % 0.007
FFNO 0.058 +0.001 0.899 +0.001 0225+ 0.003 0225+ 0.003 0.009+0.000 10.014 4 0.227 0.032 = 0.006
FCNO 0.072 £0.002 0.898 +0.004 0249 +0.004 0249 +0.004 0.009 4 0.000 11.540 & 0.332  0.030 = 0.006
LNO 0.133 £0.003 0902 +0.006 03330002 0333+0002 0.00340000 1566240277 0.015 =+ 0.006
Transolver | 0.062 +0.002 0927 +0.002 0.237 4 0.002 0.237 & 0.002  0.002 & 0.000  10.781 £ 0.363  0.008 = 0.002
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Table 15: Quantitative results for the surface temperature to heat (S2Q) inversion task on irregular
grids under full-frequency setting, trained and evaluated on the Type I double-layer subset of the
Aletheia dataset. Each entry reports mean + standard deviation over repeated runs.

Model \ MSE | SSIM RMSE | nRMSE | cRMSE | Max | bRMSE |,

MLP 0.667 £0.017 0366 +0.008 0.813+0.011 081340011 000440002 342110159 0.237 & 0.070
DeepONet | 0.653 +0.023 0.183 £ 0.006 0.805 4 0.014 0.805 % 0.014  0.001 &= 0.001  32.556 = 0.519  0.189 == 0.044
FNO 0.443 £0.004 0.630 £0.009 0.656 £ 0.003 0.656 +0.003 0.008 & 0.001 28.445 & 0.201  0.053 = 0.002
GeoFNO | 1.022£0.017 0.017£0.002 1.011£0.008 1.011 £0.008 0.010 & 0.004 33.338 £0.012 0.184 & 0.019
FENO 0.547 £0.011 0.588 £0.004 0.731 £0.007 0.731 £ 0.007 0.004 & 0.000 31.579 = 0.444  0.061 == 0.004
FCNO 0.464 £0.004 0517 £0.015 0.673+£0.003 0.673£0.003 0.003 & 0.000 29.157 & 0.303  0.062 = 0.005
LNO 0.442 £0.066 0.604 £ 0.004 0.654 £ 0.048 0.654 £ 0.048 0.010 & 0.003 28.170 & 3.192  0.122 = 0.027
Transolver | 0.365 +0.008 0.687 £ 0.003 0.584 & 0.006 0.584 & 0.006  0.003 &= 0.001  26.922 £ 0.241  0.039 = 0.002

Table 16: Quantitative results for the surface temperature to heat (S2Q) inversion task on irregular
grids under OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia
dataset. Each entry reports mean = standard deviation over repeated runs.

Model \ MSE | SSIM 1 RMSE | nRMSE | cRMSE | Max | bRMSE |

MLP 0.695 4+ 0.019  0.365 +0.005 0.830 £0.012 0.830 £ 0.012 0.004 & 0.002  37.203 4+ 0.201  0.209 + 0.082
DeepONet | 0.663 & 0.021  0.180 & 0.009 0.810 +0.013 0.810 £ 0.013 0.001 £ 0.001  34.130 & 0.483  0.190 + 0.051
FNO 0.437 +0.005 0.629 +0.009 0.654 +0.004 0.654 £ 0.004 0.008 & 0.001  28.072 4 0.205  0.058 + 0.005
GeoFNO | 1.029 £0.018 0.025-+0.004 1.011 4 0.004 1.011 +0.004 0.008 £ 0.003 35.187 = 0.059 0.181 & 0.016
FFNO 0.516 + 0.002  0.598 +0.003 0.710 £0.002 0.710 £ 0.002  0.004 & 0.000 29.409 + 0.366  0.062 + 0.007
FCNO 04524 0.008 0518 +0.009 0.665+0.006 0.665+0.006 0.002 =+ 0.000 28.992 4+ 0.635 0.071 + 0.012
LNO 04854 0.113 0588 +0.091 0.682 +0.074 0.682 £ 0.074 0.010 & 0.003 31.849 +3.624 0.121 + 0.064
Transolver | 0.344 & 0.006 0.687 & 0.004 0.570 +0.004 0.570 £ 0.004 0.003 £ 0.001  26.512 & 0.206  0.043 % 0.001

Table 17: Quantitative results for the surface temperature to heat (S2Q) inversion task on regular
grids under full-frequency setting, trained and evaluated on the Type I double-layer subset of the
Aletheia dataset. Each entry reports mean + standard deviation over repeated runs.

Model \ MSE | SSIM 1 RMSE | nRMSE | cRMSE J Max | bRMSE |

MLP 0.473 4+ 0.066 0.603 +0.067 0.680 £ 0.049  0.680 £ 0.049  0.003 & 0.001  34.790 & 3.014  0.061 = 0.027
DeepONet | 0.672 & 0.035 0.134 & 0.047 0816 +0.023 0.816 £ 0.023 0.002 £ 0.001  39.705 & 1.240  0.509 % 0.366
FNO 0.330 £ 0.002  0.903 +0.002 0.537 £0.002 0.537 £0.002 0.004 & 0.000 29.897 & 0.145  0.013 % 0.001
GeoFNO | 1.004 £0.003 0.071 £0.011  1.002 & 0.001  1.002 + 0.001  0.006 £ 0.002 42.126 = 0.006  0.085 = 0.005
FFNO 0.421 +0.009 0.849 +0.003 0.620 £ 0.006 0.620 £ 0.006 0.003 & 0.000 32.368 & 0.776  0.018 + 0.003
FCNO 0.356 + 0.017 0.850 + 0.003 0.563 £0.011 0.563 £ 0.011 0.003 & 0.000 31.456 &+ 1.195  0.025 + 0.007
LNO 0.388 &+ 0.069 0.863 +0.025 0.598 £0.070 0.598 £ 0.070 0.004 & 0.001  33.665 & 5.873  0.016 = 0.002
Transolver | 0.247 & 0.013  0.902 & 0.004 0.452 4+ 0.007 0.452 +0.007 0.004 £ 0.001 24.779 & 0.559  0.015 =% 0.002

Table 18: Quantitative results for the surface temperature to heat (S2Q) inversion task on regular
grids under OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia
dataset. Each entry reports mean + standard deviation over repeated runs.

Model \ MSE | SSIM 1 RMSE | nRMSE | cRMSE | Max | bRMSE |

MLP 0473 £0.066 0.603 +0.067 0.680 +0.049 0.680 +0.049 0.003 +0.001 34790 & 3.014  0.061 = 0.027
DeepONet | 0.672 +0.035 0.134 +0.047 0.81640.023 0.81640.023  0.002 & 0.001  39.705 £ 1.240  0.509 + 0.366
FNO 0.330 £0.002 0903 +0.002 0537 +0.002 0537 +0.002 0.00440.000 29.897 & 0.145 0.013 = 0.001
GeoFNO | 1.004 4 0.003  0.071 £0.011  1.002 £ 0.001  1.002 £ 0.001  0.006 £ 0.002 42.126 + 0.006  0.085 % 0.005
FFNO 0421 £0.009 0.849 +0.003 0.620 +0.006 0.620 +0.006 0.003 &+ 0.000 32368 & 0.776  0.018 = 0.003
FCNO 0.356 £0.017 0.850 £0.003 0.563 +0.011 0563 +0.011 0.003 4 0.000 31.456 4 1.195 0.025 =& 0.007
LNO 0.388 £ 0.069 0.863 +0.025 0.598 +0.070 0.598 +0.070 0.004 +0.001 33.665 & 5.873  0.016 = 0.002
Transolver | 0.247 +0.013 0902 4 0.004 0.452 4 0.007 0.452 4 0.007  0.004 & 0.001  24.779 £ 0.559  0.015 = 0.002
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Table 19: Quantitative results of the heat-to-temperature (Q2T) forward task on irregular grids under
full-frequency setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset.
Each entry reports mean =+ standard deviation over repeated runs.

Model \ MSE | SSIM 4 RMSE | nRMSE | cRMSE | Max | bRMSE |

MLP 0.979 & 0.001  0.011 £0.001  0.989 &+ 0.001 0.989 = 0.001  0.001 £ 0.000 16.445 & 0.011  0.421 £ 0.017
FNO 0.019 £0.001 0939 +0.001 0.108+0.009 0.110 4 0.013 0.005 & 0.003 2.276 & 0.468  0.055 == 0.010
GeoFNO | 0450 £0.002 0.573 £ 0.003 0.667 &£ 0.002 0.667 £ 0.002 0.008 & 0.002  13.095 £ 0.336  0.325 % 0.006
FFNO 0.046 £0.001 0.854 £0.001 0.193+0.001 0.1934+0.001 0.01640.001 4268 & 0.057 0.106 =& 0.006
FCNO 0.065 & 0.002  0.783 £0.004 0.235+0.005 0.235 £ 0.005 0.011 £0.000 5.176 £ 0.074  0.139 £ 0.015
LNO 0.037 £0.002 0917 £0.002 0.158 & 0.004 0.158 & 0.004 0.006 & 0.001  3.882 & 0.265  0.060 == 0.004
Transolver | 0.017 £ 0.002 0.952 & 0.004 0.108 & 0.004 0.109 & 0.001  0.003 &= 0.002  2.183 £ 0.318  0.054 = 0.005

Table 20: Quantitative results of the heat-to-temperature (Q2T) forward task on irregular grids under
OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset. Each
entry reports mean =+ standard deviation over repeated runs.

Model \ MSE | SSIM 1 RMSE | nRMSE | cRMSE J Max | bRMSE |

MLP 0.979 4+ 0.001  0.011 +0.001 0.990 £ 0.000 0.990 £ 0.000  0.001 & 0.000  16.789 & 0.012  0.401 =+ 0.019
FNO 0.018 + 0.001  0.938 +0.001 0.103 £0.002 0.103 £ 0.002 0.004 & 0.000 1.913 +0.070  0.058 = 0.002
GeoFNO | 0.463 £0.003 0.577 £0.011 0.667 & 0.021  0.663 & 0.030 0.014 +0.012 13.857 £ 0.783  0.309 = 0.004
FFNO 0.048 + 0.001  0.853 +0.001 0.194 +£0.002 0.194 £0.002 0.015 4 0.001 4.578 +0.133  0.100 = 0.007
FCNO 0.064 & 0.002  0.785 +0.005 0.232 +0.004 0.232£0.004 0.010 & 0.000 5.098 +0.197  0.134 + 0.010
LNO 0.038 + 0.003 0918 +0.002 0.161 £ 0.008 0.161 & 0.008 0.006 & 0.000  4.090 &+ 0.376  0.064 + 0.003
Transolver | 0.018 & 0.001  0.950 & 0.001  0.110 +0.003 0.110 £ 0.003 0.002 £ 0.000  2.049 & 0.291  0.057 % 0.003

Table 21: Quantitative results of the heat-to-temperature (Q2T) forward task on regular grids under
full-frequency setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset.
Each entry reports mean + standard deviation over repeated runs.

Model \ MSE | SSIM 1 RMSE | nRMSE | cRMSE | Max | bRMSE |

MLP 0751 £0.008 0.250 +0.013 0.865+0.005 0.865+0.005 0.001 +0.000 234764 0.794 0.162 & 0.068
FNO 0.018 £0.000 0964 +0.002 0.1034+0.001 0.103 4 0.001 0.004 & 0.000  3.786 & 0.100  0.017 = 0.001
GeoFNO | 0.419 4 0.001  0.831 £ 0.003 0.631 £ 0.001  0.632 £ 0.001  0.003 £ 0.000 25.503 + 0.007 0.167 % 0.003
FFNO 0.035£0.002 0948 +£0.002 0.157+0.004 0.157+0.004 001240002 629540224 0.023 & 0.003
FCNO 0.036 £ 0.000 0933 +£0.001 0.165+0.001 0.165+0.001 0.0154 0001 581840057 0.033 =& 0.003
LNO 0.038 £0.003 0962+ 0.005 0.164+0.009 0.164+0.009 000340001 654440415 0.013 =& 0.002
Transolver | 0.018 +0.001 0977 +0.001  0.11140.002 0.111 4 0.002 0.002 & 0.000 ~ 3.971 £0.157  0.012 =+ 0.002

Table 22: Quantitative results of the heat-to-temperature (Q2T) forward task on regular grids under
OQOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia dataset. Each
entry reports mean =+ standard deviation over repeated runs.

Model \ MSE | SSIM RMSE | nRMSE | cRMSE | Max | bRMSE |

MLP 0755 £0.011 02454+ 0.012 0.867 £ 0.007 0.867 & 0.007 0.001 & 0.000 23.717 & 1.066  0.179 = 0.054
FNO 0.019 £0.000 0.965+0.003 0.107 £ 0.002 0.107 & 0.002 0.003 & 0.000 4.023 & 0.124  0.017 = 0.002
GeoFNO | 0.440 & 0.000  0.835 = 0.002  0.648 = 0.000  0.648 = 0.000  0.003 £ 0.001  27.766 + 0.023  0.149 & 0.003
FFNO 0.030 £0.001 0.945+0.002 0.149 & 0.003 0.149 & 0.003 0.013 & 0.002  5.616 &= 0.116  0.026 == 0.004
FCNO 0.044 £0.001 0928 £0.001 0.179 £ 0.001 0.179 £ 0.001 0.015 4+ 0.001  6.607 & 0.097  0.039 = 0.005
LNO 0.040 £ 0.003 0.957 £ 0.006 0.173 £ 0.007 0.173 £ 0.007 0.004 &+ 0.000 6.728 & 0.296  0.015 == 0.003
Transolver | 0.021 £ 0.001 0978 & 0.001  0.117 & 0.002 0.117 & 0.002  0.002 & 0.000  4.580 & 0.128  0.012 = 0.001
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Table 23: Quantitative results of the temperature-to-temperature (T2T) prediction task on irregular
grids under full-frequency setting, trained and evaluated on the Type I double-layer subset of the
Aletheia dataset. Each entry reports mean + standard deviation over repeated runs.

Model \MSE(xm*?’)i SSIM 1 RMSE (x10~2) | nRMSE (x1072) | cRMSE (x1073)]  Max]  bRMSE(x10~3) |
MLP 954.897 = 2.459 0.010356 =& 0.000623  97.718 + 0.126 97.718 £ 0.126 2340 £ 0.946 6464 +0.623  41.718 +9.210
FNO 0.004 4 0.001  0.999915 + 0.000018  0.188 % 0.022 0.188 & 0.022 0.070 £ 0.022  0.235+0.064  0.706 + 0.208
GeoFNO | 0223 +0.223  0.996296 + 0.003234  1.300 & 0.775 1.300 + 0.775 0.761 +£0.705 1290 +£0.116  1.688 + 1.573
FFNO 0.030 £ 0.003  0.999097 = 0.000090  0.544 + 0.027 0.544 =+ 0.027 0.700 & 0.094  1.013 £0.051 1595 4 0.212
FCNO 0.630 4 0.020  0.984715 + 0.000547  2.476 + 0.194 2.476 4 0.194 5106+ 0.162  1.857 £ 0.160 5345 + 0.445
LNO 5735+ 0414  0.947556 + 0.001475  7.532 + 0.396 7.532 + 0.396 23.904 +3.602 4.022+0.615 8755+ 1.087
Transolver| 0.002 = 0.0001 0.999996 = 0.000004  0.116 % 0.012 0.116 & 0.012 0.020 & 0.007  0.185 £ 0.044  0.296 % 0.059

Table 24: Quantitative results of the temperature-to-temperature (T2T) prediction task on irregular
grids under OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia
dataset. Each entry reports mean + standard deviation over repeated runs.

Model ‘MSE(X 1073) 1 SSIM 1 RMSE (x1072) | nRMSE (x10~2) ] ¢RMSE (x10~3)|  Max]  bRMSE(x10 3)|
MLP 951.890 = 2.649 0.010708 =+ 0.000649  97.560 + 0.142 97.560 + 0.142 3.009 + 1.940 6236+ 0.821  45.946 & 5.980
FNO 0.005 £ 0.001  0.999879 = 0.000021  0.212 % 0.025 0.212 = 0.025 0.068 & 0.022 0241 £0.055  0.737 +0.199
GeoFNO | 0227 +0.221  0.996368 + 0.003169  1.276 4 0.123 1.276 & 0.123 2576 £2553 1266+ 0.115 1720 + 0.982
FENO 0.031 £ 0.003  0.999113 = 0.000092  0.542 + 0.016 0.542 £ 0.016 0.698 4+ 0.175  1.008 £ 0.071  1.642 +0.206
FCNO 0.638 £ 0.021  0.984639 = 0.000550  2.494 %+ 0.196 2.494 =+ 0.196 519440168  1.879 £0.112  5.458 4 0.545
LNO 5786 & 0.419 0955559 + 0.001581  7.544 + 0.358 7.544 4 0358 23763 +£3.616 411740576  9.661 + 0.857
Transolver| 0.002 + 0.000  0.999994 + 0.000005  0.119 + 0.013 0.119 £ 0.013 0.019 4 0.007  0.196 +0.051 0308 4 0.043

Table 25: Quantitative results of the temperature-to-temperature (T2T) prediction task on regular
grids under full-frequency setting, trained and evaluated on the Type I double-layer subset of the
Aletheia dataset. Each entry reports mean + standard deviation over repeated runs.

Model ‘MSE(X10_3)J, SSIM 1 RMSE (x1072) | nRMSE (x1072) | cRMSE(x1073)  Max] bRMSE(x1073) |
MLP 955.422 4 3412 0.010155 + 0.000517  97.760 % 0.170 97.760 = 0.170 2540 + 1.643 6329 +0.634  42.009 + 7.311
FNO 0.005 4 0.001  0.999886 + 0.000019  0.199 + 0.023 0.199 + 0.023 0.070 +0.027 0243 +0.062  0.685 + 0.248
GeoFNO | 0.207 +0.190  0.996455 - 0.003413  1.223 + 0.149 1.223 4 0.149 2306 4+2.158 127340115  1.669 4+ 0.955
FENO 0.031 £0.003  0.999106 4 0.000085  0.547 %+ 0.019 0.547 £ 0.019 0.706 £ 0.183  1.017 £ 0.061  1.607 & 0.255
FCNO 0.662 4 0.023  0.984206 + 0.000535  2.550 + 0.200 2.550 4 0.200 5116+ 0.161  1.869 +0.146 5360 + 0.407
LNO 5.607 4+ 0.449  0.955190 + 0.001672  7.489 + 0.433 7.489 4 0.433 23578 43794 4116 +0.638  9.949 + 1.256
Transolver| 0.002 £ 0.000  0.999995 4 0.000004  0.117 & 0.013 0.117 £0.013 0.019 £0.007  0.197 40050  0.287 & 0.055

Table 26: Quantitative results of the temperature-to-temperature (T2T) prediction task on regular
grids under OOD setting, trained and evaluated on the Type I double-layer subset of the Aletheia
dataset. Each entry reports mean = standard deviation over repeated runs.

Model ‘MSE(XIO*S)J, SSIM 1 RMSE (x10~2) | nRMSE (x10~2) | ¢cRMSE (x10~3)|  Max]  bRMSE(x10~3) |
MLP 955.924 4 3.168 0.010191 + 0.000537  97.788 4 0.163 97.788 4 0.163 2573+ 1.603 63354+ 0.650  42.184 + 6.998
FNO 0.004 £ 0.001  0.999888 =+ 0.000018  0.200 + 0.023 0.200 =+ 0.023 0.068 + 0.018 0241 +0.060  0.702 + 0215
GeoFNO | 0204 +0.193  0.996451 +0.003315  1.215 4 0.148 1.215 4 0.148 231342150 127340117  1.628 +0.848
FFNO 0.030 £ 0.003  0.999097 = 0.000083  0.546 % 0.020 0.546 = 0.020 07034 0.195  1.017 £0.053  1.642 40212
FCNO 0.661 £ 0.021  0.984198 - 0.000534  2.547 + 0.199 2,547 4 0.199 511940161  1.871 £0.142 5341 +0.374
LNO 5.576 £ 0.416  0.955002 & 0.001634  7.488 + 0.421 7.488 =+ 0.421 23.548 £3.665 4.120 +0.646  9.966 + 1.093
Transolver| 0.002  0.000  0.999995 = 0.000004  0.117 % 0.013 0.117 £ 0.013 0.019 4 0.007  0.199 £ 0.048  0.280 4 0.125
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I MORE VISUALIZATIONS

The following presents visualisations of all experimental results across all tasks, including Forward
Modeling, Inverse Source Reconstruction, Temporal Evolution Prediction and Surface-to-Source
Reconstruction, involving regular/irregular grids and full-frequency/OOD environments. We have
selected experimental results from FNO, Transolver, GeoFNO, and LNO models for display, with
visualisations provided for inputs and outputs under each configuration.
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Figure 8: Visualization of experimental results under the temperature to heat (T2Q) inverse task on
irregular grids, the experiment was trained and evaluated on the Type I double-layer subset of the
Aletheia dataset.
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Figure 9: Visualization of experimental results under the temperature to heat (T2Q) inverse task on
regular grids, the experiment was trained and evaluated on the Type I double-layer subset of the
Aletheia dataset.
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Figure 10: Visualization of experimental results under the surface temperature to heat (S2Q) inverse
task on irregular grids, the experiment was trained and evaluated on the Type I double-layer subset of
the Aletheia dataset.
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Figure 11: Visualization of experimental results under the surface temperature to heat (S2Q) inverse
task on regular grids, the experiment was trained and evaluated on the Type I double-layer subset of
the Aletheia dataset.
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Figure 12: Visualization of experimental results under the heat-to-temperature (Q2T) forward task on
irregular grids under full-frequency setting, the experiment was trained and evaluated on the Type I
double-layer subset of the Aletheia dataset.
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Figure 13: Visualization of experimental results under the heat-to-temperature (Q2T) forward task on
irregular grids under OOD setting, the experiment was trained and evaluated on the Type I double-
layer subset of the Aletheia dataset.
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Figure 14: Visualization of experimental results under the heat-to-temperature (Q2T) forward task on
regular grids under full-frequency setting, the experiment was trained and evaluated on the Type I
double-layer subset of the Aletheia dataset.
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Figure 15: Visualization of experimental results under the heat-to-temperature (Q2T) forward task on
regular grids under OOD setting, the experiment was trained and evaluated on the Type I double-layer
subset of the Aletheia dataset.
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Figure 16: Visualization of experimental results under the temperature-to-temperature (T2T) predic-
tion task on irregular grids under full-frequency setting, the experiment was trained and evaluated on
the Type I double-layer subset of the Aletheia dataset.
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Figure 17: Visualization of experimental results under the temperature-to-temperature (T2T) pre-
diction task on irregular grids under OOD setting, the experiment was trained and evaluated on the
Type I double-layer subset of the Aletheia dataset.
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Figure 18: Visualization of experimental results under the temperature-to-temperature (T2T) predic-
tion task on regular grids under full-frequency setting, the experiment was trained and evaluated on
the Type I double-layer subset of the Aletheia dataset.
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Figure 19: Visualization of experimental results under the temperature-to-temperature (T2T) predic-
tion task on regular grids under OOD setting, the experiment was trained and evaluated on the Type I
double-layer subset of the Aletheia dataset.
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