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ABSTRACT

Vision-Language Action Models (VLAs) promise to extend the remarkable suc-
cess of foundation models in vision and language to robotics. Yet, unlike those
models, usable VLAs for robotics require finetuning to contend with complex
physical factors like robot embodiment, environment characteristics, and spatial
relationships. Current fine-tuning methods adapt the same set of parameters re-
gardless of the visual, linguistic, and physical characteristics of a particular task.
Inspired by functional specificity in neuroscience, we hypothesize that it is more
effective to fine-tune components of model representations specific to a given task.
In this work, we introduce Robetic Steering, a novel mechanistic finetuning
approach that identifies task-specific representations in the attention-head space
to selectively adapt VLAs. In particular, we use few-shot examples to identify
and selectively finetune only the VLA attention heads that align with the specific
physical, visual, and linguistic requirements of a task. Through comprehensive
on-robot evaluations using a Franka Emika robot arm, we demonstrate that Robotic
Steering matches or outperforms full-head LoRA across all tested tasks. Crucially,
Robotic Steering demonstrates superior robustness under environmental and task
variations compared to standard LoRA finetuning, while enabling faster, more
compute-efficient, and interpretable experimentation. Grounded in mechanistic
interpretability, Robotic Steering offers a controllable, efficient, and generalizable
framework for adapting VLAs to the diverse physical requirements of robot tasks.

1 INTRODUCTION

"It is tempting, if the only tool you have is a hammer, to treat everything as if it
were a nail."
— Abrahan Harold Maslow, The Psychology of Science [46]

Vision-Language-Action (VLA) models represent an emerging paradigm that extends foundation
models to robotics by applying next token prediction across vision, language, and physical action
spaces [37, 149,162, [70]]. While large-scale robotic datasets [12} 14} 36] have enabled unprecedented
training scales, VLAs have yet to achieve the impressive generalization of language and vision-
language models. Unlike those models that demonstrate remarkable zero-shot adaptation, VLAs
require targeted finetuning for each specific deployment environment, establishing a paradigm where
practitioners must adapt models to match the exact specifications of their intended task.

This reality raises a philosophical question: what constitutes a "task" in robotics? A seemingly
straightforward manipulation objective such as picking up a mug can have many physical instantia-
tions when considering real-world perturbations [2} 22] such as a camera position, the color of the
mug, the table height, or even variations of the robot initial position by a few centimeters. Unlike
vision and language domains where tasks have clear boundaries, robotics operates in a continuous
space of physical variations where the slightest environmental perturbation can fundamentally alter
the required model behavior. We propose that few-shot expert demonstrations better specify what
a robotic "task" is, as they contain the valuable physical information inextricably linked to the task
definition. Unlike linguistic descriptions alone, these demonstrations encode the physical properties
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Figure 1: Robotic Steering enables efficient task adaptation by finetuning specific heads of a
vision-language-action (VLA) model. Standard finetuning trains all parameters, and by intelligently
selecting heads to finetune, we find Robotic Steering to be more interpretable and robust to distractors.

of the deployment scenario: the exact angle the robot grasps from, how cluttered the workspace is,
what lighting conditions exist, and countless other factors that determine successful execution.

Given task specification through few-shot demonstrations, the key challenge becomes: how can we
effectively make use of these demonstrations to learn an embodied task efficiently? Current finetuning
methods like LoRA [31]] adapt the same set of parameters regardless of the specific requirements
of each task. In contrast, we take inspiration from functional specificity in neuroscience, which
suggests that certain brain regions are specialized for particular tasks [19} 35]], and from mechanistic
interpretability in machine learning, which has shown that specific attention heads in transformers
encode distinct capabilities [27,[50]. Building on these insights, we introduce a novel paradigm: using
the few-shot demonstrations themselves to identify which attention heads encode the task-relevant
representations, then selectively finetuning only those components. This approach recognizes that
different tasks engage different model capabilities, for example grasping from above requires different
visual and spatial reasoning than pushing sideways, and adapts the model accordingly.

We introduce Robotic Steering, the first approach to leverage mechanistic interpretability for fine-
tuning task-specific representations of VLAs. Our method consists of three steps, each addressing a
key challenge in VLA adaptation. First, we perform semantic attribution to identify task-relevant
attention heads. Given a set of few-shot demonstrations of a task, we extract activations from each
attention head as the base model performs a forward pass on the examples. We then select heads
whose activations perform best on a lightweight k-NN regression task to predict the ground truth
actions for the examples. By identifying these task-specific heads, we can achieve more precise
adaptation than uniformly finetuning all parameters. Our second step is to freeze the visual encoder,
action expert, and LLM backbone while applying targeted finetuning to only the queries and MLP
parameters associated with selected heads using LoRA adaptors. Finally, the resulting model deploys
as a standard checkpoint without additional overhead. Unlike other mechanistic approaches that
require activation interventions during runtime, our finetuned weights integrate seamlessly into
existing VLA deployment pipelines. An overview is shown in Figure [I]and Figure 2]

We summarize the main contributions of our work: (i) We introduce Robotic Steering, the first method
combining mechanistic interpretability with robotic finetuning for controllable adaptation through
semantic attribution of attention heads; (ii) Through comprehensive on-robot evaluations using a
Franka Emika robot arm, we demonstrate that Robotic Steering matches or outperforms full-head
LoRA across all tested tasks while requiring less runtime and fewer parameters; (iii) Our approach
exhibits superior generalization under environmental distractors, including variations in lighting,
object properties, and scene configurations, compared to standard finetuning methods; (iv) We provide
a practical framework producing standard model checkpoints deployable without additional inference
overhead, making mechanistic finetuning accessible for real-world robotic systems.

2 RELATED WORK

Few-Shot Adaptation in Vision-Language-Action Models. Large Language Models (LLMs) [3,
34, 154} 164] and Large Multimodal Models (LMMs) [} 4} 142} 143} 151} 160, [61]] have demonstrated
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remarkable capabilities through large-scale pretraining and causal token prediction. Vision-Language-
Action models (VLAs) represent the current frontier of robot policy learning [15} 37,155,162, [70] and
is enabled by large-scale datasets [[12,14}136]. This scale of training has demonstrated generalization
across embodiments and tasks. The state-of-the-art w-series models—mg [[10] and 7 5 [S3[]—use flow
matching for continuous action generation along with large-scale data to achieve impressive zero-shot
transfer. Despite these advances, VLAs struggle with few-shot adaptation to new environments.

Researchers have explored various few-shot techniques: in-context learning approaches [45} 158 67]]
condition on demonstrations without weight updates but face context limitations; parameter-efficient
methods [25, 311132} 39} 44]] and specialized adaptations [38 57 reduce trainable parameters; meta-
learning [20) 23} 168]] and behavior retrieval [17} 40, 66] enable rapid adaptation given access to prior
data. However, these methods operate at the level of entire weight matrices without considering
which components encode physical reasoning. Thus, they lack interpretability and fail to leverage
VLASs’ structured representations, motivating our mechanistic approach. We also note other work
in steering in robotics focuses on guiding the action denoising process of diffusion policies [16, 48]]
or designing inference-time action sampling metrics [48]. Instead, our work takes a mechanistic
approach that more selectively finetunes a VLA.

Mechanistic Interpretability. Recent advances in mechanistic interpretability have revealed how
model behavior can be precisely manipulated through internal representations. Early research [8l 9]
69] established frameworks for understanding semantic encoding in neural networks, while activation
steering methods [52}159,165] demonstrated parameter-free behavior modification. The discovery of
specialized components like induction heads [50] and task-specific neurons [28] led to task vector
abstractions [26}163]], with parallel work on sparse autoencoders [[13]] and superposition [18] providing
tools for decomposing representations.

An emerging line of work leverages few-shot mechanistic interpretability for model adaptation
through task vector methods [11} 29,33 47]], which concentrate task-relevant information in specific
attention heads or activation subspaces for efficient parameter-free adaptation. Research in multimodal
representations has revealed how vision-language models structure cross-modal concepts through
multimodal neurons [24]], mechanistic understanding [56]], text-based decomposition [J5, 21]], and
knowledge localization [6l [7]]. The comprehensive survey by Lin et al. [41] provides a broader
overview of these approaches. While these methods have succeeded in language and vision domains,
our work is the first to apply mechanistic interpretability to vision-language-action models, leveraging
these insights to identify and adapt components responsible for physical reasoning in robotic control.

3 METHODS

In this section, we present Robotic Steering, our approach for enabling finetuning of task-specific
components of Vision-Language-Action models through mechanistic interpretability. Our method
identifies and selectively finetunes attention heads that encode task-relevant physical reasoning,
allowing VLAs to learn new capabilities while preserving existing ones. We begin with preliminaries
on VLA architectures, followed by our three-step approach: (1) identifying task-relevant attention
heads through k-NN regression, (2) selective finetuning of identified components, and (3) standard
inference with finetuned weights.

3.1 PRELIMINARIES

Vision-Language-Action Models. VLAs extend the transformer architecture to robotic control by
processing visual observations and language instructions to predict continuous action vectors. Given
an observation o; consisting of image frames and optional language instruction, a VLA predicts an
action vector a; € R? containing control values (e.g., joint velocities, gripper commands). Modern
VLAs like 7 [10] formulate this as a conditional generation problem, where actions are produced
through autoregressive token prediction or flow matching. The model processes inputs as a sequence
of visual tokens, language tokens, and robot state information, combining multimodal information
for action prediction.



Under review as a conference paper at ICLR 2026

Task: “Pick up the marker.”
Standard Finetuning

Trainset Finetune All Parameters
Vision-Language-Action Model

A\
s —

Robotic Steering
Step 1: Extract Attention-Head Locations

F eW-ShO.i Select Heads via K-NN
Demonstrations Regression Action Prediction

B i H B =
S EE--B %% N N---H
EH =

Step 2: Selective Head-Based Finetuning
Trainset

Step 3: Task Inference

Figure 2: Method. Robotic Steering enables targeted adaptation of VLAs by detecting attention
heads encoding task-relevant information, finetuning only these components, and reusing the updated
model for standard inference.

Multi-Head Attention. For a transformer with L layers and H attention heads per layer, each head
(I, h) computes:

QK"
h!'(z;) = softmax v 1
@) (4 m
where ), K, V are query, key, and value projections. For action prediction in VLAs, we focus
on activations at the final token position hf(xT), which aggregates information across the entire
sequence.

3.2 STEP 1: IDENTIFYING TASK-RELEVANT ATTENTION HEADS

Our key insight is that within a VLA’s attention mechanism, specific heads naturally specialize in
encoding physical concepts relevant to particular manipulation tasks. We identify these heads through
their ability to retrieve examples with similar action patterns.

Extracting Head Activations. Suppose we are given a frozen VLA and few-shot demonstrations
D = {(m1,a1),(72,0a2),...,(Tn,an)}, where each trajectory 7; consists of T timesteps. Each
timestep ¢ contains the VLA’s input observation: visual tokens from camera images, language tokens



Under review as a conference paper at ICLR 2026

from task instructions, and robot state information (e.g., joint angles). The corresponding a; € RT*¢
are action vectors across all timesteps.

For each timestep ¢ in trajectory 7;, we extract the attention vector h!'(r}) for every head (I, h).
Importantly, we work at the timestep level rather than trajectory level—each timestep becomes an
individual example in our retrieval set.

k-NN Regression for Head Evaluation. To evaluate each head’s relevance, we assess its ability to
retrieve timesteps with similar actions. The intuition is that if a head’s representation groups together
observations that require similar physical actions, then this head encodes task-relevant features worth
finetuning. In order to make head selection more efficient, we employ the keyframe extraction
approach suggested in [67]. Functionally, however, the approach is identical with or without this step.
More details can be found in Section of the Supplementary material.

For a query observation g from trajectory 7; at timestep ¢:

We first find the & nearest neighbor timesteps from all other trajectories based on cosine similarity in
head (I, h)’s representation space:

©))

h’(q) - h (s
N (q) = top-k{ /() - By () }
J#i,s

b (@)l[[bg (73)]]
Second, we predict the action by averaging the actions of retrieved neighbors:
R 1 s
g — - Z al (3)
(r)EN" ()

Finally, we compute the head’s score as the mean squared error across all queries:

T
1 .
score(l, h) = DT Z Z lab™ — at|? “4)

7, €D t=1
We select the top-m heads with lowest scores:
Heuask = {(I, h) | score(l, k) is among m lowest scores } Q)
These heads learn representations that effectively map task-specific observations to other observations

requiring similar actions within the few-shot demonstration trajectories, making them ideal candidates
for task-specific finetuning.

3.3 STEP 2: SELECTIVE FINETUNING WITH LORA

Having identified task-relevant heads H,«, we perform targeted finetuning while preserving the
model’s general capabilities.

Sparse Parameter Updates. We freeze all model components except the query projections of
selected heads. For each head (I, h) € Hyysk, we apply Low-Rank Adaptation (LoRA) [31]:

Wyt =wg 4+ BhhAbh 6)

where BL € RE%" and AW € R4 are low-rank matrices with rank r < d. We also finetune the
MLP layers associated with the selected attention blocks.

Training Objective. Our approach is flexible and compatible with any VLA training objective. We
simply finetune the selected heads using the same loss function as the base model—whether that’s
flow matching loss for diffusion-based models like 7y or cross-entropy for discretized action spaces.
This selective updating acts as a targeted refinement that enhances task performance without broadly
overwriting the model’s parameters.

3.4 STEP 3: INFERENCE

After selective finetuning, inference proceeds through standard forward passes with the finetuned
weights. Unlike many mechanistic interpretability methods that require computing and manipulating
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Table 1: Performance comparison of Robotic Steering on new and in-domain tasks. Methods are
finetuned on tasks with varying example sizes (20-200), then evaluated on both new and original
in-domain tasks for 20 trials under the same task and environmental settings.

New Tasks In-Domain Tasks
Method Training Trainable Place Push Pick Place Push
Marker Button Cube Bowl
Time Params  in Cup Hard Cube in Bowl to Cup
Zero-shot - - 10% 0% 0% 0% 0%
Full-head LoRA 239 min  1785.9M 75% 65% 75% 60% 60%
Robotic Steering (KNN) 189 min  78.8M 80% 75% 90% 85% 65 %

activations at inference time, our approach produces a standard model checkpoint deployable without
additional computational overhead or specialized procedures. The model simply uses the finetuned
weights for the selected heads while maintaining frozen weights elsewhere, preserving both new task
capabilities and existing skills through this selective modification.

4 EVALUATION

In our work, we evaluate our method on a variety of real-world on-robot tasks using the strong 7
VLA to demonstrate the effectiveness of our approach on realistic, physically-grounded usecases. We
select tasks of diverse difficulties and skills and deeper experimentation and ablation that showcases
the many unique qualities of our approach including its performance, robustness, and interpretability.
We present more details as follows:

4.1 IMPLEMENTATION DETAILS

While our method is model-agnostic, we use 7 [10], a state-of-the-art VLA that uses flow matching
for continuous action generation. Our entire implementation is in Jax [], which notably lacks
convenient hooks to easily extract activations from the model. Thus, we highlight the development of
such functionality for a Jax-based model as a core technical contribution of our work. We finetune
the model using 2 NVIDIA RTX A6000 GPUs, emphasizing the lightweight nature of our approach.
We extract attention activations from the model’s PaliGemma [] LLM backbone with 18 layers with 8§
heads each, selecting m = 20 heads for finetuning based on k-NN regression with k = 5 neighbors.
The LoRA rank is set to r = 8, and we finetune for 5,000 steps for our main experiments using
varying number of demonstrations depending on the difficulty of the task. More implementation
details can be found in Supplementary Section

4.2 ROBOTIC SETUP DETAILS

We follow the setup from DROID [36] exactly, using a 7-DoF Franka Emika Panda robot arm with a
Robotiq gripper and a low-level Polymetis controller []. As suggested by DROID, we enable two of
the three cameras for both finetuning and inference: the left arm camera and wrist camera. We record
each example episode at 6 Hz. All data collection is performed on-robot using teleoperation, with
each task controlling for the exact objects used to ensure fair evaluation across methods.

We evaluate a total of 5 primary tasks with the following language instructions: (1) "place marker
in cup”, (2) "push button hard", (3) "pick red cube", (4) "place green cube in red bowl", and (5)
"push red bowl to red cup". Tasks (1) and (2) are considered new tasks requiring 200 training
samples due to their difficulty based on action complexity, physical demands (e.g., manipulating
small objects like markers), and unique task specifications such as pressing the button hard in a
particular demonstrated manner. Tasks (3)-(5) are in-domain tasks that require only 20 training
samples. Importantly, all experiments use only 20 few-shot expert demonstrations for head selection
when applicable, regardless of the total training data available. All models are finetuned for 5,000
iterations as detailed in Section@] (implementation details). More details about the robot and the
task setup can be found in Section |C|of the Supplement.
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Figure 3: Scaling experiments on Place Marker in Cup task. (a) Success rate versus number of
selected attention heads. (b) Success rate versus training iterations for Robotic Steering and Full-head
LoRA, both starting from the same zero-shot baseline

5 RESULTS

Our main results are shown in Table|l| The crucial insight of Robotic Steering is that few-shot expert
demonstrations can encode the physical nuances of robotic tasks and more importantly inform which
task-specific components of a model to finetune.

Indeed, our results demonstrate that Robotic Steering matches or outperforms LoRA’s success rate on
all evaluated tasks. This is true for both simpler in-domain tasks which are similar to DROID [36]
dataset tasks and excitingly more challenging, new tasks which we even provide 200 examples
for finetuning. This demonstrates that Robotic Steering is a broadly effective finetuning approach,
leveraging just 20 demonstrations to surpass the LoRA baseline. It is worth noting that none of
these tasks are trivial given the physical context of on-robot evaluation as we see that zero-shot
performance is near 0% success rate for all tasks. While 7y is a SOTA VLA, it is remains brittle
to generalization when faced with variations in environment conditions, robot embodiments, and
language instructions. Beyond task performance, Table [T demonstrates that Robotic Steering is
significantly more computationally efficient than full-head LoRA, reducing finetuning time by 21%
while using 96% fewer parameters. This efficiency is crucial for practical robotics, where rapid
iteration and experimentation in new environments is essential. We present additional results and
ablations in Section[A]of the Appendix.

5.1 ABLATIONS

We perform a comprehensive ablation study of Robotic Steering on the Place Marker in Cup task to
understand the impact of key design choices. For all ablations, we use the base -0 model.

Varying number of attention heads. In Figure|3al(a), we examine the impact of varying the number
of selected attention heads used in our method. We find that performance peaks at 20 heads (80%
success rate) and decreases with both fewer and more heads. This suggests that an optimal subset of
heads exists for task-specific adaptation, where too few heads lack sufficient representational capacity
while too many heads introduce noise or conflicting signals.

Scaling with training iterations. We investigate how our method scales with the number of training
iterations compared to Full-head LoRA. As shown in Figure [3b, Robotic Steering demonstrates faster
initial learning and achieves higher final performance (80%) compared to Full-head LoRA (75%)
after Sk iterations. This result suggests that our approach scales well, surpassing or at least matching
LoRA’s capabilities of scaling performance with further training.

Head selection approach. Our results in Table[3|show that K-NN regression, our approach for head
selection, slightly outperforms Causal Mediation Analysis (CMA) [63] and REINFORCE |30, 33]].
CMA, specifically causal ablation in our experiments, selects heads by adding noise to each head
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Table 2: Generalization performance under environmental variations and transfer to related tasks
after training on Place Marker in Cup. | indicates performance drop from base condition.

Method Base + Lighting + Positional Unseen Task: Unseen Task:
Performance Distractor Variation Pick Mug Pl. Cube in
Bowl
Zero-shot 10% 0% 0% 0% 0%
Full-head LoRA 75% 40% 147% 45% | X% 0% 40%
Robotic Steering 80% 60 % 55% 30% 55%

Table 3: Ablation studies on head selection methods and training components. All methods use 20
few-shot examples and select top-20 heads for adaptation.

Method Place Marker Head Selection Time Fine-tuning Time
in Cup (min) (min)

Head Selection Methods

CMA 15% 58 min 51 min

REINFORCE 80% 93 min 51 min

K-NN Regression (Ours) 80% 17 min 51 min

Training Components

Queries only 10% 17 min 52 min

Queries + MLP (Ours) 80% 17 min 51 min

and measuring the resulting performance drop on the 20 few-shot demonstrations. REINFORCE
optimizes head selection through gradient-based search to maximize task performance. While all
three methods achieve comparable task success rates as shown in Table 3] K-NN regression offers a
crucial advantage: significantly lower runtime. This is due to K-NN regression not requiring model
inference and evaluation for head selection. Once the activations are computed, K-NN regression
boils down to a simple and very efficient retrieval-based regression on the activations themselves.

Training Components. We also carefully ablate the recipe for which precise components of the
model to finetune. Of course, when selecting heads, it is natural to finetune their queries, but we
also question whether additionally finetuning their MLPs, yields any benefit. Our results in Table[3]
suggest that indeed finetuning both the queries and MLPs associated with the selected task-specific
heads yields improvements in success rate. This suggests that the feedforward projection following
attention is important to adapt for VLA finetuning. We do not consider finetuning the parameters of
the keys and values as they are shared per layer in 7y’s base LLM [10].

5.2 ADDITIONAL EXPERIMENTS

In this subsection, we present experiments that demonstrate additional properties and capabilities of
Robotic Steering, beyond its use for improving task-specific performance. Additional visualizations
can be found in Supplementary Section[A.2.2] For all experiments, we use the 7o model with our
steering method trained on Place Marker in Cup.

Robustness to environmental distractors. We evaluate the robustness and generalization of our
method to common environmental variations that occur in real-world robotic deployment. We test
our model trained on the base Place Marker in Cup task under two challenging conditions: lighting
variations and positional distractors. As shown in Table[2] Robotic Steering shows significantly less
degradation in the face of environmental variations. This demonstrates that our sparse head selection
naturally filters out features sensitive to task-irrelevant variations while preserving task-critical
attention heads.

Zero-shot transfer to related tasks. A key advantage of our approach is the ability to transfer
learned steering vectors to related manipulation tasks without additional training. In Table 2] we
evaluate the heads selected for Place Marker in Cup on two related tasks: Pick Mug and Place Cube
in Bowl. Despite being trained only on the marker placement task, our method achieves 30% success
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Figure 4: Task and Head Selection Visual Left: Attention heads selected by Robotic Steering and
task visual for Place Marker in Mug; Right: Attention heads selected by Robotic Steering and task
visual for Place Cube in Bowl

on Pick Mug, while Full-head LoRA completely fails (0%). This suggests that the sparse selected
heads capture generalizable representations that transfer across tasks with similar action spaces and
object interactions.

Visualizing selected attention heads. To understand what our method learns, we visualize the
attention patterns of the top-selected heads for Place Marker in Cup, Pick Cube, and Push Bowl to
Cup tasks in Figure [d] The visualizations reveal that different tasks activate distinct sets of heads.
Intuitively, this aligns with the notion of functional specificity, except in models’ attention heads.
This interpretability is a key advantage of our approach: unlike black-box finetuning methods, we
can directly inspect which attention mechanisms are being leveraged for each task.

6 CONCLUSION

In this work, we introduce Robotic Steering, which demonstrates that few-shot demonstrations can
specify physically-grounded embodied tasks and help identify which specific attention heads in VLAs
encode task-relevant physical reasoning. By selectively finetuning only these heads, we match or
exceed full LoRA performance while using 96% fewer parameters and achieving superior robustness
to environmental variations. Our visualizations reveal that different manipulation tasks activate
distinct attention patterns, providing mechanistic insight into how VLAs encode physical tasks.

This work opens exciting research directions at the intersection of mechanistic interpretability and
robotic learning. Future methods could explore alternative head selection approaches beyond K-
NN regression, investigate finer-grained selection at the parameter or neuron level, or develop
compositional schemes where multiple task-specific adaptations combine without interference. More
fundamentally, our results suggest that the question of "what to finetune" deserves equal attention to
"how to finetune", a shift that could transform how we adapt foundation models for robotics. As VLAs
scale to billions of parameters, the ability to precisely identify and modify task-relevant components
will become essential for practical deployment across the wide variety of physical contexts robots
must master.
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